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Abstract

“Evaluation” of expressions and programs in a computer al-
gebra system is central to every system, but inevitably fails
to provide complete satisfaction. Here we explain the con-
flicting requirements, describe some solutions from current
systems, and propose alternatives that might be preferable
sometimes. We give examples primarily from Axiom, Mac-
syma, Maple, Mathematica, with passing mention of a few
other systems.

1 Introduction

A key issue in the design of computer algebra systems (CAS)
is the resolution of what is meant by “evaluation” — of
expressions and programs in the embedded programming
language of the system.

Roughly speaking, evaluation is a mapping from an ob-
ject (input) and a specified context or environment to an-
other object that is a simpler or more specific object (out-
put). Example: 2 4 3 evaluates to 5. More specifically and
somewhat pedantically, in a CAS, evaluation involves the
conventional programming-language mapping of variables or
names (e.g. z) to their bound values (e.g. 3), and also the
mapping of operators (e.g. +) to their actions. Less con-
ventionally, CAS evaluation generally requires resolution of
situations in which a variable “has no value” but stands only
for itself, or in which a variable has a value that is “an ex-
pression”. For example, given a context where x is bound
to 3, y has no binding or is used as a “free variable”, and
z 18 a + 2, a typical CAS would evaluate z + y 4+ z + 1 to
y+a-+5.

In simple cases this model is intuitive for the user and
efficiently implemented by a computer. But a system de-
sign must also handle cases that are not so simple or intu-
itive. CAS problem-solving sessions abound in cases where
the name and its value(s) in some context(s) must coexist.
Sometimes values are not the only relevant attributes of a
name: there may be a declaration of “type” or other auxil-
iary information. For example it might evaluate sin®z < 1
to “true” knowing only that x is of type Real. (If z were

known to be complex, this could be false.)

CAS builders, either by tradition or specific intent often
impose two criteria on their systems intended for use by a
“general” audience. Unfortunately, the two criteria tend to
conflict.

1. The notation and semantics of the CAS should corre-
spond closely to “common intuitive usage” in mathe-
matics.

2. The notation and semantics of the CAS should be suit-
able for algorithmic programming, as well as (several
levels) of description of mathematical objects, rang-
ing from the abstract to the relatively concrete data
representations of a computer system.

The need for this first requirement (intuitiveness) is rarely
argued. If programs are going to be helpful to human users
in a mathematical context they must use an appropriate
common language. Unfortunately, a careful examination of
common usage shows the semantics and notion of mathe-
matics as commonly written is often ambiguous or context
dependent. The lack of precision in such mathematics (or
alternatively, the dependence of the semantics of mathemati-
cal notation on context) is far more prevalent than one might
believe. While mathematics allegedly relies on rigor and for-
mality, a formal “automaton” reading the mathematical lit-
erature would need to accumulate substantial context or else
suffer greatly from the substantial abuse of notation that is,
for the most part, totally accepted and even unnoticed by
human readers. Consider cos(n+ 1)z sin nz, as appears in a
well-known table of integrals (formula 1.351 [8]). Try that
in your favorite CAS parser!

Because the process of evaluation must make explicit
the binding between notation and semantics, the design of
the evaluation program must consider these issues centrally.
Furthermore, evaluation typically is intertwined with “sim-
plification” of results. Here again there is no entirely satis-
factory resolution in the symbolic computation programs or
literature as to what the “simplest” form of an expression
means.

As for the second requirement, the need for programming
and data description facilities follows from the simple fact
that computer algebra systems are usually ”open-ended.”
It is not possible to build-in a command to anticipate each
and every user requirement. Therefore, except for a few
simple (or very specific, application-oriented) systems, each
CAS provides a language for the user to program algorithms



and to convey more detailed specifications of operations of
commands. This language must provide a bridge for a com-
puter algebra system user to deal with the notations and
semantics of programming as well as mathematics'. Often
this means including constructions which look like mathe-
matics but have different meanings. Examples: z = x 4+ 1
could be a programming language assignment statement, or
an apparently absurd assertion of equality. Furthermore,
the programming language must make distinctions between
forms of expressions when mathematicians normally do not
make such distinctions. As an example, the language must
deal with the apparently equalbut not identical2x and x+x.

Programming languages also may have notations of “stor-
age locations” that do not correspond simply to mathemat-
ical notations. Changing the meaning (or value) of an ex-
pression by a side effect i1s possible in most systems, and
this i1s rather difficult to explain without recourse to no-
tions like “indirection” and how data is stored. For exam-
ple, Maple and Macsyma provide for assignment into the
compound data structure representing a matrix. An assign-
ment may change not only the expression as expected, but
some other use of the structure. Using Macsyma syntax,
a:matrix([1]); b:a; establishes both a and b as a 1 by 1
matrix with entry 1. Then b[1,1]:0 changes the value of
a as well as b. Another somewhat related question is how
one would deal with evaluation in a matrix that is really a
spreadsheet of formulas and values[1].

Traditional numerical programming languages do not have
to deal with the gradations of levels of representation in a
computer algebra system. In fact, the common program-
ming term “function” for “subroutine returning a value” in-
dicates the depth of mismatch between the mind-sets com-
mon in traditional programming and mathematics respec-
tively. What sense does it make to ask if a Fortran “func-
tion” 1s “continuous”? At best, Fortran functions are maps
from discrete sets to discrete sets, and that alone makes
the concept of continuity inapplicable. Observe that any
(non-constant) “smooth” function ends up being discontin-
uous when you look closely. A system that can compute
the derivative of f(z) as (literally) something like df (z)/dz
must have a quite different set of notations and semantics in
dealing with “functions” from those of a Fortran compiler.
Furthermore, no computer algebra system today deals con-
structively with a statement beginning “Let C be the set of
continuous functions ....”

In more “complete” programming languages in which
symbols and values can coexist, additional issues arise. The
oldest higher-level language providing conundrums about
evaluation is Lisp, in which it makes sense to ask the ques-
tion, when does (eval ’x) differ from x 7

In this paper we take most, but not all, of our exam-
ples from widely-distributed CAS: Macsyma, Mathematica
and Maple. AXIOM, a more recently released computer al-
gebra system with a mathematical type system, introduces
another somewhat orthogonal perspective on evaluation, re-
quiring the results to conform to a calculus of types. We
believe the options presented in these systems reasonably
cover the range of models that have been implemented in
other current computer algebra systems. There are also
programming languages which deal effectively with “sym-

I Several systems use a different system implementation language
(C or Lisp, typically), where there is a clear distinction between math-
ematical expressions which are treated as data and programs. For
various reasons it is generally believed that these languages are less
intuitive to the mathematician, although their presence solves the
programmability issue decisively for persons willing and able to use
them!

bols” including most notably, Lisp. Space does not permit
discussing such programming languages generally.

With respect to its evaluation strategy, each existing sys-
tem chooses its own perhaps twisting pathway, taking large
and small sometimes controversial stands on different issues,
along the way. It is an understandable temptation in de-
sign, to place enormous complexity in this one operation,
eval. After establishing or implying some context, virtu-
ally all problem-solving questions can then be reduced to
eval (solve(problem)).

As suggested above, we believe some design issues are
matters of opinion, and undoubtedly some of our criticisms
may irk designers who insist “I meant to do that” or “The
alternatives are worse.” Yes, we do not always provide a con-
structive and consistent solution to the problems we point
out.

2 Context of Evaluation

In a typical CAS, an internal evaluation program (eval for
short), plays a key role in controlling the behavior of system.
Even though this program may not be explicitly available for
the user to call, it is implicit in much that goes on. Typi-
cally eval takes as input the representation of the user com-
mands, program directives, and other “mnstructions” and
combines them with the “state” of the system to provide
a result, and sometimes a change in the “state.” In other
words, eval stands between the input-parser and the oper-
ational routines for mathematical manipulation (programs
to factor polynomials, integrate rational expressions, etc.)
Some of the operational routines must themselves use eval
internally to achieve their objectives. For example, evalu-
ation of a boolean expression will generally determine the
value of a conditional expression. Because of this kind of
dependence, changes to the evaluation process can affect
systems in many ways that do not seem to explicitly “call”
eval.

A more careful consideration of eval as one might expect
from a more formal programming language design looks a bit
different. Not being confused by the CAS attempt to intuit
the proper behavior of names, indeterminates, and values,
the scope and extent of variables can be more easily deter-
mined, and some choices made available to the programmer:
it should be possible to deal with contexts of binding in a
computationally consistent fashion. In a flexible program-
ming language, different bindings might co-exist within some
global framework.

For example, Common Lisp has the potential for any
number of distinct simultaneous bindings of a name, and
also for different scoping rules regarding those names. The
preferred form is lexical scope (but dynamic scope can be
used by choice). Its resolution of the result of eval, and
the discussion has, after a few decades, become rather well-
formed. Consider our earlier example of what the value of
(eval ’x) should be in Lisp.

(let ((x 1)) ;<--- the first x is bound to 1
(let ((xPlusOne ’(+ x 1)))

‘(iét ((x 2)) ; another x
‘(é\‘ral xPlusOne))))

Is this supposed to return 2 or 3?7 By xPlusOne do we
mean “find the value of the innermost x and add one to it”



or do we mean “find the value of this x, the one that’s right
there above xPlusOne, and add one to it? So far as intu-
itions go, it seems a valid intuition to think the programmer
meant “the first x.” Over the years the Lisp community
has considered different ways of making eval work and has
decided that some ways are better than others, and in the
better ways (eval ’x) is not necessarily equivalent to x as
an utterance?.

3 Routes to Evaluation

There are several approaches to programming an evaluation
algorithm. We describe major variants in the subsections
below.

3.1 Eval, a procedure

The traditional procedural technique looks like the Lisp eval-
uation mechanism. The resemblance is not accidental. There
is a strong similarity between an algebraic expression repre-
sented as a tree (data), and a Lisp program to evaluate that
expression. For example, (+ x (*x y z)) could be either.
This leads to evaluation that looks like induction:

e If an expression is an indivisible “atomic” node such
as a number or a symbolic name, follow the rules for
evaluating atoms. Typically these include

— numbers evaluate to themselves (in some cases
some type conversion may be done).

— well-known constants like 7 may (in certain cir-
cumstances) be changed to approximate numbers.

— A symbol (variable, indeterminate) like « may be
replaced by its value, if it has one. If the value of
is another symbol or a composite expression, some
evaluation schemes will evaluate that expression,
perhaps until it no longer changes.

o If an expression is a composite object like F(a,b,c),
it has a “main operator” F. Some procedure associ-
ated with the name F'| say fproc, will eventually be
executed, either on its raw arguments, or on the result
of evaluating its arguments. The typical case is that
first eval will be applied to each of (a,b, c), and then
the fproc will be applied. We can think of this as
two steps: “evaluate the arguments of the main opera-
tor” followed by “apply the operator to the evaluated
arguments”. There are many variations to this tech-
nique, but in general it involves recursively evaluating
subexpressions.

There 1s a rather substantial shortcoming in this model.

Mathematical semantics cannot always be modeled adequately

by this strictly bottom-up tree-traversal evaluation process.
Consider the command subs(x=a,x-x) by which we mean
to have the system substitute a for x when it appears in the
expression x - x. A bottom-up evaluation scheme would
evaluate x - x to O prior to performing the substitution,
and therefore the substitution would always result in 0. But
what if the computer system allows for such objects as oo
where oo — oo is arguably different from 07 What if a were
an interval such as [0, 1] in which case a - ais arguably the
non-zero interval [—1,1]. What if a = 0(n), an asymptotic

°In this paragraph I've taken some words from a note to
comp.lang.lispby jeff@festival.ed.ac.uk (J W Dalton) October 18,
1993

order? What if the object a does not even admit of a sub-
traction operation, since it could be, for example, such a
non-algebraic object as a “file descriptor”?

3.2 A multi-phase model

An alternative approach is to change evaluation to a two-
phase operation. The first phase, generally operating top-
down, provides a context and perhaps an expected type for a
result, for every operation, and the second phase, operating
bottom up, computes values.

Consider the tree expression (in a lisp-like notation) of
(+ (modulo 5 3) (x 2 2)). The root node + has two de-
scendants. In traversing the tree downward, the first phase
of evaluation imposes the constraint that the types of its ar-
guments must (at least) be objects that can be added. The
constraints imposed by modulo on its arguments as well as
its result types provide further context. Perhaps in this case
we intend that (modulo 5 3) return “-1 in the finite field
Z3”. Then note that the context of (modulo 5 3) affects
the constraint on (¥ 2 2), because we now presume that
the + is addition over a finite field. Thus this first phase is
not strictly one-pass; if the expression had been (+ (¥ 2 2)
(modulo 5 3)), the new information passed upward to the
+ from the second argument would have to be transmitted
back to the first argument. Indeed, one can envision an order
of evaluation to types where the result type of an expression
deeply nested in a tree can force re-evaluation of the whole
tree; this re-evaluation may actually occur more than once
(and in a poorly constructed coercion system, might cycle
without convergence).

In the second phase, the relations between arguments
and results of each of the operators could be examined to
determine the actual computation to be performed. In some
cases this might still be ambiguous because the type of an
expression might depend on values to be computed. For
example, in the expression (if b 1 1.0), if the (presum-
ably boolean) value for b is true, the result is a (presumed)
integer, but otherwise a (presumed) floating-point number.
Perhaps such expressions should be forbidden, or their re-
sults should be forcibly typed to the union of their possible
types. Later, it may be necessary to “retract” the type to
one of the constituents.

The AXIOM system has made a case that the first phase
can be done on input in an interpretive mode, and that after
that point, every object has a type; every operation has a
set of coercions for any n-tuple of argument types.

Although this is very helpful, it is painfully unclear, even
in some relatively simple cases, how the second phase should
coerce types when they do not match. We will return to this
in a later section.

3.3 Evaluation by Rules

Another technique, not particularly matched to the math-

ematical context of computer algebra systems, but never-

theless plausible because it can be used to define general

algorithms on trees, is to define transformations by rules.
These rules might direct transformations like

Vo,y log(x-y) — log(z) +log(y) x,y >0

or
x, if z > 0;
|lz| > < —z, ifx <O

|z|, otherwise.



Since even highly constrained and very simplistic rule
transformation systems (e.g. Post systems [4]) are equiv-
alent to Turing machines in formal computational power,
they could be used, in principle, as the sole computational
description for any formal algorithm, not just evaluation.
Their advantage over the more traditional procedural def-
initions seems to be primarily in their declarative nature.
They may be simpler for a “user” of a complex system to
understand. An approach adopted by Theorist, a highly-
interactive commercial CAS, seems especially worthwhile:
it can be set up to present transformations from a list of
rules selected from a menu of rules. This seems much more
palatable than either writing rules from scratch or trying
to figure out how some system’s “expand” command will
change an expression from the documentation, test cases,
and guesses. In brief: the rules also serve as documentation.

There are counterbalancing disadvantages to using rules:

1. It is possible to define rules so that more than one
rule can apply. In fact, it is often difficult to write
a complex transformation without overlapping rules.
A simple conflict resolution process such as “the most
recently defined rule takes precedence” may lead to
very slow execution—essentially all rules must be at-
tempted to make sure that none can be applied. Also,
it might not provide the expected result. Another reso-
lution such as “the most specific rule takes precedence”
can be difficult for the human “programmer” to under-
stand or for the computer system to apply. (In fact this
meta-rule is non-computable, generally.)

2. Much of the software technology of modularity, func-
tional programming, information-hiding, etc. is either
irrelevant or takes a rather different form in terms
of rules. It is rarely convenient to use a completely
declarative approach to specify a large computation.
Early evidence from the expert-system building com-
munity suggests that constructing large systems by
programming rules [2] may be even more difficult than
construction via traditional imperative programming.

3. The unit of specification — rule application, is really a
two part process. It requires pattern matching (usually
a kind of graph-matching) in conjunction with check-
ing of predicates on pattern-match variables. The sec-
ond part is substitution and evaluation.

The matching process can be very costly, even if it
results in a failure to match. It may be important
to develop heuristics which avoiding the attempt to
match at all. Such attempts to “optimize” rule sets,
where information about partial matches are propa-
gated can be critical to speed. There is a literature on
computing reductions related to rules (e.g. Grobner,
Knuth-Bendix [3]), which can be helpful in the do-
main of polynomial computer algebra evaluation prob-
lems have to do with computing in polynomial ideals—
reduction of systems modulo polynomial side-relations
in several variables. Unfortunately, success in a larger
domain does not follow from this same theory.

4. Matching trees where subtrees are unordered is inher-
ently exponential in the depth of the trees. Expres-
sion or pattern trees with root nodes denoted “plus”
or “times” have unordered subtrees. If such commuta-
tive matching were an inherent part of the evaluation
process, this would not be a disadvantage of rules ver-
sus other mechanisms; however, some costs in evalua-
tion via commutative tree searches seem to be more an

artifact of the mechanism of rules than a requirement
for evaluation.

3.4 Object-oriented Evaluation

An object-oriented approach to evaluation provides another
perspective. Each object, an expression represented (ab-
stractly at least) as a tree, has a root or lead operator.
This is associated with a program that “evaluates” objects
of that type. Thus one would have a “plus” evaluator, a
“times” evaluator, etc. An elaboration on this idea would
provide for inheritance of other information: The “plus”
evaluator might inherit routines that were associated with
the tree-nodes (objects being added) which might, for ex-
ample, be members of the ring of integers, or power-series
in some variable. Objects with no evaluation functions (e.g.
a newly introduced f(z)), could also inherit some default
evaluation mechanism from the “mother of all evaluation
routines.” Such a default routine might return f(y) where
y is the evaluated form of x.

An object-oriented programming approach is a handy
way to organize programs along orthogonal lines to corre-
spond to helpful conventions from mathematics and data
structures.

4 Common Problems

4.1 Failure of the Top-Down Model

FEach of the evaluation models generally boils down to a de-
scent through an expression tree, reserving operations while
evaluating operands, and then backing out. Let us review
the results of a sequence of computations in evaluating the
expression f(g(z,y), h(z)). Here the evaluator acts on f, g,
z, y, and then applies g to (the evaluation of ) # and y. Then
h, and z, are visited and h is applied to (the evaluation of)
z. Finally f is applied to g(z,y) and h(z).

This sequence is sometimes wrong, because it assumes
that the evaluation of g(=, y) is independent of (say) z. How
might this not be the case? As asomewhat frivolous example
mentioned earlier, consider (a 4+ b) + ¢ where « = 5, b =
6 and ¢ = 2mod 5. After adding a and b to get 11, we
then discover that arithmetic should have been performed
modulo 5. A less frivolous example along the same lines
would be one in which (say) a, b, and ¢ are power series in
which arithmetic combining a and b must be redone in order
to combine the result with c. Yet another example (using
Mathematica syntax) is N[Integratel ...]] where the N
means “‘numerically”. If we first evaluate the argument, then
the symbolic integration will be attempted, rather than a
numerical quadrature.

Another consideration that is sometimes at the core of
performance improvements is whether “evaluation” and “sim-
plification” should be interleaved. This can be illustrated by
the famously inefficient Fibonacci number recursion:

1 if # < 2;
flz) = {f(x — 1)+ f(z —2) otherwise.

We can use the sequence f(4) — f(3) + f(2) — (f(2) +
71+ £2) = (F(1)+ £(0)+ (1) + £(2) = - or J(4) —
7 o (10 + 12— implin] - 27(2)+
% “ e
The latter sequence of operations is much faster, since it
cuts down the exponential nature of the recursion (not that
it is efficient either.)



For systems which use many different data types or allow
parameters in the data types (an example of an implicit
parameter is the matrix dimension in a type “square matrix”
or the list of variables in a multivariate polynomial, or the
coefficient domain for polynomials), some form of non-local
information may be required to determine a type for the
result.

In Macsyma, for example, converting an expression to
a polynomial form requires two stages. First is a linear-
time scan so that all the symbol-names in the expression
are known (so that the “main” variable and the others can
be presented in sorted orders) It also notices some simple
relationships like z°™ being the square of z™. The second
stage then combines the given expressions conceptually, in
the appropriately-constructed domain of rational functions
extended by the set of variables or kernels found.

If this conversion is not done initially by a two-pass al-
gorithm, the evaluator may end up “backing and filling” re-
representing sub-parts, and especially non-obvious kernels.

Another somewhat different problem that may not ap-
pear to depend on types or domains, but arguably does, has
been mentioned previously: The short-cut which replaces
with 0 any expression that looks like £ — z i1s not always
valid unless the domain of x is known. If z is a stand-in for
00, should the substitution be made? (Perhaps yes, arguing
that both oo symbols are shorthands for a single variable.)

4.2 Quotation, Nouns and Inert Functions

In a computer algebra system it is useful at least on occa-
sion to deal with temporarily “unevaluated” objects, even
though they might be evaluated in the current context to
yield something else. Consider typing a differential equation
into a system. One might wish to type diff (y,t)=f(t).
But then if a “normal” imperative interpretation of diff
were applied, diff (y,t) might very well be evaluated to 0:
y does not apparently depend on ¢. As another example,
consider a program that uses, as intermediate expressions,
the symbolic roots of a quartic equation. This might happen
when a computer algebra system expresses the answer to cer-
tain classes of (elliptic) integrals involving rational functions
of square-roots of quartics. It makes much better sense (and
saves considerable time and space) to approach such prob-
lems by first abbreviating the roots by making up names,
say {ri,r2,rs,r4}, and then expressing the answer only in
terms of these roots. “Full evaluation” would ordinarily dic-
tate that if you have an expression for r; then you are com-
pelled to eliminate r; from expressions in which it occurs. In
the case of quartic roots, this is quite hazardous, since the
roots can each take a page to typeset, are pretty much guar-
anteed not to simplify much in isolation, and yet combine
with each other rather in neat ways that traditional simpli-
fication routines will miss. Unless the roots are in fact quite
small (such as the case of all floating-point approximations
— not symbolic at all) or one can apply special simplifiers
to collapse expressions involving subsets of {r1,rz,ra,rs}, it
is probably best to leave the answer in terms of those roots.
Consider also the plotting of a function

f(x) := if (x>0) then x else -x.

If the command is plot (£ (t) ,t,-10,10) or something simi-
lar, one must evaluate the first argument just one level: from
f to its definition, but no further evaluation of the definition
is possible. If one foolishly answers the question “Is ¢ > 07”
with “no, tis just a symbol” then you have lost. One must

3By contrast, Maple does not sort its variables. (They are “or-
dered” by the accidents of memory location).

defer even asking this question until the plot program re-
peatedly evaluates the expression for different values of t.

In Lisp, such issues are dealt with directly. There is a
“quote” operator (generally with the notation ’x meaning
“the unevaluated symbol x”) to ward off the effect of the
general evaluator. In Macsyma, a similar notation for quot-
ing operations is available so one can write a differential
equation as ’diff (y,t)+f(t) = 0. For the quartic equa-
tion problem one could let s=golve(...) and then deal
with ‘s[1] etc. without looking at the form of the solution.

A hazard here is that one does not want to see—displayed—
the quote-marks, suggesting the need for a slightly different
but more visually similar “noun” operator for diff. Maple
calls such operators “inert” and uses a first-capital-letter
convention to distinguish them from the normal “verb” op-
erators. The Maple convention is to identify such operators
with their lower-case versions only in a particular evaluation
context where such inert operators can be removed by a spe-
cial evaluation scheme. For example, the normal evaluator
will remove (by evaluation) derivatives (the diff operation)
but will leave Diff unchanged. Using an inert integration
operation in an expression leaves the form untouched until
some subsequent evaluator (say one for numerical solution
of differential equations) treats the inert operator in some
special way.

Although Macsyma has a mechanism for forcing its eval-
uator to convert a particular “noun” form to a “verb” form,
this is not quite analogous to Maple’s behavior, which seems
to generally take the view that a global re-examination of
the expression is needed to remove inert operators. (In Lisp,
the function eval “undoes” the quote.) There are subtle is-
sues as to how to resolve the bindings of symbols that are
contained in the previously-inert expression being evaluated.
Various careful definitions can be seen in the Common Lisp
and Scheme standards; most computer algebra system doc-
umentation seems to ignore the issue in the hopes that the
user will not notice the vagueness at all.

An example of another inert function in Maple may help
clarify the concept. The operation Power is used in con-
junction with the mod operator to provide “special evalu-
ation” facilities: to compute 7" mod m where 7 Is an inte-
ger it 1s undesirable to compute the powering first over the
integers (possibly resulting in a very large integer) before
reduction modulo m. The expression Power(a, b) mod p
which may also be written as a&"b mod p is similar in form
but it constructs an expression “inertly” without evaluation,
and then afterward in the “mod p” context, computes the
power, avoiding integers larger than m. Another example
of an inert function is Int, short for integrate. This inert
function can be removed by numerical evaluation in evalf,
and its use i1s particularly time-saving when the user can
predict that symbolic integration will not result in a closed
form (and therefore should not even be attempted.) It may
of course result in wasting time when a symbolic result is
easy to compute and then evaluate numerically. Maple does
have a function value () to change a given inert form to an
active form, on request.

4.3 Confusing Arrays and Matrices

An array is a data structure for storing a collection of values
indexed by some set. The set is usually a range of integers,
pairs of integers, or n-tuples of integers. One might consider
the use of other index sets such as letters or colors. Although
it is convenient to have an ordered index set, it may not be
required. Operations on arrays include access and setting



of individual values; occasionally accessing and setting of
sub-arrays (rows, columns, blocks) is provided. Sometimes
extension by a row or column (etc.) is possible.

Naively, a matrix appears to be simply a case of an array
with an index set of full rectangular or square dimensions.
(Along with most computer algebra systems we will ignore
the very important efficiency considerations that accrue to
special forms of matrices: diagonal, block diagonal, triangu-
lar, sparse.)

However, the operations on matrices are quite different
from arrays. For matrices of compatible sizes and entries,
one can compute A := B7'A. Issues of “where does one
store B™!” don’t occur. Nor does the user have to worry
about the storage of entries in A on the left messing up the
entries in A on the right. Copying over data is done au-
tomatically. In a classical numerical language, one would
probably have to allocate array space for one or two inter-
mediate results.

Evaluation of a matrix is a problem: If one asks for A ;
does one evaluate the expression to the entry, or does one
evaluate that entry? In a system that does “evaluate until
nothing more changes” this may not matter; in a system that
evaluates “once” does the access to an element count as that
one evaluation? Is one allowed to change one element of a
matrix, or must one re-copy it with a changed entry? It may
make sense to forbid altering a matrix after it is created.
In Mathematica there seems to be the additional (usually
unexpected and ill-advised) possibility that the symbol A
may have rules associated with it requiring re-evaluation of
the whole matrix A when only one element is accessed.

Then there are issues of subscripted symbols. If noth-
ing other than the name A of a matrix or array is given,
is reference to Az s an error (“uninitialized array element”,
“Ipotentially] out-of-range index for array”) or simply the
unevaluated Az s ? Mathematica makes no distinction be-
tween a subscripted name and a function call (A[3,3] or
Sin[x]). They are both “patterns” subject to replacement
by rules and evaluation.

And sometimes it is important to deal with the name of
an array, even if its elements are explicitly known. So-called
implicit operations can be very useful, and it is valuable to
be able to simplify AA™! to I knowing only that A is a non-
singular square matrix, and not referring to its elements at
all. Indeed, not even knowing its size.

5 Infinite Evaluation, Fixed Points, Memo Functions

So-called infinite or fixed-point evaluation is attractive pri-
marily because it is commonly confused with simplification.
The requirement is to detect that any further application of
a simplification program “won’t matter” —that the expres-
sion or system has reached a stable state or a fixed point,
and further attempts to simplify the expression will have no
effect. Thus if you were to re-evaluate infinitely many times,
it would not change.

Let us define simplification for our purposes here as a
transformation of an explicit function f(«) in some param-
eter x or vector of parameters, to another explicit function
g(z) = simp( f(z)) such that for any valuation v given to = in
some agreed upon domain, f(v) = g(v) and moreover, g(z)
is by some measure less complex. For example f(z) =z —=
and g(z) = 0 are a plausible pair: g has no occurrence of z
and hence might be considered simpler. This equivalence is
however false if the domain of valuation is that of interval
arithmetic: if v = [—1,1] then v — v is the interval [—2, 2],
not 0.

A very appealing and generally achievable attribute of
a good simplification program is idempotence. That is,
gimp (z)=simp (simp (x) ) for all symbolic expressions z. It is
intuitively appealing because if something is “already simpli-
fied” then it cannot “hurt” to try simplifying it again. Since
simplification per se should not change the environment, it is
plausible that a valid simplification routine applied repeat-
edly will not cycle among some set of equivalent expressions,
but settle on one, the “simplest”. (This is not to say that all
equivalent expressions will be simplified to the same expres-
sion. Though that would be desirable (a Church-Rosser [4]
simplifier), for some classes of expressions, it just happens
to be undecidable.) Note that we could consider building
a valid simplifier by defining a sub-simplification procedure
which is applied repeatedly until no more changes are ob-
served, and then this n-iterative process is the simp with the
idempotence property.

Some aspects of evaluation are almost indistinguishable
from simplification, especially if the valuations v are chosen
from “expressions” in the same domain as f. Repeatedly
associating valuations v with their names z leads to prob-
lems. Infinite evaluation can work only if eval (eval(x)) =
eval(x).

Unfortunately, if the usual assignment statement x:=x+1
is treated in this manner, and the “value” is nominally the
right-hand side of the expression, there is no finite valid
interpretation.

But if finite evaluation must be used in that situation,
how is one to determine “how many times” to apply a rule
such as az + bz — (a + b)z? Consider 3z + 42 + 5z. Can
one application do the job of fully evaluating the result of
applying the rule?

There are actually arguments that it can. Application of
a rule, or more generally, rule sets, can be sequenced in a
number of established ways, although termination is difficult
(theoretically impossible in some cases) to determine. See
the Appendix on rule ordering for further discussion of this
point.

If an expression is always simplified or evaluated to a
particular form, why not remember the input-output rela-
tionship and short-cut any attempt to repeat the calculation
by referring to the “oracular” evaluator? Indeed, one of
the principal efficiency tricks made available to program-
mers in any of the systems is the notion of a “memo func-
tion”. In Macsyma, so-called hash-arrays are used for this,
Mathematica has a comparable facility by means of its rule-
based memory, and the Maple programmer inserts option
remember in a procedure definition to use this facility.

By using these facilities, any time a function is “called”
on a given set of arguments (in Macsyma or Maple it looks
more like an array reference), the set is looked up. If it is
a new set, the result is computed and then “remembered”
typically in a hash table with the argument set as an in-
dex. The second and subsequent times the result will be
remembered from the first time, and simply recalled. This
can be a potentially enormous improvement, but it has the
unhappy consequence that if “impure functions” (that is,
procedures that have side-effects, or whose results depend
on global variables) are used, the remembered results may
be inappropriate. Thus access to a global variable in Maple
g:=proc(z) option remember; z+glob end; refers to the
global variable glob. If glob=1 then g(3) will be 4. Chang-
ing glob to 2 does not make g(3) be 5. It is “stuck” at
4.

Functions having histories are not necessarily restricted



to user-definedprograms. Maple system programs are set up
with option remember,including factor,normal, simplify
and (at one time) evalf. Some subtle problems reported
as Maple bugs are caused by such memory. For example,
re-computing a function after setting the system Digits to
compute with increased numerical precision might appear to
have no affect: the earlier low-precision result may simply
be recalled from memory and new values not recomputed at
all.

The negative consequences of this are quite far-reaching
in all of the systems and can be most unfortunate: fixing a
program may not repair an incorrect answer because of an
entry in the memory table of some function f, whose name
may not even been known to the programmer. Such memory
is cleared by Maple’s forget (£f), Mathematica’s Clear[f]
or Remove [f] or Macsyma’s kill (f).

Users and novice programmers can easily misunderstand
what has happened, resulting in substantial debugging dif-
ficulty. 1 suspect that experienced programmers fall prey
to this source of bugs as well, especially since they may be
more inclined to try to take advantage of the vast speedup
potential.

6 A Collection of Systems

6.1 AXIOM

Computing the “value of an expression €¢” in AXIOM [10]
resembles the notion of evaluation in Lisp, which is to say, it
is evaluation with respect to an environment. It also has an
additional component, which requires evaluation to a type.

Let us give several simple examples. Consider p = 3x+4,
a polynomial in Z[z], the ring of polynomials in the indeter-
minate x over the ring of integers Z. What is p/37 Plausi-
bly it is (3z +4)/3, an element in the quotient field Z(x),
namely a ratio of polynomials in Z[z] (In AXIOM this is
type: Fraction Polynomial Integer). Alternatively and
perhaps just as plausibly, p/3 is  + 4/3, an element in the
ring Q[z], namely a polynomial in the indeterminate = with
coefficients in the field of rational numbers, Q. This is AX-
IOM type: Polynomial Fraction Integer. Since there is
only one intuitive conventional notation for division cover-
ing both cases, one solution, and perhaps the wrong one for
future computation, will be chosen in any situation where
the result must be deduced from the symbols p, /, and 3.
Conversions are possible, but there are intellectual and com-
putational costs in using the wrong form.

A slightly more complicated, but extremely common, de-
sign situation occurs when performing arithmetic in Z(z, y)
in preparation for rational function integration. A com-
puter algebra system would like to deal with the “correct”
form: if one is integrating with respect to x this is to co-
erce the expression to a ratio of polynomials n/d where n
and d are each in Q(y)[z] and d is monic (has leading co-
efficient 1). This is quite asymmetric with respect to order
of variables: integration with respect to y would require a
different form, and integration of d/n may look quite dif-
ferent from a simple interchange of numerator and denom-
inator from n/d. As a simple instance of this, consider the
expression (1 4+ y)/(3 + 3zy). Integration of this expres-
sion with respect to x is particularly trivial if it is first re-
written as (1/3) - (1 + y)/y - (1/(z + 1/y)) The integral is
then (1/3) - (1 +y)/y -log(z + 1/y)

AXIOM goes further than other widely available systems
in making the descriptions of such domains plausible. In at-
tempting to provide the tools to the user to construct various

alternatives, it does not necessarily provide the best intuitive
setting. For example, embraced within the notion of poly-
nomial in several variables are the categories of Polynomial,

Multivariate Polynomial, Distributed Multivariate Polynomial,

Sparse Multivariate Polynomial, Polynomial Ring and
others. These domains are not necessarily distinguishable
mathematically, but in terms of data handling convenience.
Their distinguishing efficiency characteristics may not be
meaningful to a user who is mathematically sophisticated
but inexperienced in computer algebra. While it may be
comforting to some to have a solid algebraic basis for all
computations, the user without a matching algebra back-
ground may encounter difficulties in formulating commands,
interpreting messages, or writing programs.

A subtlety that is present in all systems but perhaps
more explicit in AXIOM is that one must also make a dis-
tinction between the types of variables and the types of val-
ues. For example, one could assert that the variables n and
m can only assume integer values, in which case (+ n m) is
apparently an integer. But it is manifestly not an integer
as we have written it, and as long as n and m are indeter-
minates, the sum of the two is an expression tree, not an
integer.

Given that we have a model in AXIOM that provides
a kind of dual evaluation: evaluation of an expression to
a pair: (type, value), how does it work? It appears that
by converting the type, one achieves much of the pseudo-
evaluative transformations. Thus if we are given r := 1/3
(type: Fraction Integer) then the commandr :: Float
results in 0.3333333... where the number of digits is set
by the digits function. Of course this is not an exact con-
version of value—more than the type is altered.

The principal other kind of evaluation in AXIOM is sim-
ple:

Any occurrence of a name in an expression in a context
to be “evaluated” such as the right-hand-side of an assign-
ment, or an application of a function, causes the current
binding of a name to be used in place of its name. That is p
:= 1/3 establishes a value for the current binding-place for
p- References to p in the ordinary course of events will pro-
vide 1/3. A single quote ’p prevents such evaluation. This
is essentially the Lisp model, except that the values used
may themselves have names, and these too are “evaluated”
potentially infinitely.

There is one form of eval that “removes” all quotes—in
its sole argument. Another set of evaluation transformations
are based on substitution semantics: that is, they specify
the substitution of some value(s) for a symbol or name(s) in
an expression (where then name could be a variable or an
operator).

Perhaps confusingly, syntactically indistinguishable ver-
sions of eval include operations on symmetric polynomials,
permutation groups, and presumably anything an AXIOM
program or a user wishes, as long as they can be distin-
guished by the types of the arguments. The expression
evaluate (op) identifies the attached function of the oper-
ator op. Attaching an %eval function £ to an operator op
is done by evaluate(op,f). The Common Lisp convention
(setf (evaluate op) f) might be clearer way of indicating
this.

R.D. Jenks of the AXIOM group at IBM has kindly pro-
vided additional details.

A mapping from e to its value V(e) looks like this.

If € is a literal symbol, say x then V(e) depends on how
x’s binding in the current context was assigned. If it was
a “:=" assignment (x :=a) where V(a) was y at the time,



then it is y. If it was a “==” binding, (x ==¢), then V(z)
is V(e). If there was no assignment, then it is an object of
type Symbol, x.

If e 18 a compound expression, then it has an operator
and operands. It also has a context in which a type u is
expected for V(e). To evaluate e of the form f(a1, - an)
in the compiled language,

1. Let Ay = V(a;) for1 <i<n.

2. Check to see if there is a unique “signature” denoted
f:(B1, -+, Br) = Bin the environment such that for
each 7, 1 <1 <n, A; is a subtype of B; and such that
B is a subtype of type u. If so, apply that operation
to produce the value of V(e)

The semantics of the interpreter differ from the compiled
code in that one replaces the notion of “is a subtype of” with
“can be coerced to” and in case more than one signature is
found, choose the one judged to be “of least cost”.

Exceptions to the general scheme are needed for a few
special operators.

For example: When x is a variable, x := e assigns a
value (the equivalent in Lisp is (setq x e)); f(a) == e or
f == (a) +-> e defines a function approximately like (setq

f ’(lambda(a) e)).

A detailed examination of evaluation in A" (the lan-
guage underlying Axiom) is beyond the scope of this paper.
In some circumstances the run-time computation should be
unimpeded by considerations of type, but in others it can
involve a good deal of machinery. Functions, domains, and
categories are first-class objects, and appropriate coercions
are sometimes required.

6.2 Macsyma

To a first approximation, Macsyma evaluates everything
once, as in Lisp. Just as in Lisp, there are special forms
that don’t evaluate all their “arguments” (assignment oper-
ators don’t evaluate their left-hand operands); there is also
a form analogous to Lisp’s eval (namely, ev) that evaluates
one extra time. And there is a quote operator (the prefix
apostrophe) which one thinks of intuitively as a way to pre-
vent an evaluation. Actually, the evaluation happens, it is
just that ’x evaluates to x.

Contrary to Lisp’s convention, evaluating a symbol x
that has no value does not result in an error, but merely
returns the symbol x. It is as though the system figured
out that the user meant to type (or was too lazy to type)
’x when the evaluation of x would otherwise signal an error
of type “unbound variable”. An attempt to apply an unde-
fined function to arguments would ordinarily signal an error
of type “undefined function” but here merely constructs a
kind of quoted “call”.

Experimentation with such language decisions is fairly
simple. In fact, one can easily provide a simple alternative
to the Lisp evaluator, written in Lisp, but using these rules.
Such a program is given in Appendix [1I. This model is ap-
propriate for the “functional programming” approach where
the value of a function depends only on its arguments and
not on its context. More work might be needed to provide
a natural way of expressing contexts (via an environment
passed downward). Such an environment would be used
to distinguish between the evaluation of (= 3 5000) and
(mod(~ 3 5000) 7). In the first case, the =~ would mean
computing the 5000 power of 3 over the integers; in the sec-
ond, the powering algorithm should be a much faster “mod
7” version.

There 1s are option for “infinite evaluation” in which case
an expression is evaluated until it ceases to change. This can
be done by a “command” INFEVAL or set up in an environ-
ment by using ev(...,infeval);. A related procedure is
INFAPPLY, which takes a function and arguments.

Evaluation and Simplification are two intertwined pro-
cesses: Commands that are submitted to the system by
a user are first evaluated — symbols’ values are inserted
for their names, functions applied to arguments, etc. Next,
the simplification program makes a pass over the answer, in
many cases rearranging the form, but not the “value”.

The user can change the meaning of evaluation by sup-
plying values for symbols, function definitions, and setting
some flags (for example, numer:true means that 1/2 be-
comes 0.5 and constants such as 7 are given floating-point
values.

The user can change the meaning of simplification by ad-
vising the system of rules via tellsimp and tellsimpafter
which intersperse (before or after the built-in procedure for
an operator) additional transformations. The process of ap-
plying rules will ordinarily require evaluation (and simplifi-
cation) of the right-hand-sides of rules. It is also possible to
declare a host of properties on operators that impose rules of
(for example) linearity to instruct the simplifier that f(a-+b)
should be written as f(a) + f(b) etc. It is also possible to
disable the simplifier by simp:off which is useful when one
wishes to (presumably temporarily) compute with unsimpli-
fied expressions. This can be useful in, for example, telling
the simplifier that 0° is to be rewritten as U rather than
signaling an error. This requires that 0° first be left unsim-
plified in the rule-entry process.

There are some commands which are executed during
evaluation which have as their effect an extra simplification
of their argument. For example, ratsimp is such a com-
mand.

Often the user need not know whether it is the simplifier
or the evaluator that changes sin(0) to 0. Advanced pro-
gramming requirements sometimes lead the ambitious into
having to consider noun and verb forms of operators. The
nounidea appears in Maple as inert operators—placeholders
that however contain reminders of what they might mean if
converted to verbs. Integral and differential equations typi-
cally use noun forms as such placeholders.

Macsyma has several different alternative evaluation (ac-
tually, simplification) schemes for special classes of represen-
tation. There is a “contagious” polynomial or rational form
which can be initiated by forcing some component of an ex-
pression into this form: e.g. x:rat(x) will do so. In this
case rational functions (ratios of multivariate polynomials
over the integers in a particular recursive form) will be used
as a default structure. Similar contagion affects expressions
involving series and floating-point numbers.

6.3 Maple

Normal evaluation rules in Maple are “full evaluation for
global variables, and one-level evaluation for local variables
and parameters.” That is, a Lisp-like one-level evaluation
is assumed to be most appropriate for programs, and an
“infinite” evaluation—keep evaluating until a fixed point
is reached—in the top-level interactive “user” environment.
Evaluation is accompanied by simplification always, although
some special simplifications can be separately applied. There
are a number of functions that don’t use the standard top-
down model of evaluation, but must look at their arguments



unevaluated or evaluated in a specific order. These “func-
tions” include eval, evalf, evaln, assigned.

In normal Maple usage, the user is unlikely to need to
use the eval function. There is a quote operation: ’x’
evaluates to x. Typically this is often used in a convention
whereby a function returns extra values by assignment to
quoted names. Thus match(..., ’s’) returns true or false.
In case match returns true, it assigns a value to s. Used
indiscriminately, this convention could lead to dreadful pro-
grams.

Maple’s normal evaluation procedure can be explicitly
called from within a program, for “extra” evaluation as
eval (x). This provides infinite evaluation as done at the top
level. An optional second argument provides for multiple-
level evaluations: eval (x,1), which is commonly used, means
evaluate variables that occur in x only to their immediate
values, and not to continue ad nfinitum. Because eval uses
its second (optional) argument to control how its first argu-
ment is evaluated, the function eval is on the list of func-
tions that do not evaluate their arguments.

Maple’s attempt to affect simplification by imposing (say)
linearity on a function is, in Maple V, mistakenly confused
with function definition. Declaring an operator to be linear
appears to replace any previous definition with one like this
(from Maple V rl; newer versions have somewhat different
results):

proc(a)
options remember;
if type(a,constant) then a*’procname(1)’

In mail to the Maple user group (April 19, 1994), in-
cluding an explanation on how to simulate lexical scoping
via substitution, unapply and quoting, M. Monagan adds,
“I hope to add nested scoping rules [in Maple] soon because
I’m tired of explaining this to users — I think | am getting
close to 100 times!”

In spite of this plethora of programs, the ambitious pro-
grammer would not be able to take advantage of useful
“evaluation-like” feature of Maple without looking at pro-
grams with names not directly identified as eval-something
by the designers. There is modpol(a,b,x,p) for evaluation
of a(x) overZp[z]/(b(z)) and e mod m for evaluation of e
over the integers modulo m.

Many additional functions are contained in the compli-
cated suite of facilities entered by using the convert com-
mand. Some of the conversions are data-type conversions
(say, from lists to sets), but others are form conversions
such as partially factoring a polynomial, which maintain
mathematical equivalence. Other uses defy simple model-
ing. The Maple command subsop(0=f,g(r,s)) substitutes
£ for the Oth (operator) g in g(r,s) to return f(r,s). Sim-
ilarly, convert ([3,b], ‘*‘) returns 3*b, but neither one of
these expressions has a Oth operator: The expression 3z is
encoded as a standard product and has no operator * at all.

The command convert (10,hex) gives the symbol A (which
may, of course, have a value associated with it.)

The on-line manual for Maple V release 1 lists the fol-
lowing pre-defined conversions:

elif type(a, ‘+‘) then map(procname,a) e ke D array base binary
elif type(a, ‘*) and type(op(l,a),constant) then confrac decimal degrees diff double eqnlist
op(1,a) *procname (subsop(1 = 1,a)) equality exp expln expsincos factorial float

else ’procname(a)’ fraction GAMMA hex horner hostfile hypergeon

£i lessthan lessequal list listlist 1n matrix
end metric  mod2 nultiset name octal parfrac

polar polynom radians radical rational ratpoly
To say that a function is both linear? and has other RootOf series set sincos sqrfree  tan

properties or evaluation semantics, seems beyond the scope vector

of this “hack”.

The Maple design becomes rather complicated, and seems
to suffer from a surprising number of variations or alterna-
tives to eval that have evolved. 1 suspect this has been
caused by the rigid discipline imposed on the system by
keeping its kernel code small and relatively unchanging over
time. Thus extra pieces have been grafted on from outside
the kernel, in not-necessarily-orthogonal ways.

Perhaps the most straightforward alternative to evalua-
tion is subs or substitute, which is a syntactic operation—
subs (a=b,a) is b. The others include Eval, evalf, evalm,
evaln, evalhf, evalb, evala, evalc, evalr, evalgf 5,

And other issues whose import were not apparent at the
design stage were inadvertently botched; these omissions
sometimes become apparent only much later.

Indeed, at this time Maple does not support nested
lexical scoping. The situation may be best un-
derstood as follows “In a procedure body, each
variable mentioned is either a formal parameter

or local of that immediate procedure, or else it is
global to the entire Maple session.” [(Diane Hag-
glund, Maple Technical Support, sci.math.symbolic
March 31, 1994)]

4Maple seems not to distinguish cases such as “linear wrt ” from
“linear wrt y”.

5M. Monagan concedes that some of the functions currently in
Maple should not be called eval functions, but these designations may
be merely historical. Some may be eliminated (evalgf for example).

The user is invited to make additional conversions known
to Maple.

Why are we making such a fuss about convert? It is just
that Maple is inconsistent with regard to what constitutes
conversion, evaluation, or just a command. Why is factor
a separate command, but square-free factoring a “conver-
sion”?

Let us turn to those other eval relatives. What do they
compute? The Maple manual (on-line) provides descriptions
for each of them, which we quote or paraphase below.

The program evalf evaluates to floating-point numbers
those expressions which involve constants such as w, e, 7,
and functions such as exp, In, sin, arctan, cosh, I', erf. A
complete list of known constants and functions is provided.

The accuracy of the result is determined by the value of
the global variable Digits. By default the results will be
computed using 10-digit floating-point arithmetic, since the
initial value of Digits is 10. A user can change the value
of Digits to any positive integer. If a second parameter, n,
is present the result will be computed using n-digit floating-
point arithmetic.

evalf has an interface for evaluating user-defined con-
stants and functions. For example, if a constant K must
be evaluated by calling a procedure, then the user must de-
fine a procedure called ‘evalf/constant/K‘. Then calls to
evalf (K) will invoke ‘evalf/constant/K‘().



If evalf is applied to an unevaluated definite integral
then numerical integration will be performed (when possi-
ble). This means that the Maple user can invoke numer-
ical integration without first attempting symbolic integra-
tion through the following subterfuge. First use the inert
form Int to express the problem, and then use evalf as in:
evalf (Int (f,x=a..b))

A similar function, evalhf is provided that computes
using hardware floating-point. Its limitation are generally
those of the double-precision arithmetic system on the host
computer. It will signal an error if any of the data cannot be
reduced to a floating-point number. In particular, a name
with no associated value will force an error.

evala evaluates in an algebraic number field, and evalgf
evaluates in an algebraic extension of a finite field. These
are related in that they each set up an environment in which
a number of specific commands take on different meanings.
For evala an algebraic number field is specified by the sec-
ond argument. For evalgf a prime number is provided by
the second argument. If the second argument is not pro-
vided, say, as evala(Gcd(u,v)), then the GCD function is
performed in the smallest algebraic number field possible.

The commands that take into account the algebraic field
include

Content Divide Expand Factor Gecd  Gcdex Normal
Prem Primpart Quo Rem Resultant Sprem Sqrfree

For other commands, the first argument is returned un-
changed, after first checking for dependencies between the
Root0f’s in the expression.

If a dependency is noticed between RootOf’s during the
computation, then an error occurs, and the dependency is
indicated in the error message (this is accessible through the
variable lasterror.)

An additional argument can be specified for Factor. This
is an algebraic number, or a set of algebraic numbers, which
are to be included in the field over which the factorization
is to be done.

An example:

> evala(Factor(x~2-2), Root0f(_Z"2-2));
2 2
(x + Root0Of(_Z - 2)) (x - RootOf(_Z - 2))

Note that the commands are not identical to those avail-
able outside the evala environment — they have initial cap-
ital letters and are so-called “inert” functions until they are
activated by being evaluated in an environment. Interest-

ingly, evala(Factor(x"2-2, Root0f(_Z"2-2))); with paren-

theses moved, produces the same result. (Normally an alias
would be used to provide a name for the Root0f expression,
dramatically simplifying the appearance of the problem and
its answer.)

evalm evaluates an expression involving matrices. It per-
forms any sums, products, or integer powers involving ma-
trices, and will map functions onto matrices.

The manual notes that Maple may perform simplifica-
tions before passing the arguments to evalm, and these sim-
plifications may not be valid for matrices. For example,
evalm(A~0) will return 1, not the identity matrix. One sim-
ple way out of this problem is to use a different operator, ~
for matrix powers (Macsyma does this, and a later release
of Maple provides &").

Unassigned names will be considered either symbolic ma-
trices or scalars depending on their use in an expression.

This is probably a bad idea, and leads to strange extra no-
tations that include &* (A,B,C) to multiply three matrices.

Among commercial computer algebra systems, it appears
that only AXIOM has a “clean” route out of this mess by
requiring that types be maintained throughout a computa-
tion. To alleviate the user from the painful chore of figuring
out the types of expressions, the AXIOM interpreter heuris-
tically infers types on input. Unfortunately, the type it in-
fers and the type needed by the user in further steps may
not agree. The clean route may thus not lead to a solution
without more work.

Maple’s evalb(x) forces, to the extent possible, eval-
uation of expressions involving relational operators to the
Boolean values true or false. If Maple is unable to reduce
the expression to one of these, it returns an unevaluated but
perhaps transformed expression. For example, a>b will be-
come b-a<0. Since Boolean operators (and, or, not) eval-
uate their arguments with evalb, evalb(x). (not(a>b) is
thus not (b-a<0). Somewhat uncomfortably, if a nor b have
any values at the moment, if (a=b) then 1 else 2 fire-
turns 1 while if (a>b) then 1 else 2 fiproduces Error,
cannot evaluate boolean.

The convention that if gives an error if x cannot be re-
duced to a Boolean value is only one possible convention
among many for the “unknown” branch of an if. Macsyma
and Mathematica make different provisions, with Macsyma
allowing a choice of carrying the unevaluated if along, or
signalling an error. See Appendix I on Conditional Expres-
sions.

Maple’s evalc forces evaluation over the complex num-
bers. It appears to provide several facilities intermixed. One
facility attempts to split an expression into real and imagi-
nary components in order to find a kind of canonical form
for expressions. A second facility merely informs the system
that additional numerical evaluation rules are available, such
as cos of complex numbers. (M. Monagan explains evalc as
complex expansion under the assumption that all symbols
are real-valued.) More recent versions of Maple have taken
some of evalc’s capabilities and added them to evalf.

At first sight the function evaln(x) seems quite strange
— it is used to create a symbol that can be assigned a value.
In the simplest case, it is the same as using single-quotes.
You can use this to take some data and concatenate pieces
together to “evaluate to a name”. Although evaln has a
few bizarre features, the notion of creating and installing a
string in a system’s symbol-table is handy.

The assignment operation in most languages implicitly
uses “evaluate to a name” on the left-hand side of the as-
signment. Consider the sequence i:=1, t[i]:=3, t[i]:=4.
The left-hand side of the expression t[i] :=4should be “eval-
uated” to the location for t[1], not 3, and not t [i]. Maple’s
penchant for the use of side-effects for assigning values to
extra variables makes an explicit version of this operation
handy. Thus, divide(a,x+1,‘q‘) might test to see if x+1,
divides exactly into the polynomial denoted by a. If so, q is
assigned the quotient. In aloop, you might need a sequence
of names for the quotients: divide(alil,b,evaln(t[i]))
where 1 is the index of a for loop.

The program Eval, quite confusingly from our perspec-
tive, is an inert operator used to represent an unevaluated
polynomial and points to be used for evaluation. Apparently
the (unstated) motivation is to make it faster to express re-

sults as residues in finite fields. Eval (x~100-y~100,{x=3,y=4})

just sits there unevaluated, but computing that value mod 11
returns 0.



Maple’s evalr implements a kind of interval arithmetic,
here called “range arithmetic” to compute a confidence in-
terval for a calculation. An associated function shake pro-
duces a interval to be fed into such functions.

The implementation details of evalr can be found, as is
the case for much of Maple (everything but the kernel) by
looking at the definitions which can be extracted in source
code form from the running Maple system. In fact, the
evalr system cannot work too well for the reasons given
earlier: the Maple kernel assumes that two intervals with
the same endpoints are identical, and that their difference
is exactly zero.

In the versions of Mathematica prior to 2.2, the same er-
ror occurred; eventually the vagaries of the Interval struc-
ture were incorporated into the equivalent of the Mathemat-
ica kernel.

6.4 Mathematica

The underlying scheme for evaluation in Mathematica [12]
is based on the notion that when the user types in an ex-
pression the system should keep on applying rules to it (and
function evaluation means rule application in Mathematica),
until it stops changing.

The evaluation strategy in Mathematica, as is typical
with every computer algebra system, works well for easy
cases. For more advanced problems, Mathematica’s evalua-
tion tactics, intertwined with pattern matching and its no-
tion of Packages is more elaborate than most. It is clear that
the evaluation strategy is incompletely described in the ref-
erence [12]; furthermore it appears it is never fully described
in the Mathematica literature. Experimentation may be a
guide.

It appears that the usual block structure expected of an
Algol-like language is only partly simulated in Mathematica.
The usual notion of contexts for bindings, as one might see
in Pascal or C is actually simulated by another mechanism
of Packages. Defining, setting or evaluating a simple sym-
bol, say x, at the command level actually defines it in the
Global (top level) Package. Its evaluation returns its binding
Global ‘x. Evaluation of a symbol defined but uninitialized
in a Module, for example by Module[{x}, ..x..], is actu-
ally the same as a symbol Global ‘x$12. That is, a lexical
context is implemented by mashing together names with se-
quentially generated numbers that are incremented at each
use. There is also a Block construction, a remnant from an
earlier attempt to implement block structure in Mathemat-
ica. The evaluation mechanism of “repeated evaluation until
no change” pretty much defeated the local-name mechanism
of Block: If the global value of x is 4, then Block[{x},x]
evaluates to 4 (presumably in two stages: x evaluates to x
in the outer block, and then x evaluates to 4).

Names can be defined in different Packages, perhaps
nested, in which case inter-package visibility and remote-
naming requires additional syntax of the form elaborate
compound form packagel‘subpackage ‘name.

Evaluating a function or operator is quite elaborate; First,
the name of a function is evaluated “until no change” to
some symbol s. If s has a function definition, (or a re-writing
rule, actually) with an appropriate number of arguments,
those arguments are evaluated in turn, unless s has one of
the attributes HoldFirst, HoldRest, orHoldAll. These in-
dicate that some or all of the arguments are not to be eval-
uated immediately. They are set by using SetAttribute, as
in the example below. Yet if a Held argument is evaluated
once, it is evaluated “until no change”. Thus confusingly,

given

SetAttribute[foo,HoldAll];
z=4;

foolx_]:=x;

bar[x_]:=x;

the two functions defined are indistinguishable: foo[z] and
bar [z] will return 4.

But

foolx_] :=x++
bar[x_]:=x++

are different. foo[z] returns 4 and sets z to 5. bar[z] is an
error: one cannot increment a number.
It is also possible to prevent an evaluation by the judi-

cious use of Hold[] and ReleaseHold[] as well as Unevaluated[]

and Evaluate[]. Distinguishing between the semantics of
these pairs seems pointless, since they all appear to be in-
adequate attempts to mimic the mechanism “quote” in an
environment in which the “until no change” rule holds. [t
may be that a study of macro-expansion in Common Lisp or
some other language in which these issues have been care-
fully designed and tested for a period of years, would provide
a model for some other components of the Mathematica se-
mantics.

Returning to the task at hand, assume now that the sym-
bol s is a function definition and we’ve found one (the first in
some heuristic ordering) rule that can be applied to rewrite
the expression. If that fails, we try the next rule, etc. If
all rules fail, then the expression is returned as s with its
arguments.

To determine if some rule can be applied, we look at
the possible definition structure for a function f£. Even in a
somewhat simplified explanation, we must deal with at least
the following kinds of cases (we give prototypical examples):

1. £[x_,y_]:= for the usual parameter binding of two
arguments.

2. £[[x_,y_11:= or any other f[g[...]] for parameter de-
structuring.

3. flx_fool:= for explicit self-descriptive manifest-type
checking.

4. f[x_7?NumberQ] := for implicit type-checking by predi-
cate satisfaction.

5. f[x_,1]:=for special case arguments.

6. £[a,1]:= memo function for a particular set of argu-
ments.

7. £lx__]:=Aflexible patterns for one or more arguments.
8. flx___]:=for zero, one, or more arguments.

9. flx_J:=... ,f[x_]:=..i1tis possible to have multiple
(even conflicting) definitions.

10. g/:f[...g[...]...]:=which define “uprules” that al-
ter the meaning of £, but only if one of the arguments
of £ has a Head that is g.

A brief explanation of the uprule is probably warranted:
This is a rule for rewriting £, but keyed to the evaluator
noticing that g is in the top level of arguments to £. This is
an optimization to prevent slowing down common operators
where f is say + or *. Cluttering these common operators



with rules (say, to deal with the sum and product of a user-
defined introduced function) would lead to inefficiencies.

Using the fixed-point philosophy throughout the system
(not just at command level as in Maple) requires Mathemat-
ica to efficiently determine that when a rule is attempted,
that in fact no change has happened (because such a change
could trigger further rule application). Just as Maple falls
short in its use of “option remember”, Mathematica also ap-
pears to hold on to outmoded values. Mathematica applies
some clever and apparently non-deterministic heuristics to
determine this no-change termination condition. Because it
is possible to change the global state of the system by rules
that fa:l as well as by rules that succeed, the heuristic can
easily be subverted. While we show, by deliberate means
below, how to do so, the casual user can avoid it by using
only simple rules where no side-effects on global state are
possible if the rule fails. (This may not be entirely obvious,
of course).

Here is a definition of a Mathematica function g:

i=0;
glx_1:= x+i /; i++ >x

The two allegedly equivalent expressions {g[0],g[0]}
and Table[g[0],{2}]result in {g[0], 2} and {g[0], gl01}
respectively.

Furthermore, Mathematica can be easily fooled into think-
ing the system has changed some dependent structure and
thus will spend time re-evaluating things without effect.
For example, after setting an element of an array r, by
r[[111=r[[2]] the system must check that no rules are
newly-applicable to r. This depends on how many elements
there are in r. If r has length 10 this takes 0.6 ms., but at
length 100,000, some 433 ms.°

There are additional evaluation rules for numerical com-
putation in which Accuracy and Precisionare carried along
with each number. These are intended to automatically keep
track of numerical errors in computation, although their fail-
ure to do so is one problem noted by Fateman [6].

Some expressions that are supposed to be purely floating-
point (real) are “compiled” for rapid evaluation. This is
useful for plotting, numerical quadrature, computing sound
waves, and solving differential equations. The evaluation
of compiled functions provides another set of semantics dif-
ferent from the usual arithmetic. This seems to be in a
state of flux as versions change. In at least one version,
the temporary excursion of a real-valued function to use a
complex-valued intermediate result causes problems.

Evaluation of expressions involving certain other kinds
of expressions, among them real intervals, and series, also
seem to have special treatment in the Mathematica ker-
nel. This must be handled rather gingerly. Consider that
0[x]"6-0[x] "6, a series expression, 1s not zero but is “equal”
to 0[x] "6 and Interval[{-1,1}]-Interval[{-1,1}]1s not
zero either, but Interval [{-2, 2}].

6.5 REDUCE

The REDUCE system [11] uses a model of evaluation sim-
ilar to that in Lisp, a language in which it has historically
been implemented, although a C-based version now exists.
REDUCE has two modes, The first is called symbolic, and
consists of a syntactic variant of Lisp with access to the
REDUCE library of procedures and data structures. This

6 times for version 2.2 on a Sparc-14 workstation.

provides an implementation language level for the system-
builder and the advanced user. The second mode is called
algebraic, in which the user i1s expected to interact with the
system. Among other features, unbound variables can be
used as symbols, and undefined operators can be introduced.
In both modes there is a general infix orientation of the
language, but the programming and expression semantics
are still generally based upon the Lisp model of recursively
traversing a tree representing a program, evaluating argu-
ments and applying functions, but with resubstitution until
the expression being handled ceases to change. The simplifi-
cation process is a reduction to a nearly canonical form, and
subject to a certain number of flags (exp, ged). A major
model for the use of REDUCE is for the user to supply a
number of rules that are defined via (1et and match) state-
ments, and then interact with user input. This has both
the advantages and disadvantages stated earlier concerning
rules.

The REDUCE system is admirably brief, at least if one
ignores the size of the underlying Lisp system, and avoids
some of the distressing aspects of more elaborate systems.
The trade-off is that the REDUCE notation is somewhat
more distant from mathematical notation, and some of the
advanced capabilities of the system are available only after
loading in modules from the substantial library.

6.6 Other systems

There are a number of new systems under development.
Space does not permit comparison here, but we expect that
to the non-expert, each appears to have an evaluation strat-
egy similar to one or more described above.

7 Boundaries for Change

Various systems take different approaches in allowing the
user to alter the course of evaluation.

Within the bounds of what can be programmed by the
user, Maple provides some handle on the evaluation task:
the code for evaluation is in part accessible, and distributed
as properties of the operators. A similar argument can
be made for user-extended parts of Mathematica. That is,
one can specify rules for new user-introduced operators. In
Maple or Mathematica one has rather little chance to inter-
vene in the proprietary kernel of the system. Since so much
more of the system in Mathematica is in the kernel, it makes
changes of a fundamental nature rather difficult.

Macsyma’s user-level system has similar properties to
that in Mathematica, both with respect to adding and spec-
ifying new operators and changing existing ones. However
for nearly any version of Macsyma (and REDUCE), it is pos-
sible by means of re-defining programs using Lisp, to change
the system behavior. Although this is rarely recommended,
a well-versed programmer, aided by available source code,
has this route available. Such alternation is error-prone and
risky since a programmer may inadvertently violate some
assumptions in the system and cause previously working fea-
tures to fail.

An example mentioned previously that causes problems
in any of these systems, the correct implementation of an
Interval data type, effectively cannot be done without ker-
nel changes, since intervals violate the rule that x — x = 0.
(According to interval rules, [a,b]—[a,b] = [a, b]4+[—b, —a] =
[a —b,b—al.)

Axiom would simultaneously have less formal difficulty,
and perhaps more practical difficulty handling intervals. [



suspect that such an algebraic system that violates x—x =0
cannot inherit any useful properties of the algebraic hierar-
chy. Thus a new set of operators would have to be defined for
intervals, from + to cos to integrate. This has the advan-
tage of a relatively clean approach, but on the practical side,
it means that many commands in the system that previously
have been defined over (say) reals, and might be useful for in-
tervals will require explicit reprogramming. The general rule
that f(X) for X an interval is [minzex f(z), maxqzex f(z)]
cannot be used because it is not sufficiently constructive.

Plausible goals for any scheme that would modify an
evaluator are

1. It must leave intact the semantics and efficiency of un-
related operators (including compilation of programs
involving them).

2. It must reserve natural notations.
3. It must display an economy of description.

4. Tt must, to the greatest extent possible, allow efficient
compilation of programs using the modified evaluation.

8 Summary and Conclusions

From the view of studying programming languages, there
are many well-understood “evaluation” schemes based on a
formal model and/or an operational compiler or interpreter
and run-time system. Traditional languages in which the
distinction between data and program are immutable can
be described more simply than the languages of computer
algebra systems.

Among “symbolic” language systems where the data—
program dichotomy is less clear, Common Lisp is rather
carefully defined; the semantics of computer algebra sys-
tems tends to be described informally, and the semantics
generally change from time to time.

Compromises in mathematical or notational consistency
are sometimes submerged in considerations of efficiency in
representation or manipulation.

Is there a way through the morass? A proposal (elo-
quently championed some time ago by David R. Barton at
MIT and more recently at Berkeley) goes something like
this: Write in Lisp or another suitable language’ and be
done with it! This solves the second criterion of our intro-
ductory section. As for the first criterion of naturalness —
let the mathematician/user learn the language, and make
it explicit. If the notation is inadequately natural, perhaps
a package of “notational context” can be implemented for
that application area on top of the unambiguous notation
and semantics.

Providing a context for “all mathematics” without mak-
ing that unambiguous underpinning explicit is a recipe that
ultimately leads to dissatisfaction for sophisticated users.

What makes a language suitable? We insist that it be
carefully defined. Common Lisp satisfies this criterion; the
(much simpler) Scheme dialect of Lisp might do as well®;
even a computer algebra systems language could work if it

7Newspeak [7], Andante, were experimental languages developed
at the University of California at Berkeley for writing computer al-
gebra systems based on an algebraic mathematical abstraction that
embodied most of what people have been trying to do. AXIOM’s base
language is similar in many respects.

8 The usual criticism of Scheme is that it sacrifices too much effi-
ciency for purity of concept.

were presented in terms of unambiguous, aesthetically ap-
pealing, and consistent specifications.

Among the more appealing aspects of Lisp and related
languages is that a clear distinction between x and (quote
x) which is also denoted by ’x. Evaluation is done by ar-
gument evaluation (one level), or by macro-substitution of
parameters, or by explicit calls to eval, apply or funcall.
The scope of variables, etc. are carefully specified by Lisp.

Another appealing although complicating aspect of Com-
mon Lisp is the elaboration of name-spaces (via its package
concept). The relationships possible by importing, export-
ing, and shadowing names in a large collection of programs
from potentially different sources is a welcome relief from
systems in which arbitrary naming conventions must be im-
posed on programmers just to keep the cross-talk down to
a low level. Mathematica’s package notion may have been
inspired by this development.

A minor variation to Lisp’s evaluation — to avoid report-
ing certain error when a symbol is used unquoted, is used in
MulLisp, a dialect of Lisp that supports the CAS Derive [9].

Consider a version of Lisp that has a modified eval that
is exactly like eval in almost all respects except that errors
caused by unbound variables or undefined functions result
in “quoted” structure. Such a version of Lisp can be written
as an interpreter in Lisp, or built within Common Lisp by
altering the evaluator. Such an alteration makes it difficult
to find true programming errors, since there is a tendency
for erroneous input or programming errors to result in the
construction of huge expressions. This crude model of a
computer algebra system, among other consequences, allows
any result or any argument to be of the type “unknown
symbolic”. It may be that a formalization and extension
of this interpreter can serve as a guide for variations on
evaluation.

An alternative view as to how one should construct of
large systems that has been promoted recently is that of
object-oriented programming. Indeed, writing certain com-
puter algebra programs in Common Lisp’s object system
(CLOS) is somewhat more convenient than otherwise. The
hierarchy of classes, coercions and definitions of methods
that are needed for writing computer algebra can to a large
extent be mirrored by CLOS. Work by R. Zippel [13] takes
this view. The demands of computer algebra seem, how-
ever, to strain the capabilities of less sophisticated systems.
In fact, Newspeak’s multiple-generic functions [7] (where the
types of all the arguments, not just the first) determine the
method to be used, were adopted by CLOS, and are partic-
ularly handy®.

Variations on the symbolic-interpreter model for CAS
evaluation have dominated evaluation in the past; it seems
that an object-oriented view may dominate thoughts about
systems for a bit more time; perhaps a tasteful combination
of the two will emerge in the future.

We have come to believe that the role of a computer alge-
bra system is to make available those underlying algorithms
from concrete applied mathematics, clearly specified, that
might be useful to the experienced and demanding user of
symbolic scientific computing. Such an explicit recog-
nition of the needs of the application programmer as
well as the system builder is key to providing fa-
cilities that will solve important problems. An ap-
plication programmer (perhaps with the help of a system-

9Simpler object-oriented systems where, in effect, the type of only
one argument is used for determining the meaning of an operation,
seem to defer but not eliminate painful programming.



building expert) has a chance of providing —in a particu-
lar domain—a natural, intuitive notation. These specialized
“mini-languages” may be clustered in libraries, or may be
stand-alone programs.

Perhaps if there 1s a lesson to be learned from the activ-
ity of the last few decades, it is this: For computer scientists
to provide at one fell swoop a natural notation and evalua-
tion scheme for all mathematicians and mathematics is both
overly ambitious and unnecessary.
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Appendix |: Rule Ordering

There are many options to rule ordering, and a transforma-
tion may be successful with one order but lead to “infinite
recursion” with another.

The exact nature of pattern matching and replacement
need not be specified in the discussion below. Convention-
ally, patterns and their replacements would have zero or
more “pattern variables” in them, and there might be asso-
ciated predicates on these variables.

Given rules r; ;== p; = e;, 1 = 1,---,n where p; and e;
are in general tree descriptions, apply the (ordered) set of
rules {r;} to a tree F.

Scheme 1: Starting with ¢ = 1 apply rule r; exhaustively
by trying it at each node of the tree F, explored in some
fixed order (let us assume prefix, although other choices are
possible). If the rule r; applies, (namely, an occurrence of
pi is discovered), then replace it with e;. Continue to the
next subtree in the transformed E. When the initial tree is
fully explored, then proceed to the next rule (i :=1+41) and
repeat until all rules are done.

Scheme la: Halt at this time.

Scheme 1b: Start again with ¢ = 1 with the transformed
tree F and repeat again until a complete traversal by all
rules makes no changes.

Scheme 1c: In case the tree keeps changing, repeat only
until some maximum number of iterations is exceeded.

Variants to scheme la. When a rule r; succeeds at a
given position, immediately attempt to apply rules ry for
k > j or k > j to its replacement.

Scheme 2: Starting with the root of the tree E (or using
some other fixed ordering), and starting with the first rule
(1 = 1) try each rule r; at the initial node. If they all fail,
continue to explore the tree in order. If some rule r; applies,
then replace that node p; by e;. Then continue to the next
subtree in the transformed F until it is fully explored.

Scheme 2a: Halt at this time.

Scheme 2b: Starting with the root of the tree E repeat
until there are no changes.

Scheme 2c¢: Repeat until some maximum number of iter-
ations is exceeded. Variants to scheme 2a: When a rule r;
succeeds at a given position, immediately attempt to apply
rules ri for k > j or k > j to its replacement.

Heuristics: Some rules “shadow” others. Re-order the
rules to favor the specific over the general. Use partial
matching (or failure) of one pattern to deduce partial match-
ing (or failure) of a similar pattern (e.g. commutative pat-
tern matching can have repetitive sub-matches.)

In any of these schemes there is typically an implicit
assumption that the testing of the rules’ patterns is deter-
ministic and free of tests on global variables, and thus once
a pattern fails to match it will not later succeed on the
same subexpression. In some systems the replacement “ex-
pressions” are arbitrary programs that could even redefining
the ruleset).

Several application schemes were implemented in Mac-
syma, using different sequencing in the expression and through
the rules. If only one rule is used (a common situation) sev-
eral of the variations are equivalent. Mathematica has two

basic variants of scheme 1, ReplaceAll and ReplaceRepeatedly,

which in combination with mapping functions and a basic
Replace provide additional facilities. In fact, elaborate rule
schemes are rarely used for several reasons. The pattern-
specification language and the manner of matching is al-
ready difficult to understand and control, and somewhat



separated from the major thrust of the language. Rules that
do not converge under essentially any sequence are particu-
larly difficult to understand. Especially for the naive user, it
is more appealing to attach rules in Macsyma to the simpli-
fier [5], or in the equivalent Mathematica form, to particular
operators, than to use them in a free-standing rule-set mode.

Appendix II: Conditional Expressions

Consider the construction “if f(z) then a(z) else b(z).” Asa
traditional programming language construct it is clear that
f(z) should evaluate to a Boolean value true or false, and
then the evaluation of either a(z) or b(z) must provide the
result. It is quite important that only (and exactly) one
of them is evaluated, for the purposes of reasoning about
programs. If the evaluation of f(x) provokes some error
then the locus of control is directed elsewhere.

Let us assume now that these cases do not hold. We
must come up with a possible CAS alternative for the case:
f(z) evaluates to g, a variable or (in general) an expression
which is not known to be true or false.

1. We could insist in this case that anything non-false is
true, and evaluate the a(x) branch.

2. We could insist that this is an error and signal it as
such.

3. We could defer the testing until such time as it could
be determined to be true or false (the example below
is somewhat hacked together to simplify the concept
of scope here):

x:=3

H
1]

if (x>y) then g(x) else h(y);
could result in

deferred_if (3>y) then
eval (substitute(x=3, g(x))) else eval(h(y))

If r is later re-evaluated, say with

y:=2;
eval(r) --> g(3) evaluated
y:=4;

eval(r) --> h(4) evaluated.

4. We could defer the testing but be less careful with
the scope of variables, as is apparently done by Maple
(Vr2)’s if construct: the scope of all variables in the
deferred evaluation is taken to be that of the dynamic
scope, so the meaning of the z in the Boolean ex-
pression (z > y) could be different from the z in the
g(z)then clause.

Macsyma allows the specification of several different op-
tions here, depending upon the setting of prederror. [t
also has a a program that may stop and ask the user for an
opinion on logical expressions if it can’t deduce the value.
Mathematica has a version of the If with an extra branch,
for “can’t tell” although perhaps it should have yet another
for “evaluation of the boolean expression caused an error”.



