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Abstract

This is a short introduction to an implementation of interval arithmetic data structures and operations
for the Maxima computer algebra system. We expect that further algorithms necessary to implement
the forthcoming IEEE 1788 standard for interval arithmetic can be readily fit into this structure.

1 Introduction

Computer algebra systems (CAS) have a quite flexible way of introducing new concepts into their math-
ematical systems: functional notation. In particular, it is tempting to just introduce an interval which
mathematicians might write as [a,b] in Maxima by typing interval(a,b). Using this most obvious repre-
sentation of an interval and using the usual techniques for programming operations with it results in some
uncomfortable consequences. In particular, one encounters the so-called dependency problem. We can fix
this and then proceed to build one (or several different) models for intervals that are more convenient for
users.

2 Why the obvious method is unsatisfactory

If interval(1,2) is an implementation for the interval consisting of some x such that 1 ≤ x ≤ 2. then
interval(1,2) - interval(1,2) is, by the standard simplification for x - x, reduced to 0. This is correct
if the computation is of s − s where each s is the same interval(1,2). On the other hand, it is not zero
but interval(-1,1) if the computation is of s− t where t is some other y such that 1 ≤ y ≤ 2. That is, t
is independent of s.

These kinds of results affect other operations as well.

3 A solution

There are many solutions possible, see Fateman[3] for a more expansive discussion of alternative representa-
tions in an algebra system. Also, we may wish to support some of the numerical tools which can be found
on internet for interval computations. However, our context is different. We are not restricted to endpoints
consisting of machine-precision floating-point approximations. We are capable of manipulating symbolic
expressions which are later committed to interval evaluation, e.g. 9x2 + 24x + 9 is inferior, as an interval
expression, to (4 + 3x)

2 − 7. We would also like to be compatible with the forthcoming IEEE standard
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1788 for interval arithmetic1. Our favorite solution to the dependence problem is to use Lisp structures for
intervals. The Maxima system sees the intervals, at least “at first glance”, as atomic symbols. Thus we can
define a program to be used as ri(1,2) to constructs an “atomic” real interval representing x for 1 ≤ x ≤ 2.
Uttering ri(1,2) a second time constructs a different atomic object that happens to have the same values
(1,2) stored internally. Maxima simplifies the difference of two identical structures (that is, stored in the
same memory location) to zero, but not if two such intervals are independent. The independence problem
is solved.

Arithmetic is defined in the usual prescribed manner first by using accessor functions to extract upper and
lower limits from the operands, perform arithmetic (with rounding as appropriate) and build new interval
objects. A method for printing must also be supplied, and we have decided that it would be better to have
an unambiguously different display for intervals. We have programmed <1..2> to be the display format for
the interval produced by (for example) typing ri(1,2).

4 Endpoints

We are considering real intervals, and so the form ri(a, b) is acceptable only if a, b are Maxima (real)
numbers, with a < b. Maxima real numbers include integers like 1, rationals like 1/3, floats like 3.14, bigfloats
like 3.1415b0, decimal bigfloats (if the decimal package is loaded) like 3.1415L0. An argument can be made
that an interval implementation in a CAS should allow symbolic expressions as endpoints, hence ri(x*y,

z+cos(w)). While this would be consistent with the “symbolic” philosophy that anything that is ordinarily
numeric can be symbolic in a CAS. Unfortunately, computing with such endpoints rapidly becomes quite
clumsy. Arguably there are no compelling large-scale applications for such intervals, but this may be because
this feature has not been available2. There is an important edge case to consider, when endpoints are not
quite numbers. It is necessary to allow the representation of intervals open at infinity, e.g. x such that
0 ≤ x < ∞. These can easily be produced if one divides by an interval containing zero. Thus representing
intervals naturally requires a way of denoting infinity. The Common Lisp standard does not require IEEE
754 floating-point representations, but most3 implementations allow the creation and storage of instances
of (for example), double-float-positive-infinity. That, and its negative, are what we use for these forms. By
convention, such intervals do not include infinity.

Furthermore, the IEEE 1788 standard needs representations for “not-an-interval” (NaI) and “empty
interval” supplied either by special interval objects, or symbols. For example, [a, b] with a > b is empty;
to be specific, 1788 suggests [∞,−∞]. A NaI may involve floating-point NaNs (Not a Number) but the
standard does not constrain the format.

There is an important issue that arises, since a package to do operations on intervals must do more that
arithmetic on intervals per se. Among these: we can try to extract an endpoint from an “improper” interval
<-oo..oo>. What are we to see? One possibility is to signal an exception. This seems harsh at first glance,
but if we can test for improper intervals perhaps we can side-step this possibility. Even more extreme, note
that extracting left/right endpoints from NaI cannot yield any regular number, so a careful program must
either check for the NaI (again, extracting an endpoint results in an exception), or later check for the value
(whatever is extracted) before the next step, which might be arithmetic or comparison.

If we return one of the IEEE 754 floating-point number “infinities”, or for NaI, a NaN, we then must
support further operations on them. Since intervals may not even involve floats, as for example z=[-1/2,
1/3], why should 1/z involve floats? The endpoints of z are rational, so should the endpoints of 1/z be
rational infinities? Are we talking nonsense here?

Perhaps we should return symbols, which have been used for decades in Maxima, but whose support is
spotty: “inf” or “infinity”. (Note: Maxima, in its standard configuration will simplify “inf-inf” to zero.)

1http://grouper.ieee.org/groups/1788/
2Mathematica 10 allows for the construction of such intervals, but does not appear to perform any manipulations on them.
3Notable exception is the popular implementation CLISP.
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Consequently, our current design is to return an indexed object such as infinity[n] with a running,
automatically-incremented index. There are other choices we have examined and implemented including
changing the system to allow 1/0 as acceptable data to return as representing infinity. In such a system with
related other rational-like objects, we can also construct something akin to “not a number” by using 0/0.
It would be trivial to make this change to the interval data design, but there are ramifications for existing
programs.

In particular, this rational number style frees the representation of ∞ from the domain of IEEE floating-
point but requires that we insert new checks in Maxima’s simplifier code to treat such “rational infinities”
appropriately. For example 1/0-1/0 returns 0/0 etc.

Computing with infinities outside intervals in any of several designs for Maxima is discussed in another
paper, forthcoming.

5 Next

Beyond the current level of implementation we can incrementally build a whole host of library routines
for operating on intervals, using the IEEE 1788 standard as a template when appropriate. Additionally,
a computer algebra system can support quite different operations from those of a numerical library. As
one example, programs striving to rearrange computations as “single use expressions” (SUE) [13], or other
beneficial forms, or increasing precision and/or subdividing intervals for improved results.

A sample version of an interval trigonometric routine (sine) is provided, to exhibit an approach using
Lisp. Writing in Lisp is not at all required though. Models of such routines from libraries written in other
(typically C-like) languages can either be loaded into Lisp, or can be effectively transliterated into Lisp
language programs. The latter case may be preferable if the library does not implement arbitrary-precision
arithmetic.

In the example below, f() computes the negation of a proper interval, K[a,b] by returning -K= [-b,-a]

matchdeclare(anint,ri_p)$

/* In a matching rule or "tellsimp" the variable anint matches an object that passes

the test ri_p */

tellsimp(f(anint),ri(-ri_hi(anint),-ri_lo(anint)));

/* for example, f(ri(1,3)), returns ri(-3,-1) which prints as <-3..-1>

A more bulletproof version of this program would have to check for NaI, and (perhaps) worry about
infinite endpoints.

6 How to get this into your system

The program features are defined in this file: http://www.cs.berkeley.edu/~fateman/lisp/interval.lisp
which can be downloaded and loaded into any Maxima system. This defines functions ri, ri p, ri lo or

left, ri hi or right, widen ri, interval within, interval intersection ?bu, ?bd, inf, minf,

ind, nai p, ri lo minf p, ri hi inf p, doint.

Expressions like H: ri(3,4)-r(3,4) are left unchanged, but the doint command “does interval sim-
plification”. Therefore doint(H) results in an <-1..1>. Sometimes the expression can simplified without
doint, as for example, sin(interval). The rationale for doint is that we do not wish to burden the general
simplifier with the task of incessantly checking for intervals4.

4An additional rationale is that we do not wish to burden the author/programmer with the task of re-programming so much
of the Maxima general simplifier.
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ri(a,b), where a and b are numeric creates a real interval. Note, ri(1,2)+x does not produce <1+x,2+x>
but is left alone. As mentioned earlier, the utility of symbolic endpoints for intervals is doubtful. widen ri(a,b)

produces an interval wider than ri(a,b) if it is given floating-point numbers, by rounding outward. Exact
numbers are not widen. A single argument widen ri(a) bumps the single float down and up.

?bu and ?bd for bump up and bump provide a facility that is general but slightly cruder than we would
like. It would be technically preferable for machine floats – that is, it would produce tighter bounds, if we
could wrap operations with floating-point rounding modes as block([?round mode:up], a+b) but this is
not supportable using only Common Lisp standard operations. Consequently we perform the operations and
then bump the result. This loss in tightness (at the cost of speed) can be remedied to some extent by using
software bigfloats of higher precision for the endpoints.

The Lisp tradition is to indicate programs that return true or false, (predicates) with a name ending
in -p. This use of “-” is inconvenient, so we use p as in the predicate testing to see if an object is a real
interval, ri p.

The other operations are obvious from their names.

7 Further information

The bibliography provides links to many more detailed commentaries on interval arithmetic, as does the IEEE
1788 standard. This brief paper indicates a bare minimum of information on the program code available in
Maxima.
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