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Abstract. Satisfiability modulo theories (SMT) solvers implement a
wide range of optimizations that are often tailored to a particular class
of problems, and that differ significantly between solvers. As a result,
one solver may solve a query quickly while another might be flummoxed
completely. Predicting the performance of a given solver is difficult for
users of SMT-driven applications, particularly when the problems they
have to solve do not fall neatly into a well-understood category. In this
paper, we propose an online algorithm selection framework for SMT
called MedleySolver that predicts the relative performances of a set of
SMT solvers on a given query, distributes time amongst the solvers, and
deploys the solvers in sequence until a solution is obtained. We evaluate
MedleySolver against the best available alternative, an offline learning
technique, in terms of pure performance and practical usability for a typ-
ical SMT user. We find that with no prior training, MedleySolver solves
93.9% of the queries solved by the virtual best solver selector achieving
59.8% of the par-2 score of the most successful individual solver, which
solves 87.3%. For comparison, the best available alternative takes longer
to train than MedleySolver takes to solve our entire set of 2000 queries.

1 Introduction and Motivation

State-of-the-art Satisfiability Modulo Theory (SMT) solvers employ highly opti-
mized and unique techniques to efficiently solve queries. One example of differen-
tiation between solvers is in quantifier reasoning, where the number of different
algorithms implemented is reflected in the wide spectrum of literature on the
subject, e.g. [7, 16, 23, 27, 34]. In the same vein, solvers use very different tech-
niques for different theories; for example, there are various techniques that can
be used for bit-precise reasoning, e.g. [6, 9, 10,14,15,17,20,22,30,31].

SMT solvers are becoming more widely used across various applications in-
cluding verification, automated software testing, and policy verification, e.g.
[4,8,24], making them particularly useful to industry practitioners and non-SMT
researchers. Given the performance differential between solvers, a key question
for such practitioners wishing to apply SMT solving to a problem in a specific
domain is “which solver should I use?” In this work, we endeavor to provide a
simple answer to this question: “Let MedleySolver choose for you!”

MedleySolver frames the problem of choosing an SMT-solver as a modified
Multi-Armed Bandit (MAB) problem, a classic reinforcement learning formula-
tion in which an agent must repeatedly pick from several different choices with
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unknown reward distributions, minimizing overall regret. This agent must trade-
off between exploitation (choosing a solver that is already believed to be fast)
and exploration (testing out other solvers). For a given SMT query, MedleySolver
selects a sequence of solvers to run, running the solver it believes is most likely
to solve the query first and the solver that is least likely last. MedleySolver also
predicts the time it should spend running each solver before it should give up
and move onto the next solver in the sequence.

We apply classic algorithm selection techniques from the domain of Multi-
Armed Bandit problems to the order selection problem. In this paper, we high-
light Thompson Sampling and k-Nearest-Neighbor (k-NN) classification. We se-
lect these two as high-performing instances of a non-contextual and a contextual
algorithm respectively but perform a more extensive comparison with a variety
of other Multi-Armed Bandit algorithms for completeness. These algorithms tra-
ditionally predict one optimal action, but we use them to rank SMT solvers on
a given query based on the behavior observed on previous queries and, in the
case of the contextual bandit algorithms, a feature vector. This ranking allows
the algorithm to explore and exploit in a single round.

Non-contextual multi-armed bandit algorithms have been directly applied
to selecting search heuristics and variable orderings for constraint satisfaction
problems [39,43], and to implementing co-operative sharing of clauses in parallel
SAT solving [25]. Our use of a contextual multi-armed bandit framework to select
a sequence of SMT solvers for a given SMT query is novel.

We pair these order selection algorithms with two runtime prediction algo-
rithms. The first runtime prediction algorithm estimates the time each solver
should be run by modeling its performance as exponential distributions with a
parameter that is updated dynamically. The second fits a linear model using
stochastic gradient descent (SGD). Runtime estimation helps reduce the cost of
exploratory solver choices that do not produce rewards by stopping solvers when
we are confident they will not finish before the overall timeout.

Our work is inspired by recent work showing machine learning techniques can
be used to solve SMT queries faster. For example, FastSMT [5] is a tool that uses
machine learning to find an optimal sequence of tactics, or query transformations,
for SMT solvers to use on queries from a given domain. One issue with such
approaches is that the complexity of the learning methods leads to training times
grossly larger than the time spent solving. In this paper, we achieve comparable
performance boosts with no pre-training or additional burden on the SMT end-
user. To meet this goal, we approached the problem of algorithm selection for
SMT solvers in a dynamic, or “online,” manner. This ensures the cost of our
training remains small, proportional, and justified by how SMT practitioners use
SMT solvers. For example, techniques such as counterexample-guided inductive
synthesis (CEGIS) [38] produce long sequences of similar SMT queries that are
not easy to obtain prior to solving for offline training.

Contributions The key contributions of this work are:

1. An adaptation of standard regression techniques to predicting when a given
solver will timeout on a query, and a novel approach for the same time
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allocation problem that models runtime as exponential distributions and
estimates timeouts dynamically and with context.

2. A framing of the SMT solver selection problem as a Multi-Armed Bandit
(MAB) problem combined with a timeout prediction scheme. Specifically,
we extend the MAB problem to selecting sequences of solvers per query
instead of a single solver and use the timeout prediction scheme to allocate
time to each solver in the sequence. This interaction lets us use lightweight
techniques for both problems that do not require pre-training while retaining
comparable performance to pre-trained techniques.

3. An empirical evaluation on a set of 2000 benchmarks representing a typical
user’s workload. Our approach solves 1813 queries on this set; 128 more than
the next best solver in 3/5th of the time, with no pre-training.

2 Related Work

MedleySolver is most related to algorithm selection techniques for SAT and
SMT. Our motivation, however, is similar to portfolio-based approaches.

Algorithm/Solver Selection Early approaches to learning-based algorithm selec-
tion in solvers included picking between different encodings of SMT to SAT in
the UCLID solver [11, 36] and selecting input parameters for SAT solvers [19].
SatZilla [44] used empirical-hardness models to map queries to SAT solvers.
Models are learned offline, then combined with a fixed order of “pre-solvers”—
solvers that are called before featurization with a short timeout—when online.
MedleySolver differs from SATZilla in that it targets SMT, learns solver orders,
distributes time among solvers, and does not require training. ArgoSmArT
k-NN [32] applies a pre-trained k-Nearest-Neighbor algorithm to portfolio SAT
solving. Given a query, they deploy the most successful solver on the k near-
est neighbors. Although one algorithm we apply is k-NN, we use it to select
sequences of solvers and apply it in combination with the time-prediction al-
gorithm. MachSMT [35] is a pre-trained tool like SatZilla but for SMT. Like
SatZilla, MachSMT pre-trains to learn an empirical hardness model, then used to
predict solving time for a given query. This is related to our timeout estimation,
however, our version requires no pre-training. We achieve similar performance to
MachSMT without pre-training by decoupling solver choice from time allocation
and allowing for mistakes by selecting a sequence of solvers to run, instead of a
single solver. Where4 [18] is a portfolio-based SMT solver that uses regression
models to select which solver to run. It extracts features from WhyML programs
rather than SMT queries and does not allocate time between solvers. CPHy-
dra [33] does allocate time between solvers but does so by solving an NP-Hard
problem (knapsack). CPHydra also ignores solver order, requires offline training,
and is aimed at CSP, which is related to, but different from, SMT. FastSMT [5]
is a pre-trained learning tool for speeding up the Z3 SMT solver that works by
selecting algorithmic “tactics” or strategies inside the solver itself. FastSMT is
interesting because it produces an interpretable strategy that can often be sig-
nificantly faster than Z3 out-of-the-box. MedleySolver differs from FastSMT in
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that it learns to combine solvers, rather than to combine the tactics of a single
solver. FastSMT also requires significant training time.

Parallel Portfolio Solvers Parallel portfolio solvers execute sets of solving pro-
cesses in parallel for each query. Our approach is complementary in that we
focus on speeding up sequential computation: different configurations of Medley-
Solver could be run in parallel with a portfolio approach. Nevertheless, portfolio
approaches share a similar goal, so we highlight related works in this space.
PAR4 [40] is a basic portfolio parallel SMT solver that won several tracks
in the SMT-competition in 2019. Wintersteiger et al. [42] implement Parallel
Z3, a portfolio solver for SMT with the additional feature that learned clauses
are shared between processes. Menouer and Baarir [28] combine search space-
splitting with portfolio solving by using EXP3 to dynamically allocate cores to
each search space splitting solver from a set. Our approach differs in that we fo-
cus on SMT, not SAT; we allocate time, not cores; and we use bandit algorithms
(like EXP3) to pick the order of solvers, not the number of cores.

3 Problem Statement and Approach Overview

SMT users rarely aim to solve a single query in isolation and usually care about
resource consumption. For example, verification engines generate many verifica-
tion queries for one verification problem and aim to solve these queries in the
least amount of time. As such, we define the practical SMT problem as that of
taking a set of SMT queries Q = {q1, ..., qm}, a set of SMT algorithms (usu-
ally solvers) S, and producing a set of answers A = {a1, ..., am}, where each ai
corresponds to the matching qi, while using the least computational resources.

Our approach to the practical SMT problem, MedleySolver, is a program
that takes Q, S, and a timeout T per query, and aims to maximize the number
of instances solved while minimizing the cumulative time spent. We decompose
our approach into two parts. For each query q ∈ Q, we predict 1. which solvers
are most likely to solve a given query and return a list of solvers ordered by
chance of success; and 2. the time each solver is likely to take to solve a given
query and distribute the timeout T to the solvers in the sequence accordingly.

Given a query qi, MedleySolver generates a sequence of solvers σ, and a
sequence of time-allocations t1, ..., tn, so that the solver in σ1 is run for t1 seconds
and so on. If a solver in the sequence successfully solves the query, we do not
run the rest of the solver sequence on that query and instead move onto the
next query. For the remainder of the paper, we use σ to denote a sequence
of solvers and σi to denote the ith solver in the sequence σ. We process each
query q1, ..., qm in order and our solver selection algorithms learn as we go, so
the solver selection for qm uses information from queries q1, ..., qm−1. In practice,
this historical information can be reset whenever and in our experimental results,
we reset it when confronting a new set of queries (for instance, a new category
of the SMT competition). An overview of our approach is shown in Figure 1. We
describe the three main components of Figure 1: the solver selector, the timeout
predictor, and the featurization of queries, in detail in the next two sections.
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Fig. 1: Overview of one iteration of our approach.

4 Dynamic Solver Selection

In the multi-armed bandit (MAB) problem [13] an agent sequentially selects
between choices with unknown associated reward distributions, aiming to maxi-
mize the reward achieved over time. The agent must trade off exploration (trying
new actions and learning about them) and exploitation (deploying actions we
know have the potential for high reward).

We frame the solver selection problem as a MAB problem. The agent is se-
lecting the solver to use and the payout is based on successfully solving queries.
We assume that running a solver for a randomly selected SMT query is equiva-
lent to sampling from some unknown distribution that we seek to approximate.
Contextual MABs extend the problem by giving agents access to a feature vector
before each round. This allows us to add information about the characteristics of
the SMT query we are trying to solve in each round, as described in Section 4.2.

We modify the MAB problem in one key way: we select a sequence of solvers
to run (with corresponding time allocations that we consider later), instead of
selecting a single solver. This contribution allows solver selection to perform ex-
ploration on each query until it observes a reward, has tried all solvers, or reaches
the time-out per query. We also use a time-prediction algorithm, described in
Section 5 which predicts the time it is worth running a solver on a given query,
allowing us to perform “partial exploration” instead of committing to running a
single solver until time-out or termination. Both of these extensions to the MAB
algorithms allow the solver selection to correct incorrect solver choices, reducing
the cost of exploration vs exploitation. In the following subsections, we adapt one
non-contextual algorithm and one contextual algorithm (i.e., algorithms that use
the feature vector) from the literature to our domain. We choose the algorithms
based on their popularity in the classic literature for MAB, and the compatibil-
ity of the assumptions the algorithm makes with our domain (for instance, we
omit algorithms such as LinUCB [26], which assumes that the reward is linearly
correlated with the feature vector). In Section 6 we evaluate our choices against
other MAB algorithms for completeness.

Rewards We use a binary reward structure where a solver receives a reward of
1 if it is observed solving a query and 0 if it is observed failing to solve a query,
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Fig. 2: Updating the distribution of θ according to Bayes’ rule. A distribution for
a solver that has failed on more queries than it has solved will have a θ < 0.5.

which decouples solving time from rewards. We also explored an exponential
reward structure where a solver receives a reward of (1 − t/T )4 if it solves a
query in time t, but found the binary reward more effective which we believe is
due to its ability to differentiate more clearly between benchmarks that are slow
to solve and benchmarks that are not solved.

4.1 Thompson Sampling

Thompson Sampling [1, 2] uses Bayes’ rule to choose an action, or arm in the
MAB problem, that maximizes the expected reward. Each round of the MAB in
this context is picking a random query from the set of queries and trying to solve
it with a specific solver σi. To adapt non-contextual Thompson Sampling to our
SMT solver selection problem, we model the outcome of an experiment with a
Bernoulli distribution where the solver solves the query with a probability θi
and fails to solve it within the time-out with a probability 1− θi. In Thompson
Sampling, the agent does not know the value of each θi but begins with some
prior belief over each one. These priors are beta-distributed: the prior for θi is

p(θi) =
Γ (αi + βi)

Γ (αi)Γ (βi)
θαi−1
i (1− θi)βi−1.

We initially take this distribution to be uniform i.e., αi = βi = 1. That is, we
assume a prior that, for a random query, each solver has a 50% chance of solving
the query and a 50% chance of failing to solve the query within the timeout.

To select a solver to deploy, Thompson Sampling takes a sample from each
distribution p(θi) corresponding to a solver. Note that, because Thompson Sam-
pling takes a sample from the distributions p(θ1)...p(θn), it is more likely to
pick solvers that we are uncertain about instead of simply returning the solvers
in order of the p(θ) with the highest mean, allowing exploration. Conventional
Thompson Sampling returns the solver with the highest valued sample. Our al-
gorithm returns a sequence of solvers in descending order of these sampled values
i.e., the solver with the θ closest to 1 is first.

After deploying the solvers and observing the results, the distributions over
θ1, .., θn are updated according to Bayes’s rule. Each time a solver σi is run, a



MedleySolver: Online SMT Algorithm Selection 7

(a) Solver performance on Uclid5 queries as
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Fig. 3: Empirical intuition for features and time predictors.

reward ri is observed. The posterior distribution for the beta distribution [12] is
obtained by adding the reward ri to αi and 1−ri to βi, as illustrated in Figure 2.

Thompson Sampling assumes events are independent, i.e., the probability of
a solver being able to solve a query is independent of all queries the solver has
seen before. This could be true if our time-out prediction algorithm is perfect
so that if a solver can solve a query within the timeout T , the solver will also
always be able to solve that query within the time t allocated to the solver.

4.2 Features for Contextual Approaches

Contextual approaches depend on the assumption that queries with similar char-
acteristics will cause SMT solvers to perform similarly. We capture the charac-
teristics of each SMT query qi in a feature vector vi ∈ V . We use these feature
vectors both in contextual bandit algorithms (described next) and in our con-
textual time-prediction (described in Section 5).

We identify a list of 24 features that are quick to extract and that we believe
correlate with solving time for specific solvers. These features include context-
free qualities like counts for specific operators (e.g. array store operators), the
maximum value of literals, the sum of literal values, and so on. The features also
include context-sensitive qualities like quantifier nesting and alternations, as well
as the size of a given queries’ abstract-syntax-tree as a minimal graph (we refer
to this representation as a term graph). All feature extraction procedures run
in O(n) where n is the size of the term graph. The term graph construction is
efficient and the term graph itself is often exponentially smaller than the input
query. Therefore, the cost of extracting features is relatively small.

As a heuristic, we try to build features that can differentiate solver perfor-
mance on their own. For example, Figure 3a shows the performance of three
different SMT solvers as the number of array operations in the term graph in-
creases accompanied by an exponential regression fit. For this example, intu-
itively, we would want to favor the use of Z3 as the number of array operations
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Fig. 4: Example k-NN run with k = 1, solvers A, B, C, and 2 features. A, B,
and C are represented by a square, a triangle, and a circle, respectively; the new
query is represented by a diamond. A and B fail on the new query in (a); solver
B fails on the new query in (b); and solver C succeeds on both.

increases. While we did not do any empirical feature selection, we did use our
prior knowledge of SMT solvers to decide which feature extractors to build, and
we evaluate the impact of our decisions in Section 6.3.

4.3 k-Nearest-Neighbor

The k-Nearest-Neighbor algorithm(k-NN) is a simple contextual approach. Viewed
from the perspective of a MAB problem, given solvers s1, ..., sn, k-NN classifies
SMT queries into n classes: queries where solver s1 is the best choice, queries
where solver s2 is the best choice, and so on. We extend the standard k-NN
algorithm to return a sequence of solvers.

Given a query, q, the basic k-NN algorithm looks at the k nearest queries
to q, tallies the number solved by each solver, and orders the solvers by their
tallies. We calculate the distance between two queries—how “near” two queries
are—by computing the Euclidean distance between their feature vectors. The
idea behind this algorithm is that if a solver succeeded on many queries similar
to q, then it is likely to succeed on q. If any solvers in the solver set are not
included in the neighbors, we randomly shuffle these solvers and append them
to the end of the sequence—we make an exception for the k = 1 case: when
k = 1 we return the solver that solved the nearest neighbor, followed by the
solver that solved the next nearest neighbor and so on, without replacement.

Once an order is selected, we run the solvers in sequence. If a solver s in this
sequence succeeds, we add the feature vector of that query to our data-set of
previously solved queries along with the label s. See Figure 4 for three steps of
a hypothetical 1-nearest neighbor example.

5 Runtime prediction

The second component of our approach comprises time predictors, which we use
to split the per-query timeout T into sub-timeouts per solver t1 . . . tn. We train a



MedleySolver: Online SMT Algorithm Selection 9

time-predictor for each solver. Our goal is to find a time ti such that we can stop
running the ith solver in the sequence and be highly confident it was unlikely
to solve the current query after this point. Formally, we are trying to find the
minimum ti such that P (ti < ui < T ) ≤ δ, where ui is the true runtime of σi
on qi and δ is the accepted error probability. We consider this event the only
relevant error scenario because it implies if we had allocated more time to solver
σi we could have solved the current query.

To calculate each ti, we model each solver’s runtime as an exponential dis-
tribution, justified by our experimental observations illustrated in Figure 3b:
solvers usually succeed early or not at all. We employ Maximum Likelihood Es-
timation (MLE) [29] to fit an exponential distribution to the runtime samples
which we have gathered up to that point. In MLE, we find minλ P (u1 . . . um|λ),
where u1 . . . um are the observed runtime samples we have seen, which we as-
sume are drawn from Exponential(λ). We use the exponential’s probability
distribution function as a measure of likeliness, so this problem is equal to
minλ n lnλ− λ(

∑
i ui), leading to the following minimizer:

λ∗ =
n∑
i ui

Applying the cumulative distribution function and using the memoryless prop-
erty of the exponential distribution, we can calculate ti as follows:

ti =
− ln(δ + e−λ

∗T )

λ∗

We split T into sub-timeouts greedily; we use the above process to allocate time
for solvers starting from the beginning of our ordering and stop once we reach
the overall timeout, allocating zero time to the remaining solvers in the order.
If we reach the end of the ordering and still have time remaining, we give the
remaining timeout to the last solver.

k-NN Runtime Prediction We present a contextual runtime prediction sys-
tem based on the k-NN algorithm. Instead of using every past sample point
to estimate λ∗, we limit our estimation scheme to the k nearest data-points.
As with the k-NN based solver selection, the distance between two queries is
the Euclidean distance between their feature vectors. The rest of the estimation
scheme remains identical to the non-contextual scheme.

Linear Regression Runtime Prediction Finally, we present a contextual
runtime prediction system that finds a linear relationship between our feature
vector and the associated runtime. To do so, it minimizes the L2-regularized
squared loss of the linear model using stochastic gradient descent, solving:

min
w,b

∑
i

(wTxi + b− ui) + α||w||2,
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where w is the learned weight of our features, b is a learned coefficient, xi is the
feature vector of the ith query, ui is the true runtime of the ith query, and α is
a regularization constant.

6 Empirical Evaluation

We implemented a prototype of MedleySolver in Python.3 The input is a direc-
tory of queries, and the output is the result, solver used, and time elapsed per
query. In this section, we evaluate this prototype and aim to answer the follow-
ing research questions: 1. How does MedleySolver compare to individual solvers
on the practical SMT problem? 2. How does MedleySolver compare to the best
available alternatives on the practical SMT problem? 3. How do the individual
components of MedleySolver affect the overall performance?

Subjects and Methods We equip MedleySolver with six SMT solvers (CVC4
v1.8 [6], MathSAT v5.6.3 [9], Z3 v4.8.7 [14], Boolector v2.4.1 [31], Bitwuzla
v.0.9999 [30] and Yices v2.6.2 [15]) and run on four benchmark sets, each with
500 queries. Some SMT solvers do not support all needed syntax. For exam-
ple, the BV set includes quantifiers that Boolector cannot handle. We expect
MedleySolver to learn to avoid solvers that fail on specific kinds of queries.

The benchmark queries simulate a typical user’s workload in that they are
similar in nature, i.e. use related logical theories and come from similar appli-
cations, but are diverse enough to expose issues a normal user will encounter,
i.e. deviations in SMT-LIB conformance. We selected a random sample of 500
queries from an existing benchmark set, Sage2, derived from a test generation
tool; 500 queries from 140 Uclid5 [37] verification tasks; and 500 queries each
from the BV and QF ABV theory SMT-COMP tracks, respectively.

We ran every individual solver with a timeout of 60 seconds for every query
on a Dell PowerEdge C6220 server blade equipped with two Intel Xeon 10-core
Ivy Bridge processors running Scientific Linux 7 at 2.5 GHz with 64 GB of 1866
Mhz DDR3 memory. We saved these results and used them to simulate runs
of MedleySolver. This helped ensure results are deterministic, reproducible, and
lowered our carbon emissions. The overhead of running MedleySolver on all 2000
queries varies between learning algorithms and features used but is always less
than two minutes for the full set of queries, and is therefore negligible.

6.1 RQ1: Comparison With Individual Solvers

To evaluate the utility of MedleySolver for a typical user, we ran k-NN and
Thompson with the three timeout predictors on every set individually and then
over the combined set. The combined set represents a realistic combination of
queries a typical user might want to solve.

3 Code and data: https://github.com/uclid-org/medley-solver/tree/SAT2021

https://github.com/uclid-org/medley-solver/tree/SAT2021
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Benchmark Set
Solver BV QFABV Sage2 Uclid5 Split Combined

10-NN
Expo

2081.8 1208.2 14855.4 5386.9 23532.3 29111.2
484 492 396 457 1829 1799

10-NN
10-Nearest-Expo

2857.7 1039.7 17558.2 5386.9 26842.5 25133.8
477 493 367 457 1794 1813

10-NN
Linear

4229.1 824.4 13789.0 8136.4 26978.9 87898.4
468 496 409 452 1825 1308

Thompson
Expo

2986.4 1308.5 15323.1 5540.9 25158.9 51757.3
480 491 401 456 1828 1676

Thompson
10-Nearest-Expo

2840.8 1105.1 17949.7 5536.0 27431.6 27555.9
479 493 365 456 1793 1816

Thompson
Linear

4291.1 1474.1 15661.3 4344.6 25771.1 45267.7
466 489 392 473 1820 1658

Boolector
60000.0 1408.7 31502.3 60000.0 152911.1

0 491 265 0 756

Bitwuzla
3872.3 822.9 22316.4 60000.0 87011.7

471 496 349 0 1316

CVC4
3332.1 5874.1 49161.5 7395.5 65763.3

477 459 117 459 1512

MathSat
11455.0 1724.0 34159.4 50783.3 98121.7

406 488 232 77 1203

Yices
7244.3 922.1 13544.4 60000.0 81710.9

442 494 411 0 1347

Z3
2888.6 1202.0 35279.2 2637.2 42007.1

477 492 232 484 1685

Virtual Best
964.6 530.8 9006.2 2192.1 12786.5

493 497 453 476 1931

Table 1: Par-2 score (lower is better) and the number of queries solved for each
solver across benchmarks. MedleySolver configurations are selectors (e.g. 10-
NN) over time predictors (e.g. Linear time prediction). Learning algorithms use
binary reward and every query is given a 60-second timeout. ‘Split‘ refers to
the sum over all individual benchmark sets where the learning algorithms are
restarted between sets, while ‘Combined’ refers to the aggregated set with no
resets. Individual sets contain 500 queries; ‘Combined’ and ‘Split’ contain 2000.

Table 1 reports the results of our experiment in terms of Par-2 score,4 where
“virtual best” is calculated by using the best-performing individual solver for
each query. On individual sets where one solver dominates, like Z3 on Uclid5,
MedleySolver approaches the best solver but does not reach it. Conversely, on
sets where no one solver is close to the virtual best, like BV, we find the Med-
leySolver can exploit this performance differentiation and approach the virtual
best solver. The combined set, which is less uniform than BV but less dominated

4 sum of all runtimes for solved instances + 2∗timeout for unsolved instances [41].
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Fig. 5: Par-2 score over queries solved in the combined set.

than Uclid5, demonstrates the power of MedleySolver: with no training, Medley-
Solver solves 94.5% of the queries solved by the virtual best using only 72.3% of
the time taken by the most successful individual solver, Z3, which solves 87.3%.
Figure 5 shows the performance of every solver over the number of queries pro-
cessed, and visually depicts the proximity of MedleySolver to the virtual best.
Together, Table 1 and Figure 5 answer RQ3: MedleySolver outperforms every
individual solver on the practical SMT problem.

The Thompson MAB selector generally does better when summing up in-
dividual sets than when running on the combined set, while the k-NN selector
is the opposite. This suggests contextual approaches can effectively carry over
lessons between sets, and non-contextual approaches benefit from being used in
the context of a benchmark.

6.2 RQ2: Comparison With State-of-the-Art

We now compare MedleySolver to alternative portfolio approaches, including
those based on pre-trained machine learning techniques. Parallel portfolio solvers
like PAR4 [40] run multiple solvers in parallel and stop all solvers when the first
one solves the query. We can calculate the hypothetical performance of such a
solver by multiplying the virtual best solver time by the number of solvers we
run. This would give a Par-2 score of 65481, in comparison to 10-NN’s better
score of 32632 over the combined benchmark set.

MachSMT [35] uses a neural network to select which solver to run on a
given query. Table 2 shows the performance of MachSMT and MedleySolver
on the same benchmarks as in Table 1 but with 2/5 of the queries set aside
for MachSMT to train on per set. Although MachSMT slightly outperforms
MedleySolver on the test sets, the training time required by MachSMT is orders
of magnitude larger than the time required to solve, particularly because, to have
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Benchmark Set
Solver BV QFABV Sage2 Uclid5 Combined

MedleySolver
1638.7 310.5 9245.3 4248.0 18565.5

N/A N/A N/A N/A N/A

MachSMT
1458.3 919.2 8516.1 2430.9 12539.1

33895.5s 4498.9s 55115.5s 276419.8s 300072.8s

Virtual Best
801.7 184.3 5204.2 1464.7 6746.0
N/A N/A N/A N/A N/A

Table 2: Par-2 score (lower is better) and training time for MedleySolver,
MachSMT, and the Virtual Best of all individual solvers. Individual benchmarks
consist of 200 training queries and 300 test queries; ‘Combined’ consists of 800
training queries and 1200 test queries. Only MachSMT uses the training queries.

training data on which to train, MachSMT must run all the solvers on all the
queries in the training set which takes a considerable amount of time. So, on the
practical SMT problem, MedleySolver achieves similar results with significantly
less resource consumption and we argue the cost of training is not worth it if
online learning can achieve competitive performance. Preiner et al. do make a
trained model available that could eliminate training time for a user. However,
this pre-trained model is trained on specific versions of a specific set of SMT
solvers running on a specific system. In practice and in our example, the user’s
specifics do not match and local training is required.

FastSMT [5] is an offline approach that synthesizes strategies for the Z3
SMT solver. FastSMT requires significant training time and needs to be trained
per benchmark set. We can run the pre-trained FastSMT model on the Sage2
benchmark set, where it solves 358 queries in 12766s (par-2 score of 29806). This
is a substantial performance gain over Z3, but all MedleySolver configurations
still outperform this without any pre-training. FastSMT improves on Z3 but
it is limited to one single solver and, unlike MedleySolver, is not able to take
advantage of the range of different SMT solvers implementing different heuristics.

6.3 RQ3: Impact of Individual Components

In this section, we evaluate the performance of the individual pieces of Med-
leySolver. Specifically, we aim to answer the following questions. 1. How do our
learning algorithms compare to other well-known MAB algorithms? 2. How well
do our order selectors perform? 3. What is the impact of selecting an order
instead of a single solver on performance? 4. Which query features are most
responsible for MedleySolver’s performance?

Performance of Other Multi-Armed Bandit Algorithms We have highlighted the
results from Thompson Sampling and k-NN but we also adapted and evalu-
ated the following Multi-Armed Bandit algorithms: the classic non-contextual
epsilon-greedy bandit algorithm [21]; LinUCB [26], an upper-confidence bound
algorithm that assumes a linear relationship between the rewards and the fea-
ture vector; Exp3 [3]: an adversarial bandit algorithm; and an adaptation of a
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neural network classification based bandit [45]. All of these bandits performed
comparably or better than the best individual solver, but no non-contextual al-
gorithm performed as well as Thompson Sampling, and no contextual algorithm
performed as well as k-NN.

Order Selection Accuracy To better understand MedleySolver’s performance,
we measure how frequently it selects the best solver as the first solver to try.
Over our five case-study benchmarks, the best performing selector is k-Nearest-
Neighbor with k = 10 (10-NN), which correctly picks the best solver 74.3% of
the time. The highest success rate is on the BV benchmark, where 10-NN is
92.0% accurate. The lowest success rate is on the QF ABV benchmark, where
10-NN is 52.0% accurate. This difference demonstrates MedleySolver’s accuracy
is proportional to the cost of mistakes: solvers are much better overall on the
QF ABV category so MedleySolver can frequently pick a sub-optimal solver that
will still terminate quickly; on the other hand, in BV, picking the wrong solver
will often lead to a timeout.

Timeout Prediction Impact To better understand MedleySolver’s performance,
we measure the impact of selecting an order of solvers instead of a single solver.
To do this we run MedleySolver without timeout prediction, giving the entire
time per query to the first solver in the sequence. We find, all else equal, on the
combined set, selecting a single solver produces a par-2 score 350% worse than
our best MedleySolver configuration. This difference is due to the direct cost of
mispredictions and because, without the time prediction, MedleySolver is unable
to learn from mistakes on a given query.

Feature Evaluation In this section, we aim to interpret what our results tell
us about SMT solvers and optimize performance through feature analysis. To
better understand the SMT solvers we use, we measure how well each feature
correlates with solver performance differentiation. Specifically, for every feature
f , for every pair of solvers (si, sj) ∈ S × S, we measure the Pearson correlation
coefficient between f and time(si) − time(sj). Using this technique we found,
on the BV benchmark set, the most distinguishing features were the number of
universal quantifiers for Bitwuzla and MathSat5; the number of free variables for
Yices and Boolector; the number of bound variables for Boolector and Bitwuzla;
and the size of the term graph for Bitwuzla and Z3.

To optimize performance, we search for the subset of features that induce
the best performance from MedleySolver. Specifically, we use backward step-wise
feature selection (BSFS) to iteratively remove features from our feature vector
whose removal does not negatively affect performance. Using this technique we
found that, all else equal, using only three features on the BV benchmark (num-
ber of quantifiers, number of variables, and term graph size) improves the par-2
score of the best configuration of MedleySolver by 30%. We observe a similar
reduction in feature vector size across benchmarks and an average par-2 perfor-
mance improvement of 11%. Interestingly, BSFS often removes the feature with
the smallest correlation score, as described above.
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6.4 Threats To Validity

We evaluated MedleySolver on a set of benchmarks and a combination of solvers
we believe represent a real user’s SMT workload, but we understand these re-
sults may not generalize. To mitigate this possibility, we evaluated the SMT-
Competition data curated by the MachSMT authors. On the QF UFBV bench-
mark, the best individual solver was Bitwuzla with a score of 2614.6 while Med-
leySolver scored 2600.5; on the QF LIA benchmark, the best individual solver
was Yices with a score of 45871.2 while MedleySolver scored of 25737.2; on the
QF BVFPLRA benchmark, the best individual solver was MathSAT5 with a
score of 3015.2 while MedleySolver scored 567.7; and on the NRA benchmark,
the best individual solver was Z3 with a score of 1455.6 while MedleySolver
scored 1068.6. In all cases, MedleySolver outperformed every individual solver
while using no pre-training–often by margins greater than those observed in our
case study–suggesting our results do generalize.

The queries MedleySolver has seen in the past affect the prediction Medley-
Solver makes for the current query, and thus the order MedleySolver receives the
queries could affect the overall performance on the full dataset. MAB algorithms
such as Thompson Sampling use random sampling and choice of random seed
could also affect the results. To gain confidence in our claims, we repeated our
experiments with 20 different random seeds and found the standard deviation in
MedleySolver’s overall par-2 score to be approximately 1% of its average score.
The margins between MedleySolver and any individual solver are significantly
larger than 1% and so MedleySolver is consistently comfortably better than any
individual solver in our evaluation regardless of deviation.

7 Conclusions and Future Work

We presented MedleySolver, an online learning algorithm for SMT that uses a
novel application of multi-armed bandits to predict the best order in which to
deploy a sequence of SMT solvers, in combination with a novel time-prediction
algorithm, allowing the solver selection to recover from mistakes. Our approach
solves more queries in less time per query than any individual solver on a set
of benchmarks taken from the SMT-competition and verification tasks. Unlike
offline techniques, MedleySolver requires no pre-training.

In the future, we intend to explore white-box techniques for solver termina-
tion prediction. We hypothesize that monitoring a solver’s execution can help
identify when the solver is unlikely to terminate. We are also interested in ex-
ploring online feature selection techniques.
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