
Z3str4: A Multi-Armed
String Solver

Federico Mora1, Murphy Berzish2, Mitja Kulczynski3,
Dirk Nowotka3, and Vijay Ganesh2

Wednesday, November 24, 2021 24th International Symposium Organized by Formal Methods Europe

1 University of California, Berkeley
2 University of Waterloo

3 Kiel University

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

2

def check_password(x: str) -> bool:
if re.search(r"\d", x) is None:

return False # no number
if "12345" in x:

return False # contains "123456”
if len(x) < 5:

return False # too short
if x[:-len(x)//2] * 2 == x:

return False # same string twice
return True

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

3

def check_password(x: str) -> bool:
if re.search(r"\d", x) is None:

return False # no number
if "12345" in x:

return False # contains "123456”
if len(x) < 5:

return False # too short
if x[:-len(x)//2] * 2 == x:

return False # same string twice
return True

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

4

def check_password(x: str) -> bool:
if re.search(r"\d", x) is None:

return False # no number
if "12345" in x:

return False # contains "123456”
if len(x) < 5:

return False # too short
if x[:-len(x)//2] * 2 == x:

return False # same string twice
return True

𝑥 ∈ .∗ \d ".∗

“12345” ∈ 𝑥

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

Model

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

5

def check_password(x: str) -> bool:
if re.search(r"\d", x) is None:

return False # no number
if "12345" in x:

return False # contains "123456”
if len(x) < 5:

return False # too short
if x[:-len(x)//2] * 2 == x:

return False # same string twice
return True

𝑥 ∈ .∗ \d ".∗

“12345” ∈ 𝑥

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

Solver

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

Model Reason

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

6

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝑥 ∈ .∗ \d ".∗

“12345” ∈ 𝑥

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

7

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝑥 ∈ .∗ \d ".∗

“12345” ∈ 𝑥

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

String Pattern
Membership Predicate

Regular Expression

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

8

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

“12345” ∈ 𝑥

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

String Pattern
Membership Predicate

Regular Expression

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

9

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

“12345” ∈ 𝑥

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

String Containment

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

10

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

𝛼 ∈ 𝛽

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

String Containment

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

11

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

𝛼 ∈ 𝛽

𝑥 < 5

𝑦 ⋅ 𝑦 = 𝑥

String Length Term

Linear Integer Arithmetic

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

12

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

𝛼 ∈ 𝛽

|𝛼| ⋈ 𝑁

𝑦 ⋅ 𝑦 = 𝑥

String Length Term

Linear Integer Arithmetic

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

13

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

𝛼 ∈ 𝛽

|𝛼| ⋈ 𝑁

𝑦 ⋅ 𝑦 = 𝑥String Concatenation

String Equality Predicate

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

14

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

𝛼 ∈ 𝛽

|𝛼| ⋈ 𝑁

𝛼 ⋅ 𝛽 = 𝛾String Concatenation

String Equality Predicate

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

15

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

𝛼 ∈ 𝑅

𝛼 ∈ 𝛽

|𝛼| ⋈ 𝑁

𝛼 ⋅ 𝛽 = 𝛾

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

16

Z3str4

𝑆𝐴𝑇/𝑈𝑁𝑆𝐴𝑇

4 F. Mora et al.

F ::= Atom | F ^ F | F _ F | ¬F
Atom ::= tstr = tstr | Aint | Aext | Are

Are ::= tstr 2 RE
Aint ::= tint = tint | tint < tint

Aext ::= contains(tstr, tstr) | prefix(tstr, tstr) | suffix(tstr, tstr)
tint ::= m | v | len(tstr) | tint + tint | m · tint | indexof(tstr, tstr, tint) |

str.to int(tstr) where m 2 Conint & v 2 V arint

tstr ::= s | v | tstr · tstr | str.from int(tint) | replace(tstr, tstr, tstr) |
charAt(tstr, tint) | substr(tstr, tint, tint) where s 2 Constr & v 2 V arstr

Fig. 1. The syntax of the quantifier-free first-order theory TS .

Semantics. String terms are composed of a finite (possibly empty) ordered
sequence of characters taken from a finite alphabet, such as ASCII or Unicode.
The expression tstr ·tstr denotes string concatenation. For a string term w, len(w)
denotes the length of w as an integer number of characters. The empty string
denoted by ✏ has a length of 0. Operations that refer to the index of a particular
character or substring within another string use a zero-based index, that is, the
first character of a string has an index of zero. The term str.to int interprets a
string as an integer by treating it as a non-negative number in base 10, possibly
with leading zeroes. If the string represents a negative number or contains non-
digit characters, the value is taken as -1. The term str.from int converts a
non-negative integer to the shortest possible string representing it in base 10. If
the integer is negative, the value is taken as the empty string. Z3str4 supports
constraints over regular expressions, but we do not focus on regular expressions
in this paper and instead refer the interested reader to [10].

The satisfiability problem for the quantifier-free theory TS is to decide whether
there exists an assignment of some constant in Constr to every string variable
in V arstr and some constant in Conint to every integer variable in V arint such
that the formula evaluates to true. A formula is satisfiable (SAT) if such an
assignment exists, and is unsatisfiable (UNSAT) if no such assignment exists.

3 Z3str4 Components and Architecture

In this section, we describe the architecture of Z3str4 and each of its compo-
nents. Input to the Z3str4 solver is given as an SMT-LIB formula, and the
output is one of SAT, UNSAT, or UNKNOWN. Z3str4 is built on top of Z3
and reuses its parser and core architecture. Once parsed, the formula is passed
to Z3str4’s arm selection procedure, which makes use of a series of “probes”
to analyze the formula and decide which of its arms is most appropriate for the
given input. Each arm can call the novel length abstraction solver, the updated
arrangement solver, and/or Z3’s existing sequence solver in some predetermined
order, as shown in Figure 2. Z3str4 moves to the next solver in the predeter-

Results Overview

17

10,00020,00030,00040,00050,00060,00070,00080,00090,000100,000110,000120,000

0

20,000

40,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

PYEX

2,000 4,000 6,000 8,000 10,00012,00014,00016,00018,00020,00022,00024,000

0

10,000

20,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

AUTOMATARK

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

0

5,000

10,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

1

Results on PyEx

18

10,00020,00030,00040,00050,00060,00070,00080,00090,000100,000110,000120,000

0

20,000

40,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

PYEX

2,000 4,000 6,000 8,000 10,00012,00014,00016,00018,00020,00022,00024,000

0

10,000

20,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

AUTOMATARK

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

0

5,000

10,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

1

Results on Automark25

19

10,00020,00030,00040,00050,00060,00070,00080,00090,000100,000110,000120,000

0

20,000

40,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

PYEX

2,000 4,000 6,000 8,000 10,00012,00014,00016,00018,00020,00022,00024,000

0

10,000

20,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

AUTOMATARK

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

0

5,000

10,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

1

Contributions Overview

20

Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

Contribution 1: Length Abstraction Solver

21

Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

Contribution 2: Extended Arrangement Solver

22

Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

Contribution 3: Selection Architecture

23

Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

Length Abstraction Solver

Length Abstraction Solver: Refinement Loop

25

Solve Length
Constraints

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

Length Assignments

26

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

Length Abstraction Solver: Solve Length Constraints

Solve Length
Constraints

Length Assignments

Length Abstraction Solver: Solve Length Constraints

27

String VariablesLiteral Characters

X X Y Y a b X

Y X c

Integer VariablesLiteral Numbers

2 X Y Y 2 X

Y X 1

Input String Query Implied Length Constraints Length Solution

X

Y

2

3

Integer VariablesLiteral Numbers

28

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

Length Assignments

𝑈𝑁𝑆𝐴𝑇

Length Abstraction Solver: Generate Character Query

Solve Length
Constraints

Length Abstraction Solver: Generate Character Query

29

String VariablesLiteral Chars

X X Y Y a b X

Y X c

Input String Query Length Solution

X

Y

2

3

Integer VariablesLiteral Integer

Character Query

Char VariablesLiteral Chars

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

30

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

Length Assignments

𝑈𝑁𝑆𝐴𝑇

Length Abstraction Solver: Solve Character Query

Solve Length
Constraints

Length Abstraction Solver: Solve Character Query

31

String VariablesLiteral Chars

X X Y Y a b X

Y X c

Input String Query Character Query

Char VariablesLiteral Chars

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

UNSAT Core

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Char VariablesLiteral Chars

Length Abstraction Solver: Solve Character Query

32

String VariablesLiteral Chars

X X Y Y a b X

Y X c

Input String Query Character Query

Char VariablesLiteral Chars

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

UNSAT Core

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Char VariablesLiteral Chars

𝑎 𝑐

33

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

Length Assignments

𝑈𝑁𝑆𝐴𝑇

Length Abstraction Solver: Learn Length Constraint

Solve Length
Constraints

Length Abstraction Solver: Learn Length Constraint

34

String VariableLiteral Char

X X Y Y a b X

Y X c

Input String Query UNSAT Core

Char VariableLiteral Char

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Learnt Length Constraint

Integer VariableLiteral Integer

Length Abstraction Solver: Learn Length Constraint

35

String VariableLiteral Char

X X Y Y a b X

Y X c

Input String Query UNSAT Core

Char VariableLiteral Char

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Learnt Length Constraint

Integer VariableLiteral Integer

2 X Y 1

Length Abstraction Solver: Learn Length Constraint

36

String VariableLiteral Char

X X Y Y a b X

Y X c

Input String Query UNSAT Core

Char VariableLiteral Char

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Learnt Length Constraint

Integer VariableLiteral Integer

2 X Y 1

2 X Y Y 2 X

Or

Length Abstraction Solver: Learn Length Constraint

37

String VariableLiteral Char

X X Y Y a b X

Y X c

Input String Query UNSAT Core

Char VariableLiteral Char

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Learnt Length Constraint

Integer VariableLiteral Integer

2 X Y 1

Y X 1

2 X Y Y 2 X

Or

Or

Length Abstraction Solver: Learn Length Constraint

38

String VariableLiteral Char

X X Y Y a b X

Y X c

Input String Query UNSAT Core

Char VariableLiteral Char

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Learnt Length Constraint

Integer VariableLiteral Integer

2 X Y 1

Y X 1

2 X Y Y 2 X

Or

Or

Length Abstraction Solver: Learn Length Constraint

39

String VariableLiteral Char

X X Y Y a b X

Y X c

Input String Query UNSAT Core

Char VariableLiteral Char

𝑋! 𝑌!

𝑋" 𝑌"

𝑋! 𝑌#

𝑋" 𝑎

𝑌! 𝑏

𝑌" 𝑋!

𝑌# 𝑋"

𝑌! 𝑋!

𝑌" 𝑋"

𝑌# 𝑐

Learnt Length Constraint

Integer VariableLiteral Integer

2 X Y 1

Y X 1

2 X Y Y 2 X

Or

Or

Length Abstraction Solver: Refinement Loop

40

Solve Length
Constraints

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇𝑈𝑁𝑆𝐴𝑇

Length Assignments

𝑈𝑁𝑆𝐴𝑇

Length Abstraction Solver: Refinement Loop

41

Solve Length
Constraints

Input/OutputInternal

Generate
Character

Query

Solve
Character

Query

Learn Length
Constraints

𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

𝑈𝑁𝑆𝐴𝑇

X X Y Y a b X

Y X c

2 X Y 1

X

Y

2

3

Integer VariableLiteral Integer/charString Variable

Length Abstraction Solver Summary

• Returns UNSAT when there are no length solutions left to explore
• Returns SAT when character solver returns SAT
• For a given length solution

• Learns length constraints that block character UNSAT Cores
• Works well for character queries that are only conjunctions
• Faster solving
• Better learning

42

Arrangement Solver Extension

Existing Arrangement Solver

Basic Idea:
• split equations into simpler ones (arrangements)
• until their satisfiability is “easily decided” (solved form)
• backtrack on conflicts

44

String Variable

Existing Arrangement Solver

Basic Idea:
• split equations into simpler ones (arrangements)
• until their satisfiability is “easily decided” (solved form)
• backtrack on conflicts

45

Y

String Variable

X NM

Existing Arrangement Solver

Basic Idea:
• split equations into simpler ones (arrangements)
• until their satisfiability is “easily decided” (solved form)
• backtrack on conflicts

46

String Variable

YX NM

Y1 Y2X

NM1 M2

Existing Arrangement Solver

Basic Idea:
• split equations into simpler ones (arrangements)
• until their satisfiability is “easily decided” (solved form)
• backtrack on conflicts

47

String Variable

YX NM

Y1 Y2X

NM1 M2

X M

Y N

Existing Arrangement Solver

Basic Idea:
• split equations into simpler ones (arrangements)
• until their satisfiability is “easily decided” (solved form)
• backtrack on conflicts

48

Y

String Variable

X NM

Y1 Y2X

NM1 M2

YX1 X2

N1 N2M

X M

Y N

Arrangement Solver Extension

Basic Idea:
• check some arrangements with length-abstraction solver (LAS)
• helps block infinite loops
• helps model generation

49

String Variable

YX NM

Y1 Y2X

NM1 M2

YX1 X2

N1 N2M

X M

Y N

Solve with LAS

Selection Architecture

Selection Architecture

51

Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

Selection Architecture: Conjunctive Fragment

52

Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

Conjunctive Fragment Static Analysis

53

Z3str4: A Multi-armed String Solver 9

F ::= Atom | F ^ F | ¬G | Aint _Aint | ¬Aint

G ::= G _G | ¬F
Atom ::= tstr = tstr | Aint | Aext

Aint ::= tint = tint | tint < tint

Aext ::= prefix(tstr, tstr) | suffix(tstr, tstr)
tint ::= m | v | len(tstr) | tint + tint | m · tint

where m 2 Conint & v 2 V arint

tstr ::= s | v | tstr · tstr | charAt(tstr, tint)
where s 2 Constr & v 2 V arstr

Fig. 3. Context-free grammar for conjunctive fragment.

core solver finds a top-level conflict and returns UNSAT. Note that unlike LAS,
which invokes the arithmetic solver as a procedure, the arrangement solver uses
the string and integer theory integration approach described previously [44].

ReduceToBV For Overlaps. An important weakness of Z3str3’s arrangement
solver is that it cannot handle word equations which have the same variable
occurring on both the left hand and right hand side of an equation, referred to as
an overlapping variable. Consider the equation 0·X = X ·0. Z3str3’s solver would
detect the existence of an overlapping variable and return UNKNOWN. However,
Z3str4 easily handles such equations. Observe that once string variable lengths
have been fixed, string equations can still be reduced to bit-vectors even if they
contain overlapping variables. For example, again considering 0 · X = X · 0, if
the arithmetic solver proposes the candidate model len(X) = 2, the bit-vector
reduction would reduce X to the 8-bit bit-vector characters x1x2 and solve the
bit-vector equation 0x1x2 = x1x20, finding it satisfiable with solution X = 00.

3.2 Algorithm Selection and Clause Sharing

We now describe how the the component algorithms of Z3str4 are combined
using the arm selection procedure and the clause-sharing mechanism. The arm
selection method uses static features of the instance to determine which of the
three solver algorithms to invoke and in what order. Dynamic di�culty estima-
tion determines when to move to the next solver in order.

Static Arm Selection. The input formula � is first passed to Z3’s simplifier
and term rewriting procedure. The algorithm selection procedure then follows a
three-tiered sequence of checks for static features, illustrated in Figure 2. The
order and choice of solvers to use was determined by a combination of empirical
results and experimentation. First, if any regex constraints appear in the input
formula �, the arrangement solver is used. Otherwise, if a majority of top-level
formulas in the input are not word equations, the sequence solver is used. Finally,
the algorithm selection procedure calls the ConjunctiveFragment subroutine.

Conjunctive Fragment Static Analysis

54

10 F. Mora et al.

This subroutine returns TRUE if the query is in the language generated by the
grammar in Figure 3, and FALSE otherwise. We call this language the conjunc-
tive fragment. When a query is in the conjunctive fragment, we call LAS first,
followed by the arrangement solver and the sequence solver. When a query is
not in the conjunctive fragment, we call the sequence solver first, followed by
the arrangement solver and the LAS solver.

The conjunctive fragment is e↵ective because queries in the language are
guaranteed to reduce to conjunctions of bit-vector equations when lengths are
fixed (formalized in Theorem 2). This means that every iteration of LAS is quick
(bit-vector solvers are e�cient in this fragment), and LAS is more likely to learn
general lessons (see Theorem 1).

Theorem 2 (Conjunctive Fragment). Let L be the language generated by
the grammar in Figure 3. If ' 2 L is an input query, then LAS will always call
ReduceToBV such that it produces a conjunction of bit-vector equations.

Proof Sketch. LAS receives conjunctions of theory literals from the core solver (�
from Algorithm 1 is a solution to the Boolean abstraction of the input query ').
Show by induction on the grammar L that equality, prefix and su�x predicates
must always appear under an even number of negations. Finally, show that
theory literals that use these predicates will reduce to a conjunction of bit-vector
equations i↵ they appear under an even number of negations. ut

Dynamic Di�culty Estimation. Rather than giving solvers a fixed time
budget, we give up on them when it is unlikely that they will terminate. We call
this process of monitoring the internal state of a solver and determining when
to give up dynamic di�culty estimation. We incorporated dynamic di�culty
estimation into the Z3 sequence solver and LAS.

At a high level, the Z3 sequence solver works as a sequence of checks: if a check
fails, then a corresponding action is taken (for example, asserting an implied
formula) and the process repeats; if all checks pass, then the query is solved. In
total, the sequence solver has 20 of these checks. We observe that queries that are
“easy” for the sequence solver rarely fail later checks. Our di�culty estimation
monitor, therefore, keeps track of the current latest failing check, and we give up
when the latest failing check is the ith check, where i can be specified as a solver
parameter. Empirically, we find the best check to give up on to be the second to
last check, branch nqs. Additionally, we found that monitoring the number of
automata propagations and calls to solve eq performs similarly well.

LAS generates a bit-vector query that is solved by an external bit-vector
solver. We measure two main aspects of LAS’s state: the number of times
ReduceToBV has been called, and the amount of time taken by each bit-vector
check. We find that the benefit of each successive iteration diminishes rapidly,
and that the time taken by the bit-vector solver tends to increase with each suc-
cessive call (due to finding larger integer models). We fix the maximum number
of iterations and the maximum time budget for a bit-vector check. When the
solver exceeds either limit, we move to the next solver. Empirically, LAS solves
most queries in the conjunctive fragment in under five iterations.

Evaluation

Experimental Setup

56

All experiments were performed on a server running
• Ubuntu 18.04.4 LTS
• with two AMD EPYC 7742 processors and
• 2TB RAM
• using the ZaligVinder benchmarking framework.
• The timeout for solving an instance was set at 20 seconds.

Overall Evaluation

57

10,00020,00030,00040,00050,00060,00070,00080,00090,000100,000110,000120,000

0

20,000

40,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

PYEX

2,000 4,000 6,000 8,000 10,00012,00014,00016,00018,00020,00022,00024,000

0

10,000

20,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

AUTOMATARK

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

0

5,000

10,000

Solved instances

T
im

e
(
s
e
c
o
n
d
s
)

CVC4 Z3seq Z3str3 Z3str4

1

Length Abstraction Solver Analysis

58

• LAS solves more queries per second compared to the arrangement
solver in the conjunctive fragment (1128.5%)
• than it does outside the conjunctive fragment (904.6%)
• High percentages due to dynamic difficulty estimation
• Really good at cutting off LAS

Arrangement Solver Analysis

59

• Without the extension, the arrangement solver
• solves 72417 instances
• in 423949.163 seconds

• With the extension, the arrangement solver
• solves 107401 instances (148.3% of the queries without)
• in 262047.893 seconds (61.8% of the time without)

Thank You!
Z3str4: A Multi-armed String Solver 5

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?

start
no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms.

mined order when the current solver gives up. Solvers decide when to give up by
using dynamic di�culty estimation, which we describe in Section 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving al-
gorithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then de-
scribe the subroutines it depends on in more detail. LAS takes in a conjunction
� of string literals, and returns either an assignment that satisfies � or UNSAT.
LAS begins by calling MultisetCheck at line 1. This subroutine can quickly
determine UNSAT for many kinds of string constraints. If this check does not
determine that the input is UNSAT, then LAS constructs ✓lia, an integer ab-
straction of �, and enters its main solving loop. Every iteration of the loop
updates ✓lia; the loop executes until either ✓lia is found to be UNSAT at line 5,
or a satisfying string model is found at line 9. When ✓lia is SAT, we use a satis-
fying integer model, �lia, to reduce � to a bit-vector query, ✓bv, and then check
if ✓bv is SAT. If ✓bv is found to be SAT, at line 8, then we get a satisfying model,
translate it to a satisfying string model, and return it as a solution. If ✓bv is found
to be UNSAT, then we get an UNSAT core, update our length abstraction ✓lia,
and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 ·X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and
consider the remaining characters that appear in constant strings on each side.

z3str4.github.io

