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String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

def check_password(x: str) —> bool:

if re.search(r"\d", x) is None:
return False # no number

if "12345" in x:
return False # contains '"123456"

if len(x) < 5:
return False # too short

if x[:=len(x)//2] * 2 == x:
return False # same string twice

return True
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def check_password(x: str) -> bool: AR
if re.search(r"\d", x) is None:
return False # no number X € . [\d]+*
if "12345" in x: . ”
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return False # same string twice y-y=Xx
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String Solvers and Queries by Example
How Can We Automatically Reason About This Code?
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def check_password(x: str) —> bool: DA L7
if re.search(r , X) 1is None: —
return False X € . [\d]+*
if "12345" in x: . )
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if len(x) < 5:
return False |x| <5
if x[:=len(x)//2] *x 2 == x:
return False . —
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Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

x € *\d]*>

“12345” € x
x| <5

Yy y=x
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Membership Predicate
String Pattern \ \ f Regular Expression
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Goal of Z3str4: Solve as many queries
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String Containment
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Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

F n= Atom | FAF | FVF | —F

Atom = tstr = tstr ‘ Aint I Aemt ‘ Are

Afr’e t=tstr € RE

Aint = tint = tint | tint < lint

Acxt 1= contains(tstr,tstr) | prefix(tsir,tser) | suffix(tser, tstr)

tint =m | v ‘ len(tstv’) ‘ tz’nt + tint | m - tint | indexof(tstm tstr, tznt) ‘
str.to_int(tstr) where m € Conint & v € Varin:

tstr =8 | v | tstr-tstr | Str.from_int(tine) | replace(tsir,tstr,tstr) |

charAt(tstr,tint) | substr(tsir,tint,tint) Wwhere s € Congr & v € Varse,
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Results Overview
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Results on PyEx
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Results on Automark25

10,000 — CVC4 — Z3seq — Z3str3 — Z3str4

5,000 -

Time (seconds)

\ \ \ \ \ \ \ \ \ \
2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Solved instances




Contributions Overview
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Contribution |: Length Abstraction Solver




Contribution 2: Extended Arrangement Solver




’__________

Contribution 3: Selection Architecture
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Length Abstraction Solver



Length Abstraction Solver: Refinement Loop
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Length Abstraction Solver: Solve Length Constraints
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Length Abstraction Solver: Solve Length Constraints

Input String Query Implied Length Constraints Length Solution
XX YISy lalb [ I 2 < Bl v Sl v kil 2 Bid X X [mod 2
B=80 B=ER--D v Jud 3
Literal Characters String Variables Literal Numbers Integer Variables Literal Numbers Integer Variables




Length Abstraction Solver: Generate Character Query
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Length Abstraction Solver: Generate Character Query
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Length Abstraction Solver: Solve Character Query
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Length Abstraction Solver: Solve Character Query
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Length Abstraction Solver: Learn Length Constraint
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Length Abstraction Solver: Learn Length Constraint
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Length Abstraction Solver: Learn Length Constraint
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Length Abstraction Solver: Refinement Loop
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Length Abstraction Solver: Refinement Loop
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Length Abstraction Solver Summary

* Returns UNSAT when there are no length solutions left to explore
* Returns SAT when character solver returns SAT

* For a given length solution
* Learns length constraints that block character UNSAT Cores

* Works well for character queries that are only conjunctions

* Faster solving
* Better learning
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Arrangement Solver Extension



Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

String Variable




Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

XY IS MIN

String Variable




Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

BO=00

String Variable




Existing Arrangement Solver

Basic Idea:
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Arrangement Solver Extension

Basic Idea:
* check some arrangements with length-abstraction solver (LAS)
* helps block infinite loops

* helps model generation

BO=00
O ( B=0 ) OO0
oo | 0=0 Do

\_ Solve with LAS

String Variable




Selection Architecture



Selection Architecture
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Selection Architecture: Conjunctive Fragment
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Conjunctive Fragment Static Analysis

F = Atom | FAF | =G | AtV Aine | —Aine
G =GVC(GE ‘ —F
Atom = tstr = Ustr | Aint | Aext
Aint = lint = lint | tint < Tint
Ae:ct L= p'refix(tstry tst'r) ‘ Suffix(tstry tst'r)
tint =m | v | len(tser) | tint + tint | M - tine
where m € Conint & v € Varing
tstr = S | (¥ | tst'r’ . tstr ’ ChCLTAt(tstr, tz’nt)

where s € Conge, & v € Varse,



Conjunctive Fragment Static Analysis

Theorem 2 (Conjunctive Fragment). Let L be the language generated by
the grammar in Figure 3. If ¢ € L is an input query, then LAS will always call
ReduceToBV such that it produces a conjunction of bit-vector equations.



Evaluation



Experimental Setup

All experiments were performed on a server running
* Ubuntu 18.04.4 LTS

* with two AMD EPYC 7742 processors and
* 2TB RAM
* using the ZaligVinder benchmarking framework.

* The timeout for solving an instance was set at 20 seconds.



Overall Evaluation
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Length Abstraction Solver Analysis

* LAS solves more queries per second compared to the arrangement
solver in the conjunctive fragment (| 128.5%)

* than it does outside the conjunctive fragment (904.6%)

* High percentages due to dynamic difficulty estimation
* Really good at cutting off LAS



Arrangement Solver Analysis

* Without the extension, the arrangement solver

e solves 72417 instances
* in 423949.163 seconds

* With the extension, the arrangement solver

* solves 107401 instances (148.3% of the queries without)
* in 262047.893 seconds (61.8% of the time without)



Thank You!

z3str4.github.io

Majority yes . .
Majority no Conjunctive
start _>[ regex‘7 } o> wor.d equa- ~—o= == - - oo T > fragment?
tions?
| // \\
| yes | no yes v N no
e : ) e 1 ) e - ) e = )
| / N
A v ¥ X
| SEQ J SEQ LAS SEQ
; & J ' '
| ARR | ARR ARR
Non-Word ¢ ¢
\ J equation Arm
SEQ LAS
Regex Arm
. J . J

Conjunctive Arm  Non-Conjunctive Arm



