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1 The Fast Fourier Transform

1.1 Introduction

There are numerous directions from which one can approach the subject of the
fast Fourier Transform (FFT). It can be explained via numerous connections to
convolution, signal processing, and various other properties and applications of
the algorithm.

We (along with Geddes/Czapor/Labahn) take a rather simple view from the
algebraic manipulation standpoint. As will be apparent shortly, we relate the
FFT to the evaluation of a polynomial. We also consider it of interest primarily
as an algorithm in a discrete (finite) computation structure rather than over the
complex numbers.

Given a univariate polynomial which we wish to evaluate at a point x, there
are many ways to rearrange the calculation. For example, we can re-write

A(x) =
n−1∑
i=0

aix
i

in the form

A(x) = (x0x1...xn−1) ·


a0

a1

...
an−1


Using Horner’s rule, we can rewrite this as

A(x) = a0 + x(a1 + x(a2 + ... + xan−1...)).

which can be shown to be optimal under reasonable conditions for evaluating
a polynomial at a point. As explained for example in Borodin and Munro [1]
p. 8–9, it will require n − 1 multiplications and n − 1 additions. Although
there are various tricks possible to pre-condition the polynomial we cannot in
our circumstances, generally use such schemes economically: the algorithms we
deal with will be handed the polynomial coefficients and the point x at the
same time. We also prefer to do exact arithmetic over the integers. (see for

1



example, Brassard [2] pp. 209 which illustrates how a monic polynomial p of
degree n = 2k − 1 can be re-expressed as

p(x) = (x(n+1)/2 + a)q(x) + r(x)

where a is a constant and q(x) and r(x) are monic polynomials of degree 2k−1−1.
Recursively rearranged in this way, evaluation takes about (n − 3)/2 + log2(n)
operations, but these are not integer operations any more!).

Nevertheless, if we keep the polynomial fixed, and evaluate at many points,
we can do better, as we will see. For specificity in notation, let us evaluate A(x)
at n given points, x0, ..., xn−1 .

Let us represent the problem as a matrix multiplication:
A(x0)
A(x1)

...
A(xn−1)

 =


x0

0

x0
1

...
x0

n−1

x1
0

x1
1

...
x1

n−1

...

...

...

...

xn−1
0

xn−1
1

...
xn−1

n−1

 ·


a0

a1

· · ·
an−1


It is especially convenient for subsequent operations to choose the points

specially:
Definition: ωn is a primitive nth root of unity in a computation structure
(e.g. finite field), if ωn

n = 1 but for no m such that 0 < m < n is ωm
n = 1.

Examples: In the finite field of the integers mod 41 ( Z41 ), the element 3 is a
primitive 8th root of unity. In Z3 the element 2 is a square-root of unity, since
22 = 4 ≡ 1 mod 3.
Definition: A Fourier Transform (FT) is a sequence of n points constitut-
ing the evaluation of a polynomial with coefficients {a0, ..., an−1} at the points
{ω0, ..., ωn−1} where ω is a primitive nth root of unity. That is, the Fourier
Transform can be thought of as the left hand side of the equation below:

A(1)
A(ω)

...
A(ωn−1)

 =


1
1
...
1

1
ω
...

ωn−1

1
ω2

...
ω2(n−1)

...

...

...

...

1
ωn−1

...
ω(n−1)2

 ·


a0

a1

...
an−1


For convenience, we will denote the matrices above as:

Â = Fn ·A
Note that if ω is a primitive nth root of unity then in the complex plane ω =
e2iπ/n and we have the usual “engineering” Fourier transform. We will not
consider ω to be a complex number, but rather an element of a finite field.

In order to accomplish this matrix multiplication more rapidly, thus making
it a Fast Fourier transform, we use the clever relationship pointed out by Cooley
and Tukey in their 1965 paper [4] popularizing (and naming) the FFT. Let n
be an even number, 2k and define two subsidiary polynomials:

Aeven(x) =
k−1∑
i=0

a2ix
i
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Aodd(x) =
k−1∑
i=0

a2i+1x
i

Then we can see that

A(x) = Aeven(x2) + xAodd(x2).

Hence

Ân = F2k·A2k =



A(1)
A(ω)

...
A(ωk−1)
A(ωk)

A(ωk+1)
...

A(ω2k−1)


=



Aeven(1) + Aodd(1)
Aeven(ω2) + ωAodd(ω2)

...
Aeven((ωk−1)2) + ωk−1Aodd((ωk−1)2)

Aeven(1) + ωkAodd(1)
Aeven(ω2) + ωk+1Aodd(ω2)

...
Aeven((ω2)k−1) + ω2k−1Aodd((ω2)k−1)


Note that we have, in the last three displayed rows, made use of the facts that
(ω2)k = ω2k = ωn = 1, (ωk+1)2 = ω2k+2 = ω2, and (ω2k−1)2 = ω4k−2 =
ω2k−2 = (ω2)k−1. The pattern in this formula can be made a bit more explicit.
Let us use the symbol ◦ to denote component-wise matrix multiplication, and
think about this in terms of block matrix multiplication where Aeven is a column
matrix of the coefficients of Aeven, and

F2k ·A =
(

Fk ·Aeven

Fk ·Aeven

)
+


1
ω
ω2

...
w2k−1

 ◦
(

Fk ·Aodd

Fk ·Aodd

)

Now we have replaced our 2k-transform by two k-transforms, and some
(O(n)) additions and computations of powers of ω. Actually, we will normally
have an opportunity to pre-compute these powers of ω, so that is not considered
as the same kind of cost. The smaller transforms can be computed by a recursive
application of the same algorithm if n was originally a power of 2. We will find
that in applications, we can increase n to fulfill this requirement, or modify the
requirement some other way.

More succinctly, where all the A column vectors are implicitly An we have

Â =
(

Âeven

Âeven

)
+


1
ω
ω2

...
wn−1

 ◦
(

Âodd

Âodd

)
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1.2 How fast is it?

A principal item of interest is the running time for the FFT. If the time to
perform an FFT of size 2k is T (2k), then from our expression above,

T (2k) = 2T (k) + O(k).

Iterating this formula gives (where r = log2 k):

T (2k) = 2rT (1) + O(rk) = O(n log n).

Thus this trick reduces the O(n2) algorithm (of n applications of Horner’s rule),
to O(n log n) operations.

As in the case of the usual Fourier transform, we would like to have an
inverse transform. In our view, the inverse transform corresponds to polynomial
interpolation. That is, we are given a set of evaluation points (powers of a root
of unity) and asked to provide a polynomial which assumes given values at those
points. The inverse of Fn is a matrix Gn where the i, jth element is ω−ij

n /n,
where we have, somewhat unconventionally, numbered the rows and columns so
that the 0,0 element is at the top left. We can write it out as

Gn =
1
n


1
1
...
1

1
ω−1

...
ω−(n−1)

1
ω−2

...
ω−2(n−1)

...

...

...

...

1
ω−(n−1)

...
ω−(n−1)2


A proof is not difficult to construct: in the i, jth position of F ·G we have

1
n

n−1∑
k=0

ωikω−jk.

If i = j this is just 1, and if h = i− j 6= 0, we have the geometric series

1
n

n−1∑
k=0

ωhk =
1
n

(ωh)n − 1
(ωh)− 1

= 0.

It’s zero because (ωh)n − 1 = (ωn)h − 1 = 1h − 1 = 0. In general, we would like
to perform the FFT and the inverse FFT for some finite computation structure.
A sufficiently large finite field has more than adequate structure: some less
restrictive conditions are possible. For example the only elements that need to
have multiplicative inverses in the computation structure are ω and the number
of points, n.

The choice of a root of unity is a somewhat mysterious decision to make.
Various tables can be precomputed for various structures, but in fact even if we
use fields, we find there are plenty of suitable structures. For example,

There is a 2r th root of unity in a field Zm (m prime) if m = c2r +1. E.g.
3 is a primitive 8th root of 1 in Z41.
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There are about 50 primes m < 231 of the form c2r + 1 where r ≤ 20.
That is, even among the “single-computer-word” primes, there are plenty
of primes of that form.

Thus if we wish to use an FFT, we can have a pre-computed list of 220 th
roots of unity (allowing about a 106 point transform). Moreover, ω219 , ω218 , etc.
are trivially computed by squaring ω220 , etc. so that we have roots of all smaller
power-of-two sizes.

As an example of how we can use the FFT for evaluation and interpolation
in a typical algebraic manipulation context, consider the problem of powering a
univariate polynomial: (A(x))3 = (x + 10)3. We can represent this problem as
follows (we will use superscript t to indicate matrix transposes):

A = (10 1 0 0)t.

Note that we padded out the sequence to length 4, not because we needed it to
encode A(x), but we anticipate that we will need it to encode (A(x))3, which is
of degree 3, and (counting the coefficient of x0) has 4 terms.

The next step is to compute the Fourier Transform, in some domain which
we need not specify at the moment:

F4 ·A = Â = (â0 â1 â2 â3)t

Then to cube A(x), we in effect cube A(1), A(ω), A(ω2) , ... and then interpo-
late. The cubing step is the computation of:

Â(3) = (â3
0 â3

1 â3
2 â3

3)
t

and then finally, we interpolate those values, by computing the inverse trans-
form:

F−1
4 · Â(3) = (1000 300 30 1)t.

Obviously, performing this FFT procedure by hand will be significantly
slower than the usual method of multiplication (or expansion by the binomial
theorem). And thus if someone asks you to compute the FFT of something, con-
sider going back to some other form – even the matrix definition we started with
(the “Slow” Fourier transform) might be faster and less error prone by hand.
But even using a computer, the bookkeeping for such a small problem would
probably make a straight-forward method of polynomial multiplication faster.
However, if A were a polynomial of degree 20, then this FFT might be faster
than the conventional method: even though the FFT would have to be bumped
up to size 64, a power of two, and therefore larger than necessary to represent
the answer. However, if A were not dense, but sparse, say A(x) = x1000 + 10,
then the computation via FFT of A3 would require a transform of some 4096 el-
ements, even though we can do it “by eye” quite rapidly. This suggests that the
FFT is very bad for sparse polynomials because its running time is dependent
upon the degree of the answer. This is not a natural measure of the size of a
sparse polynomial; by constrast the “high school” algorithm depends mostly on
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the number of non-zero coefficients, which is often more reasonable. This type
of behavior (good for dense polynomials, bad for sparse) as well as the nagging
details of bignum arithmetic in finite fields, has usually provided a rationale for
avoiding the general use of the discrete FFT in general purpose algebra systems.

There are interesting variations on the FFT to speed it up yet more, and
to overcome the “power-of-two” restrictions. (for example, see Moenck [6].)
The improvements to the FFT discovered by S. Winograd [?] have not, to our
knowledge, been implemented in the context of algebraic manipulation.

The generalization of the FFT to multivariate polynomials, and to a vari-
ety of polynomial problems, is discussed by R. Bonneau in his MIT thesis [3].
Various papers have tried to identify the sizes of polynomials for which the the-
oretical advantages actually translate into practical improvement (R. Moenck
[6], R. Fateman [5]). The tradeoff points naturally depend on details of imple-
mentation.

1.3 The FFT Algorithm

Input: k, A power of 2.

A, a sequence of length k of elements in S, a finite computation structure.

ωk, a kth root of unity in S.

Output: Â

0. If k = 1 then return Â = A.

1. [split] B := even(A); C := odd(A); {Separating the original sequence into
two sub-sequences}.

2. [recursive steps] B̂ := FFT(k/2,B, ω2
k);

Ĉ := FFT(k/2,C,ω2
k)

3. For i:=0 to k/2-1 do

begin

Âi := B̂i + ωi
kĈi;

Âi+k/2 := B̂i + ωk
i+k/2Ĉi

end

A number of programming tricks can be used to speed this up, in addition
to a certain number of less obvious transformations. For example, ω

k/2
k = −1

in any ring supporting a k-point FFT, and the computation in the inner loop
of step 3 can be improved to:

3′ m := 1;i := 0;k2 := k/2;

Repeat

Âi := B̂i + mĈi;
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Âi+k2 := B̂i −mĈi;

i := i + 1;m := mωk

until m = 1;

Other tricks worth noting:

a) For k = 2, Â = (a0 + a1, a0 − a1), shortening the recursion.

b) If A = (0, 0, ..., 0), Â = A.

c) If A = (a0, 0, ..., 0), Â = (a0, a0, ..., a0).

d) If A = (a, a, ..., a), Â = (ka, 0, ..., 0). “The DC case.”

e) Non-recursive versions of this basic idea are generally used, since the data
structure for sequences is usually implemented as sequential array alloca-
tion, and the programming language does not implement recursion effi-
ciently. The recursion is therefore turned into clever indexing. Note, for
example, that in separating even and odd elements, we could just as easily
say “all elements whose last bits are 0” or “.. 1”. And that even(even(A))
is “all elements whose last two bits are 00”. etc.

(Bit-reversal indexing is a small industry. For more discussion see e.g. J.
Demmel’s CS267 notes.)

The interested reader may find it amusing to compare industrial-strength,
or even academic “public-domain” FFT code to the relative simplicity of
a direct implementation of the recursive program.

You should be able to find Fortran or C language versions of the complex
FFT, using various clever indexing schemes, in any scientific subroutine
library. (see netlib, mit benchmark programs, Bailey’s NAS code).

The very best implementations of the FFT take into account particular
features of host machines including the interference of memory-bank ref-
erences, pipe-lining, instruction and memory hierarchies (cache, external
storage), vector or distributed multi-processing communication costs, etc.

There are also special chips built for FFTs, but these are, so far as we
know, intended for signal or image processing, not computer algebra ap-
plications!

2 Some actual data

Actual data suggest that if one is in fact interested in multiplying univariate
polynomials over finite fields (chosen by the algorithm), then by implementing
the FFT in a more suitable language than Lisp, (e.g. C), and using appropriate
data structures (arrays rather than lists), a significant speed-up can be obtained.
For modest sizes of input with finite-field arithmetic a major speed-up is actually
obtained just by using C and arrays, even if we use an n2 algorithm!. In one test
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we squared the polynomial (x + 1)n for various n. We compared (i) Macsyma’s
standard LISP program, (ii) a program that converted the polynomial to an
array and used C to implement standard high-school multiplication, and then
converted back to a LISP list, and (iii), an FFT program written in C.

Basically, Macsyma’s LISP program was slowest for all n, and some thirty
times slower for n = 64. The FFT was slower than the high-school method
(except for isolated “good sizes”) when n > 96. After that point, the FFT
seemed to be superior.

Asymptotically faster algorithms are often possible where there is some core
convolution that can be performed using the FFT rather than conventional n2

multiplication. Whether this is actually a practical result depends heavily on
the circumstances [6].

There are over 10,000 papers on the FFT that have been published in the
last decade, and this bibliography references almost none of them. Use your
web browser for finding a few more, by looking at

http://science.nas.nasa.gov/Pubs/TechReports/RNRreports/dbailey/RNR-
89-004/RNR-89-004.o.html

Should discuss: “Discrete” Winograd FFT.

3 Exercises

Exercise: Show that nearly the same analysis can be used for a power of 3 FFT,
with asymptotically fast running time. Show how this can be used for an FFT
over exactly 18 points. And how fast is that?

Exercise: Implement an FFT on your favorite machine and figure out how
much of the time is actually spent on arithmetic, and how much on data move-
ment or indexing.

reference: http://theory.lcs.mit.edu/~fftw

4 What about higher dimensions?

You can find substantial material on higher-dimensional FFTs, especial 2-dimensions
where FFTs of image data provides an interesting encoding that is useful for
signal enhancement, compression, etc. How does this map into our polynomial
world?

For a 2-D polynomial, consider the following extension: from

A(x) =
mn−1∑
i=0

aix
i

to

B(x, y) =
n−1∑
i=0

m−1∑
j=0

bi,jy
j

xi.
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Note that if we set bi,j to aim+j , then B(x, xn) is the same function as A(x).
That is, we can think of B as a 2-dimensional polynomial with a main variable
x and a secondary variable y that appears in the coefficients of powers of x, or
alternatively, as another way of encoding A. Taking an FFT of B can be done
by converting it, with suitable padding of n and m, into A. The rest of the FFT
discussion still holds.

**** are we omitted some twiddle factors here?? ***
For some computational purposes (in particular, to take advantage of locality

of memory reference) it is advantageous to map single-variable polynomials like
A into 2-D ones. Or in the matrix version, to take A in an array and consider it
as an n by m matrix. By naming the subsidiary polynomials that are functions
only of y, we can rewrite the equation for B above as:

B(x, y) +
n−1∑
i=0

qi(y)xi.

We compute an n point FFT on this. Instead of the usual adds we must
add vectors qi. Instead of the usual scalar multiply, we must multiply vectors
by the same old scalars ωi. Let this result be

B′(x, y) +
n−1∑
i=0

ri(y)xi.

We don’t use the notation B̂ here because we haven’t yet completed the trans-
form. In fact to complete the transform we can rewrite B′ as

B′(x, y) =
m−1∑
j=0

(
n−1∑
i=0

b′i,jx
i

)
yj

and then perform an m-point FFT on this system. From a polynomial perspec-
tive, we have re-written the system as a polynomial with main variable y and
subsidiary variable x. From the more common perspective, this rewriting of the
polynomial is a matrix transpose, an operation which does no arithmetic but
merely re-orients data that was arranged by rows into columns. The reason to
do it is based on the observation that sequential access to memory locations
that whose addresses are spaced apart by certain powers of two will cause con-
tention between banks of memory or promote cache misses. A careful analysis
of such a rearrangement in light of a particular machine architecture (cache or
vector-register sizes) can speed the computation of an FFT considerably (e.g.
for Cray-YMP, 30%, D. Bailey).

Note also that the padding of one (or more) dimensions of a higher-dimensional
FFT multiplies the excess size by the the other dimensions, and runs up the
costs substantially, so it may pay more to keep the sizes “tighter” than for the
1-D FFT.
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5 Appendix

Here is a self-contained Macsyma version of an FFT that will work for sequences
of points. e.g. myfft(4,[f0,f1,f2,f3],%i). This is not actually fast, but it
is remarkably small, and shows the result of computation. It can be tried out
for various special cases, and can be used for an inverse-FFT, as well. Perhaps
of more practical interest is a version we wrote this that spews out straight-line
code for the FFT.

/* k is a power of 2, a is a sequence of length k, wk is a kth root of unity */

myfft(k,a,w) :=
if k=1 then a else
block([b:myfft(k/2,even(a),w^2),

c:myfft(k/2, odd(a),w^2)],
append (makelist(b[i]+w^(i-1)*c[i],i,1,k/2),

makelist(b[i]-w^(i-1)*c[i],i,1,k/2)))$

even(a):= if a=[] then a else cons(first(a),odd(rest(a))) $
odd(a) := if a=[] then a else even(rest(a))$
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