
Analysis of a Web User Interface for Mathematics:
Experiences with Integral Queries for TILU

(Table of Integrals Look Up)

Richard Fateman
Timothy James

Computer Science Division
University of California, Berkeley

Abstract

What can we learn from the range of over 7000 queries made
to TILU, a symbolic integration problem-solving server [1]
during the course of more than two years? We have saved
all queries during this experiment, and based on our analy-
sis, and experimented with improvements in the computer-
human interaction components of our web server. We be-
lieve our experience will be useful in the design of similar
servers that require human input of mathematics.

1 Introduction

TILU
1[2] serviced 7363 queries from the date it started run-

ning through January 26, 19982 6995 of these queries were
successful, meaning TILU gave back an answer as opposed
to stalling without a response. Not all these answers were
useful, but then, not all the questions made sense.

The base program has undergone some change during
this period, and there was never a controlled audience: it
was made available over the internet immediately. We have
received complaints that this was not a carefully controlled
experiment, and that is certainly true. This paper neverthe-
less reports experiences with this setup. The program and
the web page interface has evolved subject to three pres-
sures:

• The need to handle bad input: Numerous ill-formed
inputs changed (mostly lowered) our expectations of
what users could be expected to enter into a web form.
We found certain categories of gross input format er-
rors could be warded off simply by eliminating options.
As a simple example, we initially asked the user to
type in the variable of integration. We found instances
in which the user apparently did not understand this
instruction and typed the integrand, or deleted the de-
fault entry leaving it blank. Now we simply tell the user
we will integrate with respect to x, thereby removing a
whole class of errors.

• The need to make the web page easier to use: We
looked at our web pages through various browsers set at
various resolutions and font sizes, Moving critical parts
of the page (buttons) upward within the “first page”

1http://http.cs.berkeley.edu/~fateman/htest.html
2Although TILU’s usual host machine has not always been up, the

traffic has increased so that it has fielded an average of 291 queries
per month between April 1998 and May 1999.

became an important priority. Other “web design” is-
sues included making the instructions more prominent.

• The need to make the design and implementation more
robust: The underlying program was written as an
experiment. Putting it into production uncovered a
variety of typographical errors, blunders, and loose
ends. Even after making the program relatively secure
against unsyntactic input, it took more effort to make
the program relatively robust against web communi-
cation problems. For errors related to browser con-
nections, we now record such problems but return the
program to a standard state. Previously we had es-
tablished the practice of accumulating suspended light-
weight processes for debugging. We would run out of
the processes since we began to leave the system run-
ning unattended for weeks at a time.

2 Who has been using TILU?

The data that we analyzed consisted of those queries that
had domain names associated with them. Many of the
queries came from sites that did not send their hostname,
but instead sent their IP address, which we do not log. This
makes it difficult to know where they originated, although
it remains possible for us to analyze these entries at a later
time.

There were 3500 successful queries that had domain
names associated with them. Of these 3500, 349 were from
the Berkeley.EDU domain. Many of these were associated
with our own tests and have been removed from the analy-
sis. This brings the number of queries to analyze down to
3151. Of these 3151 queries, we selectively analyzed in more
detail, 1015.

Our most popular non-Berkeley sites were as follows:
We partitioned the queries into those from domains with

fewer than 5 queries total. and those from domains with at
least 5 queries total.

We believed that domains with fewer than 5 queries
would be more prone to grammatically incorrect requests,
and that sites somehow “learned” the syntax from experi-
ence. Our speculation was correct, but experience was only
a modest predictor of success.

Under these two groups, we analyzed most single do-
mains that had fewer than 5 requests. For those domains
that had at least 5 requests, we selected a few to analyze in
detail.



Connects Location
1008 Domain .edu

(excluding Berkeley)
62 MIT
61 Stanford
53 Purdue
43 UCSB

653 Domain .com
49 Compuserve

260 Domain .net
53 uu.net
32 att.net
81 .gov

Domain: non USA
202 France
189 Germany
118 Sweden
77 Finland
71 Canada
60 Great Britain
53 Switzerland
51 The Netherlands
43 Australia

Table 1: Major sources of queries

The results are sorted by “frequent” and “rare” The “fre-
quent” results come from domains with at least five requests.
The “rare” results are those that come from domains that
had fewer than five requests. Since our characterizations
are done “by humans” we may have misunderstood the na-
ture of the users’ misunderstandings, but our results are as
follows.

Some explanations are needed: GIGO stands for
“Garbage In, Garbage Out”.

“*” means that it was a correctly formed request, but
TILU did not find the answer. “good” means we solved the
problem that was posed: correct input and correct output.

Our web site gave users the choice of using Lisp syntax
or Mathematica (MMA) syntax.3

3We liberalized the “Mathematica” language category in various

freq rare
good (*) 240 109
GIGO - bizarre input 106 45
GIGO - used the wrong language 78 28
(LISP instead of MMA
or vice versa)
GIGO - used “mathese” 61 52
TILU error - failure of (*) 92 31
TILU couldn’t find integral (*) 54 18
user attempted def. int. (*) 16 10
“integral not found” (*) 16 7
User put request in variable 9 6
of integration box
User left integrand blank 7 14
Miscellaneous (*) 10 5
Totals 689 326

Table 2: Results

Many people ignored our pleas to use some well-defined
syntax: they appeared immune to any advice. Our conclu-
sion is that one should not expect web users to read the on-
line equivalent of even the briefest syntax manual. Of course
anyone using such a system must provide mathematical in-
put in some form and thus, one might reasonably expect
that each user had to come to grips with the problem. We
did not realize the extent to which humans assumed that
there was a human-like intelligence on the other end to fig-
ure out any old typed material. We call the language used
by people who wished us to figure out their made-up syntax
“mathese”. One web visitor even sent us, via the email com-
ments route, a scanned image (in JPEG form) of a scrap of
paper. He asked us for help with his extra-credit calculus
“project.”

Some people insisted on typing “integrate(...)” instead
of just the integrand.

Some users attempted definite integrals of simple prob-
lems, such as sin(x) between 0 and 1. We deliberately didn’t
handle these: we have a short table of “difficult” definite
integrals, but we don’t use the fundamental theorem of cal-
culus to substitute values into indefinite integrals. If we in-
tended to be more useful, we would obviously need to do this
too. Although we did not intend TILU to be a substitute
computer algebra system, the users had no such prejudice!

When the integration problem was successfully posed
and yet TILU could not find the requested integral, there
were two common explanations.

• Some failures were caused when a relatively simple
problem was submitted that could easily be done by
table lookup or (more likely) by a simple algorithmic
transformation followed by table lookup, but not di-
rectly in the form given. These were typically prob-
lems that could be done by substitution or the simple
“derivative divides” method that can be implemented
in a few pages of code, given appropriate “symbolic
mathematics” support (It requires that one be able to
compute derivatives and divide polynomials. As it hap-
pens, in the on-line TILU we have removed these facil-
ities!)

• The second type of failure at this stage were typically
caused by requests to integrate expressions that were
overly complicated and would likely not be done by any
computer system: they simply fail to have a closed form
symbolic solution. While some may involve functions
unknown to TILU, or symbolic constants, others are ar-
rangements of functions that are suitable for numerical
quadrature.

Some observations from these tables: For most domains,
about 34% of the problems are solved; If there are few inter-
actions from a domain there is nearly a 1 in 2 chance of the
problem being erroneously formed. For the frequent users,
over 62% are well formed. Subsequent to our data gather-
ing, we encountered some determined users who learned the
syntax and checked their calculus homework: their success
rates were quite high but atypical.

Some anecdotal observations:
Probably the most common question was a request to

integrate (sin x). Some people visiting saw this work and
then never came back!

ways, for example, to permit sin[x] even though Sin[x] is required
by that system. Although we did allow sin(x), the Mathematica
interpretation as the product of a constant named sin and the variable
x was undoubtedly wrong to most, if not all, users.



People often attempt to integrate the same problem over
and over, sometimes with minor variations in the input, but
sometimes without any change at all. Sometimes we found
the same successful problem posed repeatedly, too. It could
be that users are uncomfortable with their browser software
and end up re-submitting the same problem by accident, but
this seems unlikely to explain all the input.

3 Improving the user interface

We remain somewhat cautious in our analysis, since our ex-
perimental data is not all from the same experiment! The
early users had our early interface! We think the changes
listed below have been helpful, but have no controlled ex-
periment to quantify this. It would be possible, by viewing
the progression of errors types subsequent to these changes,
to try to judge their effects, but we would prefer to believe
that we now have a qualitatively better base for design test-
ing in the future, and that our time would be better spent
field testing the effectiveness of design changes around this
base.

We have already mentioned

• Forced Choices. We removed the option that allowed
the user to state the variable of integration. We forced
the options so that we will integrate with respect to x.
This seems to have been a success.

• The Wakeup Call. We initially set a default language
choice for the user, to save time. By setting a default,
visitors were encouraged to ignore the issue of commu-
nicating math in an agreed-upon syntax. They made
up some “mathese” language perhaps assuming that
some clever person would be able to figure it all out.
After thinking about this, and finding that more insis-
tent messages pleading with users to “learn the syntax”
were being ignored, we removed the default and made
it imperative that the user choose a language, at least
on the initial visit to the TILU web site. The intent
was to make a wake-up call to the user: inform the user
of the requirement that some well-defined agreed-upon
language must be used for math. This is a more subtle
requirement than might seem at first. (Note that to
us, the mathese notation “sin x” or “Sin x” is simply
sin*x whose integral is sin ∗ x2/2). This is not offi-
cially an error, though the user may be puzzled by the
answer.

• The Customer Defines the Sale. We can figure
out what the visitor expects TILU to do, and respond
correspondingly.

4 Great Expectations

In the previous sections we suggested that the expectations
of the visitors should be used as a cue to altering our design.
Here we reiterate some of the experiences and expand on a
selected few.

One way to solve the problem of people attempting “triv-
ial” definite integrals between not in our table (or anyone
else’s!) is by addressing this issue specifically. There are
several approaches. One is to detect these and separate
them into

1. Numerical integrals: either complain about this or, if
computing time is of no import, run a quadrature pro-
gram. We hesitate in Tilu to embark on substantial
calculation or end up trying to explain a result that
might be low in accuracy. An appropriately phrased
response might get us off the hook regarding accuracy,
but our policy [2] of returning in 10 milliseconds would
clearly have to be abandoned if we included a good
numerical quadrature program in Tilu. Reliable adap-
tive programs for numerically integrating any expres-
sion that can be typed in, cannot be guaranteed to
finish in such a brief time. If we were to do this, we
might as well allow arbitrary integral endpoints, rather
than the “choose one from a menu” approach which we
have used so far.

2. Use the fundamental theorem of calculus. (plug in the
limits and subtract) Quadrature is not possible for an
integrand with symbolic parameters or symbolic end-
points. If the solution is not stored as a definite in-
tegral, but is stored as an indefinite integral, assume
the result is free of singularities: evaluate the indefi-
nite integral at upper/lower limits and return the an-
swer, probably with a warning. At the moment, Tilu

has a rudimentary evaluation program (really a simpli-
fier), but actually does not at the moment know about
floating-point evaluation. The underlying Lisp system
library supports IEEE floating-point and elementary
functions, and so could be fairly easily exploited if nec-
essary; we also have an arbitrary precision float package
as well as interval arithmetic support. Since some peo-
ple seem to think

√
x can be written as x^0.5 we have

mapped this form to be equivalent to that produced by
Sqrt[x] or x^(1/2).

Another kind of expectation is that we will be able to
parse mathese. That is, we should read sinx as sin(x) and

sin x exp x as sin(x)ex and exp xx as ex
2
. All these ex-

amples are taken from our logs.
We have also encountered the “floating-point fraction”

problem in which x^0.5 is used to denote
√
x. In response

we have mapped this form to be equivalent to that produced
by Sqrt[x] or x^(1/2).

Can we do better? How far can we go in “reading
minds”? It is plausible to restrict the use of lexical tokens
such as sin so that they are always operators: a successful
parse that results in an interpretation of sin as a constant
is worth questioning for several reasons. Variables in con-
ventional mathematics are single characters. Therefore sin
could even be interpreted as a product of s*i*n. Implau-
sible, but we have seen xx presumably meaning x2. If an
expression contains additional variables that have an em-
bedded x, then there is also a suspicion of error.

Even though we may frown on the use of different brack-
ets such as {} and [] in out expressions, can we adapt to
this?

Although we have not hooked this up to Tilu, we in
fact have a demonstration program that parses an infor-
mally specified math syntax (actually TEX) into a formal
system. Interestingly, one of the toughest problems is to
disambiguate spaces.

It is clear that forcing the user to read some document
explaining how he was responsible for bad input is not the
road to popularity or usefulness: Defensive programming is
not only an issue of defending yourself against invasion or



against misuse, but also an issue of providing a result that
makes sense even to someone with incorrect input.

Since one cannot rely on users to read any manual what-
soever, further development of this or any web interface must
seriously consider adding to the capabilities of the program
those features that a user might conceivably expect to see
in the (unread) manual! After all, if you call a program “in-
tegrate” is it a bug if it does not integrate some expression?
On this basis one could easily say that it is necessary to
modify TILU so that it computes numerical quadratures.
Granted this could be viewed as orthogonal to the stated
objective of writing a program for “Symbolic integration by
table lookup.”

5 What if we really don’t know the answer?

Sometimes we simply don’t know the answer, and TILU

responds with “failure.” This can be ameliorated in at least
three ways.

• The first is by adding additional integrals to our table,
either from additional published sources or by automat-
ically generating answers by computation and storing
them. We are pursuing incorporation of the full com-
plement of integration formulas from a major table of
integrals (Gradshteyn and Rhyzik). This work, some
of which can be done by “parsing TEX” from the Aca-
demic Press CD-ROM has been done with graduate
student Eylon Caspi [3]. Methods of generating inter-
esting integral formulas are possible as well [1].

• The second method, which was added in October, 1998,
was to take advantage of other “agents” on the world-
wide web: We ship unsolved integration problems to
www.integrals.com, run by Wolfram Research Inc.
This method required two new capabilities, neither of
which presented much of a technical challenge: con-
verting our internal Lisp form to Mathematica’s string
notation, and the second was modeling a net interface
on the query/response model a browser would use to
access WRI’s web site.

• A third method would be to include more algorithmic
smarts locally: taking the integration programs eas-
ily re-usable from other Lisp programs including our
own mock-MMA, or the more elaborate system in Mac-
syma. We have not done this because our initial goal
of keeping the interaction cost to the host quite small
(10 milliseconds) would be violated.

6 Future Directions

A simple alternative we have considered is attempting to
parse mathese more effectively. Clearly the Mathematica or
Common Lisp choice of syntax is a barrier to our customers.
Perhaps Macsyma or Maple syntax would be better: they
allow sin(x) rather than Sin[x]. Yet they require x*y for
multiplication, rather than x y in Mathematica. Defining
our own syntax which would parse sin(x+y) as a function
application but a(x+y) as the product a*(x+y) is possible,
especially since we have faced that prospect in reading inte-
gral tables (to pump up Tilu with more data).

A more drastic alternative we are currently pursuing is
to force syntactic correctness by providing a web Java page
with a template-based input system. The design for this

restricted-input system can be similar to that used in Milo
or Theorist [4], or the student-oriented front ends that have
been constructed for Maple. Of course for this to work fully
in our environment the parser must either be in a Web plugin
or downloaded as a Java applet.

One prototype of this is being constructed by students
Eric Heien and Gifford Cheung. This began in the context
of Heien’s Java-based graphing calculator applet (similar to,
but not nearly as sophicated as, the Macintosh graphing
calculator) with the simplest possible input from a tem-
plate. We are revising this program, currently accessible
as www.torte.berkeley.edu/~eheien to provide varieties of
input comparable to palette/template inputs in computer
algebra systems, as well as rapid feedback on incorrect or
correct forms as they are being constructed. This interface
might be used to generate not only our Lisp-based syntax,
but some MathML or XML style result, should that be of
interest.

The initial template is a calculator keyboard with the
usual keys for arithmetic, trig functions, “inverse” and “hy-
perbolic”. In addition to graphing, one can select functional
symbolic outputs such as derivative or (numerical) integral,
and “convert to lisp expression”. This is far less sophisti-
cated than non-applet alternatives, in particular the work on
interactive context-bound templates and notations in Math-
ematica described by Soiffer [4].

We are also pursuing another interface design, using 2-D
handwritten input.

From a historical perspective, there have been numerous
“proof of concept” 2-D handwritten mathematics parsers
ranging back to 1968, yet they seem to fail to pass some
barrier required for more sophisticated input. This is not to
deny that free-form input, say by allowing questions to be
written on scraps of ordinary paper and submitting them
to a computer would be impressive, just that none have yet
survived to production status.

We believe that parsing handwritten mathematics incre-
mentally and online is possible, especially if we compel the
user to write in certain freshly displayed empty boxes whose
positions and initial sizes depend on what has been written
so far. (It is also possible to edit the contents of boxes that
have already been filled, and it is also possible to use con-
ventional keyboard input to insert characters into boxes, say
tabbing from one box to another.).

Our speculation is that a useful system could involve
some modest aids to better recognition accuracy: restricted
character set for example. The experiences of ordinary
handwriting recognition systems (vastly assisted by the
Graffiti system, a text input scheme available on Palm Pilot
computers) should be relevant.

Clearly a static grid is inadequate if the characters are
of varying size and the positions are not grid-aligned. The
grid must vary with the context. For example, writing a

∑
would create boxes in directions North, South and East for
additional handwritten input. By contrast, a simple name
may be super/subscripted or merely horizontally concate-
nated to the East. In the absence of a good stylus input,
cycling among the possible boxes could be done by tabbing
or mouse pointing, and in our prototype we provide stubs
for the handwriting component by allowing ordinary typing
into boxes.

This design is still quite preliminary, and given the lim-
ited handwriting recognition tools available as Java applets,
as well as the difficulty of writing with a mouse, may not be
ready for web deployment in the near future.



7 Conclusions

A huge percentage of the people using the World Wide Web
are, of course, quite unconcerned with symbolic integration.
One might expect that those who are on the prowl for so-
lutions to calculus problems would constitute a select few,
and that these elite would be able to successfully type in
linearized mathematics notation. Not necessarily so.

Our evidence of the difficulty reinforces the anecdotal
evidence that has plagued many projects using computers in
mathematical courses, either in labs, self-paced instruction,
or as tools for projects or homework.

• The computer algebra system (CAS) presents a barrier
to students who must learn syntax for the computer
that is different from the already obscure notation used
on paper (what is “dx” after all?).

• The CAS, at least for the average non-science student
who just wants to get through calculus and will never
encourage a cosine again, represents another thing to
learn, and we should not assume that it will be per-
ceived as an aid to learning basics.

• We fear that the CAS will get incorrect or in some way
unexplainable answers, which the user will blindly ac-
cept; if it gets correct answers, even those may require
ever more attention to the computer mechanism rather
than the mathematics.

Regarding further developments, we may remind the
reader that our original intent in building TILU was to pro-
vide a math “Internet agent” to be used by traditional, desk-
top computer-resident algebra systems. TILU was to be fed
problems from such systems, over the Internet. With the
exception of a one-time only experiment, no one outside our
own group took us up on this, however. The practicality of
this has been demonstrated by our own use of the Wolfram
integrator as an Internet agent, and so perhaps there is hope
if others in the computer algebra community can similarly
join in.

The point of this paper is a diversion to study the prob-
lem of mathematical input on the world-wide web. Perhaps
we will see a re-usable and downloadable mathematical in-
put module, either Java-based like Biscotti, or via some well-
distributed plugin. Or perhaps we will see a more sophisti-
cated approach using an internet agents that can read and
interpret handwritten math.

8 Acknowledgments

Some of this work was supported indirectly by NSF infras-
tructure grants to the Computer Science Division, EECS,
University of California, Berkeley. Timothy James was sup-
ported in part by an undergraduate research grant from the
College of Engineering.

References

[1] T. H. Einwohner and R. Fateman, “Searching Tech-
niques for Integral Tables,” Proc. of Int’l Symp. on
Symbolic and Algebraic Computation, ISSAC-95 (ACM
Press), Montreal, CA, July 1995, 133—139.

[2] Richard J. Fateman, “Network Servers for Symbolic
Mathematics,” Proc. of Int’l Symp. on Symbolic and

Algebraic Computation, ISSAC-97 (ACM Press) Maui,
Hawaii, July, 1997, 249—256.

[3] Richard J. Fateman and Eylon Caspi, “Pars-
ing TEX into Mathematics” unpublished,
www.cs.berkeley.~fateman/papers/parsing_tex.ps

[4] Neil M. Soiffer, The Design of a User Interface for
Computer Algebra Systems. Ph.D thesis, EECS Dept.,
Univ. of Calif, Berkeley, April, 1991. See also Soiffer’s
“Mathematical Typesetting in Mathematica,” Proc. of
Int’l Symp. on Symbolic and Algebraic Computation,
ISSAC-95 (ACM Press), Montreal, CA, July 1995, 140–
149.

9 Appendix

How hard is it to run a socket from Lisp, reading characters
and writing them?

Here is the Lisp command that must be run in
Allegro Common Lisp to allow connection on port
9015 of the host machine to the biscotti java pro-
gram, which must by java security conventions,
be downloaded from the same machine (currently
torte.cs.berkeley.edu): (mp:process-run-function
"server" #’biscotti-server 9015)

The program itself consists of two parts, the server at-
tached to the port, and the connection program. We have
omitted the details of the work that is done by COMPUTE-
ANSWER which includes parsing the input line (presum-
ably a character string correctly parenthesized for lisp), and
producing the answer ready to be printed out to the con-
nection.

(defun biscotti-server (port)
(let ((socket (socket:make-socket
:connect :passive :local-port port)))

(unwind-protect
(loop
(let ((*con* (socket:accept-connection socket)))

(mp::process-run-function
"biscotti-process"
#’biscotti-connection *con*)))
(close socket))))

(defun biscotti-connection (*con*)
(ignore-errors
(format *con* "~s~%"
(COMPUTE-ANSWER (read-line *con* nil nil) )
(close *con*))))


