
Synthesis in Uclid5
Federico Mora, Kevin Cheang, Elizabeth Polgreen, and
Sanjit A. Seshia

Verification Takes Time & Effort
• For example, verifying SGX and Sanctum took four

months of modelling work [1].
• This work includes

– strengthening invariants,
– annotating functions with pre- and post-conditions, and
– modelling system calls and the environment.

• Tasks like these can be automated using SyGuS!

We use SyGuS solvers to unify synthesis-for-
verification tasks in a clean way inside of Uclid5.

2

Verification Takes Time & Effort
• For example, verifying SGX and Sanctum took four

months of modelling work [1].
• This work includes

– strengthening invariants,
– annotating functions with pre- and post-conditions, and
– modelling system calls and the environment.

• Tasks like these can be automated using SyGuS!

We use SyGuS solvers to unify synthesis-for-
verification tasks in a clean way inside of Uclid5.

[1] Subramanyan, Pramod, et al. “A Formal Foundation for Secure Remote Execution of Enclaves.” CCS ‘17. 3

Verification Takes Time & Effort
• For example, verifying SGX and Sanctum took four

months of modelling work [1].
• This work includes

– strengthening invariants,
– annotating functions with pre- and post-conditions, and
– modelling system calls and the environment.

• Tasks like these can be automated using SyGuS!

We use SyGuS solvers to unify synthesis-for-
verification tasks in a clean way inside of Uclid5.

[1] Subramanyan, Pramod, et al. “A Formal Foundation for Secure Remote Execution of Enclaves.” CCS ‘17. 4

Verification Takes Time & Effort
• For example, verifying SGX and Sanctum took four

months of modelling work [1].
• This work includes

– strengthening invariants,
– annotating functions with pre- and post-conditions, and
– modelling system calls and the environment.

• Tasks like these can be automated using SyGuS!

We use SyGuS solvers to unify synthesis-for-
verification tasks in a clean way inside of Uclid5.

[1] Subramanyan, Pramod, et al. “A Formal Foundation for Secure Remote Execution of Enclaves.” CCS ‘17. 5

Synthesis in Uclid5
1. Describe our integration of synthesis into Uclid5.

– Users define functions to synthesize and use them
• anywhere in their code,
• for any verification technique

– (k-induction, bounded model checking, …), and
• for any kind of specification

– (linear temporal logic, invariants, sequential assertions, …).
– Uclid5 solves the queries using existing SyGuS engines.

2. Generate a new set of SyGuS benchmarks.

6

Synthesis in Uclid5
1. Describe our integration of synthesis into Uclid5.

– Users define functions to synthesize and use them
• anywhere in their code,
• for any verification technique

– (k-induction, bounded model checking, …), and
• for any kind of specification

– (linear temporal logic, invariants, sequential assertions, …).
– Uclid5 solves the queries using existing SyGuS engines.

2. Generate a new set of SyGuS benchmarks.

7

Synthesis in Uclid5
1. Describe our integration of synthesis into Uclid5.

– Users define functions to synthesize and use them
• anywhere in their code,
• for any verification technique

– (k-induction, bounded model checking, …), and
• for any kind of specification

– (linear temporal logic, invariants, sequential assertions, …).
– Uclid5 solves the queries using existing SyGuS engines.

2. Generate a new set of SyGuS benchmarks.

8

Related Work
• Strengthening invariants (e.g. [2])
• Annotating functions with pre/post-conditions (e.g. [3])
• Modelling the environment and system calls (e.g. [4])
• Program Sketching (e.g. [5])
• Program Repair (e.g. [6])
• Verification engines with Synthesis capabilities (e.g. [7])

[2] Dillig, Isil, et al. “Inductive invariant generation via abductive inference.” OOPSLA ‘13.
[3] Padhi, Saswat, et al. “Data-driven precondition inference with learned features.” PLDI ‘16.
[4] Das, Ankush, et al. "Angelic verification: Precise verification modulo unknowns.” CAV ‘15.
[5] Solar-Lezama, Armando, and Rastislav Bodik. Program synthesis by sketching. UC Berkeley PhD, 2008.
[6] Le, Xuan-Bach D., et al. "S3: syntax-and semantic-guided repair synthesis via programming by examples." FSE ‘17.
[7] Torlak, Emina, and Rastislav Bodik. "A lightweight symbolic virtual machine for solver-aided host languages." PLDI ‘14. 9

Related Work
• Strengthening invariants (e.g. [2])
• Annotating functions with pre/post-conditions (e.g. [3])
• Modelling the environment and system calls (e.g. [4])
• Program Sketching (e.g. [5])
• Program Repair (e.g. [6])
• Verification engines with Synthesis capabilities (e.g. [7])

[2] Dillig, Isil, et al. “Inductive invariant generation via abductive inference.” OOPSLA ‘13.
[3] Padhi, Saswat, et al. “Data-driven precondition inference with learned features.” PLDI ‘16.
[4] Das, Ankush, et al. "Angelic verification: Precise verification modulo unknowns.” CAV ‘15.
[5] Solar-Lezama, Armando, and Rastislav Bodik. Program synthesis by sketching. UC Berkeley PhD, 2008.
[6] Le, Xuan-Bach D., et al. "S3: syntax-and semantic-guided repair synthesis via programming by examples." FSE ‘17.
[7] Torlak, Emina, and Rastislav Bodik. "A lightweight symbolic virtual machine for solver-aided host languages." PLDI ‘14.10

Related Work
• Strengthening invariants (e.g. [2])
• Annotating functions with pre/post-conditions (e.g. [3])
• Modelling the environment and system calls (e.g. [4])
• Program sketching (e.g. [5])
• Program Repair (e.g. [6])
• Verification engines with Synthesis capabilities (e.g. [7])

[2] Dillig, Isil, et al. “Inductive invariant generation via abductive inference.” OOPSLA ‘13.
[3] Padhi, Saswat, et al. “Data-driven precondition inference with learned features.” PLDI ‘16.
[4] Das, Ankush, et al. "Angelic verification: Precise verification modulo unknowns.” CAV ‘15.
[5] Solar-Lezama, Armando, and Rastislav Bodik. Program synthesis by sketching. UC Berkeley PhD, 2008.
[6] Le, Xuan-Bach D., et al. "S3: syntax-and semantic-guided repair synthesis via programming by examples." FSE ‘17.
[7] Torlak, Emina, and Rastislav Bodik. "A lightweight symbolic virtual machine for solver-aided host languages." PLDI ‘14.11

Related Work
• Strengthening invariants (e.g. [2])
• Annotating functions with pre/post-conditions (e.g. [3])
• Modelling the environment and system calls (e.g. [4])
• Program sketching (e.g. [5])
• Program repair (e.g. [6])
• Verification engines with Synthesis capabilities (e.g. [7])

[2] Dillig, Isil, et al. “Inductive invariant generation via abductive inference.” OOPSLA ‘13.
[3] Padhi, Saswat, et al. “Data-driven precondition inference with learned features.” PLDI ‘16.
[4] Das, Ankush, et al. "Angelic verification: Precise verification modulo unknowns.” CAV ‘15.
[5] Solar-Lezama, Armando, and Rastislav Bodik. Program synthesis by sketching. UC Berkeley PhD, 2008.
[6] Le, Xuan-Bach D., et al. "S3: syntax-and semantic-guided repair synthesis via programming by examples." FSE ‘17.
[7] Torlak, Emina, and Rastislav Bodik. "A lightweight symbolic virtual machine for solver-aided host languages." PLDI ‘14.12

Related Work
• Strengthening invariants (e.g. [2])
• Annotating functions with pre/post-conditions (e.g. [3])
• Modelling the environment and system calls (e.g. [4])
• Program sketching (e.g. [5])
• Program repair (e.g. [6])
• Verification engines with synthesis capabilities (e.g. [7])

[2] Dillig, Isil, et al. “Inductive invariant generation via abductive inference.” OOPSLA ‘13.
[3] Padhi, Saswat, et al. “Data-driven precondition inference with learned features.” PLDI ‘16.
[4] Das, Ankush, et al. "Angelic verification: Precise verification modulo unknowns.” CAV ‘15.
[5] Solar-Lezama, Armando, and Rastislav Bodik. Program synthesis by sketching. UC Berkeley PhD, 2008.
[6] Le, Xuan-Bach D., et al. "S3: syntax-and semantic-guided repair synthesis via programming by examples." FSE ‘17.
[7] Torlak, Emina, and Rastislav Bodik. "A lightweight symbolic virtual machine for solver-aided host languages." PLDI ‘14.13

Strengthening an Invariant

Running Example

14

Uclid5 Fibonacci Module
module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

15

Uclid5 Fibonacci Module
module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

16

Uclid5 Fibonacci Module
module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

17

Uclid5 Fibonacci Module
module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

18

module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

Fibonacci Induction Attempt

19

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

a_le_b actually does hold, but it
is not inductive (P2 is not valid)

module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

Fibonacci Induction Attempt

20

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

a_le_b actually does hold, but it
is not inductive (P2 is not valid)

module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

Fibonacci Induction Attempt

21

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

a_le_b actually does hold, but it
is not inductive (P2 is not valid)

module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

Fibonacci Induction Attempt

22

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

a_le_b actually does hold, but it
is not inductive (P2 is not valid)

module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}

Fibonacci Induction Attempt

23

Fibonacci With Synthesis
module main {

synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
} 24

Fibonacci With Synthesis
module main {

synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
} 25

Fibonacci With Synthesis
module main {

synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
} 26

Fibonacci With Synthesis
module main {

synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b); // h(a, b) := a >= 0

control {
induction;
check;
print_results;

}
} 27

Synth-Lib Intermediate Representation

Under the Hood

28

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

29

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

30

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface

31

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

32

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

33

Verification
algorithms are

completely
untouched!

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

34

module main {
synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
}

Synth-Lib Encoding

35

module main {
synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
}

Synth-Lib Encoding

36

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

Synth-Lib Encoding

37

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

(synth-blocking-fun h ((x Int) (y Int)) Bool)

(declare-fun initial_b () Int)
(declare-fun initial_a () Int)
(declare-fun new_a () Int)
(declare-fun new_b () Int)

(assert (or
(not (and (<= initial_a initial_b) (h 0 1))) ;(not P1)
(and (and (<= initial_a initial_b) (h initial_a initial_b))

(= new_a initial_b)
(= new_b (+ initial_a initial_b))
(not (and (<= new_a new_b) (h new_a new_b)))))) ;(not P2)

(check-sat)

Synth-Lib Encoding

38

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

(synth-blocking-fun h ((x Int) (y Int)) Bool)

(declare-fun initial_b () Int)
(declare-fun initial_a () Int)
(declare-fun new_a () Int)
(declare-fun new_b () Int)

(assert (or
(not (and (<= initial_a initial_b) (h 0 1))) ;(not P1)
(and (and (<= initial_a initial_b) (h initial_a initial_b))

(= new_a initial_b)
(= new_b (+ initial_a initial_b))
(not (and (<= new_a new_b) (h new_a new_b)))))) ;(not P2)

(check-sat)

∃ℎ ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)

SMT-Lib Encoding

39

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to

next, then it will hold on exit

(define-fun h ((x Int) (y Int)) Bool (>= x 0))

(declare-fun initial_b () Int)
(declare-fun initial_a () Int)
(declare-fun new_a () Int)
(declare-fun new_b () Int)

(assert (or
(not (and (<= initial_a initial_b) (h 0 1))) ;(not P1)
(and (and (<= initial_a initial_b) (h initial_a initial_b))

(= new_a initial_b)
(= new_b (+ initial_a initial_b))
(not (and (<= new_a new_b) (h new_a new_b)))))) ;(not P2)

(check-sat)

UNSAT iff ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

40

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

41

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

42

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

43

∃ℎ ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

44

∃ℎ ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)

∃ℎ ∀𝑎, 𝑏 𝑃! ℎ, 𝑎, 𝑏 ∧ 𝑃"(ℎ, 𝑎, 𝑏)

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

45

∃ℎ ¬∃𝑥⃗ /¬𝑃#(ℎ, 𝑥⃗)

∃ℎ ∀𝑥⃗ 0𝑃#(ℎ, 𝑥⃗)

Architecture of Synthesis in
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

46

One example out of 25

The Benchmarks

47

…
define pi_balance(p : bv8, b : bv16) : bv16 =

b[15:8] ++ (b[7:0] + p);
…
init {

/*--+
| Injective Trace enumeration Witness (I): Property 12 |
| ======================================= |
| Makes use of enumeration predicate (pi_balance) defined above.
|
| - Mapping initial state. |
+--*/
assume (acct1.balance == pi_balance(p1, acct0.balance));
assume (acct2.balance == pi_balance(p2, acct0.balance));

}
…

Benchmark Example [5]

48

[5] Sahai, Shubham, et al. "Verification of Quantitative Hyperproperties Using Trace Enumeration Relations.” CAV ‘20

…
define pi_balance(p : bv8, b : bv16) : bv16 =

b[15:8] ++ (b[7:0] + p);
…
init {

/*--+
| Injective Trace enumeration Witness (I): Property 12 |
| ======================================= |
| Makes use of enumeration predicate (pi_balance) defined above.
|
| - Mapping initial state. |
+--*/
assume (acct1.balance == pi_balance(p1, acct0.balance));
assume (acct2.balance == pi_balance(p2, acct0.balance));

}
…

Benchmark Example [5]

49

[5] Sahai, Shubham, et al. "Verification of Quantitative Hyperproperties Using Trace Enumeration Relations.” CAV ‘20

…
synthesis function pi_balance(p : bv8, b : bv16) : bv16;

…
init {

/*--+
| Injective Trace enumeration Witness (I): Property 12 |
| ======================================= |
| Makes use of enumeration predicate (pi_balance) defined above.
|
| - Mapping initial state. |
+--*/
assume (acct1.balance == pi_balance(p1, acct0.balance));
assume (acct2.balance == pi_balance(p2, acct0.balance));

}
…

Benchmark Example [5]

50

[5] Sahai, Shubham, et al. "Verification of Quantitative Hyperproperties Using Trace Enumeration Relations.” CAV ‘20

Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now,

not in one framework!
• Uclid5 lets users define functions to synthesize and use them

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…

51

Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now,

not in one framework!
• Uclid5 lets users define functions to synthesize and use them

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…

52

Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now,

not in one framework!
• Uclid5 lets users define functions to synthesize and use them

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…

53

Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now,

not in one framework!
• Uclid5 lets users define functions to synthesize and use them

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…

54

Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now,

not in one framework!
• Uclid5 lets users define functions to synthesize and use them

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…

55

Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now,

not in one framework!
• Uclid5 lets users define functions to synthesize and use them

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…

56

module main {
synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}

next {
a', b' = b, a + b;

}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
}

Thank you!

Front-end

Symbolic
Simulator

Synth-Lib
Interface

SMT-Lib
Interface

SyGuS-IF
Interface

Paper Code Benchmarks

Extra Stuff

58

Strengthening Invariants

Manual Work #1 of 3

59

Reachable Set

Strengthening Invariants

Initial
Set Desired Invariant

60

Reachable Set

Strengthening Invariants

Initial
Set Desired Invariant

(NOT INDUCTIVE)

61

Reachable Set

Strengthening Invariants

Initial
Set

Inductive Invariant

Desired Invariant

62

Reachable Set

Strengthening Invariants

Initial
Set

Inductive Invariant
(IMPLIES DESIRED
INVARIANT)

Desired Invariant

63

Annotating functions with pre- and post-conditions

Manual Work #2 of 3

64

Annotating functions with pre-
and post-conditions
procedure searchQ() returns (found : boolean)

requires (count >= 0 && count <= SIZE);
ensures (in_queue(data) <==> found);

{
var i : integer;
i = 0;
found = false;
while (i < count)

invariant (i >= 0 && i <= count);
{

if (contents[itemIndex(i)] == data) {
found = true;

}
i = i + 1;

}
}

65

Annotating functions with pre-
and post-conditions
procedure searchQ() returns (found : boolean)

requires (count >= 0 && count <= SIZE);
ensures (in_queue(data) <==> found);

{
var i : integer;
i = 0;
found = false;
while (i < count)

invariant (i >= 0 && i <= count);
{

if (contents[itemIndex(i)] == data) {
found = true;

}
i = i + 1;

}
}

66

Modelling the Environment and System Calls

Manual Work #3 of 3

67

Modelling the Environment and
System Calls

var a, b : integer;

init {
a = time();
b = time();

}

property bigger_than_a : (b >= a);

68

Modelling the Environment and
System Calls

var a, b : integer;

init {

a = time();
b = time();

}

property bigger_than_a : (b >= a);

69

