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LLM Code Generation: Just the Tip of the Iceberg

« LLMs are great at generating code in popular
languages, like Python.

« Many useful programming languages are not as
popular as Python! E.g.,

» legacy programming languages

» domain-specific languages (DSLs) for:
» build systems and tool chains;
* natural sciences;
* musicand visual art;
« mathematics;
« formal verification;
 and more!

« We want good LLM code generation for all languages!

 Particularly excited about auto-formalization.
« I.e., text-to-formal-model tools.
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Text-to-Formal-Model Example

bered process in the system.

Each process is assumed to know its own number,
and initially it generates a message with its own number,
passing it to the left. A process receiving a message
compares the number on the message with its own. If its
own number is lower, the process passes the message (to
its left). If its own number is higher, the process throws
the message away, and if equal, it is the highest num-
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module RingModule {
var id: bv32;
var m: bv32;
var stopped: boolean;
input incoming_m: bv32;
output output_m: bv32;
init {
stopped = false;
}
next {
if (!stopped) {
if (m==id) {
stopped' = true;
}else {
if (m>id){
output_ m'=m;
}else {
output_m'=id;
}
}
}

m' =incoming_m;}}

Chang and Roberts (CACM ‘79); Polgreen et al. (CAV ‘22)

3/12



LLMs Perform Poorly on Formal Languages

m Correct: passes all compiler
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40% tests or manual inspection.
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0% ,
code (e.g., timeout).
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Text-to-UCLID5 Evaluation
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checks, tests, and manual
Inspections.

® Semantic Errors: passes
compiler checks but fails
tests or manual inspection.
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Insight #1: Design an Intermediate Language for the LLM!

 Existing work: natural programming elicitation.
1. Understand what programmers find “natural.”
2. Design a programming language or tool for that.

* Our work: synthetic programming elicitation.

1. Understand what your LLM finds “natural” in your target domain.
2. Design an intermediate language (IL) that matches that.
3. Write a compiler (C) from the IL to your target language.
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Simplified Hypothetical Example

Initial Task
An if-then-else statement that
NL Taskl increments a counterx, if itis not zero.
Rewritten Task
IL Write Python code to complete the
4L (e.g., subset of Python) .
> heti following task.
Synt etlF ———
Programming An if-then-else statement that
C (e, 1L -> UCLIDS) Elicitation and increments a counter x, if it is not zero.
> Compilation
LLM Output
—> x=X+1lifx!=0elseO
Code
Final UCLID5 Output
X' =if x!=0then x+ 1else 0; <+
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Intermediate and Target Languages Differ

Implies xis a boolean

A
4 N\

X = X + 1 if x else 0O } Will not type check in UCLID5
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Implies x is an integer
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Insight #2: Find Minimal Error Sources and Repair
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Insight #2: Find Minimal Error Sources and Repair
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Hi LLM, please replace ?
In the following code with
the correct expression.

.f
C3g R
ol B
- ~
-~ 1 S
- 1 S
- ~
- 1 Ss
f‘ 1 NN
2N
4
’ \\
’ N\,
/, \\
il AN

Xx=x+1if?elseO

Cut Program with MAX-SMT

Repair Program
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Initial Task

An if-then-else statement that
increments a counter x, if it is not zero.

Rewritten Task

Write Python code to complete the
following task.

An if-then-else statement that
increments a counter x, if it is not zero.

Simplified Hypothetical Example, Revisited

Repair Task

LLM Output

Mtimes

x=Xx+1lifxelseO

Replace ? in the following Python code
with the correct expression.

x=xXx+1if?2else0

/

Final UCLID5 Output

X' =if x1=0then x+ 1else 0;
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Summary: Language Design and Symbolic Techniques Can Help LLMs Write Code!

E (e.g., subset of Python)

NL Taskl

C (es, 1L-> ucLID5)
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Synthetic
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