BanditFuzz: A Reinforcement-Learning based

Performance Fuzzer for SMT Solvers

Joseph Scott, Federico Mora, and Vijay Ganesh

July 6th, 2020

July 6th, 2020 1/25

@ Context and Motivation
© BanditFuzz Overview
© Empirical Evaluation

@ Conclusions and Future Work

July 6th, 2020 2/25

Outline

@ Context and Motivation

Context and Motivation July 6th, 2020 3/25

Motivation for BanditFuzz

@ SMT solvers are integral tools in

@ Program Analysis
@ Testing
@ \Verification

@ SMT solvers are remarkably efficient tools

© Having said that, there exists inputs such that one solver may be
remarkably slower than others, despite very similar algorithms

© How can we find these performance issues automatically?

Context and Motivation July 6th, 2020 4 /25

BanditFuzz

@ |In this talk, | introduce BanditFuzz, a performance fuzzer for SMT
solvers
@ Relative performance fuzzing

@ Given a target solver
@ A set of reference solvers
@ Find inputs that maximize the performance margin

© BanditFuzz uses reinforcement learning, specifically multi-armed
bandits (MABs), using a feedback loop between the fuzzer and
programs-under-test

Cumulative Cactus Plot for String SMT Performance, Target = Z3SEQ Cumulative Cactus Plot for FP SMT Performance, Target = Z3
1750
e zTRS 2500 -
| v zsEQ - cvea
1500 ovca cousri 100
2000 e maTHSAT
1250
_ 1000 _ 1500
H ¢
70 £
F * 1000
500
500
250 250
B
o o
6 s 100 1330 200 250 300 30 400 0 s 100 150 200 250 X0 30 400 G) E) £3 @ %o
Inputs Solved Inputs Solved puts Saved

Context and Motivation July 6th, 2020

What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose: THE #7 PROGRAMMER EXCUSE

FOR LEGITIMATELY SLACKING OFF:
O Errors “MY CODE'S COMPILING."

@ Performance slowdowns

Core fuzzing techniques:

© Input generators

@ Input mutators

Fuzzers typically implement these via

random /fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?

Credit: xkcd #303

Context and Motivation July 6th, 2020 6 /25

What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose:

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

© Errors “MY CODE'S gm:mfc

@ Performance slowdowns HEY! GETBACK,
™ uoaw

Core fuzzing techniques:

© Input generators

@ Input mutators

Fuzzers typically implement these via

random /fixed strategies that are oblivious to Credit: xked #303 + Gary Kwong
online feedback from the programs under

test. How can we do better?

Context and Motivation July 6th, 2020 6 /25

What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose:

@ Errors

@ Performance slowdowns

Core fuzzing techniques:
© Input generators

@ Input mutators

Fuzzers typically implement these via

random /fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?

Reinforcement Learning

Context and Motivation

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S g;umms

July 6th, 2020 6 /25

Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):
Q + lightweight
@ - low quality — small performance margin

Fuzzing can be whitebox (leverage program analysis)

Q - costly
@ + high quality — large performance margin

Problem: Can we develop performance fuzzers that are both lightweight
and generate high-quality inputs?

Context and Motivation July 6th, 2020 7/25

Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):
Q + lightweight
@ - low quality — small performance margin

Fuzzing can be whitebox (leverage program analysis)

Q - costly
@ + high quality — large performance margin

Problem: Can we develop performance fuzzers that are both lightweight
and generate high-quality inputs?
Solution:

@ How? Reinforcement learning

@ Exploit the input-output behavior of the program-under-test
(environment) via a feedback loop with the fuzzer (agent)

Context and Motivation July 6th, 2020 7/25

Reinforcement Learning

In reinforcement learning, an agent learns how to select actions within an
environment in a way to maximize the cumulative reward.

Reinforcement learning is typically modelled through a Markov Decision Process
(MDP), a 4-tuple (S,A, T, R), where:

@ S —is a set of states

@ A —is a set of actions

© T — modelled transitions

@ R — modelled rewards

A learned agent’s output is a policy m: S — A, that selects the action that
maximizes cumulative future reward.

:l Agent

state reward

s | R,
Ry
s.. | Environment [e——

action
A

Context and Motivation July 6th, 2020 8/25

Multi-Armed Bandit Problem

The Multi-Armed Bandit (MAB) problem is a
stateless formulation of reinforcement learning (No
states/transitions!! Just actions and rewards!).

An MAB agent must manage the
exploration /exploitation tradeoff.

@ Select the best known action (exploitation)

@ Sample less known actions (exploration)

MAB solutions have been popularized due to their
relative simplicity and success in noisy environments.

The name comes from a gambler at a row

0 On“ne AdVertisements of slot machines (one-armed bandits),

e Finance who has to decide which machines to play.

© SAT solver branching

Context and Motivation July 6th, 2020 9/25

Outline

© BanditFuzz Overview

BanditFuzz Overview July 6th, 2020 10 / 25

BanditFuzz — A performance fuzzer

© BanditFuzz is a performance fuzzer that aims to find relative
performance slowdowns

@ Given a target solver T
© A set of reference solvers Ry, Ry, Rs3...

@ A run of BanditFuzz seeks a input B that maximizes the performance
margin

PAR2(T, B) - max(PAR2(Ry, B), PAR2(Ry, B), PAR2(R;s, B), ...)

BanditFuzz Overview July 6th, 2020 11 /25

Fuzzer Components

@ Input Generation — BanditFuzz uses the StringFuzz approach to
random abstract syntax tree (AST) generation

@ Generate a fixed number of asserting ASTs

@ Fill out each asserting AST in a depth-first manner
@ Randomly select a root node from the set of predicates in the logic
@ Randomly select non-root/leaf nodes from the set of

functions/operators in the logic

© Fill out leaf nodes with variables

@ Mutation — Given a input B and grammatical construct

@ Depending on the type of the construct (i.e., predicate,
operator/function, special term), construct the set C of all constructs
of the same type as 7y in B, but not equal to ~.
Randomly sample a construct v’ from C, and replace it with .
On an arity increase, generate new sub-ASTs of appropriate depth.
On an arity decrease, drop the right-most children.

000

BanditFuzz Overview July 6th, 2020 12 /25

Mutation Example

Consider a fixed depth of two, with variables (xp, x1), and a single
rounding mode {RNE}.
Consider a single asserting AST

(fp.eq (fp.abs xo)(fp.abs x1)),

If the agent selects to mutate with fp.add, then we have the following
possible outputs:

(fp.eq (fp.add RNE xo xo)(fp.abs x1))

(fp.eq (fp.add RNE xo x1)(fp.abs x1))
(fp.eq (fp.abs xo)(fp.add RNE x1 xp))
(fp.eq (fp.abs xp)(fp.add RNE x1 x1))

BanditFuzz Overview July 6th, 2020 13 /25

Fuzzing Mutation as a MAB Problem

BanditFuzz works by reducing a fuzzing mutation to an instance of the
MAB problem, and learns how to mutate inputs in a feedback loop.

@ Action Space:
Grammatical Constructs

of the logic.
@ Predicates
@ Operators and
Functions
© Special Terms (e.g,
rounding modes)

@ Rewards:

—Fuzzing Objective—>|

-Grammar—>|

@ 1 if the performance
margin increases
@ 0 otherwise

BanditFuzz Overview

Reinforcement
Learning
Agent

———
Computed Reward
on Mutated Inputs
S B

Output
Analyzer

BanditFuzz

|__Ranked Grammatical _,,

Gre
| Grammatical_,| Constructs

Constructs

Inputs

Programs inputs———>
Under Test

Outputs +
Runtimes.

July 6th, 2020 14 / 25

Thompson Sampling

Thompson Sampling is an algorithm that solves the MAB problem.

Thompson sampling presupposes that rewards are from Bernoulli
distribution {0,1} and uses a beta distribution to model each action’s
expected value.

Algorithm:

@ For each action, initialize a beta distribution Beta(a=1,5=1)
@ While Training
o When queried, sample each action’s beta distribution.
o Select an action by computing an argmax over each action’s sampled
value.
e On reward, increment the « parameter.
o Otherwise, increment the 3 parameter.

BanditFuzz Overview July 6th, 2020 15 / 25

A few iterations of BanditFuzz

Consider an action set {+, *}, and an input

Iteration #1

PDF for + PDF for *

10 10
0.3 0.8
06 06

04 04
02 02

0.0 00
0.0 0.2 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x x

a=1,0=1u=0.50=0.2837 a=1,0=1u=0.50=0.2837
The agent samples both distributions, and computes an argmax.

Action * is selected, then I, is created by adding a new occurrence of *
into /1!

I has a higher performance margin than /. The agent gets a reward!

BanditFuzz Overview July 6th, 2020 16 / 25

A few iterations of BanditFuzz

Consider an action set {+, *}, and an input

Iteration #2

PDF for + PDF for *

o 2.0
08

06

0.4
02 0.5
0.0

0.0 0.2 0.4 06 08 1.0 0.0
x

a=1,8=1,u=05,0=0.2887 a=2,8=1,1=0.6667,0 = 0.2357
The agent samples both distributions, and computes an argmax.

Action + is selected, then /3 is created by adding a new occurrence of +
into /!

I3 has a lower performance margin than /. The agent does not receive
reward.

BanditFuzz Overview July 6th, 2020 16 / 25

A few iterations of BanditFuzz

Consider an action set {+, *}, and an input |

Iteration #3

PDF for + PDF for *

00 02 04 06 08 1.0 0.0
x

0.0 02 04 08 08 10

a=1,=2,1=03334,0=0237 @=2,6=1,4=0.6667,0=0.2357
The agent samples both distributions, and computes an argmax.

Action + is selected, then /4 is created by adding a new occurrence of +
into /!

I4 has a higher performance margin than /. The agent receives reward.

BanditFuzz Overview July 6th, 2020 16 / 25

A few iterations of BanditFuzz

Consider an action set {+, *}, and an input

Iteration #4

PDF for + PDF for *

a=2,8=21=050=02236 a=2,8=1,1=0.6667,0 = 0.2357

The agent samples both distributions, and computes an argmax.

Action * is selected, then I5 is created by adding a new occurrence of *
into I!

Is has a higher performance margin than ;. The agent receives reward.

BanditFuzz Overview July 6th, 2020 16 / 25

Outline

© Empirical Evaluation

Empirical Evaluation July 6th, 2020 17 / 25

Baselines

© Random Fuzzing — Randomly generate inputs via random AST
generation in a loop

@ Random Mutation Fuzzing — Randomly mutate the best observed
input in a loop

© Evolutionary Fuzzing — Maintain a population of inputs by carrying
over the best observed, randomly mutating the best observed, and
randomly generated new ones

Each run of a fuzzer is allocated 12 hours to find a single input that
maximizes the margin between the target solver and reference solvers.

Every fuzzing configuration is ran 100 times, to produce a input suite of
100 different inputs.

Empirical Evaluation July 6th, 2020 18 / 25

Setup and Solvers

We consider the logics QF _FP and QF_S.

QF_FP
Q Z3v4.8.0
@ MathSAT5 v6.5.3
© CVC4 CVC4 1.7-prerelease
@ Colibri v2070

QF_S
Q@ Z3str3 v4.8.0
@ Z3seq v4.8.0
© CVC4 16

All experiments were performed on a CentOS V7 cluster of Intel Xeon
Processor E5-2683 running at 2.10 GHz. We limited each solver to 8GB of
memory without parallelization.

Empirical Evaluation July 6th, 2020 19 / 25

Results: Cactus Plot — Targeting Z3 for QF _FP

Cactus Plot for FP SMT Performance, Target = Z3

2500 Genetic Fuzzing Z3

Genetic Fuzzing CVC4
Genetic Fuzzing COLIBRI
Genetic Fuzzing MATHSAT
Random Fuzzing Z3
Random Fuzzing CVC4
Random Fuzzing COLIBRI
Random Fuzzing MATHSAT
BanditFuzz Z3

BanditFuzz CVC4
BanditFuzz COLIBRI
BanditFuzz MATHSAT
Mutational Fuzzing Z3
Mutational Fuzzing CVC4
Mutational Fuzzing COLIBRI
Mutational Fuzzing MATHSAT

2000 -

1500 4

1000 4

BESSERERREREREE/

500

T
0 20 40 60 80 100
Inputs Selved

Empirical Evaluation July 6th, 2020 20 / 25

Results: Cactus Plot — Targeting Z3SEQ for QF_S

Cactus Plot for String SMT Performance, Target = Z3SEQ

1750 A -
—8— Genetic Fuzzing Z35TR3
—8— Genetic Fuzzing Z3SEQ
1500 —8— Genetic Fuzzing CVC4
—¥— Random Fuzzing Z3STR3
—¥— Random Fuzzing Z35EQ
1250 —¥— Random Fuzzing CVC4
—— BanditFuzz Z35TR3
—— BanditFuzz Z3SEQ
1000 —i— BanditFuzz CVC4
= —— Mutational Fuzzing Z3STR3
E —— Mutational Fuzzing Z3SEQ
= 750 4 —»— Mutational Fuzzing CVC4
500 4
250 1
0

T
0 20 40 60 80 100
Inputs Solved

Empirical Evaluation

Quantitative Evaluation

We will use PAR-2 to quantify the performance of a solver input pair.
PAR-2 is defined as the sum of all successful runtimes, with unsolved
inputs labelled as twice the timeout.

As we are fuzzing for performance with respect to a target solver T, we
evaluate the returned test suite D of a fuzzing algorithm based on the
PAR-2 margin between the PAR-2 of the target solver and the input wise
maximum across all of the reference solvers R.

PAR-2Margin(T, R, D) := > (PAR-2(/, T) - max(PAR-2(/,r)))
leD reR

Empirical Evaluation July 6th, 2020 22 /25

Results: PAR-2Margin tables

Target Solver | BanditFuzz | Random | Mutational | Genetic | % Improvement
Colibri 499061.5 | 499544.2 | 499442.2 | 499295.1 -0.10 %
CVvC4 144568.9 68714.2 125273.0 | 38972.7 15.40 %

MathSAT5 36654.5 12024.9 31615.4 8208.0 15.94 %

Z3 467590.0 | 239774.3 | 256973.1 | 251108.2 81.96 %
Target Solver | BanditFuzz | Random | Mutational Genetic Improvement
CvC4 45629.8 30815.4 30815.4 31619.4 44.15%
Z3str3 499988.6 | 499986.7 | 499987.2 499986.8 0.00%
Z3seq 490883.4 | 409111.0 | 433416.5 | 445097.427 12.31%

Empirical Evaluation July 6th, 2020 23 /25

Outline

@ Conclusions and Future Work

Conclusions and Future Work July 6th, 2020 24 / 25

Conclusions and Future Work

@ In this talk, | presented BanditFuzz a reinforcement learning
performance fuzzer
@ Using BanditFuzz, we were able to generate multiple testing suites
exposing significant relative performance difference, improving on
considered baselines by up to 81%
Future Work:
© Currently BanditFuzz only supports two logics, extending to all logics
is work in progress
@ Repeat evaluation with new solvers
Code: https://github.com/j29scott/BanditFuzz_Public
Email: joseph.scott@uwaterloo.ca

Conclusions and Future Work July 6th, 2020 25 /25

https://github.com/j29scott/BanditFuzz_Public

	Context and Motivation
	BanditFuzz Overview
	Empirical Evaluation
	Conclusions and Future Work

