Synthetic Programming Elicitation for
Text-to-Code in Very Low-Resource
Programming and Formal Languages

Federico Mora®l Justin Wong! Haley Lepe? Sahil Bhatial Karim Elmaaroufil
George Varghese3 Joseph E. Gonzalez! Elizabeth Polgreen* Sanjit A. Seshial

1UC Berkeley <2Stanford University 3UCLA “University of Edinburgh

NeurIPS 2024

LLM Code Generation: Just the Tip of the Iceberg

« LLMs are great at generating code in popular
languages, like Python.

« Many useful programming languages are not as
popular as Python! E.g.,

» legacy programming languages

» domain-specific languages (DSLs) for:
» build systems and tool chains;
* natural sciences;
* musicand visual art;
« mathematics;
« formal verification;
 and more!

« We want good LLM code generation for all languages!

 Particularly excited about auto-formalization.
« I.e., text-to-formal-model tools.

{ =

Text-to-Formal-Model Example

bered process in the system.

Each process is assumed to know its own number,
and initially it generates a message with its own number,
passing it to the left. A process receiving a message
compares the number on the message with its own. If its
own number is lower, the process passes the message (to
its left). If its own number is higher, the process throws
the message away, and if equal, it is the highest num-

X O |

Bug or Proof

UCLID5 |

/
/

module RingModule {
var id: bv32;
var m: bv32;
var stopped: boolean;
input incoming_m: bv32;
output output_m: bv32;
init {
stopped = false;
}
next {
if (!stopped) {
if (m==id) {
stopped' = true;
}else {
if (m>id){
output_ m'=m;
}else {
output_m'=id;
}
}
}

m' =incoming_m;}}

Chang and Roberts (CACM ‘79); Polgreen et al. (CAV ‘22)

3/12

LLMs Perform Poorly on Formal Languages

m Correct: passes all compiler

100%
90% checks, tests, and manual
80% Inspections.
70%
60% M Semantic Errors: passes
50% compiler checks but fails
40% tests or manual inspection.
30%
20%
10% ¥ Failures: fails compiler checks

or otherwise fails to generate

0% ,
code (e.g., timeout).

Python Dafny UCLIDS

Lower Resource Language >

Text-to-UCLID5 Evaluation
33 1 il W Correct: passes all compiler
| I

checks, tests, and manual
Inspections.

® Semantic Errors: passes
compiler checks but fails
tests or manual inspection.

11
13
9

Fine-Tuned 1-Shot 3-Shot Eudoxus Eudoxus)
GPT3.5t GPT4twith GPT4t (GPT3.5t) (GPT4t) code (e.g., timeout).

COT G)

® Failures: fails compiler checks
or otherwise fails to generate

o W oo

Y
Our Work

Insight #1: Design an Intermediate Language for the LLM!

 Existing work: natural programming elicitation.
1. Understand what programmers find “natural.”
2. Design a programming language or tool for that.

* Our work: synthetic programming elicitation.

1. Understand what your LLM finds “natural” in your target domain.
2. Design an intermediate language (IL) that matches that.
3. Write a compiler (C) from the IL to your target language.

| o

NL Task » Text-to-Code Tool Code >

Simplified Hypothetical Example

Initial Task
An if-then-else statement that
NL Taskl increments a counterx, if itis not zero.
Rewritten Task
IL Write Python code to complete the
4L (e.g., subset of Python) .
> heti following task.
Synt etlF ———
Programming An if-then-else statement that
C (e, 1L -> UCLIDS) Elicitation and increments a counter x, if it is not zero.
> Compilation
LLM Output
—> x=X+1lifx!=0elseO
Code
Final UCLID5 Output
X' =if x!=0then x+ 1else 0; <+

7/12

Intermediate and Target Languages Differ

Implies xis a boolean

A
4 N\

X = X + 1 if x else 0O } Will not type check in UCLID5

G J
Y

Implies x is an integer

8/12

Insight #2: Find Minimal Error Sources and Repair

~~
-~
~
~
~
~
~
~
-~
~
-~
N
~o

-) So
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- SS
- ~

Parse Program

9/12

Insight #2: Find Minimal Error Sources and Repair

.f
C3g R
ol B
- ~
-~ 1 S
- 1 S
- ~
- 1 ~o
P 1 Ss
o
I’ \\
4 N,
’ N\,
4 N\,
/, \\
P o

Parse Program

Hi LLM, please replace ?
In the following code with
the correct expression.

.f
C3g R
ol B
- ~
-~ 1 S
- 1 S
- ~
- 1 Ss
f‘ 1 NN
2N
4
’ \\
’ N\,
/, \\
il AN

Xx=x+1if?elseO

Cut Program with MAX-SMT

Repair Program

10/12

Initial Task

An if-then-else statement that
increments a counter x, if it is not zero.

Rewritten Task

Write Python code to complete the
following task.

An if-then-else statement that
increments a counter x, if it is not zero.

Simplified Hypothetical Example, Revisited

Repair Task

LLM Output

Mtimes

x=Xx+1lifxelseO

Replace ? in the following Python code
with the correct expression.

x=xXx+1if?2else0

/

Final UCLID5 Output

X' =if x1=0then x+ 1else 0;

11/12

Summary: Language Design and Symbolic Techniques Can Help LLMs Write Code!

E (e.g., subset of Python)

NL Taskl

C (es, 1L-> ucLID5)

>

>

Synthetic
Programming
Elicitation and

Compilation

Code l

33
30
27
24
21
18
15

O Wwo

M Failures ™ Semantic Errors ™ Correct
2 1
3 9 11
31 32 29 19
5

13

9
Fine-Tuned 1-Shot GPT4t 3-Shot GPT4t Eudoxus Eudoxus
GPT3.5t with COT (GPT3.5t) (GPT4t)

	Slide 1: Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource Programming and Formal Languages
	Slide 2: LLM Code Generation: Just the Tip of the Iceberg
	Slide 3: Text-to-Formal-Model Example
	Slide 4: LLMs Perform Poorly on Formal Languages
	Slide 5: Text-to-UCLID5 Evaluation
	Slide 6: Insight #1: Design an Intermediate Language for the LLM!
	Slide 7: Simplified Hypothetical Example
	Slide 8: Intermediate and Target Languages Differ
	Slide 9: Insight #2: Find Minimal Error Sources and Repair
	Slide 10: Insight #2: Find Minimal Error Sources and Repair
	Slide 11: Simplified Hypothetical Example, Revisited
	Slide 12: Summary: Language Design and Symbolic Techniques Can Help LLMs Write Code!

