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Verification Takes Time & Effort
• For example, verifying SGX and Sanctum took four 

months of modelling work [1].
• This work includes

– strengthening invariants,
– annotating functions with pre- and post-conditions, and
– modelling system calls and the environment.

• Tasks like these can be automated using SyGuS!

We use SyGuS solvers to unify synthesis-for-
verification tasks in a clean way inside of Uclid5.
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Synthesis in Uclid5
1. Describe our integration of synthesis into Uclid5.

– Users define functions to synthesize and use them 
• anywhere in their code,
• for any verification technique

– (k-induction, bounded model checking, …), and
• for any kind of specification

– (linear temporal logic, invariants, sequential assertions, …).
– Uclid5 solves the queries using existing SyGuS engines.

2. Generate a new set of SyGuS benchmarks.
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Related Work
• Strengthening invariants (e.g. [2])
• Annotating functions with pre/post-conditions (e.g. [3])
• Modelling the environment and system calls (e.g. [4])
• Program Sketching (e.g. [5])
• Program Repair (e.g. [6])
• Verification engines with Synthesis capabilities (e.g. [7])

[2] Dillig, Isil, et al. “Inductive invariant generation via abductive inference.” OOPSLA ‘13.
[3] Padhi, Saswat, et al. “Data-driven precondition inference with learned features.” PLDI ‘16.
[4] Das, Ankush, et al. "Angelic verification: Precise verification modulo unknowns.” CAV ‘15.
[5] Solar-Lezama, Armando, and Rastislav Bodik. Program synthesis by sketching. UC Berkeley PhD, 2008.
[6] Le, Xuan-Bach D., et al. "S3: syntax-and semantic-guided repair synthesis via programming by examples." FSE ‘17.
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Strengthening an Invariant

Running Example
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Uclid5 Fibonacci Module
module main {

// Part 1: System description.
var a, b : integer;
init {

a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

// Part 2: System specification.
invariant a_le_b: a <= b;

// Part 3: Proof script.
control {

induction;
check;
print_results;

}
}
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The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to 

next, then it will hold on exit

a_le_b actually does hold, but it 
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Fibonacci With Synthesis
module main {

synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
} 24
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Fibonacci With Synthesis
module main {

synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b); // h(a, b) := a >= 0

control {
induction;
check;
print_results;

}
} 27



Synth-Lib Intermediate Representation

Under the Hood
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Architecture of Synthesis in 
Uclid5

Front-end

Symbolic Simulator
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algorithms are 

completely 
untouched!
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module main {
synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}
next {

a', b' = b, a + b;
}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
}

Synth-Lib Encoding
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Synth-Lib Encoding
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The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to 

next, then it will hold on exit



Synth-Lib Encoding
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The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to 

next, then it will hold on exit

(synth-blocking-fun h ((x Int) (y Int)) Bool)

(declare-fun initial_b () Int)
(declare-fun initial_a () Int)
(declare-fun new_a () Int)
(declare-fun new_b () Int)

(assert (or 
(not (and (<= initial_a initial_b) (h 0 1))) ;(not P1)
(and (and (<= initial_a initial_b) (h initial_a initial_b))

(= new_a initial_b)
(= new_b (+ initial_a initial_b ))
(not (and (<= new_a new_b) (h new_a new_b)))))) ;(not P2)

(check-sat)



Synth-Lib Encoding
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The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to 

next, then it will hold on exit
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∃ℎ ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)



SMT-Lib Encoding

39

The induction algorithm checks
• P1: a_le_b holds at init
• P2: if a_le_b holds on entry to 

next, then it will hold on exit

(define-fun h ((x Int) (y Int)) Bool (>= x 0))

(declare-fun initial_b () Int)
(declare-fun initial_a () Int)
(declare-fun new_a () Int)
(declare-fun new_b () Int)

(assert (or 
(not (and (<= initial_a initial_b) (h 0 1))) ;(not P1)
(and (and (<= initial_a initial_b) (h initial_a initial_b))

(= new_a initial_b)
(= new_b (+ initial_a initial_b ))
(not (and (<= new_a new_b) (h new_a new_b)))))) ;(not P2)

(check-sat)

UNSAT iff ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)
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∃ℎ ¬∃𝑎, 𝑏 ¬𝑃! ℎ, 𝑎, 𝑏 ∨ ¬𝑃"(ℎ, 𝑎, 𝑏)

∃ℎ ∀𝑎, 𝑏 𝑃! ℎ, 𝑎, 𝑏 ∧ 𝑃"(ℎ, 𝑎, 𝑏)



Architecture of Synthesis in 
Uclid5

Front-end

Symbolic Simulator

Synth-Lib Interface

SMT-Lib Interface SyGuS-IF Interface

45

∃ℎ ¬∃𝑥⃗ /¬𝑃#(ℎ, 𝑥⃗)

∃ℎ ∀𝑥⃗ 0𝑃#(ℎ, 𝑥⃗)
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One example out of 25

The Benchmarks
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…
define pi_balance(p : bv8, b : bv16) : bv16 = 

b[15:8] ++ (b[7:0] + p);
…
init {

/*--------------------------------------------------------------+
| Injective Trace enumeration Witness (I): Property 12 |
| ======================================= |
| Makes use of enumeration predicate (pi_balance) defined above. 
|
| - Mapping initial state. |
+--------------------------------------------------------------*/
assume (acct1.balance == pi_balance(p1, acct0.balance));
assume (acct2.balance == pi_balance(p2, acct0.balance));

}
…

Benchmark Example [5]

48
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…
synthesis function pi_balance(p : bv8, b : bv16) : bv16;

…
init {

/*--------------------------------------------------------------+
| Injective Trace enumeration Witness (I): Property 12 |
| ======================================= |
| Makes use of enumeration predicate (pi_balance) defined above. 
|
| - Mapping initial state. |
+--------------------------------------------------------------*/
assume (acct1.balance == pi_balance(p1, acct0.balance));
assume (acct2.balance == pi_balance(p2, acct0.balance));

}
…

Benchmark Example [5]
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Synthesis in Uclid5: Takeaways
• Verification takes time & effort.
• Techniques exist to automate parts of the job, but until now, 

not in one framework!
• Uclid5 lets users define functions to synthesize and use them 

– anywhere in their code,
– for any verification technique

• (k-induction, bounded model checking, …), and
– for any kind of specification

• (linear temporal logic, invariants, sequential assertions, …).
• Unfortunately, we are pushing the limits of state-of-the-art 

synthesis engines.
• Fortunately, that means there’s a lot of work left to be done!

– For example, optimizing synthesis-for-verification encodings,
– improving solvers, and so on…
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module main {
synthesis function h(x : integer, y : integer) : boolean;
var a, b : integer;

init {
a = 0;
b = 1;

}

next {
a', b' = b, a + b;

}

invariant a_le_b: a <= b && h(a, b);

control {
induction;
check;
print_results;

}
}

Thank you!
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Extra Stuff
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Strengthening Invariants 

Manual Work #1 of 3
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Reachable Set

Strengthening Invariants

Initial 
Set Desired Invariant

60



Reachable Set

Strengthening Invariants

Initial 
Set Desired Invariant

(NOT INDUCTIVE)

61



Reachable Set

Strengthening Invariants

Initial 
Set

Inductive Invariant

Desired Invariant

62



Reachable Set

Strengthening Invariants

Initial 
Set

Inductive Invariant
(IMPLIES DESIRED 
INVARIANT)

Desired Invariant

63



Annotating functions with pre- and post-conditions

Manual Work #2 of 3

64



Annotating functions with pre-
and post-conditions
procedure searchQ() returns (found : boolean)

requires (count >= 0 && count <= SIZE);
ensures (in_queue(data) <==> found);

{
var i : integer;
i = 0;
found = false;
while (i < count)

invariant (i >= 0 && i <= count);
{

if (contents[itemIndex(i)] == data) {
found = true;

}
i = i + 1;

}
}
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Annotating functions with pre-
and post-conditions
procedure searchQ() returns (found : boolean)

requires (count >= 0 && count <= SIZE);
ensures (in_queue(data) <==> found);

{
var i : integer;
i = 0;
found = false;
while (i < count)

invariant (i >= 0 && i <= count);
{

if (contents[itemIndex(i)] == data) {
found = true;

}
i = i + 1;

}
}
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Modelling the Environment and System Calls

Manual Work #3 of 3
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Modelling the Environment and 
System Calls

var a, b : integer;

init {
a = time();
b = time();

}

property bigger_than_a : (b >= a);
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Modelling the Environment and 
System Calls

var a, b : integer;

init {

a = time();
b = time();

}

property bigger_than_a : (b >= a);
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