
Verification by Gambling on Program
Slices

Murad Akhundov1, Federico Mora2, Nick Feng1, Vincent Hui1, Marsha Chechik1

ATVA 2021

 1. University of Toronto, Canada
2. University of California, Berkeley, USA

Problem

2

Problem: Automated verification is expensive

3

It's desirable to verify properties in large programs.

Many state-of-the-art verifiers struggle with complex code.

Program

Assertion

Assertion

Assertion

Assertion Program
Checker

Problem: Irrelevant context increases cost

Can we quickly verify desired properties in an entire program by

considering it in smaller pieces?
4

Program

Relevant Context

Assertion

Problem: Finding relevant context is hard

1. Manually partitioning a program

into parts small enough for a

verifier to handle is time consuming

5

2. It's not trivial to determine how much

context is required to verify a property,

leading to potential false-positive

violations

Program

Relevant
Context

Assertion

Relevant
Context

Assertion

Relevant
Context

Assertion

Relevant
Context

Assertion

Relevant
Context

Assertion

Relevant
Context

Assertion

Reducing irrelevant context

6

Regular slicing techniques can help reduce irrelevant context, but are

often either:

● Too cautious, and leave too much irrelevant complexity for the solver

● Too aggressive, sacrificing soundness [1]

Our tool Qicc, takes a gamble by trying to verify assertions with less
context, separately, and concurrently.

1. Cook, B., Döbel, B., Kroening, D., Manthey, N., Pohlack, M., Polgreen, E., Tautschnig, M., Wieczorkiewicz, P.: Using Model
Checking Tools to Triage the Severity of Security Bugs in the Xen Hypervisor. In: Proc. of FMCAD’20

Motivating
Example

7

Motivating Example: context and bound checks

8

1 ... REST OF THE PROGRAM

2

3 for (i = 0; i < F25519_SIZE; i++) {

4 int j;

5 c >>= 8;

6 for (j = 0; j <= i; j++){

7 c += ((word32)a[j]) * ((word32)b[i - j]);

8 }

9

10 ... REST OF THE LOOP

11

12 }

13

14 ... REST OF THE PROGRAM

Taken from curve25519
implementation in busybox. ~450
lines of code.

State-of-the-art program checkers
struggle when presented with the
entire program.

To verify array upper bounds
highlighted in blue, code
highlighted in pink can be
ignored, including the rest of
the function and the program.

Array bounds check in curve25519

9

Both CBMC (a bounded model checker for C) and Ultimate Automizer (an

automate-based verifier) are unable to terminate in two hours when

presented with curve25519 function.

Why these checkers don’t work?

10

● The checkers produce large, complex models

● Irrelevant context makes complexity much worse

Our tool, Qicc, enables two existing checkers to solve this motivating

example in under a minute, when they would be otherwise unable to
terminate in two hours.

Background -
Program Safety
and
Regions

11

Background: Control Flow of a Program

12

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

 9

 5

1 location

sum ←0 operations

 9 terminal location

Legend

Control flow region of a program

13

Regions contiguous are
portions of the
control-flow graph of a
program with a single entry
location and a single exit
location

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9

Program safety

14

If no error location is
reachable, then the
program is safe.

If no error location is
reachable in the region
then the region is safe.

ERROR

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9

Error reachability

15

If an error location is
unreachable in a region
that contains it, then the
error location is
unreachable in the whole
program.

Theorem: If every assertion
is contained in a safe
region, the program is safe.

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9

Our Approach

16

Our Approach: minimizing context

The goal of our approach is to

expedite verification by

minimizing irrelevant
context.

17

ERROR

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9

Gambling on small regions

Our technique "takes a

gamble" by trying to verify

with as little context as

possible, and gradually adds
context back until it's

sufficient.

18

ERROR

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9
Minimum
Context

Maximum
Context

Qicc hits and misses

● We say that Qicc hits when an identified region can be verified

successfully in isolation. (The gamble pays off)

● We say that Qicc misses when more context is needed to prove the

assertion in a region. Qicc will need to expand context

and try again. (The gamble was lost)

19

Choosing regions to gamble on

Since it would be too

expensive to attempt

every possible region,

our tool, Qicc, prioritizes

bodies of cyclic regions,

as they are often much

quicker to verify than the

parent region containing

the cycle.

20

ERROR

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9

Hypothesis: misses will be cheap

21

When Qicc misses, it means selected region was too small to check the

assertion.

A small region is usually faster to check than the entire program.

Therefore, checking a few small regions should be relatively cheap.

Qicc Workflow

22

gamble miss

Cyclic Region Identification

23

Region Nesting Tree generation

Control flow of a program with cyclic
regions highlighted

Region Nesting Tree

24

ERROR

1 2 3

4

5

6

8

r ←sum

j ←0sum ←0

[j < x]

[j ≥ x]

j ←j + 1

[c ≥ 0]

c ←f (j)

7

[c < 0]

[c = 0]

[c < 0]

10

 9

 F

R1

R2

Gambling on regions

Input: Region
Nesting Tree

25

Gambling on regions

Input: Region
Nesting Tree

Identify
deepest
regions with
assertions

26

Gambling on regions

Input: Region
Nesting Tree

Identify
deepest
regions with
assertions

Create
checker
processes

Concurrent

Check region

Check region

Check region

27

Gambling on regions

Input: Region
Nesting Tree

Identify
deepest
regions with
assertions

Create
checker
processes

Concurrent

Check region

Check region

Check region

Region
safe?

 Yes

 No

Mark Assertions
in the region as
verified

28

 HIT

MISS

Gambling on regions

Input: Region
Nesting Tree

Identify
deepest
regions with
assertions

Create
checker
processes

Concurrent

Check region

Check region

Check region

Mark Assertions
in the region as
verified

Fetch
parent
regions

Root regionTerminate

29

Region
safe?

 Yes

 No

 HIT

MISS

Gambling Algorithm Optimisations

1. Batch Verification: If two assertions are located within the same region,

they will be passed to the verifier as a single batch. If a region is found to be

safe, all assertions are marked as verified.

2. Concurrent Verification: Regions in the nesting tree can be verified in

parallel, as long as one isn't a parent of another.

30

Evaluation

31

Implementation

Qicc Frontend (identification & tree generation): OCaml, as plugins for C

Intermediate Language (CIL)

Gambling Algorithm: TypeScript, this includes RNT traversal and interfaces

with verification engines

Implementation Limitations
No support for: regions with multiple entries, recursion.

32

Evaluation with existing verifiers

We integrated Qicc with two existing state-of-the-art program checkers.

CBMC: A bounded model checker for C. We expected Qicc to perform very

well with CBMC as bounded model checkers struggle with cycles.

Ultimate Automizer (UA): An automata based model checker. Chosen for

variety and being top performer in SV-COMP.

33

Research Questions

RQ1: What is the benefit of Qicc+CBMC when the gamble succeeds? What

is the cost of Qicc+CBMC when the gamble fails?

RQ2: Does the performance benefit of Qicc extend to other verifiers?

(Ultimate Automizer)

RQ3: Can Qicc scale to large, real-world, programs?

34

RQ1&2: Systematic analysis - Experimentation

A thorough analysis with synthetically generated programs for CBMC and

Ultimate Automizer.

15 SVCOMP programs used as base benchmarks, with irrelevant context

systematically introduced, simulating both hits and misses.

10 minute time out for all verification runs.

35

Systematic Analysis: Varying program
structure

36

Systematic Analysis: Loop Bounds

We varied used 3 different preset loop bounds and varied them for each
program structure: small static bound (10), large static bound (200), and

arbitrary bound.

This variable was only used for CBMC, as UA models programs using

automata and the runtime is not directly affected by static loop bounds.

37

Systematic analysis: generating programs

● 6 preset program structures, used to generate synthetic cases

○ 2 guaranteeing only Qicc misses and 2 guaranteeing only Qicc hits

○ 1 baseline with no sub regions, 1 with both a hit and a miss

● 3 loop bound presets varied in every case

Original program Program Structure Generated Scenario
38

RQ1: Systematic Analysis Results: CBMC

39

RQ1: Systematic Analysis Results: CBMC

● Performance gain when
Qicc hits is very significant,
cost of a miss is low.

● The cost of the miss is at
worst proportional to the
depth of the program.

● The misses are
proportionally more
impactful on easy cases.

40

Instances solved CBMC: 175 CBMC+Qicc: 325

 HIT

MISS

RQ2: Systematic Analysis Results: UA

● Cost of a miss remains low

● Qicc+UA is able to solve more instances
than UA alone

● Performance gained by using Qicc not
as large as with CBMC, but may be
improved by using different slicing
heuristic

41

Instances solved

UA: 45 UA+Qicc: 53

 HIT

MISS

Systematic analysis - Threats to validity

42

1. Irrelevant context introduced was limited to cycles, which affects CBMC

a lot more directly than UA.

2. All examples were synthetically generated, but they were varied

systematically.

Synthetic examples enabled control of irrelevant context, which is

usually absent in benchmarks.

RQ3 Case study - Experimentation

Curve25519 implementation taken from busybox/wolfssl.

Assertions manually inserted to check for safety of all array accesses.

Two hour timeout, 8 GB memory limit.

43

RQ3: Case Study

44

Curve25519 algorithm
implementation taken from
busybox/wolfssl, region
hierarchy.

Legend

Function

Qicc-identified
region
startline:endline

Region containment
or function call

14 assertions checking for array access bounds

RQ3: Case Study Results

45

Checker/Mode Baseline (no Qicc) Qicc Sequential Qicc Concurrent

CBMC Out of memory (>8GB) 13s 11s

UA Did not terminate (>2h) 55s 35s

Qicc enables existing verifiers to terminate in under a minute, for a real
example they were previously unable to handle.

Case study - Threats to validity

46

1. Limited to one type of property - array bounds, and one example.

Systematic analysis had examples with lots of different properties.

2. Frequency of hits and misses in real world programs is unknown.

The cost of a miss is very small compared to the benefit of a hit.

Recap

47

Qicc is useful when verifying properties in large programs
where limited context is sufficient.

Without Qicc, finding sufficiently small regions is tedious.

Cost of misses is small and scales very well with input.
(gambling is cheap)

When Qicc hits, it can terminate much faster than the
underlying checker. (benefit of winning a gamble is large)

Related work

48

Program Slicing for Verification

Finding relevant subset of a program for an assertion, making
verification easier.

Qicc acts as a slicer that exploits locality of properties.

1. Weiser, M.: Program Slicing. In: Proc. of ICSE’81. pp. 439–449. IEEE Press (1981)

2. DeMillo, R.A., Pan, H., Spafford, E.H.: Critical Slicing for Software Fault Localization 21(3), 121–134 (1996)

Related work

49

Differential Program Verifiers

2Clever: differential program verifier - perform similar cycle
extraction/simplification to Qicc.

Do not target program safety, do not reason about regions in
isolation.

1. Feng, N., Hui, V., Mora, F., Chechik, M.: Scaling Client-Specific Equivalence Checking via Impact Boundary Search. In: Proc. of
ASE’20. ACM (2020)

Related work

50

Program Transformations for Verification: Other Examples

● Lifting assertions out of inner regions. [1, 2]
● Inlining cycles with arbitrary variables. [3]

Can be combined with Qicc, by applying on expanded
context after misses

1. Lai, A., Qadeer, S.: A Program Transformation for Faster Goal-Directed Search.In: Proc. of FMCAD’14. pp. 147–154. IEEE (2014)

2. Gurfinkel, A., Wei, O., Chechik, M.: Model Checking Recursive Programs with Exact Predicate Abstraction. In: Proc. of ATVA’08. pp.
95–110. Springer (2008)

3. Jana, A., Khedker, U.P., Datar, A., Venkatesh, R., Niyas, C.: Scaling Bounded Model Checking by Transforming Programs with
Arrays. In: Proc. of Int. Symposium on Logic-Based Program Synthesis and Transformation. pp. 275–292.Springer (2016)

Future work

51

● Use a combination of checkers and dynamically choose
different checkers for different regions.

● Insert additional facts into extracted regions using static
analysis.

● Experiment with different heuristics for regions, such as
isolating expensive function calls or other operations.

Thank
 you!

murad@cs.toronto.edu
github.com/MuradAkh/Qicc

52

