BanditFuzz: A Reinforcement-Learning based Performance Fuzzer for SMT Solvers

Joseph Scott, Federico Mora, and Vijay Ganesh

July 6th, 2020

Outline

- Context and Motivation
- 2 BanditFuzz Overview
- 3 Empirical Evaluation
- Conclusions and Future Work

Outline

- Context and Motivation
- 2 BanditFuzz Overview
- 3 Empirical Evaluation
- 4 Conclusions and Future Work

Context and Motivation

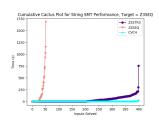
Motivation for BanditFuzz

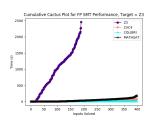
- SMT solvers are integral tools in
 - Program Analysis
 - 2 Testing
 - Verification
- SMT solvers are remarkably efficient tools
- Having said that, there exists inputs such that one solver may be remarkably slower than others, despite very similar algorithms
- How can we find these performance issues automatically?

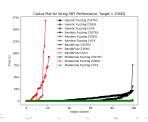
Context and Motivation

BanditFuzz

- In this talk, I introduce BanditFuzz, a performance fuzzer for SMT solvers
- Relative performance fuzzing
 - Given a target solver
 - A set of reference solvers
 - 3 Find inputs that maximize the performance margin
- BanditFuzz uses reinforcement learning, specifically multi-armed bandits (MABs), using a feedback loop between the fuzzer and programs-under-test







What is a fuzzer?

A fuzzer is a software testing tool that generates inputs for a program-under-test.

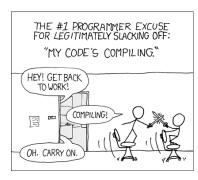
The generated inputs can be used to expose:

- Errors
- Performance slowdowns

Core fuzzing techniques:

- Input generators
- Input mutators

Fuzzers typically implement these via random/fixed strategies that are oblivious to online feedback from the programs under test. How can we do better?



Credit: xkcd #303

What is a fuzzer?

A fuzzer is a software testing tool that generates inputs for a program-under-test.

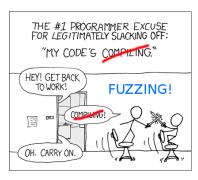
The generated inputs can be used to expose:

- Errors
- Performance slowdowns

Core fuzzing techniques:

- Input generators
- Input mutators

Fuzzers typically implement these via random/fixed strategies that are oblivious to online feedback from the programs under test. How can we do better?



Credit: xkcd #303 + Gary Kwong

What is a fuzzer?

A fuzzer is a software testing tool that generates inputs for a program-under-test.

The generated inputs can be used to expose:

- Errors
- Performance slowdowns

Core fuzzing techniques:

- Input generators
- Input mutators

Fuzzers typically implement these via random/fixed strategies that are oblivious to online feedback from the programs under test. How can we do better?

Reinforcement Learning

6 / 25

Context and Motivation July 6th, 2020

Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):

- 4 lightweight
- low quality small performance margin

Fuzzing can be whitebox (leverage program analysis)

- costly
- 4 high quality large performance margin

Problem: Can we develop performance fuzzers that are both lightweight and generate high-quality inputs?

7 / 25

Context and Motivation July 6th, 2020

Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):

- 4 lightweight
- low quality small performance margin

Fuzzing can be whitebox (leverage program analysis)

- costly
- 4 + high quality large performance margin

Problem: Can we develop performance fuzzers that are both lightweight and generate high-quality inputs?

Solution:

- How? Reinforcement learning
- 2 Exploit the input-output behavior of the program-under-test (environment) via a feedback loop with the fuzzer (agent)

Context and Motivation July 6th, 2020 7 / 25

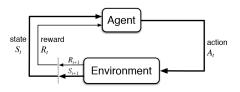
Reinforcement Learning

In reinforcement learning, an agent learns how to select actions within an environment in a way to maximize the cumulative reward.

Reinforcement learning is typically modelled through a Markov Decision Process (MDP), a 4-tuple (S, A, T, R), where:

- \bigcirc A is a set of actions
- T modelled transitions
- R modelled rewards

A learned agent's output is a *policy* $\pi: S \to A$, that selects the action that maximizes cumulative future reward.



Context and Motivation

July 6th, 2020 8 / 25

Multi-Armed Bandit Problem

The Multi-Armed Bandit (MAB) problem is a stateless formulation of reinforcement learning (No states/transitions!! Just actions and rewards!).

An MAB agent must manage the exploration/exploitation tradeoff.

- Select the best known action (exploitation)
- Sample less known actions (exploration)

MAB solutions have been popularized due to their relative simplicity and success in noisy environments.

- Online Advertisements
- Finance
- SAT solver branching

The name comes from a gambler at a row of slot machines (one-armed bandits), who has to decide which machines to play.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

9 / 25

Context and Motivation July 6th, 2020

Outline

- Context and Motivation
- 2 BanditFuzz Overview
- 3 Empirical Evaluation
- 4 Conclusions and Future Work

10 / 25

BanditFuzz Overview July 6th, 2020

BanditFuzz – A performance fuzzer

- BanditFuzz is a performance fuzzer that aims to find relative performance slowdowns
- Given a target solver T
- **3** A set of reference solvers $R_1, R_2, R_3...$
- A run of BanditFuzz seeks a input B that maximizes the performance margin

$$PAR2(T,B) - max(PAR2(R_1,B), PAR2(R_2,B), PAR2(R_3,B),...)$$

BanditFuzz Overview July 6th, 2020 11 / 25

Fuzzer Components

- Input Generation BanditFuzz uses the StringFuzz approach to random abstract syntax tree (AST) generation
 - Generate a fixed number of asserting ASTs
 - Fill out each asserting AST in a depth-first manner
 - Randomly select a root node from the set of predicates in the logic
 - Randomly select non-root/leaf nodes from the set of functions/operators in the logic
 - 3 Fill out leaf nodes with variables
- Mutation Given a input B and grammatical construct γ
 - **1** Depending on the type of the construct (i.e., predicate, operator/function, special term), construct the set C of all constructs of the same type as γ in B, but not equal to γ .
 - **Q** Randomly sample a construct γ' from C, and replace it with γ .
 - 3 On an arity increase, generate new sub-ASTs of appropriate depth.
 - On an arity decrease, drop the right-most children.

BanditFuzz Overview July 6th, 2020 12 / 25

Mutation Example

Consider a fixed depth of two, with variables (x_0, x_1) , and a single rounding mode $\{RNE\}$.

Consider a single asserting AST

$$(fp.eq (fp.abs x_0)(fp.abs x_1)),$$

If the agent selects to mutate with *fp.add*, then we have the following possible outputs:

(fp.eq (fp.add RNE
$$x_0 x_0$$
)(fp.abs x_1))
(fp.eq (fp.add RNE $x_0 x_1$)(fp.abs x_1))
(fp.eq (fp.abs x_0)(fp.add RNE $x_1 x_0$))
(fp.eq (fp.abs x_0)(fp.add RNE $x_1 x_1$))

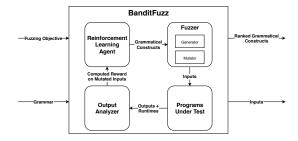
BanditFuzz Overview

July 6th, 2020 13 / 25

Fuzzing Mutation as a MAB Problem

BanditFuzz works by reducing a fuzzing mutation to an instance of the MAB problem, and learns how to mutate inputs in a feedback loop.

- Action Space: Grammatical Constructs of the logic.
 - Predicates
 - Operators and Functions
 - Special Terms (e.g, rounding modes)
- Rewards:
 - 1 if the performance margin increases
 - 0 otherwise



14 / 25

Thompson Sampling

Thompson Sampling is an algorithm that solves the MAB problem.

Thompson sampling presupposes that rewards are from Bernoulli distribution $\{0,1\}$ and uses a beta distribution to model each action's expected value.

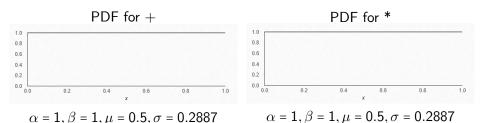
Algorithm:

- For each action, initialize a beta distribution $Beta(\alpha = 1, \beta = 1)$
- While Training
 - When queried, sample each action's beta distribution.
 - Select an action by computing an argmax over each action's sampled value.
 - On reward, increment the α parameter.
 - Otherwise, increment the β parameter.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 夕久○

Consider an action set $\{+,*\}$, and an input I_1

Iteration #1



The agent samples both distributions, and computes an argmax.

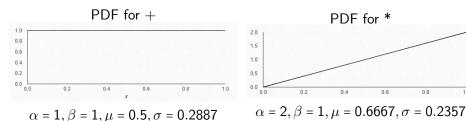
Action * is selected, then I_2 is created by adding a new occurrence of * into I_1 !

 I_2 has a higher performance margin than I_1 . The agent gets a reward!

BanditFuzz Overview July 6th, 2020 16 / 25

Consider an action set $\{+,*\}$, and an input \emph{I}_1

Iteration #2



The agent samples both distributions, and computes an argmax.

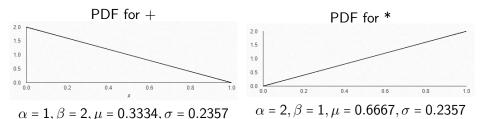
Action + is selected, then I_3 is created by adding a new occurrence of + into I_2 !

 $\it I_{\rm 3}$ has a lower performance margin than $\it I_{\rm 2}$. The agent does not receive reward.

BanditFuzz Overview July 6th, 2020 16 / 25

Consider an action set $\{+, *\}$, and an input I_1

Iteration #3



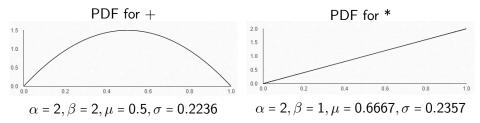
The agent samples both distributions, and computes an argmax.

Action + is selected, then I_4 is created by adding a new occurrence of + into $l_2!$

 l_4 has a higher performance margin than l_2 . The agent receives reward.

BanditFuzz Overview July 6th, 2020 16 / 25

Consider an action set $\{+,*\}$, and an input I_1 Iteration #4



The agent samples both distributions, and computes an argmax.

Action * is selected, then I_5 is created by adding a new occurrence of * into I_4 !

 l_5 has a higher performance margin than l_4 . The agent receives reward.

BanditFuzz Overview July 6th, 2020 16 / 25

Outline

- Context and Motivation
- 2 BanditFuzz Overview
- 3 Empirical Evaluation
- 4 Conclusions and Future Work

Empirical Evaluation

Baselines

- Random Fuzzing Randomly generate inputs via random AST generation in a loop
- Random Mutation Fuzzing Randomly mutate the best observed input in a loop
- Evolutionary Fuzzing Maintain a population of inputs by carrying over the best observed, randomly mutating the best observed, and randomly generated new ones

Each run of a fuzzer is allocated 12 hours to find a single input that maximizes the margin between the target solver and reference solvers.

Every fuzzing configuration is ran 100 times, to produce a input suite of 100 different inputs.

18 / 25

Empirical Evaluation July 6th, 2020

Setup and Solvers

We consider the logics QF_FP and QF_S .

 $QF_{-}FP$

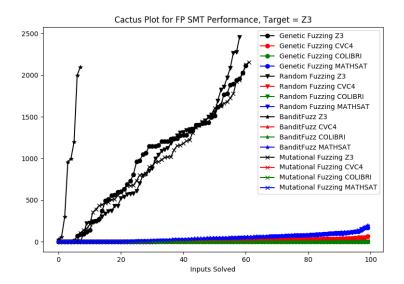
- **23** v4.8.0
- MathSAT5 v5.5.3
- **© CVC4** CVC4 1.7-prerelease
- Colibri v2070

 $QF_{-}S$

- Z3str3 v4.8.0
- **Z3seq** v4.8.0
- **3 CVC4** v1.6

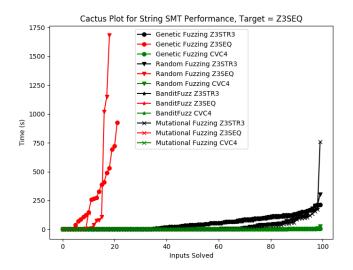
All experiments were performed on a CentOS V7 cluster of Intel Xeon Processor E5-2683 running at 2.10 GHz. We limited each solver to 8GB of memory without parallelization.

Results: Cactus Plot – Targeting Z3 for QF_FP



20 / 25

Results: Cactus Plot – Targeting Z3SEQ for QF_S



Quantitative Evaluation

We will use PAR-2 to quantify the performance of a solver input pair. PAR-2 is defined as the sum of all successful runtimes, with unsolved inputs labelled as twice the timeout.

As we are fuzzing for performance with respect to a target solver T, we evaluate the returned test suite D of a fuzzing algorithm based on the PAR-2 margin between the PAR-2 of the target solver and the input wise maximum across all of the reference solvers R.

$$\text{PAR-2Margin}(T,R,D) \coloneqq \sum_{I \in D} (\text{PAR-2}(I,T) - \max_{r \in R} (\text{PAR-2}(I,r)))$$

Results: PAR-2Margin tables

Target Solver	BanditFuzz	Random	Mutational	Genetic	% Improvement
Colibri	499061.5	499544.2	499442.2	499295.1	-0.10 %
CVC4	144568.9	68714.2	125273.0	38972.7	15.40 %
MathSAT5	36654.5	12024.9	31615.4	8208.0	15.94 %
Z3	467590.0	239774.3	256973.1	251108.2	81.96 %

Target Solver	BanditFuzz	Random	Mutational	Genetic	Improvement
CVC4	45629.8	30815.4	30815.4	31619.4	44.15%
Z3str3	499988.6	499986.7	499987.2	499986.8	0.00%
Z3seq	499883.4	409111.0	433416.5	445097.427	12.31%

Outline

- Context and Motivation
- 2 BanditFuzz Overview
- 3 Empirical Evaluation
- 4 Conclusions and Future Work

Conclusions and Future Work

- In this talk, I presented BanditFuzz a reinforcement learning performance fuzzer
- Using BanditFuzz, we were able to generate multiple testing suites exposing significant relative performance difference, improving on considered baselines by up to 81%

Future Work:

- Currently BanditFuzz only supports two logics, extending to all logics is work in progress
- Repeat evaluation with new solvers

Code: https://github.com/j29scott/BanditFuzz_Public

Email: joseph.scott@uwaterloo.ca