
BanditFuzz: A Reinforcement-Learning based
Performance Fuzzer for SMT Solvers

Joseph Scott1, Federico Mora2, and Vijay Ganesh1

1 University of Waterloo, Ontario, Canada
{joseph.scott,vijay.ganesh}@uwaterloo.ca

2 University of California, Berkeley
fmora@cs.berkeley.edu

Abstract. Satisfiability Modulo Theories (SMT) solvers are fundamen-
tal tools that are used widely in software engineering, verification, and
security research. Precisely because of their widespread use, it is imper-
ative we develop efficient and systematic methods to test them. To this
end, we present a reinforcement-learning based fuzzing system, Bandit-
Fuzz, that learns grammatical constructs of well-formed inputs that may
cause performance slowdown in SMT solvers. To the best of our knowl-
edge, BanditFuzz is the first machine-learning based performance fuzzer
for SMT solvers.

BanditFuzz takes the following as input: a grammar G describing well-
formed inputs to a set of distinct solvers (say, a target solver T and a
reference solver R) that implement the same specification, and a fuzzing
objective (e.g., aim to maximize the relative performance difference be-
tween T and R). BanditFuzz outputs a list of grammatical constructs
that are ranked in descending order by how likely they are to increase
the performance difference between solvers T and R. Using BanditFuzz,
we constructed two benchmark suites (with 400 floating-point and 300
string instances) that expose performance issues in all considered solvers,
namely, Z3, CVC4, Colibri, MathSAT, Z3seq, and Z3str3. We also per-
formed a comparison of BanditFuzz against random, mutation, and evo-
lutionary fuzzing methods and observed up to a 81% improvement based
on PAR-2 scores used in SAT competitions. That is, relative to other
fuzzing methods considered, BanditFuzz was found to be more efficient
at constructing inputs with wider performance margin between a target
and a set of reference solvers.

1 Introduction

Over the last two decades, many sophisticated program analysis [20], verifica-
tion [24], and bug-finding tools [13] have been developed thanks to powerful
Satisfiability Modulo Theories (SMT) solvers. The efficiency of SMT solvers sig-
nificantly impacts the efficacy of modern program analysis, testing, and verifica-
tion tools. Given the insatiable demand for efficient and robust SMT solvers, it is
imperative that these infrastructural tools be subjected to extensive correctness
and performance testing and verification.



2 Joseph Scott, Federico Mora, and Vijay Ganesh

While there is considerable work on test generation and verification tech-
niques aimed at correctness of SMT solvers [11, 7], we are not aware of previous
work aimed at automatically generating inputs that expose performance issues
in these complex and sophisticated tools.

One such approach is (relative) performance fuzzing3, which can be defined
as follows: methods aimed at automatically and efficiently generating inputs for
a program-under-test T such that the performance margin between the program
T and a set of other program(s) R that implement the same specification is
maximized.
Reinforcement Learning (RL) based Performance Fuzzing: Researchers
have explored many methods for performance fuzzing of programs, including
blackbox random and mutation fuzzing [25]. While blackbox approaches are
cheap to build and deploy, they are unlikely to efficiently find inputs that expose
performance issues. The reason is that purely blackbox approaches are oblivious
to input/output behavior of programs-under-test. A whitebox test generation
approach (such as some variation of symbolic analysis) is indeed suitable for
such a task, but they tend to be inefficient for a different reason, namely, the
path explosion problem. In particular, for complex systems like SMT solvers,
purely whitebox performance fuzzing approaches are unlikely to scale.

By contrast, the paradigm of RL is well suited for this task of performance
fuzzing, since RL methods are an efficient way of navigating a search space
(e.g., a space of inputs to programs), guided by corrective feedback they receive
via historical analysis of input/output (I/O) behavior, of programs-under-test.
Further, they can be low-cost since they interact with programs-under-test in a
blackbox fashion.

In this paper, we introduce an RL-based fuzzer, called BanditFuzz, that
improves on traditional fuzzing approaches by up to a 81% improvement for rel-
ative performance fuzzing. That is, relative to other fuzzing methods considered
in this paper, BanditFuzz is more efficient at constructing inputs with wider
performance margins between a target and a set of reference solvers.

The metric we use for comparing various fuzzing algorithms considered in this
paper is the PAR-2 score margins used in SAT competitions [29]. Using Bandit-
Fuzz, we generated a database of 400 inputs that expose relative performance
issues across a set of FP solvers, namely, CVC4 [4], MathSAT [16], Colibri [30],
and Z3 [18], as well as 300 inputs exposing relative performance issues in the
Z3seq (Z3’s official string solver [18]), Z3str3 [6], and CVC4 string solvers [26].

Description of BanditFuzz: BanditFuzz takes as input a grammar G that
describes well-formed inputs to a set P of programs-under-test (for simplicity,
assume P contains only two programs, a target program T to be fuzzed, and a
reference program R against which the performance of T is compared), a fuzzing
objective (e.g., aim to maximize the relative performance margin between a tar-
get and a set of reference solvers). BanditFuzz outputs a ranked list of grammat-
ical constructs (e.g., syntactic tokens, expressions, keywords, or combinations

3 We use the terms “relative performance fuzzing” and “performance fuzzing” inter-
changeably in this paper.



BanditFuzz: A Performance Fuzzer for SMT Solvers 3

thereof, over the input language described by G) in the descending order of ones
that are most likely to trigger a performance issue, as well as actual instances
that expose these issues in the programs-under-test. (It is assumed that Bandit-
Fuzz has blackbox access to programs in the set P and that all programs in the
set P have the same input grammar G.)

Briefly, BanditFuzz works as follows: BanditFuzz generates well-formed in-
puts that adhere to the input grammarG, mutates them in a grammar-preserving
manner, and uses RL methods to perform a historical analysis of the I/O be-
havior of the programs in P , in order to learn which grammatical constructs
are most likely to cause performance issues in the programs in P . By contrast,
traditional mutation fuzzers choose or implement a mutation operator at random
and are oblivious to the behavior of the programs-under-test.

BanditFuzz reduces the problem of how to optimally mutate an input to an
instance of the multi-arm bandit (MAB) problem, well-known in the RL litera-
ture [44, 46]. The crucial insight behind BanditFuzz is the idea of automatically
analyzing the history of a target solver’s performance, and using this analysis
to create a list of grammatical constructs in G, and ranking them based on how
likely they are to be a cause of a performance issue in the solver-under-test.
Initially, all grammatical constructs in G are treated as uniformly likely to cause
a performance issue by BanditFuzz’s RL agent. BanditFuzz then randomly gen-
erates a well-formed input I, to begin with, and runs all the programs in P on
the input I. In each of the subsequent iterations of its feedback loop, BanditFuzz
mutates the input I from its previous iteration using the ranked list of gram-
matical constructs (i.e., the agent performs an action) and runs all solvers in P
on the mutated version of the input I. It analyzes the results of these runs to
provide feedback (i.e., rewards) to the RL agent in the form of those constructs
that are most likely to cause relative performance difference between the target
program T with respect to the reference program R. It then updates and re-ranks
its list of grammatical constructs with the goal of maximizing its reward (i.e.,
increasing the relative performance difference between the target and reference
solvers in P ). The process continues until the RL agent converges to a ranking
or runs out of resources.

Key Features of BanditFuzz: A key feature of BanditFuzz that sets it apart
from other fuzzing and systematic testing approaches is that, in addition to
generating inputs that reveal performance issues, it isolates or localizes a cause
of performance issue, in the form of a ranked list of grammatical tokens that
are the most likely cause of a performance issue in the target solver-under-test.
This form of localization is particularly useful in understanding problematic
behaviours in complex programs such as SMT solvers.

Contributions:
First RL-based Performance Fuzzer for Floating-Point and String
SMT Solvers: We describe the design and implementation of the first RL-
based fuzzer for SMT solvers, called BanditFuzz. BanditFuzz uses RL, specif-
ically MABs, in order to construct fuzzing mutations over highly structured
inputs with the aim of maximizing a fuzzing objective, namely, the relative per-



4 Joseph Scott, Federico Mora, and Vijay Ganesh

formance difference between a target and a reference solver. To the best of our
knowledge, using RL in this way has never been done before. Furthermore, as
far as we know, BanditFuzz is the first RL-based performance fuzzer for SMT
Solvers.

Extensive Empirical Evaluation of BanditFuzz: We provide an extensive
empirical evaluation of our fuzzer for detecting relative performance issues in
SMT solvers and compare it to existing techniques. That is, we use our fuzzer to
find instances that expose large performance differences in four state-of-the-art
floating-point (FP) solvers, namely, Z3, CVC4, MathSat, and Colibri, as well
as three string solvers, namely, Z3str3, Z3 sequence (Z3seq), and CVC4 solvers
(as measured by PAR-2 score [29]). BanditFuzz outperforms existing fuzzing
algorithms (such as random, mutation, and genetic fuzzing) by up to an 81%
increase in PAR-2 score margins, for the same amount of resources provided
to all methods. We also contribute two large benchmark suites discovered by
BanditFuzz that contain a combined total of 400 for the theory of FP and 300
for the theory of strings that the SMT community can use to test their solvers.

2 Preliminaries

Reinforcement Learning: There is a vast literature on reinforcement learning,
and we refer the reader to the following excellent surveys and books on the
topic [46, 44, 45]. As discussed in the introduction, the reinforcement learning
paradigm is particularly suited for modelling mutation fuzzing, whenever an
online corrective feedback loop makes sense in the fuzzing context. In this paper,
we specifically deploy multi-armed bandit (MAB) algorithms [44], a class of
reinforcement learning algorithms, to learn mutation operators (functions that
perform a syntactic modification on well-formed inputs in a grammar-preserving
fashion).

Reinforcement learning algorithms are commonly formulated using Markov
Decision Processes (MDPs) [39, 46, 42], a 4-tuple of states S, actions A, rewards
R, and transitions T . The multi-armed bandit (MAB) problem is a common
reinforcement learning problem based on a stateless MDP (or more precisely, a
single state S = {s0}) and a finite set of actions A. Due to the nature of the
problem, there is no learned modelling of transitions T . What remains to be
learned, is the unknown probability distribution of rewards R over the space
of actions A. In the context of MAB, actions are often referred to as arms (or
bandits 4).

In this paper, we exclusively consider the case where rewards are sampled
from an unknown Bernoulli distribution (rewards are {0, 1}). The MAB agent
attempts to approximate the expected value of the Bernoulli distribution of re-
ward for each action in A. The MAB learns a policy – a stochastic process of how

4 The term bandit comes from gambling: the arm of a slot machine is referred to as
a one-armed bandit, and multi-arm bandits referred to several slot machines. The
goal of the MAB agent is to maximize its reward by playing a sequence of actions
(e.g., slot machines).



BanditFuzz: A Performance Fuzzer for SMT Solvers 5

to select actions from A. The learned policy balances the exploration/exploita-
tion trade-off, i.e., a MAB algorithm selects every action an infinite number of
times in the limit. Still, it selects the action(s) with the highest expected reward
more frequently.

While we implemented three solutions to the MAB problem into BanditFuzz,
we focus on only one in this paper, namely, Thompson Sampling. Thompson
Sampling builds a Beta distribution for each action in the action space. Beta
distributions are a variant of Gamma distributions and have a long history.
We refer the reader to Gupta et al. on Beta and Gamma distributions [21].
Intuitively, a Beta distribution is a continuous approximation of an underlying
Bernoulli distribution approaching the same mean (p parameter) in the limit. It
is maintained by updating the parameters α − 1 (the samples of 1) and β − 1
(the samples of 0) from the underlying Bernoulli distribution.

In Thompson sampling, the agent maintains a Beta distribution for each ac-
tion. The agent samples each action’s distribution, and greedily picks its arm
based on the maximum sampled value. Upon completing the action, α is in-
cremented on a reward. Otherwise, β is incremented. For more on Thompson
sampling, we refer to Russo et al. [40].
Satisfiability Modulo Theories and the SMT-LIB Standard: Satisfia-
bility Modulo Theories (SMT) solvers are decision procedures for first-order
theories such as integers, bit-vectors, floating-point, and strings that are partic-
ularly suitable for verification, program analysis, and testing [5]. The SMT-LIB
is an initiative to standardize the language and specification of several theories
of interest. In this paper, we exclusively consider solvers, whose quantifier-free
FP and string decision procedures are being actively developed at the time of
writing of this paper.
Quantifier-free Theory of Floating Point Arithmetic (FP): The SMT
theory of FP was first proposed by Rümmer et al. [38] with several recent re-
visions. In this paper, we consider the latest version, by Brain et al. [10]. The
SMT-LIB FP theory supports standard FP sorts of 32, 64, and 128 bit lengths
with their usual mantissa and exponent bit vector lengths, and also allows for ar-
bitrary width sorts with appropriate mantissa and exponent lengths. The theory
includes common predicates, operators, and terms over FP. We refer the reader
to the SMT-LIB standard for details on the syntax and semantics of FP theory.
In this paper, we consider the following set of operators: { fp.abs, fp.neg, fp.add,
fp.mul, fp.sub, fp.div, fp.fma, fp.rem, fp.sqrt, fp.roundToIntegral }, set of pred-
icates: { fp.eq, fp.lt, fp.gt, fp.leq, fp.geq, fp.isNormal, fp.isSubnormal, fp.isZero,
fp.isInfinite, fp.isNaN, fp.isPositive, fp.isNegative }, and rounding terms { RNE,
RNA, RTP, RTN, RTZ }. Semantics of all operands follow the IEEE754 08
standard [17].
Quantifier-free Theory of Strings: The SMT-LIB standard for the theory
of strings is currently in development [14]. The draft has a finite alphabet Σ of
characters, string constants and variables that range over Σ∗, integer constants
and variables, as well as the functions { str.++, str.contains, str.at, str.len,
str.indexof, str.replace, re.inter, re.range, re.+, re.*, re.++, str.to re }, and pred-



6 Joseph Scott, Federico Mora, and Vijay Ganesh

BanditFuzz

Reinforcement
Learning

Agent

Fuzzer

Programs
Under Test

Output
Analyzer

Outputs +
Runtimes

Computed Reward
on Mutated Inputs Inputs

Grammatical
Constructs

Generator

Mutator

Fuzzing Objective

Grammar Inputs

Ranked Grammatical
Constructs

Fig. 1. Architecture of BanditFuzz

icates { str.prefixof, str.suffixof, str.in re}. We further clarify that this list was
carefully selected to include only those that are supported amongst all solvers
considered in this paper.
Software Fuzzing: A Fuzzer is a program that automatically generates inputs
for a target program-under-test. Fuzzers may treat the program-under-test as
a whitebox or blackbox, depending on whether they have access to the source
code. Unlike random fuzzers, a mutation fuzzer takes as input a database of
inputs of interest and produces new inputs by mutating the elements of the
database using a mutation operator (a function defining a syntactic change).
These mutation operators are frequently stochastic bit-wise manipulations in
the case of model-less programs or grammar-preserving changes for model-based
programs [49, 15, 31, 27]. Other common fuzzing approaches include genetic and
evolutionary fuzzing solutions. These approaches maintain a population of input
seeds that are mutated or combined/crossed-over using a genetic or evolutionary
algorithm [36, 41, 23].

3 BanditFuzz: An RL-based Performance Fuzzer

In this section, we describe our technique, BanditFuzz, a grammar-based muta-
tion fuzzer that uses reinforcement learning (RL) to efficiently isolate grammat-
ical constructs of an input that are the cause of a performance issue in a solver-
under-test. The ability of BanditFuzz to isolate those grammatical constructs
that trigger performance issues, in a blackbox manner, is its most interesting
feature. The architecture of BanditFuzz is presented in Figure 1.

3.1 Description of the BanditFuzz Algorithm

BanditFuzz takes as input a grammar G that describes well-formed inputs to a
set P of solvers-under-test (for simplicity, assume P contains only two programs,



BanditFuzz: A Performance Fuzzer for SMT Solvers 7

a target program T to be fuzzed, and a reference program R against which the
performance or correctness of T is compared), a fuzzing objective (e.g., aim
to maximize the relative performance difference between target and reference
solvers) and outputs a ranked list of grammatical constructs (e.g., syntactic
tokens or keywords over G) in the descending order of ones that are most likely
to cause performance issues. We infer this ranked list by extrapolating from the
policy of the RL agent. It is assumed that BanditFuzz has blackbox access to
the set P of the solvers-under-test.

The BanditFuzz algorithm works as follows: BanditFuzz generates well-formed
inputs that adhere to G and mutates them in a grammar-preserving manner (the
instance generator and mutator together are referred to as fuzzer in Figure 1)
and deploys an RL agent (specifically a MAB agent) within a feedback loop to
learn which grammatical constructs of G are the most likely culprits that cause
performance issues in the target program T in P .

BanditFuzz reduces the problem of how to mutate an input to an instance of
the MAB problem. As discussed earlier, in the MAB setting an agent is designed
to maximize its cumulative rewards by selecting the arms (actions) that give
it the highest expected reward, while maintaining an exploration-exploitation
tradeoff. In BanditFuzz, the agent chooses actions (grammatical constructs used
by the fuzzer to mutate an input) that maximize the reward over a period of
time (e.g., increasing the runtime difference between the target solver T and
a reference solver R). It is important to note that the agent learns an action
selection policy via a historical analysis of the results of its actions over time.
Within its iterative feedback loop (that enables rewards from the analysis of
solver outputs to the RL agent), BanditFuzz observes and analyzes the effects
of the actions it takes on the solvers-under-test. BanditFuzz maintains a record
of these effects over many iterations, analyzes the historical data thus collected,
and zeroes-in on those grammatical constructs that have the highest likelihood
of reward. At the end of its run, BanditFuzz outputs a ranked list of grammatical
constructs which are most likely to cause performance issues, in descending order.
In the fuzzing for relative performance fuzzing mode, BanditFuzz performs the
above-described analysis to produce a ranked list of grammatical constructs that
increase the difference in running time between a target solver T and a reference
solver R.

3.2 Fuzzer: Instance Generator and Grammar-preserving Mutator

BanditFuzz’s fuzzer (See Architecture of BanditFuzz in Figure 1) consists of two
sub-components, namely, an instance5 generator and a grammar-preserving mu-
tator (or simply, mutator). The instance generator is a program that randomly
samples the space of inputs described by the grammar G. The mutator is a pro-
gram that takes as input a well-formed G-instance and a grammatical construct
δ and outputs another well-formed G-instance.

5 We use the terms “instance” and “input” interchangeably through this paper.



8 Joseph Scott, Federico Mora, and Vijay Ganesh

Instance Generator: Here we describe the generator component of Bandit-
Fuzz, as described in Figure 1. Initially, BanditFuzz generates a random well-
formed instance using the input grammar G (FP or string SMT-LIB grammar)
via a random abstract syntax tree (AST) generation procedure built into String-
Fuzz [7]. We generalize this procedure for the theory of FP.

The FP input generation procedure works as follows: we first populate a list
of free 64-bit FP variables and then generate random ASTs that are asserted
in the instance. Each AST is rooted by an FP predicate whose children are FP
operators chosen at random. We deploy a recursive process to fill out the tree
until a predetermined depth limit is reached. Leaf nodes of the AST are filled in
by randomly selecting a free variable or special constant. Rounding modes are
filled in when required by an operator’s signature. The number of variables and
assertions are parameters to the generator and are specified for each experiment.

Similar to the generator in StringFuzz, BanditFuzz’s generation process is
highly configurable. The user can choose the number of free variables, the number
of assertions, the maximum depth of the AST, the set of operators, and rounding
terms. The user can also set weights for specific constructs as a substitute for
the default uniform random selection.
Grammar-preserving Mutator: The second component of the BanditFuzz
fuzzer is the mutator. In the context of fuzzing SMT solvers, a mutator takes
a well-formed SMT formula I and a grammatical construct δ as input, and
outputs a mutated well-formed SMT formula I ′ that is like I, but with a suitable
construct (say, γ) replaced by δ. The construct γ in I could be selected using some
user-defined policy or chosen uniform-at-random over all possible grammatical
constructs in I. In order to be grammar-preserving, the mutator has to choose γ
such that no typing and arity constraints are violated in the resultant formula I ′.
The grammatical construct δ, one of the inputs to the mutator, may be chosen
at random or selected using an RL agent. We describe this process in greater
detail in the next subsection.

On the selection of a grammatical construct, an arbitrary construct of the
same type (predicate, operator, or rounding mode, etc.) is selected uniformly at
random. If the replacement involves an arity change, the rightmost subtrees are
dropped on a decrease in arity, or new subtrees are generated on the increase in
arity.

For illustrative purposes, we provide an example mutation here. Consider a
maximum depth of two, fixed set of free FP variables (x0, x1), limited rounding
mode set of {RNE}, and an asserted equation:

(fp.eq (fp.add RNE x0 x1)(fp.sub RNE x0 x1)).

If the agent elects to insert fp.abs there are two possible results:

(fp.eq (fp.abs x0)(fp.sub RNE x0 x1)), (fp.eq (fp.add RNE x0 x1)(fp.abs x0)).

For further analysis, consider the additional asserted equation:

(fp.eq (fp.abs x0)(fp.abs x1)),



BanditFuzz: A Performance Fuzzer for SMT Solvers 9

Algorithm 1 BanditFuzz’s Performance Fuzzing Feedback Loop. Also refer to
BanditFuzz architecture in Figure 1.

1: procedure BanditFuzz(G)
2: Instance I ← a randomly-generated instance over G . Fuzzer
3: Run target solver T and reference solver(s) R on I
4: Compute PerfScore(I) . OutputAnalyzer
5: θ = 2· Solver timeout
6: while fuzzing time limit not reached and PerfScore(I) < θ do
7: construct← RL AGENT picks a grammatical construct . RL Agent
8: I ′ ← Mutate I with construct . Fuzzer
9: Run target solver T and reference solver(s) R on I ′

10: if PerfScore(I ′, P ) > PerfScore(I, P ) then . OutputAnalyzer
11: Provide reward to RL AGENT for construct
12: I ← I ′

13: else
14: Provide no reward to AGENT for construct
15: end if
16: end while
17: return I and the ranking of constructs from RL AGENT
18: end procedure

if the agent elects to insert fp.add, then there are four6 possible outputs:

(fp.eq (fp.add RNE x0 x0)(fp.abs x1))

(fp.eq (fp.add RNE x0 x1)(fp.abs x1))

(fp.eq (fp.abs x0)(fp.add RNE x1 x0))

(fp.eq (fp.abs x0)(fp.add RNE x1 x1))

In these examples, the reason why the possible outputs may seem limited is
due to type and arity preservation rules described above. As described below, the
fuzzer would select one of the mutations in the above example in a manner that
maximizes expected reward (e.g., the fuzzing objective such that the performance
difference between a solver-under-test and a reference solver is increases).

3.3 RL Agent and Reward-driven Feedback Loop in BanditFuzz

As shown in Figure 1, the key component of BanditFuzz is an RL agent (based
on Thompson sampling) that receives rewards and outputs a ranked list of gram-
matical constructs (actions). The fuzzer maintains a policy and selects actions
from it (“pulling an arm” in the MAB context), and appropriately modifies the
current input I to generate a novel input I ′. The rewards are computed by the
Output Analyzer, which takes as input the outputs and runtimes produced by

6 This is assuming only the RNE rounding mode is allowed, otherwise each of the below
expressions could have any valid rounding mode resulting in 20 possible outputs.



10 Joseph Scott, Federico Mora, and Vijay Ganesh

the solver-under-test S and computes scores and rewards appropriately. These
are fed to the RL agent; the RL agent tracks the history of rewards it obtained
for every grammatical construct and refines its ranking over several iterations of
BanditFuzz’s feedback loop (see Algorithm 1 ). In the following subsections, we
discuss it in detail.

Computing Rewards for Performance Fuzzing: We describe Bandit-
Fuzz’s reward computation for performance fuzzing in detail here, and display
the pseudo-code for it in Algorithm 1 (see also the architecture in Figure 1 to get
a higher-level view of the algorithm). Initially, the fuzzer generates a well-formed
input I (sampled uniformly-at-random). BanditFuzz then executes both the tar-
get solver T and reference solver R on I and records their respective runtimes
(it is assumed that both solvers may produce the correct answer with respect
to input I or timeout). BanditFuzz’s OutputAnalyzer module then computes a
score, PerfScore, defined as

PerfScore(I) := runtime(I, T )− runtime(I,R)

where the quantity runtime(I, T ) refers to the wall clock runtime of the target
solver T on I, and runtime(I,R) the runtime of the reference solver R on I.
If the target solver reaches the wallclock timeout, we set runtime(I, T ) to be
2 · timeout — PAR-2 scoring in the SAT competition. In the same iteration,
BanditFuzz mutates the input I to a well-formed input I ′ and computes the
quantity PerfScore(I ′). Recall that we refer to the mutation inserted into I to
obtain I ′ as γ.

The OutputAnalyzer then computes the rewards as follows. It takes as input
I, I ′, quantities PerfScore(I), and PerfScore(I ′), and if the quantity PerfScore(I ′)
is better than PerfScore(I) (i.e., the target solver is slower than the reference
solver on I ′ relative to their performance on I), the mutations γ gets a positive
reward, else it gets a negative reward. Recall that we want to reward those con-
structs which make the target solver slower than the reference one. The reward
for all other grammatical constructs remains unchanged.

The rewards thus computed are fed into the RL agent. The bandit then
updates the rank of the grammatical constructs. The Thompson sampling bandit
analyzes historically, the positive and negative rewards for each grammatical
construct and computes the α and β parameters. The highest-ranked construct
γ is fed into the fuzzer for the subsequent iteration. This process continues until
the fuzzing resource limit has been reached.

4 Results: BanditFuzz vs. Standard Fuzzing Approaches

In this section, we present an evaluation of BanditFuzz vs. standard performance
fuzzing algorithms, such as random, mutational, and evolutionary.

4.1 Experimental Setup

All experiments were performed on the SHARCNET computing service [3]: a
CentOS V7 cluster of Intel Xeon Processor E5-2683 running at 2.10 GHz. We



BanditFuzz: A Performance Fuzzer for SMT Solvers 11

Fig. 2. Cactus Plot for targeting the Z3 FP Solver against reference solvers CVC4,
Colibri, and MathSAT. As seen above, BanditFuzz has larger performance margins
against the target solver (Z3), compared to the other fuzzing algorithm within a given
time budget.

limited each solver to 8GB of memory without parallelization. Otherwise, each
solver is run under its default settings. Each solver/input query is ran with a
wallclock timeout of 2500 seconds.
Baselines: We compare BanditFuzz with three different widely-deployed fuzzing
loops that are built on top of StringFuzz [7]: random, mutation, and genetic
fuzzing. We describe the three approaches below. We extend StringFuzz to
floating-point, as described in Section 3.2. All baselines generate and modify
inputs via StringFuzz’s generator and transformer interface.
Random Fuzzing – Random fuzzers are programs that sample inputs from
the grammar of the program-under-test (we only consider model-based random
fuzzers here). Random fuzzing is a simple yet powerful approach to software
fuzzing. We use StringFuzz as our random fuzzer for strings and extend a version
of it to FP as described in Section 3.2.
Mutational Fuzzing – A mutation fuzzer typically mutates or modifies a
database of input seeds in order to generate new inputs to test a program.
Mutation fuzzing has had a tremendous impact, most notably in the context of
model-less program domains [49, 15, 31, 27]. We use StringFuzz transformers as



12 Joseph Scott, Federico Mora, and Vijay Ganesh

Fig. 3. Cactus Plot for targeting the Z3seq string solver against reference solvers CVC4
and Z3str3. As seen above, BanditFuzz has larger performance margins against the
target solver (Z3), compared to the other fuzzing algorithm within a given time budget.

our mutational fuzzer with grammatical constructs selected uniformly at ran-
dom. We lift StringFuzz transformer’s to FP as described in Section 3.2.
Genetic/Evolutionary Fuzzing – Evolutionary fuzzing algorithms maintain
a population of inputs. In every generation, only the fittest members of the pop-
ulation survive, and new members are created through random generation and
mutation [36, 41].

We configure StringFuzz to generate random ASTs at random with five as-
sertions. Each formula has one check-sat call. Each AST has depth three with
five string/FP constants 7.

4.2 Quantitative Method for Comparing Fuzzing Algorithms

We run each of the baseline fuzzing algorithms and BanditFuzz on a target solver
(e.g., Z3’s FP procedure) and a set of reference solvers (e.g., CVC4, Colibri,
MathSAT) for 12 hours to construct a single input with maximal difference

7 Integer/Boolean constants are added for the theory of strings when appropriate
(default behaviour of StringFuzz)



BanditFuzz: A Performance Fuzzer for SMT Solvers 13

Target Solver BanditFuzz Random Mutational Genetic % Improvement

Colibri 499061.5 499544.2 499442.2 499295.1 -0.10 %
CVC4 144568.9 68714.2 125273.0 38972.7 15.40 %

MathSAT5 36654.5 12024.9 31615.4 8208.0 15.94 %
Z3 467590.0 239774.3 256973.1 251108.2 81.96 %

Table 1. PAR-2 Score Margins of the returned inputs for considered fuzzing algorithms
for FP SMT performance fuzzing. As seen in the table above, BanditFuzz maximizes
the PAR-2 score of the target solver, compared to the other fuzzing algorithm within
a given time budget.

between the runtime of the target solver and the reference solvers. We repeat
this process for each fuzzing algorithm 100 times. We then take and compare
the highest-scoring instance for each solver for each fuzzing algorithm.

The fuzzing algorithm that has the largest runtime separation between the
target solver and the reference solvers, in the given amount of time, is declared
the best fuzzing algorithm among all the algorithms we compare. We show
that BanditFuzz consistently outperforms random, mutation, and evolutionary
fuzzing algorithms according to these criteria.

Quantitative Evaluation via PAR-2 Margins: For each solver/input
pair, we record the wallclock time. To evaluate a solver over a set of inputs, we
use PAR-2 scores. PAR-2 is defined as the sum of all successful runtimes, with
unsolved inputs labelled as twice the timeout. As we are fuzzing for performance
with respect to a target solver, we evaluate the returned test suite of a fuzzing
algorithm based on the PAR-2 margin between the PAR-2 of the target solver
and the input wise maximum across all of the reference solvers. More precisely,

PAR 2Margin(S, st, D) :=
∑
I∈D

PAR 2(I, st)−max(PAR 2(I, s))
s∈S,s 6=st

for a set of solvers S and target solver st ∈ S, and generated input dataset D.
For example, consider a target solver S1 against a set of reference solvers

S2, S3, over a benchmark suite of three inputs. Let the runtimes for the solver S1

on the three inputs be 1000.0, timeout, 100.0, that of solver S2 be 50.0, 30.0, 10.0,
and that of solver S3 be 100.0, 1000.0, 1.0, respectively. With our timeout of 2500
seconds, S1 would have a PAR-2 of 6100, S2 a score of 90, and S3 a score of 1101.
We define the PAR-2 margin by summing the difference between the maximum
of S2, S3 from that of solver S1 on each of the inputs, which in this example
results in a (1000− 100) + (5000− 1000) + (100− 10) = 4990 PAR-2 margin.

We want to remark that a perfect PAR-2 margin (i.e., the target solver fails
to solve all instances and each competing solver solves all instances instantly)
over a set of n inputs to be 2 · n · timeout, which in the above example with
three inputs and a timeout of 2500 is 15,000 (3 · 2 · 2500). In our experiments,
we generate 100 inputs, resulting in an optimal score of 500000. Note that the
fuzzing algorithm with the largest PAR-2 margin over all fuzzed inputs for a
given target solver is deemed the best fuzzer for that target solver. The fuzzer



14 Joseph Scott, Federico Mora, and Vijay Ganesh

Target Solver BanditFuzz Random Mutational Genetic Improvement

CVC4 45629.8 30815.4 30815.4 31619.4 44.15%
Z3str3 499988.6 499986.7 499987.2 499986.8 0.00%
Z3seq 499883.4 409111.0 433416.5 445097.4 12.31%

Table 2. PAR-2 Score Margins of the returned inputs for considered fuzzing algorithms
for string SMT performance fuzzing. As seen in the table above, BanditFuzz aims to
maximize the PAR-2 score of the target solver, compared to the other fuzzing algorithm
within a given time budget.

that is best, as measured by PAR-2 margin, among all fuzzers across all target
solvers, is considered the best fuzzer overall.

Visualization: As discussed below, the performance results of the solvers on
the fuzzed inputs generated by the baseline fuzzers and BanditFuzz are visualized
using cactus plots. A cactus plot demonstrates a solvers performance over a set of
benchmarks, with the X-axis denoting the total number of solved inputs and the
Y-axis denoting the solver timeout in seconds. A point (X, Y) on a cactus plot
can be interpreted as the solver can solve X of the inputs from the benchmark
set with each input solved within Y seconds. In our setting, cactus plots can be
used to visualize the performance separation from the target solver and reference
solvers.

4.3 Performance Fuzzing Results for FP SMT Solvers

In our performance fuzzing evaluation of BanditFuzz, we consider the following
state-of-the-art FP SMT solvers: Z3 v4.8.0 - a multi-theory open source SMT
solver [18], MathSAT5 v5.5.3. a multi theory SMT solver [16], CVC4 CVC4
1.7-prerelease [git master 61095232] - a multi theory open source SMT Solver [4],
and Colibri v2070 - A proprietary CP Solver with specialty in FP SMT [8, 30].

Table 1 presents the margins of the PAR-2 scores between the target solver
and the maximum of the reference solvers across the returned inputs for each
fuzzing algorithm. BanditFuzz shows a notable improvement on fuzzing baselines
except for when Colibri is selected as the target solver. In the case of Colibri
being the target solver, all baselines observe PAR-2 margins near the maximum
value of 500,000, leaving no room for BanditFuzz to improve. Having such a high
margin indicates each run of a fuzzer resulted in an input where Colibri timed
out, yet all other considered solvers solved it almost immediately.

Figure 2 presented the cactus plot for the experiments when Z3 was the target
solver. Also, we can obtain a ranking of grammatical constructs by extrapolat-
ing the α, β values from the learned model and sampling its beta distribution to
approximate the expected value of reward for the grammatical construct’s corre-
sponding action. The top three for each target solver are: Colibri – fp.neg, fp.abs,
fp.isNegative, CVC4 – fp.sqrt, fp.gt, fp.geq, MathSAT5 – fp.isNaN, RNE, fp.mul,
Z3 – fp.roundToIntegral, fp.div, fp.isNormal. This indicates that, e.g., CVC4’s
reasoning on fp.sqrt could be improved by studying Z3’s implementation.



BanditFuzz: A Performance Fuzzer for SMT Solvers 15

4.4 Performance Fuzzing for String SMT Solvers

In our performance fuzzing evaluation of BanditFuzz, we consider the following
state-of-the-art string SMT solvers: Z3str3 v4.8.0 [6], Z3seq v4.8.0 [18], and
CVC4 v1.6 [4]. We fuzz the string solvers for relative performance issues, with
each considered as a target solver. Identically to the above FP experiments, each
run of a fuzzer is repeated 100 times to generate 100 different inputs.

Table 2 presents the margins of the PAR-2 scores between the target solver
and the maximum of the remaining solvers across the returned inputs for each
fuzzing algorithm. BanditFuzz shows a substantial improvement on fuzzing base-
lines except for when Z3str3 is selected as the target solver. However, in this
scenario, the PAR-2 margins are near the maximum value of 500000, across all
fuzzing algorithms. This implies a nearly perfect input suite with Z3str3 timing
out while CVC4 and Z3seq solve the input nearly instantly.

As in the previous Section 4.3, we can extrapolate the grammatical con-
structs that were most likely to cause a performance slowdown. The top three
for each target solver are as follows: CVC4 – re.range, str.contains, str.to int,
Z3seq – re.in regex, str.prefixOf, str.length, Z3str3 – str.contains, str.suffixOf,
str.concat. Further, Figure 3 presents the cactus plot for the experiments when
Z3seq was the target solver. The cactus plot provides a visualization of the
fuzzing objective, aiming to maximize the performance margins between Z3seq
and the other solvers collectively8. The line for BanditFuzz for the Z3seq solver
is not rendered on the plot as the inputs returned by BanditFuzz were too hard
for Z3seq and were not solved in the given timeout.
Discussion of Results with Developers: We shared our tool and bench-
marks with the Z3str3 string solver team. The Z3str3 team found the tool to
be “invaluable” in localizing performance issues, as well as identifying classes of
inputs on which Z3str3 outperforms competing string solvers such as CVC4. For
example, we managed to generate a class of instances that had roughly an equal
number of string constraints and integer (arithmetic over the length of strings)
constraints over which Z3str3 outperforms CVC4. By contrast, CVC4 outper-
forms Z3str3 when inputs have many str.contains and str.concat constructs. The
Z3str3 team is currently working on improving their solver based on the feedback
from BanditFuzz.

5 Related Work

Fuzzers for SMT Solvers: We refer to Takanen et al. [47] and Sutton et al. [43]
for a detailed overview of fuzzing. While there are many tools and fuzzers for
finding bugs in specific SMT theories [34, 7, 12, 11, 28, 28], BanditFuzz is the first
performance fuzzer for SMT solvers that we are aware of.

Machine Learning for Fuzzing: Bottinger et al. [9] introduce a deep Q learn-
ing algorithm for fuzzing model-free inputs, further PerfFuzz by Lemieux et
al., uses bitwise mutation for performance fuzzing. These approaches would not

8 Cactus plots for Z3str3 and CVC4 solvers can be found on the BanditFuzz webpage.



16 Joseph Scott, Federico Mora, and Vijay Ganesh

scale to either FP SMT nor string SMT theories, given the complexity of their
grammars. Such a tool would need to first learn the grammar to penetrate the
parsers to begin to discover performance issues. To this end, Godefroid et al. [19]
use neural networks to learn an input grammar over complicated domains such
as PDF and then use the learned grammar for model-guided fuzzing. To the
best of our knowledge, BanditFuzz is the first fuzzer to use RL to implement
model-based mutation operators that can be used to isolate the root causes of
performance issues in the programs-under-test.

While bandit MAB algorithms have been used in various aspects as fuzzing,
it has not been used to implement a mutation. Karamcheti et al. [22] trained
bandit algorithms to select model-less bitwise mutation operators from an array
of fixed operators for greybox fuzzing. Woo et al. [48] and Patil et al. [35] used
bandit algorithms to select configurations of global hyper-parameters of fuzzing
software. Rebert et al. [37] used bandit algorithms to select from a list of valid
inputs seeds to apply a model-less mutation procedure on. Our work differs from
these methods, as we learn a model-based mutation operator implemented by
an RL agent. Appelt et al. [1] combine blackbox testing with machine learning
to direct fuzzing. To the best of our knowledge, our work is the first to use
reinforcement learning or bandit algorithms to learn and implement a mutation
operator within a grammar-based mutational fuzzing algorithm.

Delta Debugging: BanditFuzz differs significantly from delta debugging, where
a bug-revealing input E is given, and the task of a delta-debugger is to minimize
E to get E′ while ensuring that E′ exposes the same error in the program-under-
test as E [33, 32, 2, 50]. BanditFuzz, on the other hand, generates and examines
a set of inputs that expose performance issues in a target program by leveraging
reinforcement learning. The goal of BanditFuzz is to discover patterns over the
entire generated set of inputs via a historical analysis of the behavior of the
program via RL. Specifically, BanditFuzz finds and ranks the language features
that are the root cause of performance issues in the program-under-test.

6 Conclusions and Future Work

In this paper, we presented BanditFuzz, a performance fuzzer for FP and string
SMT solvers that automatically isolates and ranks those grammatical constructs
in an input that are the most likely cause of a relative performance slowdown
in a target program relative to a (set of) reference programs. BanditFuzz is the
first fuzzer for FP SMT solvers that we are aware of, and the first fuzzer to
use reinforcement learning, specifically MAB, to fuzz SMT solvers. We compare
BanditFuzz against a portfolio of baselines, including random, mutational, and
evolutionary fuzzing techniques, and found that it consistently outperforms ex-
isting fuzzing approaches. In the future, we plan to extend BanditFuzz to all of
SMT-LIB.



BanditFuzz: A Performance Fuzzer for SMT Solvers 17

References

1. Appelt, D., Nguyen, C.D., Panichella, A., Briand, L.C.: A machine-learning-driven
evolutionary approach for testing web application firewalls. IEEE Transactions on
Reliability 67(3), 733–757 (2018)

2. Artho, C.: Iterative delta debugging. International Journal on Software Tools for
Technology Transfer 13(3), 223–246 (2011)

3. Baldwin, S.: Compute canada: advancing computational research. In: Journal of
Physics: Conference Series. vol. 341, p. 012001. IOP Publishing (2012)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceed-
ings of the 23rd International Conference on Computer Aided Verification (CAV
’11). Lecture Notes in Computer Science, vol. 6806, pp. 171–177. Springer (Jul
2011), http://www.cs.stanford.edu/ barrett/pubs/BCD+11.pdf, snowbird, Utah

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

6. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp.
55–59. IEEE (2017)

7. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: Stringfuzz:
A fuzzer for string solvers. In: International Conference on Computer Aided Veri-
fication. pp. 45–51. Springer (2018)

8. Bobot-CEA, F., Chihani-CEA, Z., Iguernlala-OCamlPro, M., Marre-CEA, B.: Fpa
solver

9. Böttinger, K., Godefroid, P., Singh, R.: Deep reinforcement fuzzing. arXiv preprint
arXiv:1801.04589 (2018)

10. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics for
ieee-754 floating-point arithmetic. In: Computer Arithmetic (ARITH), 2015 IEEE
22nd Symposium on. pp. 160–167. IEEE (2015)

11. Brummayer, R., Biere, A.: Fuzzing and delta-debugging smt solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories. pp. 1–5.
ACM (2009)

12. Bugariu, A., Müller, P.: Automatically testing string solvers. In: International Con-
ference on Software Engineering (ICSE), 2020. ETH Zurich (2020)

13. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automat-
ically generating inputs of death. ACM Transactions on Information and System
Security (TISSEC) 12(2), 10 (2008)

14. Cesare Tinelli, Clark Barret, P.F.: Theory of unicode strings (draft) (2019),
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

15. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 2015
IEEE Symposium on Security and Privacy. pp. 725–741. IEEE (2015)

16. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 smt solver.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 93–107. Springer (2013)

17. Committee, I.S., et al.: 754-2008 ieee standard for floating-point arithmetic. IEEE
Computer Society Std 2008, 517 (2008)

18. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)



18 Joseph Scott, Federico Mora, and Vijay Ganesh

19. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: Machine learning for input fuzzing.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. pp. 50–59. IEEE Press (2017)

20. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
ACM SIGPLAN Notices 43(6), 281–292 (2008)

21. Gupta, A.K., Nadarajah, S.: Handbook of beta distribution and its applications.
CRC press (2004)

22. Karamcheti, S., Mann, G., Rosenberg, D.: Adaptive grey-box fuzz-testing with
thompson sampling. In: Proceedings of the 11th ACM Workshop on Artificial In-
telligence and Security. pp. 37–47. ACM (2018)

23. Koza, J.R.: Genetic programming (1997)
24. Le Goues, C., Leino, K.R.M., Moskal, M.: The boogie verification debugger (tool

paper). In: International Conference on Software Engineering and Formal Methods.
pp. 407–414. Springer (2011)

25. Lemieux, C., Padhye, R., Sen, K., Song, D.: Perffuzz: Automatically generating
pathological inputs. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. pp. 254–265 (2018)

26. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient smt solver for string constraints. Formal Methods in System Design 48(3),
206–234 (2016)

27. Manes, V.J., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.:
Fuzzing: Art, science, and engineering. arXiv preprint arXiv:1812.00140 (2018)

28. Mansur, M.N., Christakis, M., Wüstholz, V., Zhang, F.: Detecting critical bugs
in smt solvers using blackbox mutational fuzzing. arXiv preprint arXiv:2004.05934
(2020)

29. Marijn Heule, Matti Järvisalo, M.S.: Sat race 2019 (2019), http://sat-race-
2019.ciirc.cvut.cz/

30. Marre, B., Bobot, F., Chihani, Z.: Real behavior of floating point numbers. In:
15th International Workshop on Satisfiability Modulo Theories (2017)

31. Miller, C., Peterson, Z.N., et al.: Analysis of mutation and generation-based
fuzzing. Independent Security Evaluators, Tech. Rep (2007)

32. Misherghi, G., Su, Z.: Hdd: hierarchical delta debugging. In: Proceedings of the
28th international conference on Software engineering. pp. 142–151. ACM (2006)

33. Niemetz, A., Biere, A.: ddSMT: A Delta Debugger for the SMT-LIB v2 Format.
In: Proceedings of the 11th International Workshop on Satisfiability Modulo The-
ories, SMT 2013), affiliated with the 16th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2013, Helsinki, Finland, July 8-9, 2013.
pp. 36–45 (2013)

34. Niemetz, A., Preiner, M., Biere, A.: Model-Based API Testing for SMT Solvers. In:
Brain, M., Hadarean, L. (eds.) Proceedings of the 15th International Workshop on
Satisfiability Modulo Theories, SMT 2017), affiliated with the 29th International
Conference on Computer Aided Verification, CAV 2017, Heidelberg, Germany, July
24-28, 2017. p. 10 pages (2017)

35. Patil, K., Kanade, A.: Greybox fuzzing as a contextual bandits problem. arXiv
preprint arXiv:1806.03806 (2018)

36. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
Application-aware evolutionary fuzzing. In: NDSS. vol. 17, pp. 1–14 (2017)

37. Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., Brumley,
D.: Optimizing seed selection for fuzzing. In: USENIX Security Symposium. pp.
861–875 (2014)



BanditFuzz: A Performance Fuzzer for SMT Solvers 19

38. Rümmer, P., Wahl, T.: An smt-lib theory of binary floating-point arithmetic. In:
International Workshop on Satisfiability Modulo Theories (SMT). p. 151 (2010)

39. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Malaysia; Pear-
son Education Limited, (2016)

40. Russo, D.J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al.: A tutorial on
thompson sampling. Foundations and Trends R© in Machine Learning 11(1), 1–96
(2018)

41. Seagle Jr, R.L.: A framework for file format fuzzing with genetic algorithms (2012)
42. Sigaud, O., Buffet, O.: Markov decision processes in artificial intelligence. John

Wiley & Sons (2013)
43. Sutton, M., Greene, A., Amini, P.: Fuzzing: brute force vulnerability discovery.

Pearson Education (2007)
44. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press

(2018)
45. Sutton, R.S., Barto, A.G., et al.: Reinforcement learning: An introduction. MIT

press (1998)
46. Szepesvári, C.: Algorithms for reinforcement learning. Synthesis lectures on artifi-

cial intelligence and machine learning 4(1), 1–103 (2010)
47. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for software security testing and

quality assurance. Artech House (2008)
48. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational

fuzzing. In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. pp. 511–522. ACM (2013)

49. Zalewski, M.: American fuzzy lop (2015)
50. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE

Transactions on Software Engineering 28(2), 183–200 (Feb 2002)


