
�

A Functional Description of

TEX�s Formula Layout

REINHOLD HECKMANN� REINHARD WILHELM

Fachbereich Informatik� Universit�at des Saarlandes

Saarbr�ucken� Germany

fheckmann�wilhelmg�cs�uni�sb�de

Abstract

While the quality of the results of TEX�s mathematical formula layout algorithm is convincing�
its original description is hard to understand since it is presented as an imperative program
with complex control �ow and destructive manipulations of the data structures representing
formulae� In this paper� we present a re�implementation of TEX�s formula layout algorithm in
the functional language SML� thereby providing a more readable description of the algorithm�
extracted from the monolithical TEX system�

� Introduction

The mathematical formula layout algorithm used by D� E� Knuth�s TEX typesetting

system generates remarkably good output� However� any attempt to understand the rea�

sons for this success leads to deep frustration� The algorithm is informally described in

Appendix G of the TEXbook �Knuth� ����a	 using English prose with some formal frag�

ments� While this description provides a useful and welcome overview� the details are

not completely correct� A complete and exact description of the whole TEX implementa�

tion is presented in TEX� The Program �Knuth� ����b	� It contains the full source code

of the TEX system� structured into logical units� well commented� and documented by

cross references� Nevertheless� anyone who wishes to gain a full understanding of TEX�s

algorithms from these descriptions must invest great e
orts� The reason is that both the

documented source code and the informal description are typical examples of imperative

programs� involving complex control �ow �including goto�s	 and complicated manipula�

tions of the various data structures� In particular� the usage of global variables obscures

the interdependencies between the subtasks� It is by no means obvious where certain

information is produced� where it is changed� and where it is consumed�

In this paper� we present a new implementation of TEX�s formula layout using the

functional language SML �Paulson� ����	� The purpose of this re�implementation e
ort is

twofold� First� it provides a novel and hopefully more understandable description of TEX�s

formula layout algorithm� This description was developed as part of a textbook �Wilhelm

and Heckmann� ����	 on document processing� Second� it extracts this particular subtask

of TEX from the monolithically designed TEX system� leading to the possibility to study

it independently and to potentially use it in systems other than TEX� Some remarks on

 R� Heckmann and R� Wilhelm

status and availability of the implementation are contained in Section �� and in the

conclusion �Section �	�

The main task of the formula layout algorithm consists in translating formula terms �a

kind of abstract syntax for formulae	 into box terms� which describe the sizes and relative

positions of the formula constituents in the �nal layout� Knuth�s original data structure

for formula terms was designed to achieve space and time e�ciency� In our opinion� it

is misconceived from a more logical point of view� as it mixes semantic concepts with

details concerning spacing� Hence� we propose a new data structure for formula terms

with a clean and simple design� This change does not cause harm since formula terms

do not occur in other subtasks of TEX� In contrast� box terms are produced by nearly

all subtasks of TEX� Thus� we tried to mimic the structure of Knuth�s original box terms

as close as possible in our SML code in order to keep a well�de�ned interface with other

subtasks of the TEX system� each of which might be re�implemented in the future�

Concerning the algorithm itself� we also tried to catch exactly TEX�s behavior� but

still we cannot de�nitively claim that our algorithm is the �same� as Knuth�s original

algorithm� The change in the structure of formula terms and the switch to the functional

paradigm causes big changes in the structure of the code and the temporal order of

operations� On the other hand� we claim that for equivalent input formulae� the resulting

box terms are equivalent� apart from certain round�o
 errors �Knuth uses a sophisticated

self�de�ned arithmetic� while we use SML�s standard arithmetic functions	� Our claim

is con�rmed by practical tests� After programming a translator from box terms to �dvi

code �the standard output from TEX	� we can print the results of our formula layout

program and verify that they are visually indistinguishable from the results of TEX�

In Section � the overall view of formula layout is presented� together with some details

that in�uence the typesetting� the styles of formulae and subformulae �Section �	� style

parameters ���	� and character dimensions ���	� Knuth�s account of these things is very

concrete� In contrast� we present an abstract interface that hides the details of font table

organization� and makes clear how the information is used�

Section � presents the output of the layout algorithm� box terms� and Section � the

input� formula terms� In Section �� a set of specialized functions is presented that translate

subformulae of various kinds into box terms� Section � treats the translation of whole

formulae� including the introduction of implicit spaces between adjacent entities of certain

kinds�

A fair estimation of our achievements is contained in the conclusion �Section �	� Of

course� our functional solution is not simpler than the problem admits� Formula layout

is an inherently di�cult problem� not in terms of computational� but of algorithmic

complexity� There are many di
erent kinds of mathematical formulae� whose layout is

governed by tradition and aesthetics� Algorithms for formula layout must distinguish

many cases and pay attention to many little details�

In the presentation of our implementation� we do not list the SML program in its

natural ordering� SML programs must be written in a bottom�up style because everything

must be de�ned prior to its usage� For some of the description in a paper like this� a

top�down approach is more suitable� To save space� we do not present the arrangement

of the code into signatures and structures� every type speci�cation is in fact part of a

signature� while every function de�nition is part of some structure�

A Functional Description of TEX�s Formula Layout �

� An Overview of Formula Layout

��� Complete Processing of Formulae

In TEX� a formula is entered using a formula description language� which is a sublanguage

of TEX�s input language� The formula
P

n

i�� i �
n�n���

� � for instance� is described by the

expression

��sum��i����n i � �n 	n
�� �over ����

Formulae are processed as follows�

�� The string representing the formula is read and parsed into a formula term� which

essentially corresponds to the logical structure of the formula� but additionally

contains some spacing information�

� The formula term is recursively translated into a box term� which describes exactly

the layout of the formula�

�� The box term corresponding to the formula becomes a subterm of the box term for

the page where the formula occurs�

�� The box terms for the pages of the document are translated into the �dvi language

and written to some �le� The �dvi��le essentially consists of commands where to

print which symbols�

Before any formula is processed� a preprocessing step reads information about the size

of characters� the thickness of fraction strokes� etc� This information comes from �tfm

�les� which exist for every combination of font and type size�

This paper is only concerned with point � The actual SML implementation also con�

tains the preprocessing step� addresses point � in a trivial manner �the whole page is a

sequence of formulae	� and performs step � completely in order to obtain a visible output�

It does not �yet	 address point �� i�e� formulae must be entered as formula terms in SML

notation�

��� Formula Styles

Formulae may appear in two di
erent contexts� as inline formulae� e�g��
P

n

i�� i �
n�n���

� �

within a line of text� and as displayed formulae in a line of their own� e�g��

nX

i��

i �
n�n � �	

�

As one can see� the layouts of inline and displayed formulae are quite di
erent� In our

example� this concerns the positions of the limits of the sum and the sizes of the sum

symbol and of the parts of the fraction� These properties are in�uenced by the layout

style �Knuth� ����a� page ���	� Displayed formulae are typeset in display style D� while

text style T is used for inline formulae� There are two further styles� which apply to

certain subformulae� script style S for �scripts� �superscripts and subscripts	 and other

subformulae with small typesetting� and script script style SS for scripts of scripts and

other subformulae with tiny typesetting�

In TEX� there are four more styles� D�� T�� S�� and SS�� which are called cramped styles�

� R� Heckmann and R� Wilhelm

They apply to subformulae that are placed under something else� e�g�� denominators� In

cramped styles� superscripts are less raised than in the corresponding uncramped styles�

Analyzing the usage of the eight TEX styles� it turns out that they may be regarded

as pairs of a main style and a Boolean value �cramped� where the two components are

independently calculated and used� Thus we decided to separate them completely� and

de�ne

datatype style � D T S SS�

��� Style Parameters

Every style has its own rules where to place scripts� numerators� denominators� etc� These

rules are given by style parameters read from the �tfm �les during the preprocessing

phase� In TEX� these style parameters are accessed via the style size� which is identical

for D and T� In many cases� two di
erent style parameters are used for the same purpose�

one for style D� and the other one for the remaining styles� Our preprocessing� however�

produces slightly more high level style parameters that depend on the style directly� The

conversion from styles to style sizes and the distinction between D and the remaining

styles is done internally�

Hence� nearly all style parameters are given by functions of type style� dist� where

dist is the type used for horizontal and vertical distances and lengths� As in TEX�

dist is an integer type where a dist value of � corresponds to ��� pt� Here� �pt� is

the abbreviation of �point�� a traditional unit of measure for printers and compositors in

English�speaking countries� In TEX� one inch equals exactly ���pt�

In this overview� we present a few important style parameters only� The remaining ones

are introduced when needed� For example� the parameters pertaining to the positions of

subscripts are only explained when the typesetting of subscripts is presented�

Style parameter xHeight provides the height of the letter x in the current style� Param�

eter MathUnit yields the size of a �mathematical unit�� which by TEX�s de�nition is one

eighteenth of the width of the letter M in the current font� Parameter RuleThickness

contains the thickness of fraction strokes and of over� and underlines� as in x�y� In TEX�s

layout algorithm �and in our re�implementation	� it is also used to control spacing� an

abuse that makes it impossible to change the rule thickness separately from the spacing�

Parameter AxisHeight contains the vertical distance from the axis to the baseline�

The latter is the line where most of the letters and all digits sit on� while the former

is the line where to put fraction strokes �consider� for instance� � � �
� � the baseline is

at the bottom of the digit �	� The axis also plays some role outside of fractions� In a

well�designed mathematical font� many symbols are placed symmetrically to the axis

�consider plus and equal in � � �
� �

�
� 	�

Apart from the style parameters� the layout is in�uenced by some constants that do not

depend on the style� While their role in layout is similar to that of the style parameters�

they have a completely di
erent origin� they are not read from the �tfm �les� but explicitly

speci�ed in the code� A sample constant is scriptSpace of type dist� which speci�es an

additional white space of ���pt to be inserted after superscripts and subscripts�

A Functional Description of TEX�s Formula Layout �

��� Characters and Character Dimensions

The main result of the preprocessing phase is the information about the dimensions

of every single character� Before we present how this information is provided to the

remainder of the program� we have to consider how characters are coded internally�

Consider� say� the formula xx� which is entered as x�x� In the formula description� there

is no di
erence between the two occurrences of x� This is still the case in the formula term

obtained by parsing the description� Both occurrences correspond to the same subterm�

which is a pair consisting of a font family ��math italic� in our example	 and a character

code ��� in our case	� After typesetting� however� the two occurrences of x are di
erent

in size� the font family has been replaced by a concrete font that is di
erent for the two

occurrences� The choice of some concrete font from a font family of course depends on

the style� T for the �rst occurrence of x and S for the second�

The preprocessing phase of our algorithm provides the types that are needed for these

encodings� family for font families� fontNr for font numbers that refer to actual fonts�

and charCode for character codes� It also provides the function

fontNumber� style �� family �� fontNr

for the style�dependent selection of a concrete font from a font family�

The �tfm �les contain four basic size parameters for each character in every font� These

parameters are read by the preprocessing phase and made available via the following

functions�

charHeight� charDepth� charWidth� charItalic�

fontNr � charCode �� dist�

The height of a character is the distance from its top end to the baseline� e�g�� �a� and

�g� have the same height� and �f � is bigger� The depth is the distance from the baseline

to the bottom end� e�g�� �a� has depth �� whereas �g� has positive depth� The width is

the horizontal size as it is used in the composition of ordinary text� It does not take into

account a possible extension of the upper right part of the character� This extra extension�

i�e� the di
erence between the overall horizontal extension and the given width of the

character� is the italic correction provided by function charItalic� It becomes visible

in cases where both superscripts and subscripts are attached to a character� in f�� � for

instance� the horizontal distance between the two scripts is the amount of the italic

correction of the letter f �

It is a particularly painful subtask of formula layout to decide whether the italic cor�

rection should be added to the width of a particular occurrence of a character� In the

original TEX program� this issue is complicated by the habit of taking advantage of the

destructive nature of imperative programming� by subtracting some corrections that were

added in earlier stages of the layout process� In our SML program� an added correction

will never be removed again�

The �tfm �les contain another kind of information which is made available by

larger � fontNr � charCode �� charCode�

For some characters� a larger version is available in the same font� In this case� the code

of this larger version is returned� while the code is unchanged otherwise�

� R� Heckmann and R� Wilhelm

Internally� all character information is stored in vectors to guarantee e�cient access�

��� Top Level Layout Functions

Recall that formulae may appear in two contexts� inline and displayed� Therefore� we

de�ne two di
erent functions for the translation from formula terms to box terms�

inlineFormula� displayFormula� mlist �� hlist

where mlist �mathematical list	 is the type of formula terms �Section ��	� and hlist

�horizontal list	 is the type of box terms �Section ���	�

Of course� the two functions are closely related� we implement them by a more general

function that will also be used for the recursive translation of subformulae� This function

will of course depend on the style and the Boolean crampedness� Apart from the style�

there is another di
erence between inline and displayed formulae� inline formulae may

be broken across lines� while display formulae may not� Hence� inline formulae must be

equipped with penalty information telling the line breaking algorithm where to break�

On the other hand� penalties need not be inserted into displayed formulae� Thus� the

more general function has a second Boolean argument� which indicates whether penalties

should be inserted�

val MListToHList� style �� bool �� bool �� mlist �� hlist

val displayFormula � MListToHList D false false

val inlineFormula � MListToHList T false true

Before we describe the implementation of MListToHList� we must present the data

structures for formula terms �mlist	 and box terms �hlist	�

� The Target Representation� Box Terms

The main task of formula layout is the translation of formula terms into box terms�

In Sections ��� through ���� we describe these box terms informally� on a semantical

level� The actual TEX and SML implementations follow in the remaining subsections� In

particular� ��� contains the necessary type de�nitions� and ��� the computation of the

dimensions of box terms� The remaining two subsections describe a selection of basic

functions to build or manipulate boxes�

��� Boxes and their Dimensions

A box is a rectangle whose edges are parallel to the page edges� Each box comes with a

horizontal baseline and a reference point that is situated at the point where the baseline

meets the left margin of the box� The reference point is used to position the box within

its context� For the outside world� a box is characterized by three size parameters �of

type dist	� height h� depth d� and width w� The height is the vertical distance from the

top margin to the baseline� the depth is the vertical distance from the baseline to the

bottom margin� and the width is the horizontal distance from the left to the right margin

�see Figure �	�

A Functional Description of TEX�s Formula Layout �

�

h

�
�
d

�
� w �

Fig� �� Box with height h� depth d� and width w

Each of these dimensions may be negative� To understand what this means� we must

clarify the meaning of �distance from A to B�� Each page is equipped with a Cartesian

coordinate system� whose x�axis points to the right as usual� while the y�axis points

downward� These directions were chosen to follow the �ow of text for scripts commonly

used by European languages� Using these coordinates� we may de�ne�

� Horizontal distance from A to B � x�coordinate of B � x�coordinate of A
� Vertical distance from A to B � y�coordinate of B � y�coordinate of A

Most boxes have positive width� which means that their left margin is to the left of their

right margin� Boxes with negative width may� for instance� arise from negative horizontal

spaces� They have the property that their left margin �which carries the reference point	

is to the right of their right margin� which might appear surprising� Nevertheless� this

does correspond to their unusual physical properties� they really do have negative width�

which would be impossible for any concrete physical body�

Height and depth are positive if the baseline lies within the shape of the box� i�e� below

the top margin and above the bottom margin� The height is negative if the baseline is

above the top margin� and the depth is negative if it is below the bottom margin�

It is important to note that a box on its own does not have an absolute position on

the page� The position of a box is only �xed relative to the reference point of a superbox

once the superbox has been formed� Accordingly� every box �xes the positions of its

subboxes relative to its own reference point� In fact� it is di�cult in TEX to �x anything

to a particular point on the page�

��� Horizontal Combination of Boxes

Boxes can be combined to form larger boxes either horizontally or vertically� In a standard

horizontal combination of a list of boxes� the constituents are placed next to each other

from left to right so that their baselines appear on the same horizontal line� and the

right margin of each box is aligned with the left margin of the next box� The reference

point of the combination is that of the leftmost constituent� Figure shows a horizontal

combination of three boxes� The baseline of the combined box is the bold line through the

middle of the box� The small gaps between any two neighboring boxes� as well as between

the subboxes and the surrounding box� were introduced to enhance the readability of

� R� Heckmann and R� Wilhelm

h�

d�

w�

h�

d�

w�

h�

d�

w�

h � max �h�� h�� h��

d � max �d�� d�� d��

w � w� 	 w� 	w�

Fig�
� A horizontal combination of three boxes

the �gure� In reality� the three subboxes touch each other and sit tightly within the

surrounding box� Hence the �natural	 width of the combined box is the sum of the

widths of the constituents�

There are two modi�cations of this standard procedure� First� the surrounding box may

be given a width di
erent from its natural width� This is done by stretching or shrinking

glue� i�e� white space boxes whose width admits some variability� The main application

is the adjustment of lines of text to a common width where the glue components are the

interword spaces� As we shall see� there are some applications of this principle in formula

layout as well�

The second modi�cation consists in the possibility to vertically shift some boxes in

the horizontal list� The amount of shift is added to the y�coordinate� and as the y�axis

points downward� a positive amount means a downward shift� Note that there is some

redundancy here� a box in a horizontal list may be shifted downward by an amount s

using the method just described� or by simply adding s to the depth and subtracting

s from the height� In the original TEX algorithm� both methods occur� We also use

both methods� depending on when exactly the shift is performed� when the subbox is

constructed �modify height and depth	� or when the horizontal list is formed�

��� Vertical Combination of Boxes

A list of boxes may also be combined vertically� In a standard vertical combination�

the boxes are placed in a vertical row from top to bottom so that their left margins

are aligned� and the bottom margin of each box is aligned with the top margin of its

successor� There is no canonical choice for the reference point of the surrounding box�

Later� we shall meet cases where it is the reference point of the topmost box� of the box

at the bottom� or of some box in between� In Figure �� we present two examples� As in

the previous �gure� the small gaps only exist for better visibility�

In analogy to the case of horizontal combination� there are two modi�cations of the

standard procedure� The �rst is stretching � shrinking to a prede�ned height� which does

not occur in formula layout� The second is the possibility to shift some boxes to the right

by a given amount� which might be negative� In contrast to the situation in horizontal

lists� the right shift cannot be replaced by some manipulation of the box dimensions�

A Functional Description of TEX�s Formula Layout �

h�

d� w�

h�

d�
w�

h � h�

d � d� 	 h� 	 d�

w � max �w�� w��

h�

d� w�

h�

d�
w�

h � h� 	 d� 	 h�

d � d�

w � max �w�� w��

Fig� �� Two examples for vertical combinations

��� Implementation of the Box Types

In the actual TEX implementation� the entities that were called boxes in the above

informal description are known as nodes� There are several kinds of elementary nodes�

the most prominent being character nodes� kern nodes �white space of �xed size	� and glue

nodes �variably sized white space	� Kern nodes and glue nodes have a so�called width�

which is their real width in a horizontal list� or the height in a vertical list� Compound

nodes are called boxes� besides a description of their content �a list of nodes	� they

consist of an indicator telling whether the list is horizontal or vertical� �elds containing

the three dimensions� a �eld for the shift amount which applies to them� and some further

information� Remember that the interpretation of the shift amount depends on whether

the box is placed in a horizontal or a vertical list�

In our SML implementation� we basically copied this data structure� For obvious rea�

sons� we renamed the �width� of kern and glue nodes into size� The only more serious

change is the decision to extract the shift �eld from a box� The logical reason is that

the shift is not an intrinsic property of a box� but something that is applied to it by

its context� The pragmatic reason is that the shift is usually unknown when the box is

built� so that some dummy value must be assigned to the shift �eld in the box itself to

be changed to the proper value at some later stage� While possible in principle� such a

procedure is unelegant and inappropriate in a functional setting�

The data type node has the following cases�

Char of fontNr � charCode

A character node where the character is speci�ed by its code and a font number�

Kern of dist

A kern� i�e� white space� of a given size�

Glue of glueSpec

A glue� i�e� white space of variable size� Type glueSpec is a record with a �eld

size for the natural size of the glue� and �elds that specify its stretchability and

shrinkability�

Rule of dim

A rule� i�e� a black rectangle� with given dimensions� Type dim is a record type with

�elds height� depth� and width of type dist�

The dimensions of a rule in TEX may be running� i�e� unde�ned and to be de�

�� R� Heckmann and R� Wilhelm

termined by the context� We do not use running dimensions because they add

algorithmic and logical complexity� and the dimensions of rules in formula layout

are known at construction time� and cannot be changed later on�

Penalty of penalty

A penalty node� i�e� potential point of line breaking� with a description of the

adequacy of a line break at this point�

Box of dist � box

A box together with the amount of shift applied to it� Type box is the following

record type�

�kind� boxkind� width� dist� depth� dist� height� dist�

content� node list� glueParam� glueParam�

where boxkind is HBox or VBox� The glueParam �eld indicates how glue nodes in

the content node list must be modi�ed so that the sum of the horizontal �HBox	

or vertical �VBox	 sizes of the components equals the given size of the box� The

most important value of type glueParam is natural which means that every piece

of glue gets its natural size�

In our system� the dimensions of a box are uniquely determined by its kind� its

content list� and its glueParam �eld� Thus� the addition of explicit dimensions is

merely a matter of e�ciency� In original TEX� this is not true since Knuth often

omits Kern nodes at the very end of the content list� While this saves some space�

it leads to logical and algorithmic di�culties in certain situations�

Some operations apply to horizontal or vertical node lists without di
erence� while

others are speci�c for one direction� To be able to express this at least in their type

speci�cation� we de�ne

type hlist � node list� type vlist � node list

Unfortunately� the type checker cannot enforce these distinctions� but we did not want to

complicate things further by introducing constructors for the two kinds of lists� The type

checker does enforce the distinction between boxes� nodes� and node lists� a di
erence

that sometimes seems to be inappropriate�

Note that the original TEX implementation does not distinguish between nodes and

node lists� type node contains a �eld next for chaining� and both nodes and node lists

show up as entities of type �pointer to node��

Most rules have depth zero� most boxes are not shifted� and sometimes� we must

construct a horizontal list from a single box� Hence� it proved to be useful to introduce

the following abbreviations�

fun rule h w � Rule �height � h� depth � zero� width � w�

fun Box� b � Box 	zero� b� 	� creates node with zero shift ��

fun HL b � �Box� b� 	� creates hor� list from box ��

We admit that this data structure is not optimal and clumsy in parts� but it is close to

the original TEX implementation� and a thorough re�nement should only be done after

experiences have been collected from considering more subtasks of TEX than just formula

layout�

A Functional Description of TEX�s Formula Layout ��

��� The Dimensions of Nodes and Node Lists

We need functions to compute the dimensions of nodes and node lists� Unfortunately� the

dimensions of a node are context�sensitive� they depend on whether the node occurs in a

horizontal or a vertical list� Thus� there are three functions� width� height� and depth�

for nodes in a horizontal list� and four functions� vwidth� vheight� vdepth� and vsize

�vheight plus vdepth	� for nodes in a vertical list� All functions have the same type node

� dist� Here� we only present the de�nition of the two width functions�

fun width 	Char info� � charWidth info

 width 	Box 	�� �width � w� ������ � w

 width 	Rule �width � w� ����� � w

 width 	Glue �size� ����� � size

 width 	Kern size� � size

 width � � zero

fun vwidth 	Char info� � charWidth info

 vwidth 	Box 	shift� �width � w� ������ � shift
 w

 vwidth 	Rule �width � w� ����� � w

 vwidth � � zero

The di
erence between the two functions lies in the handling of kern and glue sizes and

of box shifts�

From the dimension functions for single nodes� those for node lists are derived� Three

functions deal with horizontal lists� and two with vertical lists� Functions vlistHeight

and vlistDepth are not needed�

hlistWidth� hlistHeight� hlistDepth� hlist �� dist

vlistWidth� vlistVsize� vlist �� dist

They are de�ned using a common auxiliary function�

fun compute f g nl � f 	map g nl�

val hlistWidth � compute sum width

val hlistHeight � compute Max height

val hlistDepth � compute Max depth

val vlistWidth � compute Max vwidth

val vlistVsize � compute sum vsize

The dimensions of a node list are either the sum or the maximum of the corresponding

node dimensions� Function Max is de�ned as fold max �� hence� Max �� is �� and Max

never yields a negative result� �This behavior is taken over from TEX�	

��� Basic Functions on Box Terms

In this subsection� we present several functions on box terms that are needed during

formula layout�

� R� Heckmann and R� Wilhelm

Extension to the right� Often� a white space has to be added to the right of a given

node� e�g�� when the italic correction is added to a character� The following function

performs the addition in an intelligent way� transforming a node to a node list�

val extend� dist �� node �� hlist 	� extends to the right ��

fun extend dist node �

let val extension � if dist � zero then �� else �Kern dist�

in node �� extension end

From node lists to boxes� Next� we de�ne an auxiliary function to produce a box with

given dimensions from a node list�

val makebox� boxkind �� dim �� node list �� box

fun makebox boxkind �height � h� depth � d� width � w� nl �

�kind � boxkind� height � h� depth � d� width � w�

content � nl� glueParam � natural�

The only purpose of this function is to prepare the following two de�nitions�

val hbox� dim �� hlist �� box 	� hbox with given dimensions ��

val vbox� dim �� vlist �� box 	� vbox with given dimensions ��

val hbox � makebox HBox� val vbox � makebox VBox

The following function packs a horizontal list into a box with natural dimensions�

val hpackNat� hlist �� box

fun hpackNat nl � hbox �width � hlistWidth nl�

height � hlistHeight nl�

depth � hlistDepth nl� nl

Formula layout does not use this function proper� but an optimized version� if the given

node list consists of a single unshifted box� this box is returned�

val boxList� hlist �� box

fun boxList �Box 	�� b�� � b

 boxList nl � hpackNat nl

Centering around the axis� The axis was introduced in Section ��� it is the line where

fraction strokes sit on� Sometimes� a box must be vertically centered around the axis�

Assuming that the centered box will be part of a horizontal list� the centering can be

performed by adding a suitable shift value�

val axisCenter� style �� box �� node

fun axisCenter st box �

let val axh � AxisHeight st

val h � �height box and d � �depth box

val shift � half 	h � d� � axh

in Box 	shift� box� end

A Functional Description of TEX�s Formula Layout ��

In the beginning� the baseline of the box coincides with the overall baseline� Variable axh

is bound to the distance from the axis to the baseline in the current style� This distance

is given by style parameter AxisHeight� The total shift performed by this function can

be considered as a shift by s� � �h � d	�� followed by a shift by s� � �axh� The
�rst shift results in an e
ective height of h � s� � �h � d	� and an e
ective depth of

d� s� � �h� d	�� i�e� yields a node that is vertically centered around the baseline� The

second shift by �axh downward� i�e� by axh upward� yields a node centered around the

axis as required�

Horizontal centering� Numerator and denominator of a fraction are usually centered

within the horizontal extension of the fraction� e�g�� �
n�� � Hence� we need a function

rebox� dist � box � box that centers a given box within a space of given width�

This is not done by simply adding white space �kerns	 at both sides of the box� but by

adding glue of great �exibility to both ends of the horizontal list within the box� and

then creating a new box of the speci�ed width by glue adaptation� The details of the

process are complex� but it is fully implemented in our SML program� We do not include

the code here� but only note that nothing is done to a box that already has the desired

width�

fun rebox newWidth

	b as �kind� width� height� depth� content� ����� �

if newWidth � width then b else �not specified here�

The reason for this complexity is to allow TEX users to modify the position of numerator

and denominator by means of explicit glue� as is done in �
n�� �

��� Making Vertical Boxes

General vertical boxes� We start with a fairly general function that creates a box out

of a vertical list of nodes� The reference point of the resulting box will be the reference

point of one of the nodes� which we call the reference node� This reference node is not

necessarily the node at the top or at the bottom of the vertical list� This function is

needed for big operators with limits �e�g��
nP
i��

	 where the reference node is the box with

the operator symbol� and for fractions �e�g�� �
� 	 where the reference node is the fraction

stroke �a rule node	�

The type of the considered function is

makeVBox� dist �� node �� vlist �� vlist �� box

where the distance dist is the width of the box being built� node is the reference node�

the �rst vlist contains the nodes above the reference node� and the second vlist the

nodes below�

The width is added as an parameter since it is known anyway when makeVBox is called�

thus� its recalculation as the maximum of the widths of all involved nodes is avoided�

There is another design decision which seems to be odd at �rst glance� when makeVBox is

called� the �rst vlist has to be enumerated from bottom to top� and the second vlist

�� R� Heckmann and R� Wilhelm

from top to bottom� This causes some trouble within makeVBox since the �rst vlist

must be reversed� There is no loss in e�ciency� however� since the two vertical lists must

be concatenated anyway� On the other hand� the decision to enumerate the two lists

symmetrically� i�e� from the reference node toward the top and bottom edges� allows for

maximum exploitation of the inherent symmetry of the formulae that are typeset using

makeVBox� In fact� using higher order functions� usually only one piece of code is needed

to compose both argument lists of makeVBox�

After these preliminaries� here is the de�nition of makeVBox�

fun makeVBox w node upList dnList �

let val h � vlistVsize upList
 vheight node

val d � vlistVsize dnList
 vdepth node

val nodeList � revAppend upList 	node �� dnList�

in vbox �width � w� height � h� depth � d� nodeList end

where the auxiliary function revAppend is given by

fun revAppend �� yl � yl

 revAppend 	x �� xl� yl � revAppend xl 	x �� yl��

Special instances of vertical boxes� From the general function makeVBox� two special

instances are derived where the reference node is at the top or bottom end of the complete

vertical list�

upVBox� dnVBox� dist �� box �� vlist �� box

As in makeVBox� the �rst argument is the width of the box being built� In upVBox� the

reference node �of type box	 is the bottom node� and the whole vlist goes above it�

Function dnVBox works the other way round� the reference node is at the top� and all

other nodes are placed below it� The vlist of upVBox is enumerated from bottom to top�

while the vlist of dnVBox is enumerated from top to bottom�

fun upVBox w box upList � makeVBox w 	Box� box� upList ��

fun dnVBox w box dnList � makeVBox w 	Box� box� �� dnList

There is a subtle di
erence between makeVBox and the two new functions� in makeVBox�

the reference node is of type node� while it is of type box here� This decision was made

by observing how the functions are called� upVBox and dnVBox are always called with a

box� while makeVBox is called with a box or a rule node� It is simpler to use the transfer

function Box� in the bodies of upVBox and dnVBox� than to repeat it in all their calls�

Putting two things above each other� Sometimes� two nodes must be placed above each

other with some white space in between� for instance the two scripts in x��� In this case�

neither of the two nodes can be used as reference node� so that none of the functions

de�ned above is easily usable� Thus� we de�ne yet another function

above� node �� 	dist � dist� �� node �� node�

By a call above n� �s�� s	 n�� node n� is placed above node n� with white space of size s

in between� Parameter s� is the distance from the bottom edge of n� to the baseline of

A Functional Description of TEX�s Formula Layout ��

h�

d� w�

h�

d�
w�

s

�

�

s�
�

�

h � h� 	 d� 	 s�

d � h� 	 d� 	 s� s�

w � max �w�� w��

Fig� �� Two nodes placed above each other

the combined box �see Figure �	� Pairing of the two distances simpli�es the calls of this

function because the two distances are returned as a pair by some other function� The

result of above is a node since all callers expect to see a node�

fun above n� 	s�� s� n� �

let val w � max 	vwidth n�� vwidth n��

val h � vsize n�
 s�

val d � vsize n�
 s � s�

val nodeList � �n�� Kern s� n��

in Box� 	vbox �width � w� height � h� depth � d� nodeList� end

� Formula Terms

The main task of formula layout consists of translating formula terms into box terms� Be�

low� we �rst present the TEX implementation of formula terms� highlight its weaknesses�

and introduce our redesigned implementation�

��� The Original TEX�Representation

In TEX� formula terms are called math lists� Math lists are sequences of math items�

According to the description in the TEXbook �Knuth� ����a� page ���	� a math item is

an atom� a horizontal space� a style command �e�g�� �textstyle	� a generalized fraction

�see Section ���	� or some other material which we do not consider here for simpli�cation�

The description in TEX� The Program uses di
erent names �Knuth� ����b� Par� ���	�

There� the �atoms� plus generalized fractions and several other entities are called noads

�according to Knuth� this word should be pronounced as �no�ads�	�

Atoms have �at least	 three parts� a nucleus� a superscript� and a subscript� Each of

these �elds may be empty� a math symbol� or a math list� There are thirteen kinds of

atoms� some of which have additional parts� Eight atom kinds mainly regulate the spacing

between two adjacent atoms� a relation atom such as ��� is surrounded by some amount

�� R� Heckmann and R� Wilhelm

of space� a binary atom such as ��� by less space� and an ordinary atom such as �x� by

no extra space at all� The remaining �ve kinds of atoms have a more serious semantics�

An overline atom� for example� is an overlined subformula�

This internal representation deserves some criticism� The superscript and subscript

�elds are empty in most cases� there should really be superscript and subscript construc�

tors� The thirteen kinds of atoms combine two completely di
erent aspects� a classi�ca�

tion needed to control spacing� and the adjunction of meaningful constructors� These two

aspects should not be mixed into a single concept� Interestingly� TEX�s layout algorithm

internally tries hard to distinguish these aspects� as we explain by two examples�

Overline atoms are handled during a �rst pass through the formula� After addition

of the overline rule� they are transformed into �Ord� atoms since the spacing of overline

atoms and �Ord� atoms is identical� The actual inter�atom spaces are added in a second

pass through the formula�

Fractions are math items �noads	� but not atoms� Their layout is computed during the

�rst pass of the algorithm� and afterwards� they are transformed into �Inner� atoms� The

kind �Inner� controls the spacing around fractions in the second pass of the algorithm�

Thus� the mixture of di
erent concepts into the same notion entails destructive trans�

formations of the formula data structure� thereby making TEX�s layout algorithm hard

to understand�

��� An Alternative Representation De	ned in SML

To avoid the problems mentioned above� we completely redesigned the internal represen�

tation of formulae� Our formula terms merely re�ect the logical structure of the formula�

They do not contain spacing information except for characters� The spacing attributes

of larger subformulae are explicitly computed during typesetting�

A formula term is an object of type mlist � noad list� i�e� a list of noads �we borrow

this word from Knuth	� Type noad is a datatype with as many cases as there are sorts of

subformulae� There are for instance cases for atomic symbols� for overlined and underlined

subformulae� for superscripted and subscripted subformulae� for operator symbols with

their limits� and for generalized fractions� We do not describe all these cases here at once�

but instead describe them together with their translation to box terms� We hope that this

presentation method avoids redundancies in the description and enhances readability of

the paper�

� Translating Noads into Horizontal Lists

Recall that typesetting of a complete formula is done by the function

MListToHList� style �� bool �� bool �� mlist �� hlist

where the �rst Boolean indicates crampedness� and the second Boolean requests the

insertion of penalties �line breaking information	�

Function MListToHList uses the function

NoadToHList� style �� bool �� noad �� hlist

A Functional Description of TEX�s Formula Layout ��

to translate the noads in its mlist argument into horizontal lists� Insertion of penalty

nodes is handled by MListToHList itself� Hence� the penalty Boolean need not be passed

to NoadToHList� the Boolean argument of this function is the crampedness�

In the course of its work� NoadToHList recursively calls function MListToHList on

subformulae� All these recursive calls are done via an auxiliary function

val cleanBox� style �� bool �� mlist �� box

fun cleanBox st cr ml �

boxList 	MListToHList st cr false 	� no penalties� �� ml�

which accounts for the fact that subformulae do not need penalty nodes� and packs the

resulting horizontal list into a single box�

Below� we present some sample cases of type noad� and de�ne how NoadToHList acts

on these cases� The de�nition of MListToHList follows in Section �� The overall format

of the de�nition of NoadToHList is

fun NoadToHList st cr � fn �list of cases�

so that the function name and the �rst two parameters need not be repeated with every

case� occurrences of st and cr in the description below should be understood as being

the formal parameters of this function de�nition�

��� Ordinary Symbols and Characters

In principle� there is no di
erence in the treatment of speci�c mathematical symbols such

as ��� or ��� and ordinary characters such as �x�� Nevertheless� there are two exceptions�

Big operator symbols such as �
P
� are handled in a speci�c way �see Section ���	� and after

selection of a text font such as �rm or �it� a sequence of characters is joined together as

in ordinary text� Here and in the SML implementation� we did not include the handling

of text characters�

All mathematical symbols are described by a pair consisting of a character code and a

font family�Within a formula term� an additional kind �eld carrying spacing information

is attached to each symbol� Thus� the case of data type noad that corresponds to a single

symbol has format

MathChar of kind � family � charCode

where kind is de�ned by

datatype kind � Ord Op Bin Rel Open

Close Punct Inner None�

Kind Rel� for example� is assigned to relation symbols such as ��� or ���� and kind Open

is used for opening delimiters such as ��� and �f�� The last kind� None� does not occur in
the original TEX implementation�We use it as the kind of those entities that do not have

a kind in original TEX�

The translation of MathChar noads to horizontal lists ignores the kind information� It

is used in a later stage of formula layout when the implicit spacing between adjacent

entities is computed� Also the information about crampedness is not needed� Thus the

MathChar case of NoadToHList st cr looks as follows�

�� R� Heckmann and R� Wilhelm

MathChar	�� fam� ch� �� makeChar st fam ch

where auxiliary function makeChar is given by

val makeChar� style �� family �� charCode �� hlist

fun makeChar st fam ch �

let val 	charNode� itCorr� � basicChar st false fam ch

in extend itCorr charNode end

A further auxiliary function basicChar returns a character node charNode and the italic

correction itCorr of the character� By the last line of code� a white space of length itCorr

is added to the right of the character node� Function extend is de�ned in Section ����

Function basicChar is also called when big operators are typeset� The Boolean pa�

rameter indicates whether the given character is to be enlarged� This does not happen

to ordinary MakeChar symbols� but may occur in the case of big operators� The function

selects a concrete font from the given family� forms a character node� and returns the

amount of italic correction with it� Callers of basicChar may then decide whether the

italic correction is added to the character node or not�

val basicChar� style �� bool �� family �� charCode �� node � dist

fun basicChar st enlarge fam ch �

let val fontNr � fontNumber st fam

val ch� � if enlarge then larger 	fontNr� ch� else ch

val info � 	fontNr� ch��

in 	Char info� charItalic info� end

For fontNumber and larger� see Section ���

��� Overlined and Underlined Subformulae

Subformulae may be overlined or underlined as in x� y � z� The corresponding cases of

datatype noad are Overline of mlist and Underline of mlist� These constructors

are handled by function NoadToHList st cr as follows�

Overline ml �� HL 	makeOver st 	cleanBox st true ml��

Underline ml �� HL 	makeUnder st 	cleanBox st cr ml��

First� subformula ml is typeset into a box by function cleanBox� using the same style st as

the context� Underlined subformulae are cramped i
 their context is cramped �parameter

cr	� while overlined subformulae are always cramped �parameter true	� Being cramped

always means being cramped from above� there is no notion of being cramped from

below in TEX� The subformula box resulting from calling cleanBox is passed to function

makeOver or makeUnder� which adds the line to the box� Both functions return a box

that must be transformed into a horizontal list by HL�

Before we describe what makeOver does� let us consider an overlined subformula such

as x more closely� It is a vertical combination of the box containing x with a rule node

of appropriate width� The rule does not sit immediately at the top edge of x� there is

vertical space in between� Finally� there is also white space above the rule that is invisible

A Functional Description of TEX�s Formula Layout ��

in this example� but a
ects the layout of a formula where an overlined subformula occurs

below something else� The structure of underlined subformulae such as x is symmetrical�

there is a space between x and the rule� and another space below the rule� The reference

point of x and x is that of x in both cases� These are exactly the situations handled by

upVBox and dnVBox �Section ���	� Now� it pays o
 that their behavior is symmetrical�

we may de�ne

val makeOver � makeLine upVBox� val makeUnder � makeLine dnVBox

using a common implementation makeLine for both cases� This was not done in the

original TEX�program�

fun makeLine constrVBox st box �

let val w � �width 	box� box�

val line � rule 	RuleThickness st� w

in constrVBox w box

�Kern 	lineDist st�� line� Kern 	linePad st�� end

Function RuleThickness is a style parameter returning the default rule thickness of the

current style� The �rst Kern is the one between the subformula and the rule� and the

second Kern is that beyond the rule� Their sizes are derived from the current style by

functions

fun lineDist st � � � RuleThickness st

fun linePad st � RuleThickness st

��� Generalized Fractions

A generalized fraction in TEX is� as the name indicates� a very general concept that

includes ordinary fractions and binomial coe�cients as special cases� Because of the

generality of the concept� a generalized fraction is described by �ve components� together

organized as a record�

GenFraction of genfraction

genfraction � �num� mlist� den� mlist� thickness� dist option�

left� delim� right� delim�

The core of a generalized fraction consists of two subformulae to be placed above each

other� The upper one� the numerator� is contained in the num �eld� and the lower one�

the denominator� resides in the den �eld�

The desired thickness of the fraction stroke may be explicitly speci�ed in the thickness

�eld� If the thickness is missing �dist option�	� the default rule thickness of the current

style is used� If the thickness is speci�ed as zero� there will be no fraction stroke at all�

and the rules for the placement of the numerator and the denominator are quite di
erent

from the case with a stroke�

A generalized fraction may be surrounded by delimiters� such as parentheses� that are

speci�ed in �elds left and right� Delimiters may be null� i�e� non�existent� this is a

special value of type delim� We shall say something more about delimiters later on in

this subsection�

� R� Heckmann and R� Wilhelm

Examples for generalized fractions are ordinary fractions such as �
� with a stroke of

default thickness and null delimiters� and binomial coe�cients such as
�
�
�

�
without stroke�

and with parentheses as delimiters�

Typesetting generalized fractions� Generalized fractions are handled by the following

code�

GenFraction genFract �� HL 	doGenFraction st cr genFract�

val doGenFraction� style �� bool �� genfraction �� box

fun doGenFraction st cr �left� right� thickness� num� den� �

let val st� � fract st

val numBox � cleanBox st� cr num

val denBox � cleanBox st� true den

in makeGenFraction st thickness left right numBox denBox end

Numerator and denominator are typeset in a smaller style st� than the style st of the

context� This smaller style is computed by function fract�

val fract� style �� style

fun fract D � T fract T � S fract � � SS

The crampedness of the numerator is inherited from the context �cr	� while the denom�

inator is always cramped �true	� The boxes resulting from numerator and denominator

together with the style and the remaining components of the generalized fraction are

passed to function makeGenFraction�

val makeGenFraction�

style �� dist option �� delim �� delim �� box �� box �� box

fun makeGenFraction st thickness left right numBox denBox �

The width of the central part of the generalized fraction �without the surrounding de�

limiters	 is the maximum of the widths of the numerator and the denominator�

let val width � max 	�width numBox� �width denBox�

Next� the numerator and the denominator are centered within this width by adding glue

on both sides� See Section ��� for rebox�

val numBox� � rebox width numBox

val denBox� � rebox width denBox

Now� the thickness of the fraction stroke is calculated� Remember that parameter thickness

is of type dist option� If no thickness is speci�ed� the default rule thickness of the current

style is used�

val th � case thickness of NONE �� RuleThickness st

 SOME t �� t

Next� the middle part of the generalized fraction is formed� The positioning of the com�

ponents heavily depends on the existence of the fraction stroke� there is no stroke if th

is zero�

A Functional Description of TEX�s Formula Layout �

val middle � if th � zero

then makeAtop st numBox� denBox�

else makeFract st th width numBox� denBox�

Function makeAtop is not presented in this paper� for makeFract see below�

Left and right delimiter nodes are constructed�

val leftNode � makeDelimiter st left

val rightNode � makeDelimiter st right

and �nally� the delimiter nodes are placed around the middle part� and the resulting

horizontal list is packed into a box�

in boxList �leftNode� middle� rightNode� end

Delimiters� In formula terms� delimiters are included as values of type delim� We do

not describe this type here� it contains information so that function

varDelimiter� style �� dist �� delim �� node

can produce delimiter symbols of given vertical size �parameter dist	� depending on

the current style� If the delim argument contains a null value� function varDelimiter

returns a Kern node of size nullDelimiterSpace�

This function is used for two purposes� First� to make large delimiters around subformu�

lae whose size depends on the size of the subformula� this speci�c task is not described

here� Second� the function is used to make delimiters around generalized fractions� In

TEX� the size of the delimiters does not depend on the size of the middle part of the

generalized fraction� it merely depends on the style� Hence� we use the following function

for generalized fractions�

val makeDelimiter� style �� delim �� node

fun makeDelimiter st del � varDelimiter st 	Delim st� del

where Delim is a style parameter�

Proper fractions� Now� we present the layout of proper fractions� i�e� those with a

fraction stroke� It is performed using function

makeFract� style �� dist �� dist �� box �� box �� node�

In a call makeFract st th w numBox denBox� argument st is the current style� th is the

thickness of the stroke� w is the width of the whole fraction and also the width of the

two boxes numBox and denBox� which contain the numerator and the denominator of the

fraction�

In a fraction such as �
� � the stroke does not sit on the baseline� but on the axis of the

formula� As one can see� numerator and denominator do not touch the stroke� there is

some white space between the three visible components of the fraction� The fraction is

formed as a vertical box from its �ve components �three visible ones and two kerns	 so

that the reference point is at the left end of the stroke� Then� the resulting box is shifted

upward so that the stroke moves from the baseline to the axis� This vertical shift can be

safely attached to the fraction box since we know that it will be placed into the context

of a horizontal list by function makeGenFraction�

 R� Heckmann and R� Wilhelm

numerator

denominator

axis

baseline

�

�

axh

��Denom

�

�

fractNum �

�

axisDen

�

�

axisNum

�

�

hden

�
�
distDen

��halfTh
��halfTh

�
�
distNum

�
�
dnum

Fig� � Distances in a �proper� fraction

fun makeFract st th w numBox denBox �

To evaluate this call� we �rst compute half the thickness of the stroke� and the distance

axh from the axis to the baseline which is given by style parameter AxisHeight�

let val halfTh � half th

val axh � AxisHeight st

Then� a node for the stroke is formed� Height and depth are half the thickness so that

later� the stroke will be vertically centered around the axis�

val stroke � Rule �height � halfTh�

depth � halfTh� width � w�

Now� the distances distNum between the bottom edge of the numerator and the top edge

of the stroke� and distDen between the bottom edge of the stroke and the top edge of

the denominator �see Figure �	 are computed by calling function distances with all the

relevant parameters�

val 	distNum� distDen� �

distances st axh halfTh 	�depth numBox� 	�height denBox�

The fraction box is formed from the stroke� which will be the reference node� two kerns�

and the two boxes using makeVBox �Section ���	� Some common work is abstracted out

to the auxiliary function makeList�

fun makeList dist box � �Kern dist� Box� box�

val fractBox � makeVBox w stroke 	makeList distNum numBox�

	makeList distDen denBox�

Finally� box fractBox is shifted from the baseline to the axis� The amount of shift is

negative since the axis is above the baseline�

in Box 	�axh� fractBox� end

A Functional Description of TEX�s Formula Layout �

Distances within a fraction� Unfortunately� the distances within a fraction are not

given directly by style parameters� Instead� there is a style parameter fractNum� which

speci�es the desired distance from the baseline of the numerator to the overall baseline�

By subtracting axh� the distance axisNum from the baseline of the numerator to the

axis results� Subtracting the height of the stroke� which is halfTh� and the depth of the

numerator yields the distance distNum from the bottom edge of the numerator to the

top edge of the stroke �see Figure �	� The calculations for the denominator are similar�

starting with style parameter Denom� Hence� the code for distances begins as follows�

fun distances st axh halfTh dnum hden �

let val axisNum � fractNum st � axh

and axisDen � Denom st
 axh

val distNum � axisNum � halfTh � dnum

and distDen � axisDen � halfTh � hden

The distances computed so far may be too small or even negative if the numerator is

very deep or if the denominator is very high� In this case� the distances are increased to

a minimum value given by fractMinDist�

fun correct dist � max 	dist� fractMinDist st halfTh�

in 	correct distNum� correct distDen� end

Function fractMinDist computes the minimumdistance depending on the style and the

thickness of the stroke�

fun fractMinDist D halfTh � � � halfTh

 fractMinDist � halfTh � � � halfTh

��� Subscripts
 Superscripts
 and Limits

Superscripts and subscripts� Formulae with subscripts and superscripts are� for in�

stance� xi� xn� or xni � They are represented by the following case of noad�

Script of script

where script is the following record type�

�nucleus� mlist� supOpt� mlist option� subOpt� mlist option�

The nucleus �eld contains the main formula� and the two remaining �elds are the two

scripts� where one of them may be missing�

Using two constructors Sup and Sub instead of Script is unsuitable since the case of

both scripts together is typeset di
erently from a mere combination of the two scripts�

Compare for instance the two formula speci�cations �x�i��n and x�i�n which yield�

respectively� xi
n and xni � There is also a subtle di
erence between an empty script �spec�

i�ed by e�g�� x���	 and an entirely missing script� Hence� we must type the script �elds

with mlist option� a simple mlist with the empty list denoting a missing script does

not su�ce�

� R� Heckmann and R� Wilhelm

Big operators and limits� Limits are the scripts attached to big operators such as in

�sum��i����n� While their textual representation in TEX�s input language is identical

with that of scripts� we use a di
erent constructor for their internal representation�

The reason is twofold� �rst� the big operator itself is handled di
erently from ordinary

mathematical symbols� and second� the layout of limits di
ers from that of scripts in

some cases� Scripts are always attached to the right of the nucleus� but limits may be

placed above and below the operator symbol� as in
nP
i��

� which is called limit position� or

to the right of the operator� as in
P

n

i�� �nolimit position	� The position can be in�uenced

by writing �sum�limits and �sum�nolimits� respectively� If nothing is speci�ed �just

�sum	� the position depends on the style� it is limit position in display style and nolimit

position otherwise�

The constructor for big operators is the following�

BigOp of limits � script

where script is the record type introduced above� and limits is a data type of three

values� yes means that limit position is chosen� while no means nolimit position� and

default is the case where the position depends on the style�

Typesetting scripts and limits� Overview� Since the layout of limits in nolimit position

coincides with that of scripts� we use the same general function doGenScripts for both

scripts and limits� The behavior of this function depends on some Boolean �ags�

doGenScripts� style �� bool �� bool �� bool �� script �� hlist

The �rst Boolean is the usual crampedness �ag� the second indicates whether the attach�

ments are to be placed in limit position� and the third keeps the information whether

the function was called while handling BigOp or Script�

When Script is handled� doGenScripts can be called directly�

Script script �� doGenScripts st cr false false script

When handling BigOp� we must �rst decide about the limit position�

BigOp 	lim� script� ��

let val limits � 	st � D andalso lim � default�

orelse lim � yes

in doGenScripts st cr limits true script end

Function doGenScripts performs the tasks common to limits and scripts�

fun doGenScripts st cr limits isOp �nucleus� supOpt� subOpt� �

First� it calls doNucleus �see below	 to typeset the nucleus� The result is a node nucNode�

a �ag isChar indicating whether this node is a character node� and the italic correction

itCorr of this character�

let val 	nucNode� itCorr� isChar� � doNucleus st cr isOp nucleus

Then� it determines the style of the attachments�

A Functional Description of TEX�s Formula Layout �

val st� � script st

recursively typesets the subformulae� note that the subscripts are cramped�

val supOptBox � optMap 	cleanBox st� cr� supOpt

val subOptBox � optMap 	cleanBox st� true� subOpt

fun applyToArgs f � f itCorr nucNode supOptBox subOptBox

and �nally calls makeLimOp in case of limits in limit position� or makeScripts in case of

limits in nolimit position and scripts�

in if limits then HL 	applyToArgs 	makeLimOp st��

else applyToArgs 	makeScripts st cr isChar�

end

The choice of the style for the attachments is done by function script�

fun script D � S script T � S script � � SS

Function optMap f maps NONE to NONE� and SOME x to SOME 	f x��

Typesetting the nucleus� The task of typesetting the nucleus is handled by

doNucleus� style �� bool �� bool �� mlist �� node � dist � bool

where the �rst Boolean is crampedness� and the second indicates whether the function is

called from a big operator context� There are two entirely di
erent cases� If the nucleus

is a single character� it is typeset by function makeNucChar� while otherwise� the usual

formatting function cleanBox is employed�

fun doNucleus st � isOp �MathChar 	�� fam� ch��

� makeNucChar st isOp fam ch

 doNucleus st cr � l � 	Box� 	cleanBox st cr l�� zero� false�

The result of doNucleus is a triple� The third component indicates whether the �rst

component is a character node� this is never the case if cleanBox is used� The second

component is the italic correction of the character in the nucleus� or zero if the nucleus

is not a character�

A nucleus consisting of a single character is typeset by makeNucChar which slightly

di
ers from makeChar that is used for characters in all other contexts� The result of

makeNucChar is a triple of the same format as the result of doNucleus�

val makeNucChar� style �� bool �� family �� charCode

�� node � dist � bool

fun makeNucChar st isOp fam ch �

A big operator in display style is enlarged�

let val enlarge � isOp andalso st � D

Function basicChar which we already met in Section ��� returns a character node and

the italic correction of this character�

� R� Heckmann and R� Wilhelm

val 	charNode� itCorr� � basicChar st enlarge fam ch

Big operators are vertically centered around the axis by axisCenter �see Section ���	�

val nucNode � if isOp then axisCenter st 	boxList �charNode��

else charNode

in 	nucNode� itCorr� not isOp� end

Note that the result of axisCenter is not a character node any more� and thus� the third

component of the result is false in this case� Thus� this component does not indicate

whether the nucleus is speci�ed as a single character� but whether it is a character node

after typesetting �cf� Paragraph ��a in Appendix G of the TEXbook �Knuth� ����a	�

�If the translation of the nucleus is a character box � � ��	� Nevertheless� the second

component holds the italic correction even in the case of big operators where the third

component is false�

Attaching the scripts� We do not include code for function makeLimOp in this paper�

but concentrate on function

makeScripts� style �� bool �� bool �� dist ��

node �� box option �� box option �� hlist

which attaches the scripts �the two box option arguments	 to the nucleus �the node

argument	� The �rst Boolean is the crampedness� and the second tells whether the nucleus

is a character node� The dist argument is the italic correction of the nucleus� The

function distinguishes between four cases� depending on the existence or non�existence

of the two scripts�

fun makeScripts st cr isChar itCorr nucNode �

	fn NONE ��

	fn NONE �� extend itCorr nucNode

 SOME subBox �� makeSub st isChar nucNode subBox�

 SOME supBox ��

	fn NONE �� makeSup st cr isChar itCorr nucNode supBox

 SOME subBox �� makeSupSub st cr isChar itCorr

nucNode supBox subBox�

�

If there are no scripts at all� nothing happens but adding the italic correction to the

nucleus �for extend� see Section ���	� The other three cases are handled by specialized

functions makeSub� makeSup� and makeSupSub� Let us consider these three functions

together�

fun makeSup st cr isChar itCorr nucNode supBox �

let val hnuc � height nucNode and dsup � �depth supBox

val shift � SupPos st cr isChar hnuc dsup

val scriptNode � Box 	�shift� supBox�

in extend itCorr nucNode � extendScript scriptNode end

A Functional Description of TEX�s Formula Layout �

fun makeSub st isChar nucNode subBox �

let val dnuc � depth nucNode and hsub � �height subBox

val shift � SubAlonePos st isChar dnuc hsub

val scriptNode � Box 	shift� subBox�

in nucNode �� 	extendScript scriptNode� end

fun makeSupSub st cr isChar itCorr nucNode supBox subBox �

let val dnuc � depth nucNode and hnuc � height nucNode

val dsup � �depth supBox and hsub � �height subBox

val d � SupSubDistances st cr isChar hnuc dsup dnuc hsub

val scriptNode � above 	Box 	itCorr� supBox�� d 	Box� subBox�

in nucNode �� 	extendScript scriptNode� end

In all three cases� the result is a horizontal list essentially consisting of the nucleus node

followed by a node for the script�s	� In makeSup and makeSub� the script node is the script

box shifted by some amount shift� while in makeSupSub� it consists of the two script

boxes put above each other with some white space in between �see Section ��� for the

de�nition of above	� In all three cases� some white space of constant size scriptSpace

is added to the right of the script node� This is done by

val extendScript � extend scriptSpace�

Finally� note the di
erent usage of the italic correction� In makeSub� it is not used at

all� the subscript is added to the uncorrected nucleus to avoid that it appears too far

away from it �consider f�	� In makeSup� the correction is added to the nucleus lest the

superscript runs into it �consider f�	� Consequently� the correction is not added to the

nucleus in makeSupSub� but used to shift the superscript to the right �consider f�� 	�

Positioning the scripts� The positions of the scripts are computed by SupPos� SubAlonePos�

and SupSubDistances� Let us concentrate on SupSubDistances� This function must re�

turn a pair of dist values� the distance supDist from the bottom of the superscript to

the baseline� and the distance Dist from the bottom of the superscript to the top of the

subscript�

fun SupSubDistances st cr isChar hnuc dsup dnuc hsub �

let val supDist � SupPos st cr isChar hnuc dsup � dsup

Function SupPos is used to compute the desired value for the distance from the baseline

of the superscript to the overall baseline� By subtracting the depth of the superscript� a

�rst estimate for supDist results�

val subDist � SubWithSupPos st isChar dnuc � hsub

val Dist � supDist
 subDist

Analogously� the distance subDist from the baseline to the top of the subscript is com�

puted� The sum of supDist and subDist is a �rst estimate for Dist�

val supDist� � max 	supDist� minSupDist st�

val Dist� � max 	Dist� minSupSubDist st�

in 	supDist�� Dist�� end

� R� Heckmann and R� Wilhelm

If supDist and Dist are too small� they are increased to some style�dependent minimum

values derived from style parameters�

fun minSupDist st � 	xHeight st � �� div

fun minSupSubDist st � � � RuleThickness st

Now we present function SupPos� which is used in makeSup and SupSubDistances� It

de�nes the desired distance from the baseline of the superscript to the overall baseline

as the maximum of three numbers�

fun SupPos� st isChar hnuc �

if isChar then zero else 	hnuc � SupDrop 	script st��

fun SupPos st cr isChar hnuc dsup �

Max �SupPos� st isChar hnuc�

Sup cr st� dsup
 	xHeight st� div ��

The �rst number depends on the fact whether the nucleus is a single character node� If

not� the number provides an upper bound SupDrop for the distance from the top of the

nucleus to the baseline of the superscript� Function SupDrop is a style parameter that

does not depend on the current style as usual� but on the style of the superscript�

The second number is a lower bound for SupPos given by style parameter Sup� This is

the only style parameter that not only depends on the style� but also on the crampedness

cr�

The third number provides a lower bound for the distance between the bottom of the

superscript and the baseline of one fourth of the xHeight of the current style�

The de�nition of the two remaining functions SubAlonePos and SubWithSupPos is of

similar complexity and not presented here�

� Translating Formula Terms into Horizontal Lists

In the previous section� we de�ned function NoadToHList� which translates single noads

into horizontal lists� Here� we de�ne MListToHList� which handles complete mathemat�

ical lists� This involves applying NoadToHList to nearly all noads in the mathematical

list� but there is much more than this�

As in the original TEX implementation� we split the job of MListToHList in two

passes� The �rst pass translates formula terms �type mlist	 into intermediate terms

�type ilist	� and the second pass proceeds by translating intermediate terms into box

terms� The distribution of work among the two passes is slightly di
erent from that in

TEX� The �rst pass recursively handles subformulae and builds fractions� scripts� and

the like� The second pass handles explicit spacing� inserts implicit spacing� e�g�� around

binary operators� and inserts line break points by adding penalties when requested� Be�

cause of this distribution� the cramping information is only needed in the �rst pass� while

the information whether to add penalties is needed in the second pass only� This is a

nice example of localizing information that is held in global variables in the original TEX

implementation�

val MListToIList� style �� bool �� mlist �� ilist

val IListToHList� style �� bool �� ilist �� hlist

A Functional Description of TEX�s Formula Layout �

fun MListToHList st cr pen ml �

let val il � MListToIList st cr ml

val hl � IListToHList st pen il

in hl end

��� First Pass� Mathematical Lists into Intermediate Form

Function MListToIList applies NoadToHList to nearly all noads of the mathematical list�

There are a few exceptions� four kinds of noads which we did not yet present are handled

by MListToIList directly or by the second pass IListToHList� The corresponding cases

of data type noad are�

 MPen of penalty

 MSpace of mathSpace

 Style of style

 Choice of style �� mlist

Cases MPen and MSpace provide explicit penalties and spaces �kern or glue	� respectively�

A noad Style s results from an explicit style command such as �textstyle� It has e
ect

from the place where it occurs until the end of the current subformula� Noads Choice

f represent four way choices� i�e� lists of four subformulae� from which one is selected

according to the current style�

Intermediate lists ilist are lists of entities of type item� Data type item contains

representations for explicit penalties and spaces� which are handled in the second pass�

for style commands� which have to be known in both passes� and for the horizontal lists�

which result from translating noads by function NoadToHList� These lists must not yet

be concatenated since they form units that will be separated by implicit spaces in the

second pass� With every list� information about the kind of its origin is needed� Hence�

type item is de�ned as follows�

datatype item �

INoad of kind � hlist

 IPen of penalty

 ISpace of mathSpace

 IStyle of style

After de�ning the relevant types� we present the code for function MListToIList�

fun MListToIList st cr �

fn �� �� ��

 MPen p �� rest �� IPen p �� MListToIList st cr rest

 MSpace s �� rest �� ISpace s �� MListToIList st cr rest

 Style st� �� rest �� IStyle st� �� MListToIList st� cr rest

 Choice chfun �� rest �� MListToIList st cr 	chfun st � rest�

 noad �� rest ��

INoad 	noadKind noad� NoadToHList st cr noad�

�� MListToIList st cr rest

�� R� Heckmann and R� Wilhelm

Essentially� it is one run through the argument list� Penalty and space noads are copied

into the intermediate form� Style commands take e
ect on the rest of the argument list�

and are copied into the result to take e
ect again in the second pass� Four way choices

are replaced by the appropriate case� Note that the result of a choice is not grouped

into a subformula� but spliced into the argument list without grouping� �This is why it

could not be handled by NoadToHList�	 Ordinary noads are translated into horizontal

lists� which are still grouped together� The kind of the original noad is kept in mind for

the introduction of implicit spaces in the second pass� Function noadKind is de�ned as

follows�

val noadKind �

fn MathChar 	k� �� �� �� k

 Overline � �� Ord

 Underline � �� Ord

 GenFraction � �� Inner

 Script �nucleus� ���� �� nucKind nucleus

 BigOp � �� Op

 �several more cases�

fun nucKind �MathChar 	k� �� ��� � k

 nucKind ml � Ord

��� The Second Pass� Spacing and Penalties

In the second pass through a formula� function

IListToHList� style �� bool �� ilist �� hlist

translates an intermediate term into a single horizontal list� It must insert penalty nodes

if the Boolean argument is true� handle explicit penalties and spaces� and introduce

implicit spaces between adjacent entities� Implicit spaces are the horizontal spaces in

formulae such as x � y or x� y in contrast to x�y or �y� They are not speci�ed in the

formula input� the four formulae above are entered as x�y� x�y� x�y� and �y� respectively�

The implicit space between two entities basically depends on their kinds� There is an

additional non�local dependency for binary operator symbols� in x�y as opposed to �y�
the space between ��� and �y� depends on the presence of �x�� In any case� we need the

kind of the previous entity when IListToHList processes some entity in the intermediate

term� Hence� we de�ne

fun IListToHList st insertPenalty iList �

let fun trans st prevKind � fn �see below�

in trans st None iList end�

Function trans runs through the iList� keeping in mind the kind prevKind of the

previous entity� In the beginning� prevKind is None�

Style commands� explicit penalties and spaces� The �rst four cases of trans st prevKind

are

A Functional Description of TEX�s Formula Layout ��

fn �� �� ��

 IStyle st� �� il �� trans st� prevKind il

 IPen pen �� il �� Penalty pen �� trans st prevKind il

 ISpace sp �� il �� makeSpace st sp � trans st prevKind il

Style commands in�uence the style used for the rest of the input� Explicit penalties are

put into the result without any change except for the constructor� this is a must in a

functional language like SML� Explicit spaces �kern or glue	 are processed by function

makeSpace� style �� mathSpace �� hlist

and the resulting hlist� which is an empty list or a singleton� is spliced into the result�

Note that explicit penalties and spaces are transparent for kinds� they have no kind and

do not in�uence prevKind�

An explicit space �kern or glue	 in a formula may be conditional or unconditional�

Conditional spaces are suppressed in the styles S and SS� while unconditional spaces

show up in all styles� The size of the spaces may be given in absolute units such as pt�

or in mathematical units mu� The size of the latter depends on the style� Hence� function

makeSpace� whose code we do not present here� must perform two tasks� the suppression

of conditional spaces in small styles� and the conversion from mathematical units into an

absolute size�

Handling translated noads� The last case of function trans handles already translated

noads and inserts implicit spaces before them� and implicit penalties behind them� Re�

member that the following code is situated in a context where prevKind is the kind of the

previous entity� st is the current style� and insertPenalty is a Boolean telling whether

implicit penalties are needed�

 INoad 	actKind� hList� �� il ��

let val newKind � changeKind prevKind actKind il

val spaceList � makeSpaceOpt st

	mathSpacing 	prevKind� newKind��

val penaltyList � mathPenalty insertPenalty newKind il

in spaceList � hList � penaltyList � trans st newKind il end

In the next three paragraphs� we discuss the three let bindings in the code above� The

chain of append operations in the last line is reasonably e�cient since the �rst three

operands usually are extremely short lists�

The kind of binary operators� The call of function changeKind deals with the non�local

dependencies in the computation of implicit space� If actKind is Bin and the current item

occurs in a non�binary context� then actKind is changed into newKind � Ord� otherwise�

newKind equals actKind� Non�binary contexts can be detected by inspecting prevKind

and the kind of the �rst INoad�item in rest� In �y� for instance� ��� occurs in a non�

binary context and is assigned kind Ord� while its kind remains Bin in x � y� Thus�

changeKind is de�ned as follows�

val changeKind� kind �� kind �� ilist �� kind

� R� Heckmann and R� Wilhelm

fun changeKind prevKind Bin rest �

if checkPrev prevKind orelse checkNext 	listKind rest�

then Ord else Bin

 changeKind � k � � k

Functions checkPrev and checkNext check whether their argument is in a certain list of

kinds�

val checkPrev � contains �Bin� Op� Rel� Open� Punct� None�

val checkNext � contains �Rel� Close� Punct� None�

Function listKind returns the kind of the �rst INoad item in its argument list�

val rec listKind �

fn �� �� None

 INoad 	k� �� �� � �� k

 � �� t �� listKind t

Implicit spacing� The implicit space between two adjacent INoad items of given kind

is computed by function

mathSpacing� kind � kind �� mathSpace option�

This function implements the table in �Knuth� ����a� page ���	 that speci�es the amount

of space to be inserted between two adjacent items of given kind� Some combinations of

kinds are not separated by additional space� To handle this case e�ciently� the result

type of function mathSpacing is mathSpace option�

Within function trans� the result of mathSpacing is further processed in the same

manner as explicit spaces using function makeSpace�

fun makeSpaceOpt st � fn NONE �� ��

 SOME sp �� makeSpace st sp

Implicit penalties� Inline formulae contain implicit penalties allowing for line breaking�

They are computed by function

mathPenalty� bool �� kind �� ilist �� hlist

the result of which is either an empty list or a singleton containing a penalty node� If the

Boolean argument is false� there are no penalties at all� Otherwise� penalties are added

behind items of kind Bin or Rel� but only if the following ilist is not empty and does

not start with a relation operator or an explicit penalty item�

� Conclusion

Our formula layout system has been implemented in the language Standard ML of New

Jersey� version ����� This implementation is far more comprehensive than the algorithms

described in this paper� The core system� i�e� function MListToHList and all its auxiliary

functions� completely covers the typesetting of all kinds of formulae except for math

A Functional Description of TEX�s Formula Layout ��

accents �e�g�� �x	� roots �e�g��
p
 � �

p
�	� the construction of big delimiters from small

pieces� and ordinary text occurring in formulae� The addition of these features is planned

for the future�

Besides the core system� we have implemented the preprocessing phase� which provides

style parameters and font information such as character dimensions� There are also func�

tions which translate box terms into �dvi code� and construct a �dvi �le of correct global

format� Thus� the results of our algorithm can be considered on the screen or printed�

The system is still evolving� The current version is available in directory formulae of

the ftp server ftp�cs�uni�sb�de of the University of the Saarland�

The motivation for this reimplementation e
ort originated from an attempt to under�

stand and teach TEX�s formula layout algorithm�The primary source� the TEXbook �Knuth�

����a	� did not provide su�cient clues about the method despite long and desperate at�

tempts to understand it� Its description re�ects the structure of the program with very

complex control �ow and destructive manipulations of global� ill designed data struc�

tures� This data structure� the internal representation of mathematical formulae� com�

bines several orthogonal properties in an unintelligible way using some �elds in parallel

and consecutively for di
erent purposes� It occurred that a formulation in a functional

language clari�ed the method and enabled us to e
ectively teach about this subject�

The resulting SML program will be extended to cover the full set of formulae� Due to

the modular structure it can be included in new contexts in need of a module for formula

layout�

Some more speci�c properties of our implementation are as follows�

� De�ning an adequate data type of formula terms separates concerns� i�e� spacing

aspects from structure aspects� This is of great help for a better understanding of

the algorithm�

� Though not optimal� the data structure of boxes and nodes represents a reasonable

compromise between the original TEX types and the needs of a functional language�

� Using a functional description language forced us to transform the updatable global

variables of Knuth�s description into explicit function parameters� On the one hand�

this adds complexity to the description� but on the other hand� the �ow of infor�

mation becomes visible� it can be seen where information comes from� where it is

updated� and where it is used� Thus� it becomes apparent which subtasks depend

on others� and which are independent from each other�

� The functional programming style discourages changing or removing entities that

have already been constructed� This in particular concerns the white space carrying

the italic correction� which is not built by our system before it is de�nitely known

that it is required�

� Some constructs� e�g�� limits in limit position� were not treated here for space rea�

sons� They do not o
er fundamentally new problems� and are included in the actual

implementation�

� Some postprocessing parts of the algorithm look somewhat �imperative�� These

are those where some subformulae are positioned independently of each other

only to detect afterwards� that certain minimal distances between them are not

satis�ed �see for instance function distances used for fractions� and function

�� R� Heckmann and R� Wilhelm

SupSubDistances for superscripts and subscripts occurring together	� It would

be nice to have a declarative manner for stating such constraints� with auto�

matic means for building a formula from its subformulae� or more generally� a

two�dimensional diagram from its components�

Acknowledgements

We appreciated the detailed and constructive reviews we received� These have contributed

to a greatly improved presentation� Our thanks go to the reviewers�

References

Knuth� D� E� ����a� The TEXbook� Addison Wesley�

Knuth� D� E� ����b� TEX� The Program� Addison Wesley�

Paulson� L� C� ����� ML for the Working Programmer� Cambridge University Press�

Wilhelm� R� and Heckmann� R� ����� Grundlagen der Dokumentenverarbeitung�Addison Wesley�

