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Motivation for BanditFuzz

@ SMT solvers are integral tools in

@ Program Analysis
@ Testing
@ \Verification

@ SMT solvers are remarkably efficient tools

© Having said that, there exists inputs such that one solver may be
remarkably slower than others, despite very similar algorithms

© How can we find these performance issues automatically?
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BanditFuzz

@ |In this talk, | introduce BanditFuzz, a performance fuzzer for SMT
solvers
@ Relative performance fuzzing

@ Given a target solver
@ A set of reference solvers
@ Find inputs that maximize the performance margin

© BanditFuzz uses reinforcement learning, specifically multi-armed
bandits (MABs), using a feedback loop between the fuzzer and
programs-under-test
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What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose: THE #7 PROGRAMMER EXCUSE

FOR LEGITIMATELY SLACKING OFF:
O Errors “MY CODE'S COMPILING."

@ Performance slowdowns

Core fuzzing techniques:

© Input generators

@ Input mutators

Fuzzers typically implement these via

random /fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?

Credit: xkcd #303
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Core fuzzing techniques:

© Input generators

@ Input mutators

Fuzzers typically implement these via

random /fixed strategies that are oblivious to Credit: xked #303 + Gary Kwong
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What is a fuzzer?

A fuzzer is a software testing tool that
generates inputs for a program-under-test.

The generated inputs can be used to expose:

@ Errors

@ Performance slowdowns

Core fuzzing techniques:
© Input generators

@ Input mutators

Fuzzers typically implement these via

random /fixed strategies that are oblivious to
online feedback from the programs under
test. How can we do better?

Reinforcement Learning

Context and Motivation
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Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):
Q + lightweight
@ - low quality — small performance margin

Fuzzing can be whitebox (leverage program analysis)

Q - costly
@ + high quality — large performance margin

Problem: Can we develop performance fuzzers that are both lightweight
and generate high-quality inputs?
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Why Reinforcement Learning for fuzzing?

Fuzzing can be blackbox (oblivious to program behavior):
Q + lightweight
@ - low quality — small performance margin

Fuzzing can be whitebox (leverage program analysis)

Q - costly
@ + high quality — large performance margin

Problem: Can we develop performance fuzzers that are both lightweight
and generate high-quality inputs?
Solution:

@ How? Reinforcement learning

@ Exploit the input-output behavior of the program-under-test
(environment) via a feedback loop with the fuzzer (agent)
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Reinforcement Learning

In reinforcement learning, an agent learns how to select actions within an
environment in a way to maximize the cumulative reward.

Reinforcement learning is typically modelled through a Markov Decision Process
(MDP), a 4-tuple (S,A, T, R), where:

@ S —is a set of states

@ A —is a set of actions

© T — modelled transitions

@ R — modelled rewards

A learned agent’s output is a policy m: S — A, that selects the action that
maximizes cumulative future reward.

:l Agent

state reward

s | R,
Ry
s.. | Environment [e——

action
A
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Multi-Armed Bandit Problem

The Multi-Armed Bandit (MAB) problem is a
stateless formulation of reinforcement learning (No
states/transitions!! Just actions and rewards!).

An MAB agent must manage the
exploration /exploitation tradeoff.

@ Select the best known action (exploitation)

@ Sample less known actions (exploration)

MAB solutions have been popularized due to their
relative simplicity and success in noisy environments.

The name comes from a gambler at a row

0 On“ne AdVertisements of slot machines (one-armed bandits),

e Finance who has to decide which machines to play.

© SAT solver branching

Context and Motivation July 6th, 2020 9/25



Outline

© BanditFuzz Overview

BanditFuzz Overview July 6th, 2020 10 / 25



BanditFuzz — A performance fuzzer

© BanditFuzz is a performance fuzzer that aims to find relative
performance slowdowns

@ Given a target solver T
© A set of reference solvers Ry, Ry, Rs3...

@ A run of BanditFuzz seeks a input B that maximizes the performance
margin

PAR2(T, B) - max(PAR2(Ry, B), PAR2(Ry, B), PAR2(R;s, B), ...)

BanditFuzz Overview July 6th, 2020 11 /25



Fuzzer Components

@ Input Generation — BanditFuzz uses the StringFuzz approach to
random abstract syntax tree (AST) generation

@ Generate a fixed number of asserting ASTs

@ Fill out each asserting AST in a depth-first manner
@ Randomly select a root node from the set of predicates in the logic
@ Randomly select non-root/leaf nodes from the set of

functions/operators in the logic

© Fill out leaf nodes with variables

@ Mutation — Given a input B and grammatical construct

@ Depending on the type of the construct (i.e., predicate,
operator/function, special term), construct the set C of all constructs
of the same type as 7y in B, but not equal to ~.
Randomly sample a construct v’ from C, and replace it with .
On an arity increase, generate new sub-ASTs of appropriate depth.
On an arity decrease, drop the right-most children.

000
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Mutation Example

Consider a fixed depth of two, with variables (xp, x1), and a single
rounding mode {RNE}.
Consider a single asserting AST

(fp.eq (fp.abs xo)(fp.abs x1)),

If the agent selects to mutate with fp.add, then we have the following
possible outputs:

(fp.eq (fp.add RNE xo xo)(fp.abs x1))

(fp.eq (fp.add RNE xo x1)(fp.abs x1))
(fp.eq (fp.abs xo)(fp.add RNE x1 xp))
(fp.eq (fp.abs xp)(fp.add RNE x1 x1))
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Fuzzing Mutation as a MAB Problem

BanditFuzz works by reducing a fuzzing mutation to an instance of the
MAB problem, and learns how to mutate inputs in a feedback loop.

@ Action Space:
Grammatical Constructs

of the logic.
@ Predicates
@ Operators and
Functions
© Special Terms (e.g,
rounding modes)

@ Rewards:

—Fuzzing Objective—>|

-Grammar—>|

@ 1 if the performance
margin increases
@ 0 otherwise

BanditFuzz Overview
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Thompson Sampling

Thompson Sampling is an algorithm that solves the MAB problem.

Thompson sampling presupposes that rewards are from Bernoulli
distribution {0,1} and uses a beta distribution to model each action’s
expected value.

Algorithm:

@ For each action, initialize a beta distribution Beta(a=1,5=1)
@ While Training
o When queried, sample each action’s beta distribution.
o Select an action by computing an argmax over each action’s sampled
value.
e On reward, increment the « parameter.
o Otherwise, increment the 3 parameter.
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A few iterations of BanditFuzz

Consider an action set {+, *}, and an input

Iteration #1

PDF for + PDF for *

10 10
0.3 0.8
06 06

04 04
02 02

0.0 00
0.0 0.2 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x x

a=1,0=1u=0.50=0.2837 a=1,0=1u=0.50=0.2837
The agent samples both distributions, and computes an argmax.

Action * is selected, then I, is created by adding a new occurrence of *
into /1!

I has a higher performance margin than /. The agent gets a reward!
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A few iterations of BanditFuzz

Consider an action set {+, *}, and an input

Iteration #2

PDF for + PDF for *

o 2.0
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0.0

0.0 0.2 0.4 06 08 1.0 0.0
x

a=1,8=1,u=05,0=0.2887 a=2,8=1,1=0.6667,0 = 0.2357
The agent samples both distributions, and computes an argmax.

Action + is selected, then /3 is created by adding a new occurrence of +
into /!

I3 has a lower performance margin than /. The agent does not receive
reward.
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A few iterations of BanditFuzz

Consider an action set {+, *}, and an input |

Iteration #3

PDF for + PDF for *

00 02 04 06 08 1.0 0.0
x

0.0 02 04 08 08 10

a=1,=2,1=03334,0=0237 @=2,6=1,4=0.6667,0=0.2357
The agent samples both distributions, and computes an argmax.

Action + is selected, then /4 is created by adding a new occurrence of +
into /!

I4 has a higher performance margin than /. The agent receives reward.
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A few iterations of BanditFuzz

Consider an action set {+, *}, and an input

Iteration #4

PDF for + PDF for *

a=2,8=21=050=02236 a=2,8=1,1=0.6667,0 = 0.2357

The agent samples both distributions, and computes an argmax.

Action * is selected, then I5 is created by adding a new occurrence of *
into I!

Is has a higher performance margin than ;. The agent receives reward.
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Baselines

© Random Fuzzing — Randomly generate inputs via random AST
generation in a loop

@ Random Mutation Fuzzing — Randomly mutate the best observed
input in a loop

© Evolutionary Fuzzing — Maintain a population of inputs by carrying
over the best observed, randomly mutating the best observed, and
randomly generated new ones

Each run of a fuzzer is allocated 12 hours to find a single input that
maximizes the margin between the target solver and reference solvers.

Every fuzzing configuration is ran 100 times, to produce a input suite of
100 different inputs.
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Setup and Solvers

We consider the logics QF _FP and QF_S.

QF_FP
Q Z3v4.8.0
@ MathSAT5 v6.5.3
© CVC4 CVC4 1.7-prerelease
@ Colibri v2070

QF_S
Q@ Z3str3 v4.8.0
@ Z3seq v4.8.0
© CVC4 16

All experiments were performed on a CentOS V7 cluster of Intel Xeon
Processor E5-2683 running at 2.10 GHz. We limited each solver to 8GB of
memory without parallelization.
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Results: Cactus Plot — Targeting Z3 for QF _FP

Cactus Plot for FP SMT Performance, Target = Z3
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Results: Cactus Plot — Targeting Z3SEQ for QF_S

Cactus Plot for String SMT Performance, Target = Z3SEQ
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Quantitative Evaluation

We will use PAR-2 to quantify the performance of a solver input pair.
PAR-2 is defined as the sum of all successful runtimes, with unsolved
inputs labelled as twice the timeout.

As we are fuzzing for performance with respect to a target solver T, we
evaluate the returned test suite D of a fuzzing algorithm based on the
PAR-2 margin between the PAR-2 of the target solver and the input wise
maximum across all of the reference solvers R.

PAR-2Margin(T, R, D) := > (PAR-2(/, T) - max(PAR-2(/,r)))
leD reR
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Results: PAR-2Margin tables

Target Solver | BanditFuzz | Random | Mutational | Genetic | % Improvement
Colibri 499061.5 | 499544.2 | 499442.2 | 499295.1 -0.10 %
CVvC4 144568.9 68714.2 125273.0 | 38972.7 15.40 %

MathSAT5 36654.5 12024.9 31615.4 8208.0 15.94 %

Z3 467590.0 | 239774.3 | 256973.1 | 251108.2 81.96 %
Target Solver | BanditFuzz | Random | Mutational Genetic Improvement
CvC4 45629.8 30815.4 30815.4 31619.4 44.15%
Z3str3 499988.6 | 499986.7 | 499987.2 499986.8 0.00%
Z3seq 490883.4 | 409111.0 | 433416.5 | 445097.427 12.31%
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Conclusions and Future Work

@ In this talk, | presented BanditFuzz a reinforcement learning
performance fuzzer
@ Using BanditFuzz, we were able to generate multiple testing suites
exposing significant relative performance difference, improving on
considered baselines by up to 81%
Future Work:
© Currently BanditFuzz only supports two logics, extending to all logics
is work in progress
@ Repeat evaluation with new solvers
Code: https://github.com/j29scott/BanditFuzz_Public
Email: joseph.scott@uwaterloo.ca
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