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Abstract

Many ambitious computer algebra systems were initially designed in a flush of enthusiasm, with the
goal of automating any symbolic mathematical manipulation “correctly.” Historically, this approach
resulted in programs that implicitly used certain identities to simplify expressions. These identities,
which very likely seemed universally true to the programmers in the heat of writing the CAS, (and often
were true in well-known abstract algebraic domains) later needed re-examination when such systems
were extended for dealing with kinds of objects unanticipated in the original design. These new objects
are generally introduced to the CAS by extending “generically” the arithmetic or other operations.
For example, approximate floats do not have the mathematical properties of exact integers or rationals.
Complex numbers may strain a system designed for real-valued variables. In the situation examined here,
we consider two categories of “extended” numbers: ∞ or undefined, and real intervals. We comment on
issues raised by these two troublesome notions, how their introduction into a computer algebra system
may require a (sometimes painful) reconsideration and redesign of parts of the program, and how they are
related. An alternative (followed most notably by the Axiom system is to essentially envision a “meta”
CAS defined in terms of categories and inheritance with only the most fundamental built-in concepts;
from these one can build many variants of specific CAS features. This approach is appealing but can
fails to accommodate extensions that violate some mathematical tenets in the cause of practicality.

1 Introduction

We discuss methods for dealing with intervals and extended numbers in a computer algebra system (CAS).
We think the interval approach presented in section 2 is novel compared to its usual treatment, partly because
it is embedded in a CAS. Our approach uses some computations which are relatively easy to program in
a CAS, but would require building up much more infrastructure if attempted in the numerical context
in which interval arithmetic usually appears. Furthermore, the CAS user may be more inclined to allow
extra computation time, given that symbolic computation is typically done in a setting where accuracy or
correctness is more important than speed. In a CAS it is sometimes possible that results can be computed to
arbitrarily high precision or when conditions permit, exactly. In this interval case, we can benefit from either
of these special arithmetics. Once we have adopted such usage, it seems plausible to add somewhat more
mechanisms and expense in the algorithms to ameliorate a particular pitfall of interval computation: to keep
the width of the interval down. The same kinds of arguments hold for extended “number-like” objects such
as ∞.

Whereas the IEEE-754 floating-point standard representations of∞ and undefined are constrained to be
exceptional operands fitting within the floating-point format, a CAS can expand upon the notation–using
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extra time and space as needed–if the user is seeking more informative results. We consider this subject
along with intervals because the results are related: they are both non-traditional arithmetic systems.

To return to the notion of failing “identities” indicated in the abstract, here are two examples that might
plausibly be built in to a CAS simplifier: for any expression x, x− x = 0 and x/x = 1.

When might this not be true? When x is∞ or an IEEE floating-point NaN or an interval, say [-1,1], other
rules apply. Yet if a CAS generally failed to apply such common simplifications, even a trivial sequence
of symbolic manipulations could result in an expression that is unnecessarily complex and unwieldy. A
path must be found that allows only legal operations on extended expressions, or expressions which contain
variables which can assume values in this extended domain.

Let us use the term non-nullable for some x which is a value or a pseudo-value from our extended domain
for which 0× x

hm. nullable in wikipedia (7/2013 ) says.. “ In programming, nullable types are a feature of
the type system of some programming languages which allow the value to be set to the special
value NULL instead of the usual possible values of the data type. In statically-typed languages,
a nullable type is an option type (in functional programming terms), while in dynamically-typed
languages (where values have types, but variables do not), equivalent behavior is provided by
having a single null value.”

Maybe we should say nullable. That is, x can be set not only to a number but also to “null” or
maybe “undefined”?

cannot be replaced by 0, x−x cannot be replaced by 0, and x/x cannot be replaced by 1. A pseudo-value
might be ±∞, (unsigned) ∞, one of the IEEE floating-point operands nanSingle, nanDouble, nan, or
extra items like indeterminate, undefined, and in many contexts, real intervals. How these are notated in
a system can vary: it might be convenient to use the notation ∞ or 1/0 for the same concept, and NaN or
undefined might be ⊥. There might also be such concepts as bounded but not definite, or “no number at
all” , or “no interval at all” as would be the case for the empty intersection of two disjoint real intervals.

In some CAS designs, in particular Maple and Mathematica, the designers have yielded to the temptation
to use intervals as sets. For example, they compute limx−>∞ sin(x) = [−1, 1]. This is a distinct interpretation
of an interval, known in the interval arithmetic literature as a cset. Ordinarily an interval is a representation
of a particular scalar value enclosed by real-line segment. We can’t tell which point. The set interpretation
of [-1,1] as this limit is different, being not any such point, but something like “there is no particular limit
but the function is bounded between -1 and 1”. The usual definition of a limit requires that as x− > ∞
the distance between r = sin(x), which we know to be −1 ≤ r ≤ 1 and the limit, the interval I = [−1, 1]
approaches 0, when in fact interval arithmetic tells us the distance is not zero, but [r − 1, r + 1]. Since the
same limit program (in Mathematica 9) returns [-2,2] for the limit of 2 cosx sinx, apparently the boundaries
need not be tight. In fact, 2 cosx sinx = sin(2x) and so tighter boundaries would be [-1,1]. Once one admits
loose boundaries, it seems it would not be “incorrect” to return [−∞,∞] for any computation of a real limit.
This is unlikely to receive full credit on a calculus exam.

There are further ramifications: computing sin2∞ as [0,1] in Mathematica suggests that in some obscured
form we might start with something equivalent to sin2 x+cos2 x but a failure to sufficiently simplify followed
by an evaluation at x =∞ reduces this to [0, 2]. This may be acceptable in some circumstances, (like if you
find it acceptable for limx→∞ 1 = [0, 2].) but it points to a need for the user or the program controlling
the computational flow to check for intervals or unconventional operands pervasively, and not only whenever
limit calculations are used. This may slow down ordinary computations on ordinary objects, for which such
shortcuts as “0 times anything is 0.” almost always prevails. Indeed, using such rules is hard to avoid unless
one can carry along a computation with an object like “0 unless x is a ⊥”.

A more pervasive issue is the alteration of the limit program from an equivalence transformation (ET)
to an approximation program (AP). By an ET we mean a program that changes one form1 to another

1A more careful formulation would worry about domains. Here we are, with some trepidation, asserting the domain is
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without changing its value (perhaps) with some singular exceptions. Ordinarily the idea behind an ET is
to provide an equivalent but, by some measure, simplified expression. Thus an ET simplification program
might reduce 2√

2
to
√

2 or x2/x to x. In the latter case we have found a form which is the same2. We expect

all routine simplification transformations to be ETs, although we may be occasionally disappointed when
they are not. On the other hand, an AP would be a program that given an expression, may produce (a)
an approximate numeric answer, where the request to obtain such a numeric result is signalled implicitly by
inserting a floating-point number as in sin(3.0) which may result in the approximation 0.14112000805987 or
(b) an explicit request for a numerical valuation, or (c) a symbolic approximation such as a request for a
Taylor series approximation:

√
x+ 1 = 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+ · · ·

While no one legislates such matters, we expect that ETs follow certain rules, like ET(a)-ET(b) is
equivalent mathematically to some ET(a-b), assuming appropriate domains.

Ordinarily a limit calculation would be an ET. This assumption is violated if it returns ⊥ or an interval.
Arguably, then, if we want limit() to be an ET, it should return “unevaluated” when it would otherwise be ⊥
or an interval. This would allow certain calculations to proceed by (for example) allowing limit expressions
to contain their original information in such a way that they might be combined with (or cancelled by) other
related limits which might otherwise also have infinite values.

As an aside, it is possible to group other commands in a CAS into two more classes:

• Valuation transformations (VT) in which an expression is evaluated by substitution of values for
indeterminates, e.g. x = 1. Numerical approximation could be viewed as a VT where the values are
approximate numbers, but some valuations are exact or even symbolic as x = cos(θ).

• Derived transformations (DT) in which some new expression (non-equivalent) is derived, perhaps by
differentiation, integration, or simply by applying arithmetic operations and other combinations to
expressions.

(There are also input and output commands for reading, writing, plotting, etc.)

2 A closer look at intervals

Let us revisit that assertion that [−1, 1] − [−1, 1] might be zero, or not. There is a dependency issue,
well known in interval arithmetic (or “reliable computing”) circles, in which the inability to determine the
“source” of an interval, i.e. whether two intervals are correlated, leads to wider and therefore less useful
results.

In our example, if the expression means the set {x − x | x ∈ [−1, 1]} the answer is 0. If we mean
{x− y | x ∈ [−1, 1] and y ∈ [−1, 1]}, then the answer is the interval [-2,2].

Is there a neat way of distinguishing the two cases? Here’s a possibility, using the CAS Macsyma, where
these might be notated

block([x:interval(-1,1)], x-x)

and

block([x:interval(-1,1),

y:interval(-1,1)], x-y)

“whatever the CAS knows about”.
2except when x = 0 (arguably).
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This locution is an attempt to force a kind of interchange of simplification and evaluation, where in the
first case the expression x-x would be simplified to zero and in the second case the expression x-y would not
be simplified, but just evaluated using interval arithmetic rules3.

Another example which illustrates the possibility of getting tighter bounds with additional work, is the
expression sin(x) cos(x) which, on the face of it, for all real x, seems to be in the interval [-1,1]. In fact, the
expression is in [-1/2,1/2], a result which becomes clear by recalling that sin(x) cos(x) = sin(2x)/2.

A non-constructive definition of interval arithmetic can be phrased in terms of constraints on a function.
Elucidating the situation of dependency requires more than one variable, so let us start with two. Then
given a real-valued function of two real-valued arguments to evaluate: f(x, y) for x, y interval-valued between
[x0, x1] and [y0, y1] respectively, we return an interval [z0, z1], where the real-valued z0 is the minimum of
f(x, y) with the constraints x0 ≤ x ≤ x1 and y0 ≤ y ≤ y1, and the corresponding maximum is z1. While the
interval [z0, z1] then is the “best” answer, it might not be possible to find it conveniently either because we
have lost information during the calculation, or the minimization computation is computationally too costly.
We tend to accept the computation of some other, looser, version: [w0, w1] ⊆ [z0, z1]. That is w0 ≤ z0 and
w1 ≥ z1. We may also need to extend the interval notation to allow for situations such as division by zero.

Much effort can sometimes be expended in improving “tightness” of the result, and this may be useful
in the long run, since any slack in the result can be magnified by subsequent operations.

In our assumptions about a CAS, we mean by “interval()” a program which produces a new object, not
shared.4

3 An approach

In this section we discuss a collection of approaches for computing with real intervals. We claim no novelty
in these matters5. Our perspective here is to briefly introduce ideas to a reader who may not have seen
these before, or has not seen the alternative possibilities to ‘naive’ intervals. Our objective is to provide
enough background so the reader can seek out further information in the references, but also so that we can
reasonably, in the following section, point out the relationship with pseudo-values that occur in CAS.

3.1 Intervals are Three-tuples

We create a numeric interval of the real line by calling a function, Ninterval. For example, for the interval
between -1 and 2, we evaluate a form like this v =Ninterval(-1,2). What this function constructs, rather
than our usual representation of an interval as a pair, e.g. [-1,2], is an internal data structure with three
slots. The first two are the visible upper and lower limits, often denoted x and x, where in our example,
x = −1 and x = 2. These can be exact integer or rational numbers, machine floating-point numbers, software
“bigfloats”, or (though we do not recommend this) literal parameters or expressions (say a or exp(b − 1)).
Before constructing the third slot, we must first manufacture a new symbolic variable name6. Here we denote
that variable by #n for some integer n. The third slot is then an algebraic expression involving that variable,
initially just #n. The exact representation used is specified in the implementation, and might be a list of
polynomial coefficients, a “tree” or some other form that might be convenient in a CAS.

3Without changes in Macsyma, which currently does not have rules for arithmetic about intervals, it doesn’t work. They
both return 0.

4Maple has a feature making all compound objects which simplify to the same structure isomorphic. Implementationally
they are pointers to one copy in memory. This is helpful in some processing, but not this one. There is sometimes a difference
between holding two chocolate-chip cookies behing your back, one in each hand, and holding just one cookie but with both
hands.

5Indeed, any time we thought we had a new idea in interval arithmetic, we found we were simply rediscovering something
that had been previously identified as interesting (and often analyzed in great detail).

6a counter is incremented after each newly constructed name. There are complications if one tries to merge saved results
from two otherwise unrelated computational sessions: coincidental counters must be relabeled.
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Our example v might be described this way: [-1,2, #5]. However, since we (humans) ordinarily do not
need to see the extra slot, programs ordinarily will not display it in the computer output. For purposes of
exposition in this section of this paper, we will show them.

If we compute u = v × v, we create the slots in u as [0,4,#52]. Note that if we had two independent
intervals that happened to have the same bounds, and multiplied them, we would compute [-1,2,#5] *

[-1,2,#6] as [-2,4,#7]. This is the interval [-2,4], which is wider than [0,4]. Furthermore we have generated
a new variable, #7 which means we have lost some information about the origin and possible restrictions on
the values of this interval, if, say, we were to further combine it with #5 or #6.

Let us continue our example. If we compute u× v, we can notice a coincidence in indexes in [-1,2,#5]

* [0,4,#52]. By realizing that we are computing #53, the resulting interval is [-1,8], instead of the result
of straight multiplication of intervals, which would give [-4,8].

Under certain conditions we can maintain this stream of computation, and more generally recompute the
expression in the third slot. To do this we must not only represent the polynomial, but remember the original
value. In this example we do this by keeping the original #5 around as long as there is a live “accessible”
value that uses it. There is a convenient mechanism that is built-in to Lisp for this purpose, a “weak hash
table”.

Another optimization we can make is for quadratic polynomials. We can rewrite p = 3x2 + 2x+ 1 as q =
3(x+ 1/3)2 + 2/9). This is a “single use expression” (SUE) [12] referring just once to x, and provides tighter
bounds as p([−1.1,−1.0]) is [1.8, 2.63] but q([−1.1, 1.0]) returns the tighter (in fact optimal!) [2.0, 2.43]. The
order of computation here is based on “completing the square.” Unfortunately this particular trick is specific
to quadratics, and generalizations are not as effective. We can reduce the number of appearances of x by
rearranging terms, e.g. for a cubic we can arrange for only two appearances of x. First divide through by the
leading coefficient so that we have x3 + rx2 + sx+ t. Then by setting (a+ x)3 + bx2 + c = x3 + rx2 + sx+ t,

we can find values for a, b, c. Let v =
√
s, then

{
b = r −

√
3v, c = t− v3

3
√
3
, a = v√

3

}
Furthermore, any of the theoretically faster ways of evaluating a polynomial via preconditioning calcula-

tions with the coefficients is a possible improvement.
A tangent regarding implementation in Maxima. This CAS implemented in Lisp provides an internal

structure for storing properties. For example, x2− 1 is ((mplus simp) -1((mexpt simp) x 2)) where the
simp indicators are used to mark the subexpressions as already simplified. This complicates the structure,
which conceptually might be written as (mplus -1 (mexpt x 2)). Given this encoding for a property list
(since c. 1966) rather few uses have emerged7: here’s an illustration of two uses. If we factor that expression
to yield (x− 1)(x+ 1), it is marked up this way: ((mtimes simp factored))((mplus simp irreducible)

-1 x)((mplus simp irreducible) 1 x)).
In the interval encoding, it is tempting to put the third, index, argument in as a property for Max-

ima, making interval(-1,1) look internally like ((interval simp g478) -1 1) or perhaps ((interval simp

(index g478)) -1 1).
After some experimentation it becomes clear that this would not have all the right properties because

Maxima relies on an assumption that is, in this case, violated. The assumption is that if two general form
expressions X, Y are identical without looking at the properties, then X+Y is 2*X or perhaps 2*Y. That
is, the properties are to be thought of as not specific to that object in memory, but are presumed true for
any isomorphic object, where isomorphism compares “heads” like mplus or interval but not the properties.
Consequently it is not a workable representation in Maxima to use the property list. We proceed to use a
third argument as an index, or (see the next section) some other information.

7If there are few properties being recorded then other schemes may come to mind. For instance, if there is one property
“simplified” then all such expressions can be implicitly marked by being stored in particular machine addresses above some
boundary. If there is a property “evaluated more recently than expression X” then expressions can be stored in tagged pages
of memory. Both these techniques are used in some existing systems.
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3.2 Variations

What should we allow as acceptable expressions for that third slot? We initially considered just expressions
of the form rx for a scalar number r or rxn for some integer n but then realized that it would be simple to use
existing subroutines for symbolic mathematics to carry around a more elaborate form. The next elaboration
was a polynomial in (any) one variable, in some encoded canonical form. Given such a form, we can feed it
into a program for further analysis: for evaluating a polynomial P in one variable x at an interval point, the
tightest bounds can be computed by considerably more elaborate computation than just going through the
adds and multiplies: locating suitable intervals around the zeros of P ′(x), then evaluating P at those places
to find relative extrema. Combined with P evaluated at the endpoints (absolute min/max), we can find sharp
bounds subject only to the representation of the endpoints. Such a computation could be worthwhile as a
trade-off: the advantage of finding tighter bounds versus the considerably increased computational expense.

Any third-slot expression that turns out to be more complicated than we wish to deal with can simply
be given a fresh name, and from that point forward it is assumed to be independent of all previous variables.
Thus our current program would never notice the correlation possibility that is inherent in the identity
sin(x)× cos(x) = sin(2x)/2 since each of the expressions sin() and cos() would be given different (presumed
to be independent) names. This would lead to more conservative bounds, but not incorrect ones.

Where do we draw the line, though: what is too complicated? Can we in fact use something more elabo-
rate than polynomials? Indeed, there are a host of variations on interval arithmetic: we found that our inven-
tion of a “polynomial” slot is subsumed under any of a number of previously documented innovations, many of
which are reviewed by Arnold Neumaier, see http://www.mat.univie.ac.at/~neum/papers.html#taylor.
This paper reviews so-called Taylor forms—an extension which revolves around carrying a truncated Taylor
series with remainder, evaluated at the midpoint of the interval. In certain calculations this additional infor-
mation can be effective in reducing the width of the intervals being carried. To produce this model, we could
use the extra slot effectly as an expression of a Taylor series, with remainder, for the number being repre-
sented. We could start our trigonometric calculation by considering that we are evaluating f(x) = sin(x),
where x = [a, b]. We then expand sin in a Taylor series around the midpoint, x = x0 = (a+ b)/2, and use an
expression for the remainder (error). Most CAS provide a suite of operations on Taylor series, and so can
implement this “off the shelf”. The operations are similar to those on polynomials with the major difference
that the Taylor method sets a global order, (maximum degree) and high-order terms are truncated. The
error term is calculated separately as another interval calculation.

It is important to observe that the evaluation of the remainder term, which can itself be elaborate, may
have to be done carefully too, or some blow-up is re-inserted. Programs for evaluating derivatives can be
generated by “Automatic Differentiation” programs, but these must also be evaluated in an interval fashion.
When the error term looks sufficiently well-behaved, “naive” interval arithmetic may do. Illustrations of the
payoff from maintaining tighter bounds seem tied to a procedure which can terminate sooner because of the
bounds. A typical case may be a Newton iteration combined with interval bisection (or some subdivision,
since an interval with an infinite endpoint cannot really be bisected) which may converge with far fewer
iterations and thereby pay for the more expensive operations.

Other possibilities include allowing the extra slot to contain a linear function of any number of interval
values (more about this later). In this case a linear-programming method could be used to find min and
max. If the extra slot were allowed to be a multivariate polynomial, a method based on cylindrical algebraic
decomposition might be suitable.

An idea called “Affine Arithmetic” for intervals has also been pursued in the recent literature on reliable
computation. In this model, a quantity x is represented as a first-degree (“affine”) polynomial in the values
it depends upon. In particular,

x = x0 + x1e1 + x2e2 + · · ·+ xkek

where the {xi} are given “real numbers” and the {ei} are dummy variables, assumed uncorrelated for cal-
culation purposes, but each of whose values is known to be in [−1, 1]. When possible the representation is
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maintained through ordinary arithmetic, and when it is not, the operational routine must find an alternative
acceptable approximation by introducing another variable en and positing it as uncorrelated. Affine arith-
metic (AA) seems especially appealing when geometric objects are defined in which the coordinates share a
set of dummy variables. This situation produces centrally-symmetric convex polygons or “zonotopes”. In
two dimensions these can be visualized as “lozenge” shapes that are smaller than the enclosing rectangular
intervals that would appear from naive intervals. There are benchmarks illustrating particularly advanta-
geous results in approximate computations for graphics: they can provide closer adherence to lines or planes
that are being approximated. Not all computations ultimately benefit from AA: it may be beneficial to
switch between methods to increase overall efficiency: AA may be better for small intervals. An extensive
comparison of interval variations is given in the paper by Martin et al.[5].

See for example,
http://www.icc.unicamp.br/~stolfi/EXPORT/projects/affine-arith/Welcome.html or
http://www.tecgraf.puc-rio.br/~lhf/ftp/doc/oral/aa.pdf

Implementing AA on top of our structure is straightforward, and we have done so up to addition and
(non-trivial) multiplication, for arithmetic combining scalars and intervals.

These ideas are aided by such tricks as the previously mentioned “single use expression” (SUE) from
some set of variables[12]. This would transform an expression like ax+ bx where a and b are scalars, but x
is an interval, into (a+ b)x, which may be a tighter expression.

Similarly, for intervals x and y, A = x/(x + y) can be rewritten as the SUE B = 1/(1 + y/x), although
the acceptable domains for x and y have now been changed. (Look for division by interval expressions that
might include zero!) Walster suggests obtaining the answer by computing C = 1 − (1/(1 + x/y)) and then
returning their intersection, B ∩ C.

One approach for SUE is for us to establish a set of heuristics for driving an algebraic expression into a
more-nearly SUE form. A good algorithm to find an optimal “sharp” solution (that is, more efficient than
exhaustive enumeration and evaluation) would be welcome, but tradeoffs such as whether a SUE version
with respect to x is better than a SUE with respect to y, or if some other combination is yet better, cannot
be computed at compile-time, since in general the optimimum depends not only on the expression (which is
presumably available at compile-time), but on the particular run-time interval values associated with x and
y.

A possible, but somewhat unappealing, approach can be constructed around multiple arrangements of the
same expression. Given any collection of “mathematically equivalent” expressions transformed at compile-
time into various interval expressions, each version could be numerically evaluated, and the tightest solution
emerges by computing their intersection. Such evaluations must be done while aware of the possibility
of the introduction of extraneous singularities; if any of the expressions is non-singular at a point in the
interval, then it presumably reflects a valid mathematical result. A good expression might be a Taylor series
expansion at the midpoint of the interval. This cannot be computed without knowing the interval endpoints.
An interesting approach shows that an endpoint of f(x) can be shown to be sharp if it depends only on one
endpoint value of the input interval x [3].

We could attempt to use some existing (essentially black-box and possibly heuristic) programs like Mathe-
matica’s Maximize and Minimize. Yet, even when they nominally work according to their own specifications,
the answers may not be satisfactory for interval computations. Reliable computing requires strict inclusion:
these imply stronger requirements for directed rounding of endpoints than typical numerical min/max pro-
grams.

In Nedialko et al [11], various methods are considered. A theoretical comparison can be summarized by
an optimality result: representation by polynomials is, in their presented context, optimal.
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3.3 Other approaches to improved interval computation

Other techniques, such as (repeated) bisection of intervals can be used to attempt to narrow the result
width. Our suite of programs includes this conceptually simple technique: the result for P (x) would be
the smallest interval containing all the ranges of P (x1), ..., P (xn) where x has been subdivided. That is, x
is the union of the xi; some criteria determine which of the subdivisions to divide again in an attempt to
narrow the interval. (In particular the subdivisions containing the current maximum and minimum should
be re-divided.)

This kind of interval arithmetic is more encapsulated and therefore “hands-off” compared to the usual
numeric version. It takes the form of a functional programming model: new values may be created out of
components; but we do not allow user-level operations like “change the lower limit of variable x = [x, x] to
be the number 43.” Instead, we allow the creation of a new object which can be re-assigned to the same
name: x = [43, x]. Old values, if they are no longer accessible, will be collected, and their memory locations
re-used.

4 Pseudo-values: Infinities and intervals

At this point it may not seem that there is any direct connection between intervals and extended numbers
such as infinity. In fact, the resemblance has more to do with the techniques to resolve difficulties than the
mathematical concepts.

Note that without intervals, the production and therefore occurrence of infinities is limited to singularities
(of which division by zero is the most obvious, but not the sole example). With intervals, the exceptional
treatment of zero-divisors must be extended in some way to intervals that contain zero. Once having produced
such an object, can one make it go away? For example, can we be assured that 1/(1/x) = x true, even if x
is an interval containing zero?

4.1 Infinity as a symbol

One of the problems of a CAS design is that there is a tradeoff between convenience for human users and
for computation. As an example, computationally, we might construct a system in which an infinite value
appears only as a result of certain operations, and in each case we can find some more informative alternative.
Unfortunately, if its origin is simply “a human typed it into the system” we do not have an alternative to
“just compute with this.”

What can we propose? We can keep∞−∞ from becoming zero if, each time we generate (a new)∞, we
give it a unique subscript or index, in a manner similar to the indexed variables or third slots used with the
intervals. That is, ∞1, ∞2 ,..., ∞n. In Macsyma/Maxima this is rather simple to start: (inf counter:0,

infinity():=(?incf(inf counter),Infty[inf counter]), nofix(infinity))

After this, any mention of infinity as in infinity+3 will generate an expression like Infty[4]+3. In
TEX this could be displayed as ∞4 + 3.

This is not enough: A search through the Maxima code for all producers and consumers of infinities may
reveal locations that must be changed to conform to this model. These occur principally in the limit, sum,
and definite integration facilities. Also saving such values off-line and reading them back must re-create the
proper values, shared only when appropriate, and generally distinguished from values created from other
processes. Maxima distinguishes between real infinity(inf) and complex infinity (infinity). Mathematica 7
and later correspondingly uses Infinity, internally DirectedInfinity[1] and ComplexInfinity actually
DirectedInfinity[]. Other directions are possible, e.g. DirectedInfinity[Complex[0,1]], where the
direction is the vector from the origin to a designated point on the unit circle. (1 + i)∞ is effectively
DirectedInfinity((1 + i)/

√
2) after normalization.

A set of indexed infinities in each direction is a straightforward elaboration of the ideas presented here.
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We need a new simplifier that is able to compute a kind of pessimistic simplified form. For example,
given the expression ∞2 − ∞3, assuming that there are no occurrences of ∞2 or ∞3 anywhere accessible
in the CAS, can be simplified by generating an undefined: und. Such symbols are also indexed. If there
are other occurrences of those ∞k symbols elsewhere, it is prudent to keep the expression uncombined in
the hope that at some later point one of those symbols will interact and cancel. We typeset the undefined
quantity with the “bottom” symbol, for example, ⊥4. This gives us an opportunity to consider a case where
we assign x := limit(1/t^2,t->0,plus) and thus x=∞5 , a specific value. Then x-x is ∞5 −∞5 , and
indeed this can be simplified to 0 because this is the difference of two of “the same ∞”. In a system with
directed infinities −∞5 would have to be correlated with −∞[−1]5 for such cancellation. Mathematica’s
current scheme presumably has only one infinity in each direction, and so rules combining them must either
be very conservative or sometimes wrong. This design suggests that for each directed infinity generated,
there should be a subscript relating to the magnitude of the infinity as well as a separate direction.

This simplifier must deal with any expression with one or more infinite or undefined objects, possibly
other forms such as “indefinite” (but bounded) and generally should come up with the most informative and
compact result possible. For example, in the absence of any other occurrences of the same-indexed infinities,
∞2 +∞3 could be replaced with ∞4 as a simpler result8. In similar circumstances (no dependencies) there
is no point in retaining the details of (⊥4 + 1)/⊥7. This should be replaced by (say) ⊥8. An expression
involving such objects should be simplified as much as possible, using standard rules for combination. This
is not necessarily trivial, and for rational functions may be solved using a resultant technique devised by
Neil Soiffer in his MS project at Berkeley (1980). That work calculated the minimal number of “arbitrary
constants” needed to provide the same degrees of freedom as a given expression with perhaps many such
constants.

5 Arithmetic with Pseudo-values

The failure of elements in the classes of ∞ and ⊥ to satisfy some of the ordinary axioms of real or complex
numbers has two possible consequences: either this invalidates certain standard rules of operation in a
CAS or limits the mathematical domain of the CAS to exclude pseudo-values as a full-fledged participant
in computation. Since the ambition of at least some CAS is to encompass all of mathematics, such systems
must either entirely march ⊥ out of mathematics, restrict such results as “output only” say as something
that can be printed, but not suitable as input to any further operation, or figure out how to “do something”.

Examples of potential failure
zero identity 0 ∗ x = 0. What if x=inf or und?
multiplicative inverse x ∗ (x( − 1)) = 1. What if x=inf or und?
cancellation if a ∗ x = b ∗ x means a = b, does 3 ∗ inf = 4 ∗ inf? and does that mean 3=4?
x+ y > x if y > 0. what if x=inf?
is inf=inf? und=und? what about NaNs?

6 Algebra ... OLD

answer all of them. The approach taken by a particular CAS may be delimited by the activities it is supposed
to support. Thus a base for a theorem-proving system might be more “pedantic” than one intended for (say)
checking hand computations where it is known beforehand that extraneous solutions will occur and can be
discarded.

We start by observing the properties that are consistent and those that fail when we have ⊥ and ∞
without subscripts. (or in some cases, with subscripts).

8To reiterate: it would be a mistake to make this replacement if there were another expression algebraically dependent on
either of the two component ∞ objects, since the replacement would lose dependency information.
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Consider that at the base of the ordinary simplifier we assume that the otherwise uninterpreted symbols
x, y, z etc., come from the properties of integral domains, which include the postulates for commutative
rings.

Commutative Rings:

1. Closure: a, b in R imply a+ b and a× b are in R.

2. Uniqueness: a = a′ and b = b′ imply a+ b = a′ + b′ and a× b = a′ × b′

3. Commutation: a+ b = b+ a; a× b = b× a.

4. Association: a+ (b+ c) = (a+ b) + c; a× (b× c) = (a× b)× c.

5. Distribution: a× (b+ c) = a× b+ a× c.

6. Additive Identity (Zero). there is an element, 0, such that a+ 0 = a for all a in R.

7. Multiplicative Identity (One). there is an element, 1, such that a× 1 = a for all a in R.

8. Additive Inverse: a+ x = 0 has a solution x in R for all a in R. (This would fail for a = ⊥ or a = inf
but is solved by subscripting.)

Integral domain adds these

9. Cancellation: if c is not zero and c×a = c× b, then a = b. (fails for c = ⊥ or c =∞. We could restate
so that c is defined and finite, but then we must place this condition on every denominator.)

Other property usually assumed for the symbols include ordering.

10. Trichotomy: a > 0, a < 0 or a = 0. (fails for ⊥)

11. Transitivity: a < b and b < c implies a < c. (fails for ⊥)

Here are some consequences:

12. a < b implies a+ c < b+ c. (fails for ⊥ and ∞)

13. a < b and 0 < c imples ac < bc. (fails for ⊥ and ∞)

14. a < b, a = b, or a > b. (fails for ⊥ and ∞)

What about fields, e.g. reals?

15. A field is an integral domain in which each element e except 0 has an inverse, e−1 such that e×e(−1) = 1.
(This seems simple enough, but has lots of further consequences.) (fails for ⊥ and ∞) )

The failure of elements ∞ and ⊥ to satisfy some of these postulates either invalidates certain standard rules
of operation in a CAS or on the other hand limits the mathematical domain of a CAS. Since the ambition
of at least some CAS is to encompass all of mathematics, such systems must either entirely march ⊥ out of
mathematics, or “do something”.

We would like to know that, if we use rules such as 0 × x = 0, x/x = 1 and x − x = 0, that these
statements are true for any possible legal assignment of values for x.

Since these are not true for certain values of x, what should we do?
Some of this may be clarified by considering the meaning of equality.
The usual way of providing inference rules for equational logic includes the following:
Substitution: If P is a theorem then so is P [x → E] where P [x → E] means textual substition of

expression E for variable x in P .
If P = Q that is, P and Q are of the same type and are equal, then E[x→ P ] = E[x→ Q]
If P = Q and Q = R then P = R.
Some CAS essentially say that two expressions are “=” under much looser conditions. For example
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a. They are equal if, for nearly every substitution of values into the variables, the expressions evaluate
to equal expressions. Yes, this “nearly every” sounds just wrong, but the argument is made by the
authors of Mathematica that a “generic solution” is acceptable if all exceptions to that solution are
in a space of lower dimensionality. Example: x/x = 1 even if it is perhaps false if x = 0 (That’s only
one place) or if x is an interval containing zero (That includes many intervals). Another example:
For all pairs of real numbers 〈x, y〉 in R2, (x2 − y2)/(x − y) = x + y except along a particular line,
namely x − y = 0). Such an argument defeats the premise of high confidence in the capability of a
CAS program to produce “guaranteed” answers. In particular, it is a hazard if one proposes to use a
CAS prove other programs correct9.

b. Two floating-point single- or double-precision results are equal if they are “close enough” (in some
relative or absolute error sense).

c. Two approximate or imprecise numbers are “close enough”: In Mathematica we can construct a very
imprecise number n, n=N[1,1], a number 1 with one digit of accuracy. Then this equation is “true”:
3 + n = 4 + n.

d. Mathematica claims that two values each Infinity are equal, yet the difference of them is Indeterminate.
This can’t be right.

Other examples, by mixing intervals or vectors with scalars, can result in questionable “equalities”.
[specify?]

How can we reconcile the different behaviors of a CAS resulting from such designs with the intention
that a CAS can “prove” mathematical theorems? If a proof that f(x)− g(x) is zero (or is non-zero) “for all
x” (where “prove” is implemented as simplification), is contradicted for some f(c)− g(c) at a specific value
c? Certainly if c is not in the domain of x we can make some case that this does not matter. What, though,
if it is in the domain?

6.1 What is equality?

If we approach this question operationally from the perspective of a CAS design, the most plausible definition
is to say that two objects are equal if a simplifier program provides the same canonical result, that is,
lexicographically identical, and programmatically indistinguishable10, for each side of the relation.

In Lisp this is equal. Lisp has eq to represent equality as “same storage location”, as well as sev-
eral specialized equalities for numbers (=), strings (string=), and combinations (eql). It is possible to
have a canonical expression which is, for example, 3*inf[3]+14*inf[7]. which would be different from
14*inf[7]+3*inf[3]; a canonical simplifier would rearrange one or the other so they would look the same.
Mathematics texts are generally insufficiently pedantic to make the subtle distinctions necessary for pro-
grammers.

We can require that testing for numerical equality, as between floating-point numbers, use a different
predicate. (Advice given to novice programmers dealing with floating-point computation is to never test for
equality; this advice is overkill: there are occasions when testing equality does make sense.)

Equality for numbers expressed as intervals has several different variations—possibly, certainly, impossi-
ble.

9We understand why some people advise against learning mathematics from a physicist.
10We may (and will) forbid examining the representation at some abstraction level, otherwise we would be faced with

conundrums like declaring as unequal two integers because they are stored in different memory locations, even if they had the
same value.
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6.2 An alternative approach

Assume that manipulation in the general simplifier is bound by rules of computation in a commutative
field with identities 0,1 with algebraic extensions for each independent indeterminate with domain Real or
Complex numbers, and that in this field, x/x = 1

Any computation that we do must first make sense in this domain. After the computation is complete, a
valuation can be done in some other domain in which an algebraic expression is associated with an ordered
list of arithmetic commands that can be performed on elements in any domain, including elements that are
infinite, undefined, intervals, or other objects.

Except for the discomfort caused by x0 = 1 and 0x = 0, this might work.
consider 8, inverse. ∞+ x = 0 has no solution. However, if we have a indexed set of infinities, ∞1, ∞2,

etc. then each ∞k has an inverse. Real intervals spanning zero arguably do not have inverses unless the
language of intervals is expanded to exterior intervals.

consider 9. If c=inf, then ca=cb becomes inf=inf, or und=und, which does not imply a=b. If c=und,
then ca=cb becomes und=und.

consider 10: und has an unknown sign.
consider 12, 13. the case c=inf or und does not work.
consider 16. und does not have an inverse. inf does not, since inf*0=und, not 1. Arguably, indexed inf,

maybe.
How do intervals fail to satisfy these postulates? First, what intervals are allowed? [real,real], [real,inf],

[und], [-inf, real], [-inf,inf]

6.3 Consider how to clarify =

Two intervals are equal if a simplifier program provides the same canonical result for each side of the relation.
This can happen if two intervals are each degenerate (one point), and that point is the same number, or if
the two intervals match in upper/lower bounds and index expression. Note that in particular it is insufficient
to have equal endpoints alone, although it is sufficient to have equal index expression!

consider 8, inverse. [−1, 1] + x = 0 has no solution. However, if we have a indexed interval, [−1, 1, p],
then [1,−1,−p] may work as an inverse.

consider 9. If c=inf, then ca=cb becomes inf=inf, or und=und, which does not imply a=b. If c=und,
then ca=cb becomes und=und.

A list of a few plausible rules shows that intervals and the pseudo-values of∞ and ⊥ relate to each other.
We are here concerned only with real values and pseudo-values, and we may need to have separate rules for
complex ⊥. This might occur if one computes

√
[−4,−1] which has no real value, and could arguably be ⊥

but perhaps should be [1, 2]i in the context of a CAS which knows about complex numbers.
What is sin(⊥)? [-1,1] if ⊥ is real, otherwise ⊥.
What is exp(⊥)? Perhaps [0,∞] if ⊥ is real?
Is [−∞,∞] the same as real ⊥?
Is [⊥,⊥] meaningful? Is it ⊥?

In general, a plausible result for any function or operation upon ⊥ is ⊥.

A CAS designer has a choice to make: are these activities to be confined to the numeric type hierarchy
(an uncomfortable choice, I think, in which case there may be both single- and double-float infinities, and
the choice of projective or affine models of the real line are relegated to the numeric system), or are such
pseudo-values used as an overlay of a separate algebraic system that coexists more with the language of
variables and constants (like π and e). The latter seems more plausible in context of a CAS.

An extended discussion of the consequences of choices to make seems to require some subjectivity and
consideration of applications, and is beyond the scope of the present paper; a doctrinaire approach is likely
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to annoy at least some CAS users. This paper has already exceeded our target length and so we defer further
discussion to detailed program notes on a particular implementation, described briefly below.

6.4 Big-Oh notation

We hesitate to step into this muck, but one might be tempted to relate this material to Big-Oh notation in
asymptotic analysis. In particular O(x)−O(x) is O(x), but O(x)×O(x) is O(x2). The common notation is
further hindered by the misuse of the symbol “=” which is usually considered an equivalence relation. Yet
T (n) = O(n2) does not mean O(n2) = T (n); an expression that is not acceptable. Proposals to remedy this
overloading of “=” by using curly inequalities or set notation have not driven out the traditional notation.
It would be curious if implementation in a CAS can provide sufficient motivation to generate an adherence
to notational rigor on mathematicians.

Mathematica has Indeterminate, DirectedInfinity[], and DirectedInfinity[z] for an infinite quantity that
is a positive real multiple of the complex number z. Among the rules, 0*Indeterminate is Indeterminate.

7 Implementation notes

For an arithmetic package in which there are typed objects that look explicitly like tagged numeric intervals,
it is not difficult in principle to attach methods for all the component-pair combinations that may be of
interest. For example, a two-argument “+” in which each of the arguments is a scalar machine double-float
can be translated fairly easily into an operation. Running through the plethora of additional operations, e.g.
“+” of a interval with an exact rational number, or a symbolic expression like “f(x+1)” can be tiresome, and
even with the best of intentions and substantial effort, inheritance hierarchies can make only some of the
right decision automatically. Indeed, in some cases humans can easily disagree as to the “correct” coercion.
Additionally, some unambiguous operations on ordinary scalars may become unclear with intervals. For
example, there are many more ways of “comparing” intervals: which may involve inclusion, overlap, or
disjointedness. These can be phrased as “certainly” or “possibly” as in “certainly greater than”. etc.

Using the Common Lisp Object System (CLOS), we have built a prototype generic arithmetic system.
We define methods for intervals using programs with headers that look like this:

(defmethod two-arg-+ ((u Ninterval)(v Ninterval)) ....)

And so forth for all distinct argument type pairs. The traditional “+” of any number of arguments is
decomposed into adding two arguments at a time. That is we can define how to combine any interval with
a complex number, a matrix, or a symbolic variable (or alternatively refuse to do so). In an object-oriented
hierarchy, it is possible to place intervals in a lattice with respect to some operations and use inheritance for
method resolution, but in some sense a response like “no method available for two-arg-+ with types

Interval and Matrix” will wait in the background for unimplemented (or impossible) combinations. The
structure for extending the ordinary Lisp arithmetic to intervals (namely by overloading existing n-ary
operations like “+” and “*” by using two-argument versions of these operations) is straightforward and can
be done partly at compile-time through macro-expansion11

As indicated earlier, using CLOS for keeping track of types does not resolve how to integrate interval
“stuff” into a CAS, exactly. This is because we must patch an existing system, say Maxima, so that it
will not apply identities prematurely that are incorrect for intervals. To illustrate how pervasive such errors
can be, note that RealInterval were introduced in Mathematica in version 3, and even after many years, in
version 5.1, if you type Interval[a, b] - Interval[a, b] you get 0. which is presumably false. It has
been fixed in later versions.

Ideally we have localized a simplification that says x+ (−1)× x = 0× x = 0.

11see generic arithmetic [6]

13



This would operate only in the case that x is nullable. In particular x being some version of infinity, or
some as-yet-unspecified interval, makes this simplification false. We must assert some criterion for x before
establishing this exception to the general simplification. We must also process x to some extent to see if this
criterion holds. It is rather commonplace to try to “short circuit” processing by asserting that if any factor
in a product simplifies to zero, the rest of the product need not be evaluated; this leads to inconsistencies.

A choice remains as to whether we should alter the library of programs that constitute the “rational
function” library or not. We could alternatively argue that these programs are doing arithmetic in a well-
understood field, and we should not use that library if we expect to be violating the axioms for the ground
field of the library, say by evaluating at an illegitimate point. We could try intercepting any explicit setting
of a rational-variable value to a pseudo-value, but that would not prevent manipulation of arbitrary symbols,
where only later the value is proffered. Carrying along the assumptions with the expression (e.g. the answer
is “3” but only if x is finite), is a possibility which may be appealing in a theorem proving context, but
contending with the exponential growth in such added conditions on expressions is daunting. While there
does not seem to be a simple solution, at least recognizing the hazards may make the design of CAS more
resilient to the introduction of such extra values.

While implementation of extra index information on intervals or other special values solves some of the
problems, as indicated above, it also introduces a complication: Writing index expressions to a file and
reading them back into another running program, or combining them with expressions from another file
requires some way of distinguishing the index-generated symbols. That is, a data “dump” with such indices
must re-calibrate them so as not to overlap. This is similar in nature to using the lisp gensym facility in two
or more separate images and avoiding conflicts when combining them).
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As we update this document in June, 2015 there has been an IEEE approved draft standard [4] which
provides a consensus within the interval-arithmetic community. This generally places the interval arithmetic
facilities as an extension to numerical floating-point computation, with complications beyond those expressed
above. In this paper we have ignored the detailed implications in required numerical accuracy to make
intervals fully reliable, the constraints on elementary functions, interchange formats, and numerous other
features discussed in IEEE 1788-2015.
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