Z3str4: A Multi-Armed
String Solver

Federico Mora', Murphy Berzish?, Mitja Kulczynski3,
Dirk Nowotka3, and Vijay Ganesh?

' University of California, Berkeley
2 University of Waterloo

3 Kiel University

Wednesday, November 24,2021 24th International Symposium Organized by Formal Methods Europe Bﬁl’k€l€y WATERLOO

UNIVERSITY OF CALIFORNIA Christian-Albrechts-Universitat zu Kiel

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

def check_password(x: str) —> bool:

if re.search(r"\d", x) is None:
return False # no number

if "12345" in x:
return False # contains '"123456"

if len(x) < 5:
return False # too short

if x[:=len(x)//2] * 2 == x:
return False # same string twice

return True

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

def check_password(x: str) —> bool:

if re.search(r'"\d", x) is None:
return False # no number

if "12345" in x:
return False # contains '"123456"

if len(x) < 5:
return False # too short

if x[:=len(x)//2] * 2 == x:
return False # same string twice

return True

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

— \\\Model g
Ve
def check_password(x: str) -> bool: AR
if re.search(r"\d", x) is None:
return False # no number X € . [\d]+*
if "12345" in x: . ”
return False # contains '"123456" 12345 E X
. S
if len(x) < 5:
return False # too short |x| <5
if x[:=len(x)//2] * 2 == x:
return False # same string twice y-y=Xx
return True

String Solvers and Queries by Example
How Can We Automatically Reason About This Code?

— . Model .7 « Reason .7
N 7 N\ 7’
def check_password(x: str) —> bool: DA L7
if re.search(r , X) 1is None: —
return False X € . [\d]+*
if "12345" in x: .)
return False 12345 eE X
. Ea—
if len(x) < 5:
return False |x| <5
if x[:=len(x)//2] *x 2 == x:
return False . —
y-y=x
return True

v
SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

x € *\d]*>

“12345” € x
x| <5

Yy y=x

—

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

Membership Predicate
String Pattern \ \ f Regular Expression

x € F\d]**
“12345” € x
x| <5

= Z3str4

yy==x

—

v
SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

Membership Predicate
String Pattern \ \v / Regular Expression

x ER
“12345” € x
x| <5

\

= Z3str4

Yy y=x

—

v
SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

String Containment

a ER
“12345” € x
x| <5

Yy y=x

—

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

a €R
String Containment -~

aeEp

x| <5

Yy y=x

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

a €ER

aEfp

String Length Term |.X'| < 5

Linear Integer Arithmetic x/‘
yy==x

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

a €ER
aEfp
String Length Term |C¥| X< N
Linear Integer Arithmetic x/‘
yy==x

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

a €ER
aEfp

la| @ N

String Concatenation/_\
yy==x

String Equality Predicate _/‘

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

a €ER
aEfp
la| @ N

String Concatenation ¢y - ﬁ =y

String Equality Predicate _/‘

—

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

a €ER
aEfp
la| @ N
a-f=y

—

\4

SAT JUNSAT

Goal of Z3str4: Solve as many queries
as possible, as fast as possible.

F n= Atom | FAF | FVF | —F

Atom = tstr = tstr ‘ Aint I Aemt ‘ Are

Afr’e t=tstr € RE

Aint = tint = tint | tint < lint

Acxt 1= contains(tstr,tstr) | prefix(tsir,tser) | suffix(tser, tstr)

tint =m | v ‘ len(tstv’) ‘ tz’nt + tint | m - tint | indexof(tstm tstr, tznt) ‘
str.to_int(tstr) where m € Conint & v € Varin:

tstr =8 | v | tstr-tstr | Str.from_int(tine) | replace(tsir,tstr,tstr) |

charAt(tstr,tint) | substr(tsir,tint,tint) Wwhere s € Congr & v € Varse,

\4

SAT JUNSAT

Results Overview

— CV(C4 — Z3seq —— Z3str3 —— Z3str4
40,000

seconds)

2 20,000 -

me

Ti

\ \ \ \
10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000100,00010,00020,000

Solved instances

Results on PyEx

— CV(C4 — Z3seq —— Z3str3 — Z3str4
20,000 -

seconds)

— 10,000 -

Time

\
2,000 4,000 6,000 8,000 10,00012,00014,00016,00018,00020,00022,00024,000

Solved instances

Results on Automark25

10,000 — CVC4 — Z3seq — Z3str3 — Z3str4

5,000 -

Time (seconds)

\ \ \ \ \ \ \ \ \ \
2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Solved instances

Contributions Overview

no Majority yes . £
start —>[Ma‘]orl‘fy } - — ==)[word equa- } ___________ >[CfonJunc 1¥e
regex . ragment?
tions?
I // \\
I yer | no yes v \ ho
| 2 AN
e |) e T ~ - y N - - N
A v ¥ X
‘ SEQ } ‘ SEQ } LAS SEQ
¢ _ Y, ¢ ¢
| ARR | ARR ARR
Non-Word ¢ ¢
N J equation Arm
SEQ LAS
Regex Arm
_ J _ J

Conjunctive Arm

Non-Conjunctive Arm

Contribution |: Length Abstraction Solver

Contribution 2: Extended Arrangement Solver

’__________

Contribution 3: Selection Architecture

\ J/ \

Majority no Wl oty yes > Conjunctive
regex? - > wor.d equa- === === ====== fragment?
tions?
I I 7 N
| Yes p e yes // \\ no
e :) e 1) e -) e =)
| ’ \
A v ¥ X
| SEQ J | SEQ J LAS SEQ
; & J J ;
| ARR | ARR ARR
Non-Word ¢ ¢
\ J equation Arm
SEQ LAS
Regex Arm

J/

Conjunctive Arm

S S S S S S D e e e Eam

Non-Conjunctive Arm /

Length Abstraction Solver

Length Abstraction Solver: Refinement Loop

Length Assignments

5 --»

7

.

Solve Length
Constraints

7

UNSAT

I
[
v

Internal

ﬁ

Input/Output
— _— *

.

Generate
Character

Query

Learn Length
Constraints

UNSAT

Solve
Character

Query

SAT

—

Length Abstraction Solver: Solve Length Constraints

Length Assignments

-
Solve Length]
[| | » .
Constraints

\.

Internal Input/Output
ﬁ — _— *

Length Abstraction Solver: Solve Length Constraints

Input String Query Implied Length Constraints Length Solution
XX YISy lalb [I 2 < Bl v Sl v kil 2 Bid X X [mod 2
B=80 B=ER--D v Jud 3
Literal Characters String Variables Literal Numbers Integer Variables Literal Numbers Integer Variables

Length Abstraction Solver: Generate Character Query

-
Generate

Length Assignments Character
. Query

Internal Input/Output
ﬁ — _— *

Length Abstraction Solver: Generate Character Query

Input String Query

=1 lalblXx)

B=00

Length Solution

BB
0°B

Literal Chars

String Variables

Literal Integer Integer Variables

Character Query

00 00 00 00 00 00 OO
28000868

aaa
00 00 00
a8

Literal Chars

Char Variables

Length Abstraction Solver: Solve Character Query

UNSAT Solve SAT
Character _— P
Query

Internal Input/Output
ﬁ — _— *

Length Abstraction Solver: Solve Character Query

Input String Query Character Query UNSAT Core
X I=] Y, =] X
SN =000 % %
=80 B0=0 0:=0 0=0
B2=D P=n
B=D
B=D
D=0 D=

Literal Chars String Variables Literal Chars Char Variables Literal Chars Char Variables

Length Abstraction Solver: Solve Character Query

Input String Query Character Query UNSAT Core

X I=] Y, =] X

SN =000 % %

=80 B0=0 0:=0 0=0

B=0 P=D
B=D
B=D
B=B B=0 [D=0]

Literal Chars String Variables Literal Chars Char Variables Literal Chars Char Variables

Length Abstraction Solver: Learn Length Constraint

UNSAT
Learn Length
Constraints

Internal Input/Output
ﬁ — _— *

Length Abstraction Solver: Learn Length Constraint

Input String Query UNSAT Core Learnt Length Constraint
=] v]alblX
= =
=0
=

Literal Char String Variable Literal Char Char Variable Literal Integer Integer Variable

Length Abstraction Solver: Learn Length Constraint

Input String Query UNSAT Core Learnt Length Constraint
XX ¥ %@u @< 0
= =
(@=0)
.

Literal Char String Variable Literal Char Char Variable Literal Integer Integer Variable

Length Abstraction Solver: Learn Length Constraint

Input String Query UNSAT Core Learnt Length Constraint

XXX ECTIeIX) --za-qm
B=80 B=pD
B=D -mz:-zamz:-ﬂ:-

[@=8)

Literal Char String Variable Literal Char Char Variable Literal Integer Integer Variable

Length Abstraction Solver: Learn Length Constraint

Input String Query UNSAT Core Learnt Length Constraint
B =0008 .-%-%II
@-@o (@=8)
2=0 ..'#33.53-'#33.'#.
573 il |

D=0

Literal Char String Variable Literal Char Char Variable Literal Integer Integer Variable

Length Abstraction Solver: Learn Length Constraint

Input String Query UNSAT Core Learnt Length Constraint
BN =0008 .-%-%II
= =
2=0 ..'#33.53-'#33.'#.
573 il |
.

Literal Char String Variable Literal Char Char Variable Literal Integer Integer Variable

Length Abstraction Solver: Learn Length Constraint

Input String Query UNSAT Core Learnt Length Constraint
BON=0000 BR:0-0
= =
=0
=

Literal Char String Variable Literal Char Char Variable Literal Integer Integer Variable

Length Abstraction Solver: Refinement Loop

Length Assignments

7

Solve Length
[| | » .
Constraints

Internal

ﬁ

Input/Output
— _— *

7

.

Generate
Character

Query

Learn Length
Constraints

UNSAT

Solve
Character

Query

SAT

—

Length Abstraction Solver: Refinement Loop

X Juid 2
v [mod 3

. .BB.

.

Solve Length
Constraints

\

J

UNSAT

I
[
v

Internal

ﬁ

Input/Output
— _— *

7

.

Generate
Character

Query

Learn Length
Constraints

\

J

B3::08--0

UNSAT I

Solve SAT
Character _— P
Query

String Variable Literal Integer/char Integer Variable

Length Abstraction Solver Summary

* Returns UNSAT when there are no length solutions left to explore
* Returns SAT when character solver returns SAT

* For a given length solution
* Learns length constraints that block character UNSAT Cores

* Works well for character queries that are only conjunctions

* Faster solving
* Better learning

ac8

=00

Arrangement Solver Extension

Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

String Variable

Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

XY IS MIN

String Variable

Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

BO=00

String Variable

Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

BO=00
B=0
0:=0

String Variable

Existing Arrangement Solver

Basic Idea:
* split equations into simpler ones (arrangements)
* until their satisfiability is “easily decided” (solved form)

e backtrack on conflicts

BO=00
B=0
B:=0

String Variable

Arrangement Solver Extension

Basic Idea:
* check some arrangements with length-abstraction solver (LAS)
* helps block infinite loops

* helps model generation

BO=00
O (B=0) OO0
oo | 0=0 Do

_ Solve with LAS

String Variable

Selection Architecture

Selection Architecture

no Majority yes . .
start —>[Ma‘]orl‘fy } - — == _>[word equa- } ___________ >[ConJunctlge]
regex . fragment®
tions?
I // \\
I yer | no yes v \ ho
| 2 AN
e |) e T ~ - y N - - N
A v ¥ X
‘ SEQ } ‘ SEQ } LAS SEQ
¢ _) ¢ ¢
| ARR | ARR ARR
Non-Word ¢ ¢
N J equation Arm
SEQ LAS
Regex Arm
_ J _ J

Conjunctive Arm

Non-Conjunctive Arm

Selection Architecture: Conjunctive Fragment

[Conjunctive]
- —> ¢ o
ragment

7 S
7 \
yes vz \ no
(P) (N)
¥ 3

LAS SEQ

ARR ARR

SEQ LAS
_ J _ J

Conjunctive Arm Non-Conjunctive Arm

Conjunctive Fragment Static Analysis

F = Atom | FAF | =G | AtV Aine | —Aine
G =GVC(GE ‘ —F
Atom = tstr = Ustr | Aint | Aext
Aint = lint = lint | tint < Tint
Ae:ct L= p'refix(tstry tst'r) ‘ Suffix(tstry tst'r)
tint =m | v | len(tser) | tint + tint | M - tine
where m € Conint & v € Varing
tstr = S | (¥ | tst'r’ . tstr ’ ChCLTAt(tstr, tz’nt)

where s € Conge, & v € Varse,

Conjunctive Fragment Static Analysis

Theorem 2 (Conjunctive Fragment). Let L be the language generated by
the grammar in Figure 3. If ¢ € L is an input query, then LAS will always call
ReduceToBV such that it produces a conjunction of bit-vector equations.

Evaluation

Experimental Setup

All experiments were performed on a server running
* Ubuntu 18.04.4 LTS

* with two AMD EPYC 7742 processors and
* 2TB RAM
* using the ZaligVinder benchmarking framework.

* The timeout for solving an instance was set at 20 seconds.

Overall Evaluation

— CV(C4 — Z3seq —— Z3str3 —— Z3str4
40,000

seconds)

2 20,000 -

me

Ti

\ \ \ \
10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000100,00010,00020,000

Solved instances

Length Abstraction Solver Analysis

* LAS solves more queries per second compared to the arrangement
solver in the conjunctive fragment (| 128.5%)

* than it does outside the conjunctive fragment (904.6%)

* High percentages due to dynamic difficulty estimation
* Really good at cutting off LAS

Arrangement Solver Analysis

* Without the extension, the arrangement solver

e solves 72417 instances
* in 423949.163 seconds

* With the extension, the arrangement solver

* solves 107401 instances (148.3% of the queries without)
* in 262047.893 seconds (61.8% of the time without)

Thank You!

z3str4.github.io

Majority yes . .
Majority no Conjunctive
start _>[regex‘7 } o> wor.d equa- ~—o= == - - oo T > fragment?
tions?
| // \\
| yes | no yes v N no
e :) e 1) e -) e =)
| / N
A v ¥ X
| SEQ J SEQ LAS SEQ
; & J ' '
| ARR | ARR ARR
Non-Word ¢ ¢
\ J equation Arm
SEQ LAS
Regex Arm
. J . J

Conjunctive Arm Non-Conjunctive Arm

