
https://github.com/uclid-org/algaroba

An Eager Satisfiability Modulo Theories
Solver for Algebraic Datatypes
Amar Shah, Federico Mora, Sanjit A. Seshia

Scan the QR code to
download the preprint

What are Satisfiability Modulo
Theories (SMT) Solvers?
(for quantifier-free algebraic datatypes)

2 of 34

Solver Interface (SMT-LIB)

Solvertype
definitions

quantifier-free
constraints

answer
(Sat/Unsat)

variable
declarations

3 of 34

Solver Interface (SMT-LIB)

Solvertype
definitions

quantifier-free
constraints

answer
(Sat/Unsat)

variable
declarations

4 of 34

Solver Interface (SMT-LIB)

Solvertype
definitions

quantifier-free
constraints

answer
(Sat/Unsat)

variable
declarations

5 of 34

Solver Interface (SMT-LIB)

Solvertype
definitions

quantifier-free
constraints

answer
(Sat/Unsat)

variable
declarations

6 of 34

What are Algebraic Datatypes?
ADTs for short

7 of 34

B AB

A

Figure 1. Solution (1b, 1c, 1d) to a simple blocks world puzzle. 1a is the
initial configuration; 1e is the target configuration.

B

A

B

A

B A B AB A

B

A

(a)

(c) (d)(b)

(e)

Running Example: Blocks World

Initial

Target

Solution

Winograd (1971); Sussman (1973); Gupta and Nau (1992) 8 of 34

Running Example: Blocks World

Winograd (1971); Sussman (1973); Gupta and Nau (1992)

B AB

A

Figure 1. Solution (1b, 1c, 1d) to a simple blocks world puzzle. 1a is the
initial configuration; 1e is the target configuration.

B

A

B

A

B A B AB A

B

A

(a)

(c) (d)(b)

(e)Initial

Target

Solution

9 of 34

B AB

A

Figure 1. Solution (1b, 1c, 1d) to a simple blocks world puzzle. 1a is the
initial configuration; 1e is the target configuration.

B

A

B

A

B A B AB A

B

A

(a)

(c) (d)(b)

(e)

Running Example: Blocks World

Is there a sequence of k legal
moves that leads from the initial
to the target configuration?

1. blocks can only be taken from
the top of a stack;

2. blocks can only be placed on
the top of a stack; and

3. only one block can be moved
at a time.

Initial

Target

Solution

Winograd (1971); Sussman (1973); Gupta and Nau (1992) 10 of 34

Algebraic Datatypes Example 1

• Variables of type block can take on one of two values:
• A or B

type block = A | B

ADT Name Constructors

11 of 34

Algebraic Datatypes Example 2

• Variables of type tower can be one of:
• Empty;
• Stack(A, Empty); Stack(B, Empty);
• Stack(A, Stack(A, Empty)); Stack(B, Stack(A, Empty)); …
• …
• Stack(A, Stack(A, Stack(A, Stack(A, Stack(A, Stack(A, Empty)))))); …
• …

type tower =
 | Empty
 | Stack of {top: block; rest: tower}

ADT Name
Constructor

Selector

12 of 34

Running Example: Blocks World

Winograd (1971); Sussman (1973); Gupta and Nau (1992)

B AB

A

Figure 1. Solution (1b, 1c, 1d) to a simple blocks world puzzle. 1a is the
initial configuration; 1e is the target configuration.

B

A

B

A

B A B AB A

B

A

(a)

(c) (d)(b)

(e)Initial

Target

Solution

Tower

Block

13 of 34

Definition: Algebraic Datatypes

Algebraic datatypes consist of
• constructors (e.g., Stack is a function from block * tower to tower),

• selectors (e.g., rest is a function from tower to tower),

• testers (e.g., is_Empty is a function from tower to boolean).

Barrett, Fontaine, and Tinelli (2017) 14 of 34

Definition: Algebraic Datatypes

Algebraic datatypes consist of
• constructors (e.g., Stack is a function from block * tower to tower),

• selectors (e.g., rest is a function from tower to tower),

• testers (e.g., is_Empty is a function from tower to boolean).

The following informal axioms govern their behaviour:
• Selectors and constructors play nicely (e.g., Stack(A, Empty).rest returns Empty)
• Testers behave as expected (e.g., is_Empty(Stack(A, Empty)) returns false).

• Every instance of an algebraic datatype is acyclic.

Barrett, Fontaine, and Tinelli (2017) 15 of 34

What are Satisfiability Modulo
Theories Solvers? Revisited
(for quantifier-free algebraic datatypes)

16 of 34

Solver Interface (SMT-LIB)

Solvertype
definitions

quantifier-free
constraints

answer
(Sat/Unsat)

variable
declarations

17 of 34

Solver Interface (SMT-LIB)

Solver
type block = A | B

type tower =
 | Empty
 | Stack of {top: block;
 rest: tower}

let x: tower;
let y: tower;

ADT Name; Constructor; Selector; Variable; Constraint

assert x == y.rest;
assert y == x.rest;

18 of 34

Solver Interface (SMT-LIB)

Solver
type block = A | B

type tower =
 | Empty
 | Stack of {top: block;
 rest: tower}

let x: tower;
let y: tower;

Unsat

ADT Name; Constructor; Selector; Variable; Constraint

assert x == y.rest;
assert y == x.rest;

19 of 34

Solver Interface (SMT-LIB)

Solver

B

A

B

A

Initial

Target

B AB

A

B

A

B A

B AB A

* Model construction is a work in progress, for now we would just say “sat”

Step 1

Step 2

Step 3

20 of 34

Hardware:
• We are using ADTs to model

encryption in trusted enclaves
• encryption with a constructor,
• decryption with a selector, and

• garbled text with a sum type.

Other Applications of ADTs

Distributed Systems:
• We used ADTs to verify

distributed systems
• node states are records,
• messages are records, and

• sequences of messages are an
inductive type (like a list).

Mora, Desai, Polgreen, and Seshia (2023) 21 of 34

Empirical Evaluation

22 of 34

Implementation and Tool Links

• Try out
• Algaroba, our prototype solver!

• https://github.com/uclid-org/algaroba

• UCLID5, our formal modeling and verification engine with (coming) ADT support!
• https://github.com/uclid-org/uclid

• The UPVerifier, our tool for distributed systems verification based on ADTs!
• https://github.com/uclid-org/upverifier

23 of 34

https://github.com/uclid-org/algaroba
https://github.com/uclid-org/uclid
https://github.com/uclid-org/upverifier

Results: Overall Performance

0 120 240 360 480 600 720 840 960 1080 1200

Time Elapsed (s)

0

31

62

93

124

155

186

217

248

279

310

341

N
u
m

b
er

of
Q

u
er

ie
s

S
ol

ve
d

Blocks world (500 Queries, 1200s Timeout)

1. Algaroba (61.4% solved)

3. cvc5 (34.8% solved)

4. Princess (16.8% solved)

2. Z3 (56.2% solved)

Timeout

120 240 360 480 600 720 840 960 1080 1200

Time Elapsed (s)

0

19

38

57

76

95

114

133

152

171

190

209

N
u
m

b
er

of
Q

u
er

ie
s

S
ol

ve
d

Bouvier (400 Queries, 1200s Timeout)

1. Algaroba (45.75% solved)

4. cvc5 (37.25% solved)

3. Princess (15.75% solved)

2. Z3 (37.25% solved)

Timeout

Our tool (Algaroba) solves more queries in less time (higher left is better)

Bouvier (2021); Barbosa et al. (2022); de Moura and Bjørner (2008); Hojjat and Rümmer (2017) 24 of 34

Results: Contribution Score

0 120 240 360 480 600 720 840 960 1080 1200

Time Elapsed (s)

0

31

62

93

124

155

186

217

248

279

310

341

N
u
m

b
er

of
Q

u
er

ie
s

S
ol

ve
d

Blocks world (500 Queries, 1200s Timeout)

1. Algaroba (61.4% solved)

3. cvc5 (34.8% solved)

4. Princess (16.8% solved)

2. Z3 (56.2% solved)

Timeout

120 240 360 480 600 720 840 960 1080 1200

Time Elapsed (s)

0

19

38

57

76

95

114

133

152

171

190

209

N
u
m

b
er

of
Q

u
er

ie
s

S
ol

ve
d

Bouvier (400 Queries, 1200s Timeout)

1. Algaroba (45.75% solved)

4. cvc5 (37.25% solved)

3. Princess (15.75% solved)

2. Z3 (37.25% solved)

Timeout

Algaroba solves many queries that no other solver can (108/900),
achieves the highest contribution score (rank in legend).

25 of 34

Lazy Approaches (Axioms as Needed):

• cvc5, SMTInterpol
• Theory solver based on Oppen

• z3
• (Unpublished but similar)

Eager Approaches (Axioms Upfront):

• Princess
• Reduce to linear integer arithmetic

• Algaroba (our solver)

Related Work

Core
Solver

Theory
Solver

Core
Solver

Theory
Solver

Sebastiani (2007); Seshia (2005); Oppen (1980); Barbosa et al. (2022); Christ, Hoenicke, and Nutz (2012); Hojjat and Rümmer (2017) 26 of 34

How Do We Do It?
Eager Reduction to Core Solver Explained

27 of 34

Approach Sketch: Eager Reduction

Algaroba

Translate/
Reduce

Core
Solver

answer
(Sat/Unsat)

Seshia (2005)

type
definitions

quantifier-free
constraints

variable
declarations

28 of 34

Challenge: Finite Reduction

Well-Foundedness Axiom:

Let 𝑢 and 𝑣 be two ADT values. If
𝑢 = 𝑣. 𝑠!. 𝑠"…𝑠# ∧ 𝜃 then 𝑢 ≠ 𝑣,

• where 𝑠! are selectors and

• 𝜃 asserts that all 𝑠! are correctly applied.

let x: tower;
let y: tower;

assert x == y.rest;
assert y == x.rest;

How can we have a finite, quantifier-free reduction if 𝒏 is arbitrary?

29 of 34

Challenge: Finite Reduction

Well-Foundedness Axiom:

Let 𝑢 and 𝑣 be two ADT values. If
𝑢 = 𝑣. 𝑠!. 𝑠"…𝑠# ∧ 𝜃 then 𝑢 ≠ 𝑣,

• where 𝑠! are selectors and

• 𝜃 asserts that all 𝑠! are correctly applied.

Figure 3. Visual representation (left) and proof (right) of an
unsatisfiable query. 𝜃 (≝ 𝑥	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘 ∧ 𝑦	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘) omitted as premise.

x.top

x.rest

y.top

y.rest

x.rest = y

y.rest = x

x y
User: y = 𝑥. 𝑟𝑒𝑠𝑡
User: 𝑦. 𝑟𝑒𝑠𝑡 = 𝑥

30 of 34

Challenge: Finite Reduction

Well-Foundedness Axiom:

Let 𝑢 and 𝑣 be two ADT values. If
𝑢 = 𝑣. 𝑠!. 𝑠"…𝑠# ∧ 𝜃 then 𝑢 ≠ 𝑣,

• where 𝑠! are selectors and

• 𝜃 asserts that all 𝑠! are correctly applied.

Figure 3. Visual representation (left) and proof (right) of an
unsatisfiable query. 𝜃 (≝ 𝑥	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘 ∧ 𝑦	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘) omitted as premise.

x.top

x.rest

y.top

y.rest

x.rest = y

y.rest = x

x y
User: y = 𝑥. 𝑟𝑒𝑠𝑡
User: 𝑦. 𝑟𝑒𝑠𝑡 = 𝑥
Equality: 𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥
WF Axiom: 𝑥 ≠ 𝑥
Reflexivity: 𝑥 = 𝑥
Conclusion: ⊥

Get x ≠ 𝑥 from 𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥, with 𝑛 = 2

31 of 34

Approach: Sufficient Encoding

Let 𝜓 be the input ADT query, 𝑘 gives a bound that we use to compute
𝜓∗, a finite, quantifier-free UF query.

 1 NNF ()
 2 Flatten(1)
k Number of ADT variables in 2

 3 Apply rewrite rules to 2

�1, ...,�m Add axioms using k to 3

 ⇤ 3 ^ �1 ^ ... ^ �m
return UF-SMT-Solver(⇤)

Think of 𝑘 as the
number of unique ADT

terms in the query

Think of 𝜙! as
instances of the cycle
axiom for all 0 < 𝑛 ≤ 𝑘

Burch and Dill (1994) 32 of 34

Approach: Sufficient Encoding

Figure 3. Visual representation (left) and proof (right) of an
unsatisfiable query. 𝜃 (≝ 𝑥	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘 ∧ 𝑦	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘) omitted as premise.

x.top

x.rest

y.top

y.rest

x.rest = y

y.rest = x

x y
User: y = 𝑥. 𝑟𝑒𝑠𝑡
User: 𝑦. 𝑟𝑒𝑠𝑡 = 𝑥
Equality: 𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥
WF Axiom: 𝑥 ≠ 𝑥
Reflexivity: 𝑥 = 𝑥
Conclusion: ⊥

[𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥 ⇒ (𝑥 ≠ x)]	was one of the 𝜙!

All of these are equality
constraints that an off-the-

shelf solver can handle!

33 of 34

https://github.com/uclid-org/algaroba

Thank you!

Scan the QR code to
download the preprint

Algaroba

Reduce
to UF

Call a UF
Solver

answer
(Sat/Unsat)

type
definitions

quantifier-free
constraints

variable
declarations

Works Cited In Presentation

• Winograd (1971);
• Sussman (1973);
• Gupta and Nau (1992);
• Barrett, Fontaine, and Tinelli (2017);
• Mora, Desai, Polgreen, and Seshia (2023);
• Bouvier (2021);
• Barbosa et al. (2022);
• de Moura and Bjørner (2008);
• Hojjat and Rümmer (2017);
• Seshia (2005);
• Burch and Dill (1994);
• Sebastiani (2007);
• Oppen (1980);
• Christ, Hoenicke, and Nutz (2012);

35 of 34

