
BanditFuzz: A Reinforcement-Learning based
Performance Fuzzer for SMT Solvers

Joseph Scott, Federico Mora, and Vijay Ganesh

July 6th, 2020

July 6th, 2020 1 / 25



Outline

1 Context and Motivation

2 BanditFuzz Overview

3 Empirical Evaluation

4 Conclusions and Future Work

July 6th, 2020 2 / 25



Outline

1 Context and Motivation

2 BanditFuzz Overview

3 Empirical Evaluation

4 Conclusions and Future Work

Context and Motivation July 6th, 2020 3 / 25



Motivation for BanditFuzz

1 SMT solvers are integral tools in
1 Program Analysis
2 Testing
3 Verification

2 SMT solvers are remarkably efficient tools

3 Having said that, there exists inputs such that one solver may be
remarkably slower than others, despite very similar algorithms

4 How can we find these performance issues automatically?

Context and Motivation July 6th, 2020 4 / 25



BanditFuzz

1 In this talk, I introduce BanditFuzz, a performance fuzzer for SMT
solvers

2 Relative performance fuzzing
1 Given a target solver
2 A set of reference solvers
3 Find inputs that maximize the performance margin

3 BanditFuzz uses reinforcement learning, specifically multi-armed
bandits (MABs), using a feedback loop between the fuzzer and
programs-under-test

Context and Motivation July 6th, 2020 5 / 25



What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose:

1 Errors

2 Performance slowdowns

Core fuzzing techniques:

1 Input generators

2 Input mutators

Fuzzers typically implement these via
random/fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?

Credit: xkcd #303

Context and Motivation July 6th, 2020 6 / 25



What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose:

1 Errors

2 Performance slowdowns

Core fuzzing techniques:

1 Input generators

2 Input mutators

Fuzzers typically implement these via
random/fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?

Credit: xkcd #303 + Gary Kwong

Context and Motivation July 6th, 2020 6 / 25



What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose:

1 Errors

2 Performance slowdowns

Core fuzzing techniques:

1 Input generators

2 Input mutators

Fuzzers typically implement these via
random/fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?
Reinforcement Learning

Context and Motivation July 6th, 2020 6 / 25



Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):

1 + lightweight

2 - low quality – small performance margin

Fuzzing can be whitebox (leverage program analysis)

1 - costly

2 + high quality – large performance margin

Problem: Can we develop performance fuzzers that are both lightweight
and generate high-quality inputs?

Solution:

1 How? Reinforcement learning

2 Exploit the input-output behavior of the program-under-test
(environment) via a feedback loop with the fuzzer (agent)

Context and Motivation July 6th, 2020 7 / 25



Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):

1 + lightweight

2 - low quality – small performance margin

Fuzzing can be whitebox (leverage program analysis)

1 - costly

2 + high quality – large performance margin

Problem: Can we develop performance fuzzers that are both lightweight
and generate high-quality inputs?

Solution:

1 How? Reinforcement learning

2 Exploit the input-output behavior of the program-under-test
(environment) via a feedback loop with the fuzzer (agent)

Context and Motivation July 6th, 2020 7 / 25



Reinforcement Learning

In reinforcement learning, an agent learns how to select actions within an
environment in a way to maximize the cumulative reward.

Reinforcement learning is typically modelled through a Markov Decision Process
(MDP), a 4-tuple (S ,A,T ,R), where:

1 S – is a set of states
2 A – is a set of actions
3 T – modelled transitions
4 R – modelled rewards

A learned agent’s output is a policy π ∶ S → A, that selects the action that
maximizes cumulative future reward.

Context and Motivation July 6th, 2020 8 / 25



Multi-Armed Bandit Problem

The Multi-Armed Bandit (MAB) problem is a

stateless formulation of reinforcement learning (No

states/transitions!! Just actions and rewards!).

An MAB agent must manage the
exploration/exploitation tradeoff.

1 Select the best known action (exploitation)

2 Sample less known actions (exploration)

MAB solutions have been popularized due to their
relative simplicity and success in noisy environments.

1 Online Advertisements

2 Finance

3 SAT solver branching

The name comes from a gambler at a row

of slot machines (one-armed bandits),

who has to decide which machines to play.

Context and Motivation July 6th, 2020 9 / 25



Outline

1 Context and Motivation

2 BanditFuzz Overview

3 Empirical Evaluation

4 Conclusions and Future Work

BanditFuzz Overview July 6th, 2020 10 / 25



BanditFuzz – A performance fuzzer

1 BanditFuzz is a performance fuzzer that aims to find relative
performance slowdowns

2 Given a target solver T

3 A set of reference solvers R1,R2,R3...

4 A run of BanditFuzz seeks a input B that maximizes the performance
margin

PAR2(T ,B) −max(PAR2(R1,B),PAR2(R2,B),PAR2(R3,B), ...)

BanditFuzz Overview July 6th, 2020 11 / 25



Fuzzer Components

1 Input Generation – BanditFuzz uses the StringFuzz approach to
random abstract syntax tree (AST) generation

1 Generate a fixed number of asserting ASTs
2 Fill out each asserting AST in a depth-first manner

1 Randomly select a root node from the set of predicates in the logic
2 Randomly select non-root/leaf nodes from the set of

functions/operators in the logic
3 Fill out leaf nodes with variables

2 Mutation – Given a input B and grammatical construct γ
1 Depending on the type of the construct (i.e., predicate,

operator/function, special term), construct the set C of all constructs
of the same type as γ in B, but not equal to γ.

2 Randomly sample a construct γ′ from C , and replace it with γ.
3 On an arity increase, generate new sub-ASTs of appropriate depth.
4 On an arity decrease, drop the right-most children.

BanditFuzz Overview July 6th, 2020 12 / 25



Mutation Example

Consider a fixed depth of two, with variables (x0, x1), and a single
rounding mode {RNE}.
Consider a single asserting AST

(fp.eq (fp.abs x0)(fp.abs x1)),

If the agent selects to mutate with fp.add , then we have the following
possible outputs:

(fp.eq (fp.add RNE x0 x0)(fp.abs x1))

(fp.eq (fp.add RNE x0 x1)(fp.abs x1))

(fp.eq (fp.abs x0)(fp.add RNE x1 x0))

(fp.eq (fp.abs x0)(fp.add RNE x1 x1))

BanditFuzz Overview July 6th, 2020 13 / 25



Fuzzing Mutation as a MAB Problem

BanditFuzz works by reducing a fuzzing mutation to an instance of the
MAB problem, and learns how to mutate inputs in a feedback loop.

1 Action Space:
Grammatical Constructs
of the logic.

1 Predicates
2 Operators and

Functions
3 Special Terms (e.g,

rounding modes)

2 Rewards:
1 1 if the performance

margin increases
2 0 otherwise

BanditFuzz

Reinforcement
Learning

Agent

Fuzzer

Programs
Under Test

Output
Analyzer

Outputs +
Runtimes

Computed Reward
on Mutated Inputs Inputs

Grammatical
Constructs

Generator

Mutator

Fuzzing Objective

Grammar Inputs

Ranked Grammatical
Constructs

BanditFuzz Overview July 6th, 2020 14 / 25



Thompson Sampling

Thompson Sampling is an algorithm that solves the MAB problem.

Thompson sampling presupposes that rewards are from Bernoulli
distribution {0,1} and uses a beta distribution to model each action’s
expected value.

Algorithm:

For each action, initialize a beta distribution Beta(α = 1, β = 1)
While Training

When queried, sample each action’s beta distribution.
Select an action by computing an argmax over each action’s sampled
value.
On reward, increment the α parameter.
Otherwise, increment the β parameter.

BanditFuzz Overview July 6th, 2020 15 / 25



A few iterations of BanditFuzz

Consider an action set {+,∗}, and an input I1

Iteration #1

PDF for +

α = 1, β = 1, µ = 0.5, σ = 0.2887

PDF for *

α = 1, β = 1, µ = 0.5, σ = 0.2887

The agent samples both distributions, and computes an argmax.

Action ∗ is selected, then I2 is created by adding a new occurrence of ∗
into I1!

I2 has a higher performance margin than I1. The agent gets a reward!

BanditFuzz Overview July 6th, 2020 16 / 25



A few iterations of BanditFuzz

Consider an action set {+,∗}, and an input I1

Iteration #2

PDF for +

α = 1, β = 1, µ = 0.5, σ = 0.2887

PDF for *

α = 2, β = 1, µ = 0.6667, σ = 0.2357

The agent samples both distributions, and computes an argmax.

Action + is selected, then I3 is created by adding a new occurrence of +
into I2!

I3 has a lower performance margin than I2. The agent does not receive
reward.

BanditFuzz Overview July 6th, 2020 16 / 25



A few iterations of BanditFuzz

Consider an action set {+,∗}, and an input I1

Iteration #3

PDF for +

α = 1, β = 2, µ = 0.3334, σ = 0.2357

PDF for *

α = 2, β = 1, µ = 0.6667, σ = 0.2357

The agent samples both distributions, and computes an argmax.

Action + is selected, then I4 is created by adding a new occurrence of +
into I2!

I4 has a higher performance margin than I2. The agent receives reward.

BanditFuzz Overview July 6th, 2020 16 / 25



A few iterations of BanditFuzz

Consider an action set {+,∗}, and an input I1

Iteration #4

PDF for +

α = 2, β = 2, µ = 0.5, σ = 0.2236

PDF for *

α = 2, β = 1, µ = 0.6667, σ = 0.2357

The agent samples both distributions, and computes an argmax.

Action ∗ is selected, then I5 is created by adding a new occurrence of ∗
into I4!

I5 has a higher performance margin than I4. The agent receives reward.

BanditFuzz Overview July 6th, 2020 16 / 25



Outline

1 Context and Motivation

2 BanditFuzz Overview

3 Empirical Evaluation

4 Conclusions and Future Work

Empirical Evaluation July 6th, 2020 17 / 25



Baselines

1 Random Fuzzing – Randomly generate inputs via random AST
generation in a loop

2 Random Mutation Fuzzing – Randomly mutate the best observed
input in a loop

3 Evolutionary Fuzzing – Maintain a population of inputs by carrying
over the best observed, randomly mutating the best observed, and
randomly generated new ones

Each run of a fuzzer is allocated 12 hours to find a single input that
maximizes the margin between the target solver and reference solvers.

Every fuzzing configuration is ran 100 times, to produce a input suite of
100 different inputs.

Empirical Evaluation July 6th, 2020 18 / 25



Setup and Solvers

We consider the logics QF FP and QF S .

QF FP

1 Z3 v4.8.0

2 MathSAT5 v5.5.3

3 CVC4 CVC4 1.7-prerelease

4 Colibri v2070

QF S

1 Z3str3 v4.8.0

2 Z3seq v4.8.0

3 CVC4 v1.6

All experiments were performed on a CentOS V7 cluster of Intel Xeon
Processor E5-2683 running at 2.10 GHz. We limited each solver to 8GB of
memory without parallelization.

Empirical Evaluation July 6th, 2020 19 / 25



Results: Cactus Plot – Targeting Z3 for QF FP

Empirical Evaluation July 6th, 2020 20 / 25



Results: Cactus Plot – Targeting Z3SEQ for QF S

Empirical Evaluation July 6th, 2020 21 / 25



Quantitative Evaluation

We will use PAR-2 to quantify the performance of a solver input pair.
PAR-2 is defined as the sum of all successful runtimes, with unsolved
inputs labelled as twice the timeout.

As we are fuzzing for performance with respect to a target solver T , we
evaluate the returned test suite D of a fuzzing algorithm based on the
PAR-2 margin between the PAR-2 of the target solver and the input wise
maximum across all of the reference solvers R.

PAR 2Margin(T ,R,D) ∶= ∑
I∈D

(PAR 2(I ,T ) −max(PAR 2(I , r))
r∈R

)

Empirical Evaluation July 6th, 2020 22 / 25



Results: PAR 2Margin tables

Target Solver BanditFuzz Random Mutational Genetic % Improvement

Colibri 499061.5 499544.2 499442.2 499295.1 -0.10 %
CVC4 144568.9 68714.2 125273.0 38972.7 15.40 %

MathSAT5 36654.5 12024.9 31615.4 8208.0 15.94 %
Z3 467590.0 239774.3 256973.1 251108.2 81.96 %

Target Solver BanditFuzz Random Mutational Genetic Improvement

CVC4 45629.8 30815.4 30815.4 31619.4 44.15%
Z3str3 499988.6 499986.7 499987.2 499986.8 0.00%
Z3seq 499883.4 409111.0 433416.5 445097.427 12.31%

Empirical Evaluation July 6th, 2020 23 / 25



Outline

1 Context and Motivation

2 BanditFuzz Overview

3 Empirical Evaluation

4 Conclusions and Future Work

Conclusions and Future Work July 6th, 2020 24 / 25



Conclusions and Future Work

1 In this talk, I presented BanditFuzz a reinforcement learning
performance fuzzer

2 Using BanditFuzz, we were able to generate multiple testing suites
exposing significant relative performance difference, improving on
considered baselines by up to 81%

Future Work:

1 Currently BanditFuzz only supports two logics, extending to all logics
is work in progress

2 Repeat evaluation with new solvers

Code: https://github.com/j29scott/BanditFuzz_Public

Email: joseph.scott@uwaterloo.ca

Conclusions and Future Work July 6th, 2020 25 / 25

https://github.com/j29scott/BanditFuzz_Public

	Context and Motivation
	BanditFuzz Overview
	Empirical Evaluation
	Conclusions and Future Work

