
Client-Specific Equivalence
Checking

Federico Mora (University of Toronto)
Yi Li (Nanyang Technological University)
Julia Rubin (University of British Columbia)
Marsha Chechik (University of Toronto)

Motivation

2

Application Code

Library

Library

Library

Library
Evolving at different
speeds

Hard to verify

Motivation

3

Library

Library

Library

Library

ClientClient

Library

Library

Library

Library*

ClientClient
?

Client-Specific Equivalence: What
happens to the client when a
library gets upgraded?

uses

Updates can invalidate
verification

Example

4

double mpf_get_d_2exp(signed long int *expptr, mpf_srcptr src) {
 mp_size_t size, abs_size;
 mp_srcptr ptr;
 int cnt;
+double d;

 size = SIZ(src);
 if (UNLIKELY(size == 0))
 {
 *expptr = 0;
 return 0.0;
 }
 ptr = PTR(src);
 abs_size = ABS(size);
 count_leading_zeros(cnt, ptr[abs_size - 1]);
 cnt -= GMP_NAIL_BITS;
 *expptr = EXP(src) * GMP_NUMB_BITS - cnt;

- return mpn_get_d(ptr, abs_size, 0, -(abs_size * GMP_NUMB_BITS - cnt));
+ d = mpn_get_d(ptr, abs_size, 0, -(abs_size * GMP_NUMB_BITS - cnt));
+ return size >= 0 ? d : -d;}

REAL log_real(REAL x) {
 double d;
 double ln_app;
 signed long int exp;

 d = mpf_get_d_2exp(&exp, x.get_mpf_t());
 ln_app = (double) exp *log(2.0) + log(d);
 return ln_app;
}

double F_mpz_poly_eval_horner_d_2exp(
 long *exp, F_mpz_poly_t poly, double val)
{
 ... res = mpf_get_d_2exp(exp, output);
 // work around bug in earlier versions of GMP/MPIR
 if ((mpf_sgn(output) < 0) && (res >= 0.0))
 res = -res;
 ...
}

Library with
changes

New version always
returns positive number

Log of negative
number undefined

Client that is
affected by change

Client that is NOT
affected by change

Takes absolute
value of output

How Often Is a Client Unaffected
by a Change?

Applicability Study

Inspected 66 client-library function pairs

● Popular libraries on GitHub (>1,000 stars)

● Written in C and Python

● Went through 100 most recent commits which do not alter signatures
○ mostly bug fixes and
○ new behaviour introductions

● Searched for unique clients on GitHub

6

Applicability Study Results

7

Projects Library Functions # Client #Affected #Unaffected

OpenSSL RN_is_prime_fasttest_ex 10 5 5

OpenSSL RSA_check_key 32 5 27

Linux gcd 11 8 3

GMP mpf_get_d_2exp 7 1 6

Delorean Delorean 3 0 3

Delorean Delorean2 3 0 3

 ~71% of the clients are unaffected

What’s Wrong With Existing
Solutions?

Preliminaries

9

We consider partial functional equivalence

● Loops and recursion unrolled to configurable depth, d

● Two unrolled programs P, P’ are equal iff for all x, P(x) = P’(x)

For this presentation we represent

● Programs as triangles
○ Single entry point at top

● Libraries calls are triangles inside a larger triangle

● Program paths are lines inside the triangles

● Updates are purple squares inside libraries

Client

Library

Example Diagram

10

int main(int x) {

if (x>=18 && x<22)

return foo(x,20);

return 0;

}

int foo(int a, int b) {

int c=0;

- for (int i=1;i<=b;++i)

- c+=a;

+ for (int i=1;i<=a;++i)

+ c+=b;

return c;

}

main
x = 5

!(x>=18 && x<22)

return 0

foo

[Trostanetski et al, 17]

Different Ways to Apply Existing Solutions

Library

Client

Library*

?

Client

11

Client

Library

Different Ways to Apply Existing Solutions

Library

Client

Library*
?

Client

12

Too Strong!

1. Checking Equivalence of Libraries

Classic equivalence
checking problem
[Person, 08]Client

Library

Exploring all of the
library, and none of
the client

Different Ways to Apply Existing Solutions

Library Library*

?

13

2. Checking Equivalence Of Libraries Under a Condition

But what condition?
Conditional equivalence
checking problem
[Kawaguchi et al, 10]
[Lahiri et al, 13]

Condition

Client

Library

Let C be the set of all the calling contexts
of the library in the client

Different Ways to Apply Existing Solutions

Library Library*

For all c in C, c[lib] = c[lib*]?

14

2. Checking Equivalence Of Libraries Under a Condition

But too strong again!

● lib(x) = -lib’(x)
● client := lib(1) + lib(-1)

Client

Library

Exploring part of client
that calls library, and
part of library used by
client

Client

Library

Different Ways to Apply Existing Solutions

Library

Client

Library*

?

Client

15

3. Checking Equivalence of Client-Library Pairs

Classic equivalence
checking problem
[Person, 08]

Right strength, but ignores
the fact that the client
remains unchanged

A special case of
regression verification
[Godlin & Strichman, 08]
[Felsing et al, 14]
[Trostanetski et al, 17]

Client

Library

Different Ways to Apply Existing Solutions

Library

Client

Library*

?

Client

16

3. Checking Equivalence of Client-Library Pairs

Classic equivalence
checking problem
[Person, 08]

Ignores the fact that the
client remains unchanged

A special case of
regression verification
[Godlin & Strichman, 08]
[Felsing et al, 14]
[Trostanetski et al, 17]

Can we do better?

Our Technique In A Nutshell

CLient-Specific EquiValence CheckER

18

Insight: existing techniques are too strong, or consider too

much. To get the most precise and efficient analysis let’s

consider only

● how the client uses the library and

● where the library change is active.

Client

Library

Discarded: doesn’t
use change

Kept: may expose
difference

Discarded: doesn’t
use library

CLEVER

19

Algorithm

● Explore Client with library uninterpreted
○ Collect uses/contexts of the library

● For each client context
○ Explore the library restricted to this context
○ If change is inactive, discard
○ Else, check for quick counterexample

■ If counterexample found, return
■ Else store paths

● Create equivalence assertion from stored paths

● Dispatch to existing verifier, or SMT solver

Client

Library

Discarded: doesn’t
use library

Discarded: doesn’t
use change

Kept: may expose
difference

Example Savings

20

int main(int x) {

if (x>=18 && x<22)

return foo(x,20);

return 0;

}

int foo(int a, int b) {

int c=0;

- for (int i=1;i<=b;++i)

- c+=a;

+ for (int i=1;i<=a;++i)

+ c+=b;

return c;

}

main

x>=18 && x<22

foo

[Trostanetski et al, 17]

Saves us from
computing a non-linear
loop invariant: c == a*b
== a’*b’

How the client uses the
library

Evaluation

Implementation & Evaluation

22

Available at: https://github.com/Client-Specific-Equivalence-Checker/CLEVER

Explores client contexts using symbolic execution

● PyExSMT (https://github.com/FedericoAureliano/PyExSMT)

We compare with SymDiff, RVT, and ModDiff (treating client-lib pair as a whole).

Subjects:

● 39 client-library pairs with library updates (23 equivalent / 16 inequivalent)

● 23 come from the ModDiff suite (small programs)

● 16 come from our pre-study

https://github.com/Client-Specific-Equivalence-Checker/CLEVER
https://github.com/FedericoAureliano/PyExSMT

Cactus Plot: Equivalent Cases

23

Benefit from pruning
to client and change
relevant paths

Cactus Plot (Log Scale): Non-Equivalent Cases

24

Benefit from early
counterexample
detection

Conclusions & Beyond

Summary

26

We consider a special case of equivalence where usage patterns can be exploited

● We show that this special case is relevant

● Devise an extension/enhancement to classic regression verification
○ Optimized for early discovery of counterexamples

● It does well when compared against the state-of-the-art

Lots of details are not considered, yet

● Go beyond functional equivalence
○ Total path equivalence: maintaining all intermediate executions of the client etc.

● Improvements on usability
○ Explain reasons for equivalence
○ Suggest changes/updates to clients

Benchmark size is still quite limited

● Call backs, side effects, heap, etc.

● Increase support for primitive types
○ E.g. floating-point numbers, strings, and algebraic datatypes

Thank You!

CLEVER available at https://github.com/Client-Specific-Equivalence-Checker/CLEVER

Benchmarks and more available at https://client-specific-equivalence-checker.github.io/

PyExSMT available at https://github.com/FedericoAureliano/PyExSMT

Discarded: doesn’t
use library

Discarded: doesn’t
use change

Kept: may expose
difference

https://github.com/Client-Specific-Equivalence-Checker/CLEVER
https://client-specific-equivalence-checker.github.io/
https://github.com/FedericoAureliano/PyExSMT

