
Symbolic Mathematics System Evaluators

Richard J� Fateman

Computer Sciences Division

Electrical Engineering and Computer Sciences Department

University of California� Berkeley

USA

Abstract

�Evaluation� of expressions and programs in a computer al�
gebra system is central to every system� but inevitably fails
to provide complete satisfaction� Here we explain the con�
�icting requirements� describe some solutions from current
systems� and propose alternatives that might be preferable
sometimes� We give examples primarily from Axiom� Mac�
syma� Maple� Mathematica� with passing mention of a few
other systems�

� Introduction

A key issue in the design of computer algebra systems �CAS�
is the resolution of what is meant by �evaluation� 	 of
expressions and programs in the embedded programming
language of the system�

Roughly speaking� evaluation is a mapping from an ob�
ject �input� and a speci
ed context or environment to an�
other object that is a simpler or more speci
c object �out�
put�� Example� � � evaluates to �� More speci
cally and
somewhat pedantically� in a CAS� evaluation involves the
conventional programming�language mapping of variables or
names �e�g� x� to their bound values �e�g� ��� and also the
mapping of operators �e�g� � to their actions� Less con�
ventionally� CAS evaluation generally requires resolution of
situations in which a variable �has no value� but stands only
for itself� or in which a variable has a value that is �an ex�
pression�� For example� given a context where x is bound
to �� y has no binding or is used as a �free variable�� and
z is a �� a typical CAS would evaluate x y z � to
y a ��

In simple cases this model is intuitive for the user and
e�ciently implemented by a computer� But a system de�
sign must also handle cases that are not so simple or intu�
itive� CAS problem�solving sessions abound in cases where
the name and its value�s� in some context�s� must coexist�
Sometimes values are not the only relevant attributes of a
name� there may be a declaration of �type� or other auxil�
iary information� For example it might evaluate sin� x � �
to �true� knowing only that x is of type Real� �If x were

known to be complex� this could be false��

CAS builders� either by tradition or speci
c intent often
impose two criteria on their systems intended for use by a
�general� audience� Unfortunately� the two criteria tend to
con�ict�

�� The notation and semantics of the CAS should corre�
spond closely to �common intuitive usage� in mathe�
matics�

�� The notation and semantics of the CAS should be suit�
able for algorithmic programming� as well as �several
levels� of description of mathematical objects� rang�
ing from the abstract to the relatively concrete data
representations of a computer system�

The need for this
rst requirement �intuitiveness� is rarely
argued� If programs are going to be helpful to human users
in a mathematical context they must use an appropriate
common language� Unfortunately� a careful examination of
common usage shows the semantics and notion of mathe�
matics as commonly written is often ambiguous or context
dependent� The lack of precision in such mathematics �or
alternatively� the dependence of the semantics of mathemati�
cal notation on context� is far more prevalent than one might
believe� While mathematics allegedly relies on rigor and for�
mality� a formal �automaton� reading the mathematical lit�
erature would need to accumulate substantial context or else
su�er greatly from the substantial abuse of notation that is�
for the most part� totally accepted and even unnoticed by
human readers� Consider cos�n��x sin nx� as appears in a
well�known table of integrals �formula ����� ����� Try that
in your favorite CAS parser�

Because the process of evaluation must make explicit
the binding between notation and semantics� the design of
the evaluation program must consider these issues centrally�
Furthermore� evaluation typically is intertwined with �sim�
pli
cation� of results� Here again there is no entirely satis�
factory resolution in the symbolic computation programs or
literature as to what the �simplest� form of an expression
means�

As for the second requirement� the need for programming
and data description facilities follows from the simple fact
that computer algebra systems are usually �open�ended��
It is not possible to build�in a command to anticipate each
and every user requirement� Therefore� except for a few
simple �or very speci
c� application�oriented� systems� each
CAS provides a language for the user to program algorithms

and to convey more detailed speci
cations of operations of
commands� This language must provide a bridge for a com�
puter algebra system user to deal with the notations and
semantics of programming as well as mathematics� � Often
this means including constructions which look like mathe�
matics but have di�erent meanings� Examples� x � x �
could be a programming language assignment statement� or
an apparently absurd assertion of equality� Furthermore�
the programming language must make distinctions between
forms of expressions when mathematicians normally do not
make such distinctions� As an example� the language must
deal with the apparently equal but not identical �x and xx�

Programming languages also may have notations of �stor�
age locations� that do not correspond simply to mathemat�
ical notations� Changing the meaning �or value� of an ex�
pression by a side e�ect is possible in most systems� and
this is rather di�cult to explain without recourse to no�
tions like �indirection� and how data is stored� For exam�
ple� Maple and Macsyma provide for assignment into the
compound data structure representing a matrix� An assign�
ment may change not only the expression as expected� but
some other use of the structure� Using Macsyma syntax�
a�matrix������ b�a� establishes both a and b as a � by �
matrix with entry �� Then b������	 changes the value of
a as well as b� Another somewhat related question is how
one would deal with evaluation in a matrix that is really a
spreadsheet of formulas and values����

Traditional numerical programming languages do not have
to deal with the gradations of levels of representation in a
computer algebra system� In fact� the common program�
ming term �function� for �subroutine returning a value� in�
dicates the depth of mismatch between the mind�sets com�
mon in traditional programming and mathematics respec�
tively� What sense does it make to ask if a Fortran �func�
tion� is �continuous�� At best� Fortran functions are maps
from discrete sets to discrete sets� and that alone makes
the concept of continuity inapplicable� Observe that any
�non�constant� �smooth� function ends up being discontin�
uous when you look closely� A system that can compute
the derivative of f�x� as �literally� something like df�x��dx
must have a quite di�erent set of notations and semantics in
dealing with �functions� from those of a Fortran compiler�
Furthermore� no computer algebra system today deals con�
structively with a statement beginning �Let C be the set of
continuous functions �����

In more �complete� programming languages in which
symbols and values can coexist� additional issues arise� The
oldest higher�level language providing conundrums about
evaluation is Lisp� in which it makes sense to ask the ques�
tion� when does �eval
x� di�er from x �

In this paper we take most� but not all� of our exam�
ples from widely�distributed CAS� Macsyma� Mathematica
and Maple� AXIOM� a more recently released computer al�
gebra system with a mathematical type system� introduces
another somewhat orthogonal perspective on evaluation� re�
quiring the results to conform to a calculus of types� We
believe the options presented in these systems reasonably
cover the range of models that have been implemented in
other current computer algebra systems� There are also
programming languages which deal e�ectively with �sym�

�Several systems use a di�erent system implementation language
�C or Lisp� typically�� where there is a clear distinction between math�
ematical expressions which are treated as data and programs� For
various reasons it is generally believed that these languages are less
intuitive to the mathematician� although their presence solves the
programmability issue decisively for persons willing and able to use
them�

bols� including most notably� Lisp� Space does not permit
discussing such programming languages generally�

With respect to its evaluation strategy� each existing sys�
tem chooses its own perhaps twisting pathway� taking large
and small sometimes controversial stands on di�erent issues�
along the way� It is an understandable temptation in de�
sign� to place enormous complexity in this one operation�
eval� After establishing or implying some context� virtu�
ally all problem�solving questions can then be reduced to
eval�solve�problem���

As suggested above� we believe some design issues are
matters of opinion� and undoubtedly some of our criticisms
may irk designers who insist �I meant to do that� or �The
alternatives are worse�� Yes� we do not always provide a con�
structive and consistent solution to the problems we point
out�

� Context of Evaluation

In a typical CAS� an internal evaluation program �eval for
short�� plays a key role in controlling the behavior of system�
Even though this program may not be explicitly available for
the user to call� it is implicit in much that goes on� Typi�
cally eval takes as input the representation of the user com�
mands� program directives� and other �instructions� and
combines them with the �state� of the system to provide
a result� and sometimes a change in the �state�� In other
words� eval stands between the input�parser and the oper�
ational routines for mathematical manipulation �programs
to factor polynomials� integrate rational expressions� etc��
Some of the operational routines must themselves use eval
internally to achieve their objectives� For example� evalu�
ation of a boolean expression will generally determine the
value of a conditional expression� Because of this kind of
dependence� changes to the evaluation process can a�ect
systems in many ways that do not seem to explicitly �call�
eval�

A more careful consideration of eval as one might expect
from a more formal programming language design looks a bit
di�erent� Not being confused by the CAS attempt to intuit
the proper behavior of names� indeterminates� and values�
the scope and extent of variables can be more easily deter�
mined� and some choices made available to the programmer�
it should be possible to deal with contexts of binding in a
computationally consistent fashion� In a �exible program�
ming language� di�erent bindings might co�exist within some
global framework�

For example� Common Lisp has the potential for any
number of distinct simultaneous bindings of a name� and
also for di�erent scoping rules regarding those names� The
preferred form is lexical scope �but dynamic scope can be
used by choice�� Its resolution of the result of eval� and
the discussion has� after a few decades� become rather well�
formed� Consider our earlier example of what the value of
�eval
x� should be in Lisp�

�let ��x ��� ����� the first x is bound to �
�let ��xPlusOne
� x ����
���
�let ��x ��� � another x
���
�eval xPlusOne����

Is this supposed to return � or �� By xPlusOne do we
mean �
nd the value of the innermost x and add one to it�

or do we mean �
nd the value of this x� the one that�s right
there above xPlusOne� and add one to it� So far as intu�
itions go� it seems a valid intuition to think the programmer
meant �the
rst x�� Over the years the Lisp community
has considered di�erent ways of making eval work and has
decided that some ways are better than others� and in the
better ways �eval
x� is not necessarily equivalent to x as
an utterance� �

� Routes to Evaluation

There are several approaches to programming an evaluation
algorithm� We describe major variants in the subsections
below�

��� Eval� a procedure

The traditional procedural technique looks like the Lisp eval�
uation mechanism� The resemblance is not accidental� There
is a strong similarity between an algebraic expression repre�
sented as a tree �data�� and a Lisp program to evaluate that
expression� For example� � x �� y z�� could be either�
This leads to evaluation that looks like induction�

� If an expression is an indivisible �atomic� node such
as a number or a symbolic name� follow the rules for
evaluating atoms� Typically these include

� numbers evaluate to themselves �in some cases
some type conversion may be done��

� well�known constants like � may �in certain cir�
cumstances� be changed to approximate numbers�

� A symbol �variable� indeterminate� like x may be
replaced by its value� if it has one� If the value of x
is another symbol or a composite expression� some
evaluation schemes will evaluate that expression�
perhaps until it no longer changes�

� If an expression is a composite object like F �a� b� c��
it has a �main operator� F � Some procedure associ�
ated with the name F � say fproc� will eventually be
executed� either on its raw arguments� or on the result
of evaluating its arguments� The typical case is that

rst eval will be applied to each of �a� b� c�� and then
the fproc will be applied� We can think of this as
two steps� �evaluate the arguments of the main opera�
tor� followed by �apply the operator to the evaluated
arguments�� There are many variations to this tech�
nique� but in general it involves recursively evaluating
subexpressions�

There is a rather substantial shortcoming in this model�
Mathematical semantics cannot always be modeled adequately
by this strictly bottom�up tree�traversal evaluation process�
Consider the command subs�x�a�x�x� by which we mean
to have the system substitute a for x when it appears in the
expression x � x� A bottom�up evaluation scheme would
evaluate x � x to � prior to performing the substitution�
and therefore the substitution would always result in �� But
what if the computer system allows for such objects as �
where ��� is arguably di�erent from �� What if a were
an interval such as ��� �� in which case a � a is arguably the
non�zero interval ���� ��� What if a � O�n�� an asymptotic

�In this paragraph I�ve taken some words from a note to
comp�lang�lispby je�	festival�ed�ac�uk �J W Dalton� October
��

��

order� What if the object a does not even admit of a sub�
traction operation� since it could be� for example� such a
non�algebraic object as a �
le descriptor��

��� A multi�phase model

An alternative approach is to change evaluation to a two�
phase operation� The
rst phase� generally operating top�
down� provides a context and perhaps an expected type for a
result� for every operation� and the second phase� operating
bottom up� computes values�

Consider the tree expression �in a lisp�like notation� of
� �modulo � �� �� � ���� The root node has two de�
scendants� In traversing the tree downward� the
rst phase
of evaluation imposes the constraint that the types of its ar�
guments must �at least� be objects that can be added� The
constraints imposed by modulo on its arguments as well as
its result types provide further context� Perhaps in this case
we intend that �modulo � �� return ��� in the
nite
eld
Z��� Then note that the context of �modulo � �� a�ects
the constraint on �� � ��� because we now presume that
the is addition over a
nite
eld� Thus this
rst phase is
not strictly one�pass� if the expression had been � �� � ��
�modulo � ���� the new information passed upward to the
 from the second argument would have to be transmitted
back to the
rst argument� Indeed� one can envision an order
of evaluation to types where the result type of an expression
deeply nested in a tree can force re�evaluation of the whole
tree� this re�evaluation may actually occur more than once
�and in a poorly constructed coercion system� might cycle
without convergence��

In the second phase� the relations between arguments
and results of each of the operators could be examined to
determine the actual computation to be performed� In some
cases this might still be ambiguous because the type of an
expression might depend on values to be computed� For
example� in the expression �if b � ��	�� if the �presum�
ably boolean� value for b is true� the result is a �presumed�
integer� but otherwise a �presumed� �oating�point number�
Perhaps such expressions should be forbidden� or their re�
sults should be forcibly typed to the union of their possible
types� Later� it may be necessary to �retract� the type to
one of the constituents�

The AXIOM system has made a case that the
rst phase
can be done on input in an interpretive mode� and that after
that point� every object has a type� every operation has a
set of coercions for any n�tuple of argument types�

Although this is very helpful� it is painfully unclear� even
in some relatively simple cases� how the second phase should
coerce types when they do not match� We will return to this
in a later section�

��� Evaluation by Rules

Another technique� not particularly matched to the math�
ematical context of computer algebra systems� but never�
theless plausible because it can be used to de
ne general
algorithms on trees� is to de
ne transformations by rules�

These rules might direct transformations like

�x� y log�x � y� � log�x� log�y� x� y � �

or

jxj �

�
x� if x � ��
�x� if x � ��
jxj� otherwise�

Since even highly constrained and very simplistic rule
transformation systems �e�g� Post systems ���� are equiv�
alent to Turing machines in formal computational power�
they could be used� in principle� as the sole computational
description for any formal algorithm� not just evaluation�
Their advantage over the more traditional procedural def�
initions seems to be primarily in their declarative nature�
They may be simpler for a �user� of a complex system to
understand� An approach adopted by Theorist� a highly�
interactive commercial CAS� seems especially worthwhile�
it can be set up to present transformations from a list of
rules selected from a menu of rules� This seems much more
palatable than either writing rules from scratch or trying
to
gure out how some system�s �expand� command will
change an expression from the documentation� test cases�
and guesses� In brief� the rules also serve as documentation�

There are counterbalancing disadvantages to using rules�

�� It is possible to de
ne rules so that more than one
rule can apply� In fact� it is often di�cult to write
a complex transformation without overlapping rules�
A simple con�ict resolution process such as �the most
recently de
ned rule takes precedence� may lead to
very slow execution	essentially all rules must be at�
tempted to make sure that none can be applied� Also�
it might not provide the expected result� Another reso�
lution such as �the most speci
c rule takes precedence�
can be di�cult for the human �programmer� to under�
stand or for the computer system to apply� �In fact this
meta�rule is non�computable� generally��

�� Much of the software technology of modularity� func�
tional programming� information�hiding� etc� is either
irrelevant or takes a rather di�erent form in terms
of rules� It is rarely convenient to use a completely
declarative approach to specify a large computation�
Early evidence from the expert�system building com�
munity suggests that constructing large systems by
programming rules ��� may be even more di�cult than
construction via traditional imperative programming�

�� The unit of speci
cation 	 rule application� is really a
two part process� It requires pattern matching �usually
a kind of graph�matching� in conjunction with check�
ing of predicates on pattern�match variables� The sec�
ond part is substitution and evaluation�

The matching process can be very costly� even if it
results in a failure to match� It may be important
to develop heuristics which avoiding the attempt to
match at all� Such attempts to �optimize� rule sets�
where information about partial matches are propa�
gated can be critical to speed� There is a literature on
computing reductions related to rules �e�g� Gro�bner�
Knuth�Bendix ����� which can be helpful in the do�
main of polynomial computer algebra evaluation prob�
lems have to do with computing in polynomial ideals	
reduction of systems modulo polynomial side�relations
in several variables� Unfortunately� success in a larger
domain does not follow from this same theory�

�� Matching trees where subtrees are unordered is inher�
ently exponential in the depth of the trees� Expres�
sion or pattern trees with root nodes denoted �plus�
or �times� have unordered subtrees� If such commuta�
tive matching were an inherent part of the evaluation
process� this would not be a disadvantage of rules ver�
sus other mechanisms� however� some costs in evalua�
tion via commutative tree searches seem to be more an

artifact of the mechanism of rules than a requirement
for evaluation�

��� Object�oriented Evaluation

An object�oriented approach to evaluation provides another
perspective� Each object� an expression represented �ab�
stractly at least� as a tree� has a root or lead operator�
This is associated with a program that �evaluates� objects
of that type� Thus one would have a �plus� evaluator� a
�times� evaluator� etc� An elaboration on this idea would
provide for inheritance of other information� The �plus�
evaluator might inherit routines that were associated with
the tree�nodes �objects being added� which might� for ex�
ample� be members of the ring of integers� or power�series
in some variable� Objects with no evaluation functions �e�g�
a newly introduced f�x��� could also inherit some default
evaluation mechanism from the �mother of all evaluation
routines�� Such a default routine might return f�y� where
y is the evaluated form of x�

An object�oriented programming approach is a handy
way to organize programs along orthogonal lines to corre�
spond to helpful conventions from mathematics and data
structures�

� Common Problems

��� Failure of the Top�Down Model

Each of the evaluation models generally boils down to a de�
scent through an expression tree� reserving operations while
evaluating operands� and then backing out� Let us review
the results of a sequence of computations in evaluating the
expression f�g�x� y�� h�z��� Here the evaluator acts on f � g�
x� y� and then applies g to �the evaluation of� x and y� Then
h� and z� are visited and h is applied to �the evaluation of�
z� Finally f is applied to g�x� y� and h�z��

This sequence is sometimes wrong� because it assumes
that the evaluation of g�x� y� is independent of �say� z� How
might this not be the case� As a somewhat frivolous example
mentioned earlier� consider �a b� c where a � �� b �
� and c � � mod �� After adding a and b to get ��� we
then discover that arithmetic should have been performed
modulo �� A less frivolous example along the same lines
would be one in which �say� a� b� and c are power series in
which arithmetic combining a and b must be redone in order
to combine the result with c� Yet another example �using
Mathematica syntax� is N�Integrate� ����� where the N
means �numerically�� If we
rst evaluate the argument� then
the symbolic integration will be attempted� rather than a
numerical quadrature�

Another consideration that is sometimes at the core of
performance improvements is whether �evaluation� and �sim�
pli
cation� should be interleaved� This can be illustrated by
the famously ine�cient Fibonacci number recursion�

f�x��
n
� if x � ��
f�x� �� f�x� �� otherwise�

We can use the sequence f��� � f��� f��� � �f���
f���� f���� �f��� f���� f��� f���� � � � or f��� �
f���f���� �f���f����f����� �simplify�� �f���
f���� � � �

The latter sequence of operations is much faster� since it
cuts down the exponential nature of the recursion �not that
it is e�cient either��

For systems which use many di�erent data types or allow
parameters in the data types �an example of an implicit
parameter is the matrix dimension in a type �square matrix�
or the list of variables in a multivariate polynomial� or the
coe�cient domain for polynomials�� some form of non�local
information may be required to determine a type for the
result�

In Macsyma� for example� converting an expression to
a polynomial form requires two stages� First is a linear�
time scan so that all the symbol�names in the expression
are known �so that the �main� variable and the others can
be presented in sorted order�� It also notices some simple
relationships like z�n being the square of zn� The second
stage then combines the given expressions conceptually� in
the appropriately�constructed domain of rational functions
extended by the set of variables or kernels found�

If this conversion is not done initially by a two�pass al�
gorithm� the evaluator may end up �backing and
lling� re�
representing sub�parts� and especially non�obvious kernels�

Another somewhat di�erent problem that may not ap�
pear to depend on types or domains� but arguably does� has
been mentioned previously� The short�cut which replaces
with � any expression that looks like x � x is not always
valid unless the domain of x is known� If x is a stand�in for
�� should the substitution be made� �Perhaps yes� arguing
that both � symbols are shorthands for a single variable��

��� Quotation� Nouns and Inert Functions

In a computer algebra system it is useful at least on occa�
sion to deal with temporarily �unevaluated� objects� even
though they might be evaluated in the current context to
yield something else� Consider typing a di�erential equation
into a system� One might wish to type diff�y�t��f�t��
But then if a �normal� imperative interpretation of diff
were applied� diff�y�t�might very well be evaluated to ��
y does not apparently depend on t� As another example�
consider a program that uses� as intermediate expressions�
the symbolic roots of a quartic equation� This might happen
when a computer algebra system expresses the answer to cer�
tain classes of �elliptic� integrals involving rational functions
of square�roots of quartics� It makes much better sense �and
saves considerable time and space� to approach such prob�
lems by
rst abbreviating the roots by making up names�
say fr�� r�� r�� r�g� and then expressing the answer only in
terms of these roots� �Full evaluation� would ordinarily dic�
tate that if you have an expression for ri then you are com�
pelled to eliminate ri from expressions in which it occurs� In
the case of quartic roots� this is quite hazardous� since the
roots can each take a page to typeset� are pretty much guar�
anteed not to simplify much in isolation� and yet combine
with each other rather in neat ways that traditional simpli�

cation routines will miss� Unless the roots are in fact quite
small �such as the case of all �oating�point approximations
	 not symbolic at all� or one can apply special simpli
ers
to collapse expressions involving subsets of fr�� r�� r�� r�g� it
is probably best to leave the answer in terms of those roots�

Consider also the plotting of a function
f�x� �� if �x�	� then x else �x�
If the command is plot�f�t��t���	��	� or something simi�
lar� one must evaluate the
rst argument just one level� from
f to its de
nition� but no further evaluation of the de
nition
is possible� If one foolishly answers the question �Is t � ���
with �no� t is just a symbol� then you have lost� One must

�By contrast� Maple does not sort its variables� �They are �or�
dered� by the accidents of memory location��

defer even asking this question until the plot program re�
peatedly evaluates the expression for di�erent values of t�

In Lisp� such issues are dealt with directly� There is a
�quote� operator �generally with the notation
x meaning
�the unevaluated symbol x�� to ward o� the e�ect of the
general evaluator� In Macsyma� a similar notation for quot�
ing operations is available so one can write a di�erential
equation as
diff�y�t�f�t� � 	� For the quartic equa�
tion problem one could let s�solve����� and then deal
with �s��� etc� without looking at the form of the solution�

A hazard here is that one does not want to see	displayed	
the quote�marks� suggesting the need for a slightly di�erent
but more visually similar �noun� operator for diff� Maple
calls such operators �inert� and uses a
rst�capital�letter
convention to distinguish them from the normal �verb� op�
erators� The Maple convention is to identify such operators
with their lower�case versions only in a particular evaluation
context where such inert operators can be removed by a spe�
cial evaluation scheme� For example� the normal evaluator
will remove �by evaluation� derivatives �the diff operation�
but will leave Diff unchanged� Using an inert integration
operation in an expression leaves the form untouched until
some subsequent evaluator �say one for numerical solution
of di�erential equations� treats the inert operator in some
special way�

Although Macsyma has a mechanism for forcing its eval�
uator to convert a particular �noun� form to a �verb� form�
this is not quite analogous to Maple�s behavior� which seems
to generally take the view that a global re�examination of
the expression is needed to remove inert operators� �In Lisp�
the function eval �undoes� the quote�� There are subtle is�
sues as to how to resolve the bindings of symbols that are
contained in the previously�inert expression being evaluated�
Various careful de
nitions can be seen in the Common Lisp
and Scheme standards� most computer algebra system doc�
umentation seems to ignore the issue in the hopes that the
user will not notice the vagueness at all�

An example of another inert function in Maple may help
clarify the concept� The operation Power is used in con�
junction with the mod operator to provide �special evalu�
ation� facilities� to compute in mod m where i is an inte�
ger it is undesirable to compute the powering
rst over the
integers �possibly resulting in a very large integer� before
reduction modulo m� The expression Power�a� b� mod p
which may also be written as a��b mod p is similar in form
but it constructs an expression �inertly� without evaluation�
and then afterward in the �mod p� context� computes the
power� avoiding integers larger than m� Another example
of an inert function is Int� short for integrate� This inert
function can be removed by numerical evaluation in evalf�
and its use is particularly time�saving when the user can
predict that symbolic integration will not result in a closed
form �and therefore should not even be attempted�� It may
of course result in wasting time when a symbolic result is
easy to compute and then evaluate numerically� Maple does
have a function value�� to change a given inert form to an
active form� on request�

��� Confusing Arrays and Matrices

An array is a data structure for storing a collection of values
indexed by some set� The set is usually a range of integers�
pairs of integers� or n�tuples of integers� One might consider
the use of other index sets such as letters or colors� Although
it is convenient to have an ordered index set� it may not be
required� Operations on arrays include access and setting

of individual values� occasionally accessing and setting of
sub�arrays �rows� columns� blocks� is provided� Sometimes
extension by a row or column �etc�� is possible�

Naively� a matrix appears to be simply a case of an array
with an index set of full rectangular or square dimensions�
�Along with most computer algebra systems we will ignore
the very important e�ciency considerations that accrue to
special forms of matrices� diagonal� block diagonal� triangu�
lar� sparse��

However� the operations on matrices are quite di�erent
from arrays� For matrices of compatible sizes and entries�
one can compute A �� B��A� Issues of �where does one
store B��� don�t occur� Nor does the user have to worry
about the storage of entries in A on the left messing up the
entries in A on the right� Copying over data is done au�
tomatically� In a classical numerical language� one would
probably have to allocate array space for one or two inter�
mediate results�

Evaluation of a matrix is a problem� If one asks for A���

does one evaluate the expression to the entry� or does one
evaluate that entry� In a system that does �evaluate until
nothing more changes� this may not matter� in a system that
evaluates �once� does the access to an element count as that
one evaluation� Is one allowed to change one element of a
matrix� or must one re�copy it with a changed entry� It may
make sense to forbid altering a matrix after it is created�
In Mathematica there seems to be the additional �usually
unexpected and ill�advised� possibility that the symbol A
may have rules associated with it requiring re�evaluation of
the whole matrix A when only one element is accessed�

Then there are issues of subscripted symbols� If noth�
ing other than the name A of a matrix or array is given�
is reference to A��� an error ��uninitialized array element��
��potentially� out�of�range index for array�� or simply the
unevaluated A��� � Mathematica makes no distinction be�
tween a subscripted name and a function call �A����� or
Sin�x��� They are both �patterns� subject to replacement
by rules and evaluation�

And sometimes it is important to deal with the name of
an array� even if its elements are explicitly known� So�called
implicit operations can be very useful� and it is valuable to
be able to simplify AA�� to I knowing only that A is a non�
singular square matrix� and not referring to its elements at
all� Indeed� not even knowing its size�

� In	nite Evaluation� Fixed Points� Memo Functions

So�called in
nite or
xed�point evaluation is attractive pri�
marily because it is commonly confused with simpli
cation�
The requirement is to detect that any further application of
a simpli
cation program �won�t matter� 	that the expres�
sion or system has reached a stable state or a
xed point�
and further attempts to simplify the expression will have no
e�ect� Thus if you were to re�evaluate in
nitely many times�
it would not change�

Let us de
ne simpli
cation for our purposes here as a
transformation of an explicit function f�x� in some param�
eter x or vector of parameters� to another explicit function
g�x� � simp�f�x�� such that for any valuation v given to x in
some agreed upon domain� f�v� � g�v� and moreover� g�x�
is by some measure less complex� For example f�x� � x�x
and g�x� � � are a plausible pair� g has no occurrence of x
and hence might be considered simpler� This equivalence is
however false if the domain of valuation is that of interval
arithmetic� if v � ���� �� then v � v is the interval ���� ���
not ��

A very appealing and generally achievable attribute of
a good simpli
cation program is idempotence� That is�
simp�x��simp�simp�x�� for all symbolic expressions x� It is
intuitively appealing because if something is �already simpli�

ed� then it cannot �hurt� to try simplifying it again� Since
simpli
cation per se should not change the environment� it is
plausible that a valid simpli
cation routine applied repeat�
edly will not cycle among some set of equivalent expressions�
but settle on one� the �simplest�� �This is not to say that all
equivalent expressions will be simpli
ed to the same expres�
sion� Though that would be desirable �a Church�Rosser ���
simpli
er�� for some classes of expressions� it just happens
to be undecidable�� Note that we could consider building
a valid simpli
er by de
ning a sub�simpli
cation procedure
which is applied repeatedly until no more changes are ob�
served� and then this n�iterative process is the simpwith the
idempotence property�

Some aspects of evaluation are almost indistinguishable
from simpli
cation� especially if the valuations v are chosen
from �expressions� in the same domain as f � Repeatedly
associating valuations v with their names x leads to prob�
lems� In
nite evaluation can work only if eval�eval�x�� �
eval�x��

Unfortunately� if the usual assignment statement x��x�
is treated in this manner� and the �value� is nominally the
right�hand side of the expression� there is no
nite valid
interpretation�

But if
nite evaluation must be used in that situation�
how is one to determine �how many times� to apply a rule
such as ax bx � �a b�x� Consider �x �x �x� Can
one application do the job of fully evaluating the result of
applying the rule�

There are actually arguments that it can� Application of
a rule� or more generally� rule sets� can be sequenced in a
number of established ways� although termination is di�cult
�theoretically impossible in some cases� to determine� See
the Appendix on rule ordering for further discussion of this
point�

If an expression is always simpli
ed or evaluated to a
particular form� why not remember the input�output rela�
tionship and short�cut any attempt to repeat the calculation
by referring to the �oracular� evaluator� Indeed� one of
the principal e�ciency tricks made available to program�
mers in any of the systems is the notion of a �memo func�
tion�� In Macsyma� so�called hash�arrays are used for this�
Mathematica has a comparable facility by means of its rule�
based memory� and the Maple programmer inserts option
remember in a procedure de
nition to use this facility�

By using these facilities� any time a function is �called�
on a given set of arguments �in Macsyma or Maple it looks
more like an array reference�� the set is looked up� If it is
a new set� the result is computed and then �remembered�
typically in a hash table with the argument set as an in�
dex� The second and subsequent times the result will be
remembered from the
rst time� and simply recalled� This
can be a potentially enormous improvement� but it has the
unhappy consequence that if �impure functions� �that is�
procedures that have side�e�ects� or whose results depend
on global variables� are used� the remembered results may
be inappropriate� Thus access to a global variable in Maple
g��proc�z� option remember� zglob end� refers to the
global variable glob� If glob�� then g��� will be �� Chang�
ing glob to � does not make g��� be �� It is �stuck� at
��

Functions having histories are not necessarily restricted

to user�de�nedprograms� Maple system programs are set up
with option remember� including factor� normal� simplify
and �at one time� evalf� Some subtle problems reported
as Maple bugs are caused by such memory� For example�
re�computing a function after setting the system Digits to
compute with increased numerical precision might appear to
have no a�ect� the earlier low�precision result may simply
be recalled from memory and new values not recomputed at
all�

The negative consequences of this are quite far�reaching
in all of the systems and can be most unfortunate�
xing a
program may not repair an incorrect answer because of an
entry in the memory table of some function f� whose name
may not even been known to the programmer� Such memory
is cleared by Maple�s forget�f�� Mathematica�s Clear�f�
or Remove�f� or Macsyma�s kill�f��

Users and novice programmers can easily misunderstand
what has happened� resulting in substantial debugging dif�

culty� I suspect that experienced programmers fall prey
to this source of bugs as well� especially since they may be
more inclined to try to take advantage of the vast speedup
potential�

 A Collection of Systems

�� AXIOM

Computing the �value of an expression e� in AXIOM ����
resembles the notion of evaluation in Lisp� which is to say� it
is evaluation with respect to an environment� It also has an
additional component� which requires evaluation to a type�

Let us give several simple examples� Consider p � �x��
a polynomial in Z�x�� the ring of polynomials in the indeter�
minate x over the ring of integers Z� What is p��� Plausi�
bly it is ��x ����� an element in the quotient
eld Z�x��
namely a ratio of polynomials in Z�x� �In AXIOM this is
type� Fraction Polynomial Integer�� Alternatively and
perhaps just as plausibly� p�� is x ���� an element in the
ring Q�x�� namely a polynomial in the indeterminate x with
coe�cients in the
eld of rational numbers� Q� This is AX�
IOM type� Polynomial Fraction Integer� Since there is
only one intuitive conventional notation for division cover�
ing both cases� one solution� and perhaps the wrong one for
future computation� will be chosen in any situation where
the result must be deduced from the symbols p� �� and ��
Conversions are possible� but there are intellectual and com�
putational costs in using the wrong form�

A slightly more complicated� but extremely common� de�
sign situation occurs when performing arithmetic in Z�x� y�
in preparation for rational function integration� A com�
puter algebra system would like to deal with the �correct�
form� if one is integrating with respect to x this is to co�
erce the expression to a ratio of polynomials n�d where n
and d are each in Q�y��x� and d is monic �has leading co�
e�cient ��� This is quite asymmetric with respect to order
of variables� integration with respect to y would require a
di�erent form� and integration of d�n may look quite dif�
ferent from a simple interchange of numerator and denom�
inator from n�d� As a simple instance of this� consider the
expression �� y���� �xy�� Integration of this expres�
sion with respect to x is particularly trivial if it is
rst re�
written as ����� � �� y��y � ����x ��y�� The integral is
then ����� � �� y��y � log�x ��y�

AXIOM goes further than other widely available systems
in making the descriptions of such domains plausible� In at�
tempting to provide the tools to the user to construct various

alternatives� it does not necessarily provide the best intuitive
setting� For example� embraced within the notion of poly�
nomial in several variables are the categories of Polynomial�
Multivariate Polynomial� Distributed Multivariate Polynomial�
Sparse Multivariate Polynomial� Polynomial Ring and
others� These domains are not necessarily distinguishable
mathematically� but in terms of data handling convenience�
Their distinguishing e�ciency characteristics may not be
meaningful to a user who is mathematically sophisticated
but inexperienced in computer algebra� While it may be
comforting to some to have a solid algebraic basis for all
computations� the user without a matching algebra back�
ground may encounter di�culties in formulating commands�
interpreting messages� or writing programs�

A subtlety that is present in all systems but perhaps
more explicit in AXIOM is that one must also make a dis�
tinction between the types of variables and the types of val�
ues� For example� one could assert that the variables n and
m can only assume integer values� in which case � n m� is
apparently an integer� But it is manifestly not an integer
as we have written it� and as long as n and m are indeter�
minates� the sum of the two is an expression tree� not an
integer�

Given that we have a model in AXIOM that provides
a kind of dual evaluation� evaluation of an expression to
a pair� �type� value�� how does it work� It appears that
by converting the type� one achieves much of the pseudo�
evaluative transformations� Thus if we are given r �� ���
�type� Fraction Integer� then the command r �� Float
results in 	����������� where the number of digits is set
by the digits function� Of course this is not an exact con�
version of value	more than the type is altered�

The principal other kind of evaluation in AXIOM is sim�
ple�

Any occurrence of a name in an expression in a context
to be �evaluated� such as the right�hand�side of an assign�
ment� or an application of a function� causes the current
binding of a name to be used in place of its name� That is p
�� ��� establishes a value for the current binding�place for
p� References to p in the ordinary course of events will pro�
vide ���� A single quote
p prevents such evaluation� This
is essentially the Lisp model� except that the values used
may themselves have names� and these too are �evaluated�
potentially in
nitely�

There is one form of eval that �removes� all quotes	in
its sole argument� Another set of evaluation transformations
are based on substitution semantics� that is� they specify
the substitution of some value�s� for a symbol or name�s� in
an expression �where then name could be a variable or an
operator��

Perhaps confusingly� syntactically indistinguishable ver�
sions of eval include operations on symmetric polynomials�
permutation groups� and presumably anything an AXIOM
program or a user wishes� as long as they can be distin�
guished by the types of the arguments� The expression
evaluate�op� identi
es the attached function of the oper�
ator op� Attaching an �eval function f to an operator op
is done by evaluate�op�f�� The Common Lisp convention
�setf �evaluate op� f�might be clearer way of indicating
this�

R�D� Jenks of the AXIOM group at IBM has kindly pro�
vided additional details�

A mapping from e to its value V �e� looks like this�
If e is a literal symbol� say x then V �e� depends on how

x�s binding in the current context was assigned� If it was
a ���� assignment �x ��a� where V �a� was y at the time�

then it is y� If it was a ���� binding� �x ��e�� then V �x�
is V �e�� If there was no assignment� then it is an object of
type Symbol� x�

If e is a compound expression� then it has an operator
and operands� It also has a context in which a type u is
expected for V �e�� To evaluate e of the form f�a�� � � � an�
in the compiled language�

�� Let Ai � V �ai� for � � i � n�

�� Check to see if there is a unique �signature� denoted
f � �B�� � � � �Bn� � B in the environment such that for
each i� � � i � n� Ai is a subtype of Bi and such that
B is a subtype of type u� If so� apply that operation
to produce the value of V �e�

The semantics of the interpreter di�er from the compiled
code in that one replaces the notion of �is a subtype of� with
�can be coerced to� and in case more than one signature is
found� choose the one judged to be �of least cost��

Exceptions to the general scheme are needed for a few
special operators�

For example� When x is a variable� x �� e assigns a
value �the equivalent in Lisp is �setq x e��� f�a� �� e or
f �� �a� �� e de
nes a function approximately like �setq
f
�lambda�a� e���

A detailed examination of evaluation in A�� �the lan�
guage underlying Axiom� is beyond the scope of this paper�
In some circumstances the run�time computation should be
unimpeded by considerations of type� but in others it can
involve a good deal of machinery� Functions� domains� and
categories are
rst�class objects� and appropriate coercions
are sometimes required�

�� Macsyma

To a
rst approximation� Macsyma evaluates everything
once� as in Lisp� Just as in Lisp� there are special forms
that don�t evaluate all their �arguments� �assignment oper�
ators don�t evaluate their left�hand operands�� there is also
a form analogous to Lisp�s eval �namely� ev� that evaluates
one extra time� And there is a quote operator �the pre
x
apostrophe� which one thinks of intuitively as a way to pre�
vent an evaluation� Actually� the evaluation happens� it is
just that
x evaluates to x�

Contrary to Lisp�s convention� evaluating a symbol x
that has no value does not result in an error� but merely
returns the symbol x� It is as though the system
gured
out that the user meant to type �or was too lazy to type�

x when the evaluation of x would otherwise signal an error
of type �unbound variable�� An attempt to apply an unde�

ned function to arguments would ordinarily signal an error
of type �unde
ned function� but here merely constructs a
kind of quoted �call��

Experimentation with such language decisions is fairly
simple� In fact� one can easily provide a simple alternative
to the Lisp evaluator� written in Lisp� but using these rules�
Such a program is given in Appendix III� This model is ap�
propriate for the �functional programming� approach where
the value of a function depends only on its arguments and
not on its context� More work might be needed to provide
a natural way of expressing contexts �via an environment
passed downward�� Such an environment would be used
to distinguish between the evaluation of �� � �			� and
�mod�� � �			� ��� In the
rst case� the � would mean
computing the ���� power of � over the integers� in the sec�
ond� the powering algorithm should be a much faster �mod
�� version�

There is are option for �in
nite evaluation� in which case
an expression is evaluated until it ceases to change� This can
be done by a �command� INFEVAL or set up in an environ�
ment by using ev�����infeval��� A related procedure is
INFAPPLY� which takes a function and arguments�

Evaluation and Simpli
cation are two intertwined pro�
cesses� Commands that are submitted to the system by
a user are
rst evaluated 	 symbols� values are inserted
for their names� functions applied to arguments� etc� Next�
the simpli
cation program makes a pass over the answer� in
many cases rearranging the form� but not the �value��

The user can change the meaning of evaluation by sup�
plying values for symbols� function de
nitions� and setting
some �ags �for example� numer�true means that ��� be�
comes ��� and constants such as � are given �oating�point
values�

The user can change the meaning of simpli
cation by ad�
vising the system of rules via tellsimp and tellsimpafter
which intersperse �before or after the built�in procedure for
an operator� additional transformations� The process of ap�
plying rules will ordinarily require evaluation �and simpli
�
cation� of the right�hand�sides of rules� It is also possible to
declare a host of properties on operators that impose rules of
�for example� linearity to instruct the simpli
er that f�ab�
should be written as f�a� f�b� etc� It is also possible to
disable the simpli
er by simp�off which is useful when one
wishes to �presumably temporarily� compute with unsimpli�

ed expressions� This can be useful in� for example� telling
the simpli
er that �� is to be rewritten as U rather than
signaling an error� This requires that ��
rst be left unsim�
pli
ed in the rule�entry process�

There are some commands which are executed during
evaluation which have as their e�ect an extra simpli
cation
of their argument� For example� ratsimp is such a com�
mand�

Often the user need not know whether it is the simpli
er
or the evaluator that changes sin�	� to 	� Advanced pro�
gramming requirements sometimes lead the ambitious into
having to consider noun and verb forms of operators� The
noun idea appears in Maple as inert operators	placeholders
that however contain reminders of what they might mean if
converted to verbs� Integral and di�erential equations typi�
cally use noun forms as such placeholders�

Macsyma has several di�erent alternative evaluation �ac�
tually� simpli
cation� schemes for special classes of represen�
tation� There is a �contagious� polynomial or rational form
which can be initiated by forcing some component of an ex�
pression into this form� e�g� x�rat�x� will do so� In this
case rational functions �ratios of multivariate polynomials
over the integers in a particular recursive form� will be used
as a default structure� Similar contagion a�ects expressions
involving series and �oating�point numbers�

�� Maple

Normal evaluation rules in Maple are �full evaluation for
global variables� and one�level evaluation for local variables
and parameters�� That is� a Lisp�like one�level evaluation
is assumed to be most appropriate for programs� and an
�in
nite� evaluation	keep evaluating until a
xed point
is reached	in the top�level interactive �user� environment�
Evaluation is accompanied by simpli
cation always� although
some special simpli
cations can be separately applied� There
are a number of functions that don�t use the standard top�
down model of evaluation� but must look at their arguments

unevaluated or evaluated in a speci
c order� These �func�
tions� include eval� evalf� evaln� assigned�

In normal Maple usage� the user is unlikely to need to
use the eval function� There is a quote operation�
x

evaluates to x� Typically this is often used in a convention
whereby a function returns extra values by assignment to
quoted names� Thus match�����
s
� returns true or false�
In case match returns true� it assigns a value to s� Used
indiscriminately� this convention could lead to dreadful pro�
grams�

Maple�s normal evaluation procedure can be explicitly
called from within a program� for �extra� evaluation as
eval�x�� This provides in
nite evaluation as done at the top
level� An optional second argument provides for multiple�
level evaluations� eval�x���� which is commonly used� means
evaluate variables that occur in x only to their immediate
values� and not to continue ad in�nitum� Because eval uses
its second �optional� argument to control how its
rst argu�
ment is evaluated� the function eval is on the list of func�
tions that do not evaluate their arguments�

Maple�s attempt to a�ect simpli
cation by imposing �say�
linearity on a function is� in Maple V� mistakenly confused
with function de
nition� Declaring an operator to be linear
appears to replace any previous de
nition with one like this
�from Maple V r�� newer versions have somewhat di�erent
results��

proc�a�
options remember�

if type�a�constant� then a�
procname���

elif type�a���� then map�procname�a�
elif type�a����� and type�op���a��constant� then

op���a��procname�subsop�� � ��a��
else
procname�a�

fi

end

To say that a function is both linear� and has other
properties or evaluation semantics� seems beyond the scope
of this �hack��

The Maple design becomes rather complicated� and seems
to su�er from a surprising number of variations or alterna�
tives to eval that have evolved� I suspect this has been
caused by the rigid discipline imposed on the system by
keeping its kernel code small and relatively unchanging over
time� Thus extra pieces have been grafted on from outside
the kernel� in not�necessarily�orthogonal ways�

Perhaps the most straightforward alternative to evalua�
tion is subs or substitute� which is a syntactic operation	
subs�a�b�a� is b� The others include Eval� evalf� evalm�
evaln� evalhf� evalb� evala� evalc� evalr� evalgf ��

And other issues whose import were not apparent at the
design stage were inadvertently botched� these omissions
sometimes become apparent only much later�

Indeed� at this time Maple does not support nested
lexical scoping� The situation may be best un�
derstood as follows �In a procedure body� each
variable mentioned is either a formal parameter
or local of that immediate procedure� or else it is
global to the entire Maple session�� ��Diane Hag�
glund� Maple Technical Support� sci�math�symbolic
March ��� � ���

�Maple seems not to distinguish cases such as �linear wrt x� from
�linear wrt y��

�M� Monagan concedes that some of the functions currently in
Maple should not be called eval functions� but these designations may
be merely historical� Some may be eliminated �evalgf for example��

In mail to the Maple user group �April � � � ��� in�
cluding an explanation on how to simulate lexical scoping
via substitution� unapply and quoting� M� Monagan adds�
�I hope to add nested scoping rules �in Maple� soon because
I�m tired of explaining this to users ! I think I am getting
close to ��� times��

In spite of this plethora of programs� the ambitious pro�
grammer would not be able to take advantage of useful
�evaluation�like� feature of Maple without looking at pro�
grams with names not directly identi
ed as eval�something
by the designers� There is modpol�a�b�x�p� for evaluation
of a�x� overZp�x���b�x�� and e mod m for evaluation of e
over the integers modulo m�

Many additional functions are contained in the compli�
cated suite of facilities entered by using the convert com�
mand� Some of the conversions are data�type conversions
�say� from lists to sets�� but others are form conversions
such as partially factoring a polynomial� which maintain
mathematical equivalence� Other uses defy simple model�
ing� The Maple command subsop�	�f�g�r�s�� substitutes
f for the �th �operator� g in g�r�s� to return f�r�s�� Sim�
ilarly� convert����b������ returns ��b� but neither one of
these expressions has a �th operator� The expression �x is
encoded as a standard product and has no operator � at all�

The command convert��	�hex�gives the symbol A �which
may� of course� have a value associated with it��

The on�line manual for Maple V release � lists the fol�
lowing pre�de
ned conversions�

�� ��� D array base binary
confrac decimal degrees diff double eqnlist
equality exp expln expsincos factorial float
fraction GAMMA hex horner hostfile hypergeom
lessthan lessequal list listlist ln matrix
metric mod� multiset name octal parfrac
polar polynom radians radical rational ratpoly
RootOf series set sincos sqrfree tan
vector

The user is invited to make additional conversions known
to Maple�

Why are we making such a fuss about convert� It is just
that Maple is inconsistent with regard to what constitutes
conversion� evaluation� or just a command� Why is factor
a separate command� but square�free factoring a �conver�
sion��

Let us turn to those other eval relatives� What do they
compute� The Maple manual �on�line� provides descriptions
for each of them� which we quote or paraphase below�

The program evalf evaluates to �oating�point numbers
those expressions which involve constants such as �� e� ��
and functions such as exp� ln� sin� arctan� cosh� "� erf� A
complete list of known constants and functions is provided�

The accuracy of the result is determined by the value of
the global variable Digits� By default the results will be
computed using ���digit �oating�point arithmetic� since the
initial value of Digits is ��� A user can change the value
of Digits to any positive integer� If a second parameter� n�
is present the result will be computed using n�digit �oating�
point arithmetic�

evalf has an interface for evaluating user�de
ned con�
stants and functions� For example� if a constant K must
be evaluated by calling a procedure� then the user must de�

ne a procedure called �evalf�constant�K�� Then calls to
evalf�K� will invoke �evalf�constant�K����

If evalf is applied to an unevaluated de
nite integral
then numerical integration will be performed �when possi�
ble�� This means that the Maple user can invoke numer�
ical integration without �rst attempting symbolic integra�

tion through the following subterfuge� First use the inert
form Int to express the problem� and then use evalf as in�
evalf�Int�f�x�a��b��

A similar function� evalhf is provided that computes
using hardware �oating�point� Its limitation are generally
those of the double�precision arithmetic system on the host
computer� It will signal an error if any of the data cannot be
reduced to a �oating�point number� In particular� a name
with no associated value will force an error�

evala evaluates in an algebraic number
eld� and evalgf
evaluates in an algebraic extension of a
nite
eld� These
are related in that they each set up an environment in which
a number of speci
c commands take on di�erent meanings�
For evala an algebraic number
eld is speci
ed by the sec�
ond argument� For evalgf a prime number is provided by
the second argument� If the second argument is not pro�
vided� say� as evala�Gcd�u�v��� then the GCD function is
performed in the smallest algebraic number
eld possible�

The commands that take into account the algebraic
eld
include

Content Divide Expand Factor Gcd Gcdex Normal
Prem Primpart Quo Rem Resultant Sprem Sqrfree

For other commands� the
rst argument is returned un�
changed� after
rst checking for dependencies between the
RootOf�s in the expression�

If a dependency is noticed between RootOf�s during the
computation� then an error occurs� and the dependency is
indicated in the error message �this is accessible through the
variable lasterror��

An additional argument can be speci
ed for Factor� This
is an algebraic number� or a set of algebraic numbers� which
are to be included in the
eld over which the factorization
is to be done�

An example�

� evala�Factor�x������ RootOf��Z�������
� �

�x RootOf��Z � ��� �x � RootOf��Z � ���

Note that the commands are not identical to those avail�
able outside the evala environment 	 they have initial cap�
ital letters and are so�called �inert� functions until they are
activated by being evaluated in an environment� Interest�
ingly� evala�Factor�x����� RootOf��Z��������with paren�
theses moved� produces the same result� �Normally an alias
would be used to provide a name for the RootOf expression�
dramatically simplifying the appearance of the problem and
its answer��

evalm evaluates an expression involving matrices� It per�
forms any sums� products� or integer powers involving ma�
trices� and will map functions onto matrices�

The manual notes that Maple may perform simpli
ca�
tions before passing the arguments to evalm� and these sim�
pli
cations may not be valid for matrices� For example�
evalm�A�	�will return �� not the identity matrix� One sim�
ple way out of this problem is to use a di�erent operator� ��
for matrix powers �Macsyma does this� and a later release
of Maple provides ����

Unassigned names will be considered either symbolic ma�
trices or scalars depending on their use in an expression�

This is probably a bad idea� and leads to strange extra no�
tations that include ���A�B�C� to multiply three matrices�

Among commercial computer algebra systems� it appears
that only AXIOM has a �clean� route out of this mess by
requiring that types be maintained throughout a computa�
tion� To alleviate the user from the painful chore of
guring
out the types of expressions� the AXIOM interpreter heuris�
tically infers types on input� Unfortunately� the type it in�
fers and the type needed by the user in further steps may
not agree� The clean route may thus not lead to a solution
without more work�

Maple�s evalb�x� forces� to the extent possible� eval�
uation of expressions involving relational operators to the
Boolean values true or false� If Maple is unable to reduce
the expression to one of these� it returns an unevaluated but
perhaps transformed expression� For example� a�b will be�
come b�a�	� Since Boolean operators �and� or� not� eval�
uate their arguments with evalb� evalb�x�� �not�a�b� is
thus not�b�a�	�� Somewhat uncomfortably� if a nor b have
any values at the moment� if �a�b� then � else � fi re�
turns �while if �a�b� then � else � fi produces Error�
cannot evaluate boolean�

The convention that if gives an error if x cannot be re�
duced to a Boolean value is only one possible convention
among many for the �unknown� branch of an if� Macsyma
and Mathematica make di�erent provisions� with Macsyma
allowing a choice of carrying the unevaluated if along� or
signalling an error� See Appendix II on Conditional Expres�
sions�

Maple�s evalc forces evaluation over the complex num�
bers� It appears to provide several facilities intermixed� One
facility attempts to split an expression into real and imagi�
nary components in order to
nd a kind of canonical form
for expressions� A second facility merely informs the system
that additional numerical evaluation rules are available� such
as cos of complex numbers� �M� Monagan explains evalc as
complex expansion under the assumption that all symbols
are real�valued�� More recent versions of Maple have taken
some of evalc�s capabilities and added them to evalf�

At
rst sight the function evaln�x� seems quite strange
	 it is used to create a symbol that can be assigned a value�
In the simplest case� it is the same as using single�quotes�
You can use this to take some data and concatenate pieces
together to �evaluate to a name�� Although evaln has a
few bizarre features� the notion of creating and installing a
string in a system�s symbol�table is handy�

The assignment operation in most languages implicitly
uses �evaluate to a name� on the left�hand side of the as�
signment� Consider the sequence i���� t�i����� t�i�����
The left�hand side of the expression t�i���� should be �eval�
uated� to the location for t���� not �� and not t�i�� Maple�s
penchant for the use of side�e�ects for assigning values to
extra variables makes an explicit version of this operation
handy� Thus� divide�a�x���q�� might test to see if x��
divides exactly into the polynomial denoted by a� If so� q is
assigned the quotient� In a loop� you might need a sequence
of names for the quotients� divide�a�i��b�evaln�t�i���
where i is the index of a for loop�

The program Eval� quite confusingly from our perspec�
tive� is an inert operator used to represent an unevaluated

polynomial and points to be used for evaluation� Apparently
the �unstated� motivation is to make it faster to express re�
sults as residues in
nite
elds� Eval�x��		�y��		��x���y����
just sits there unevaluated� but computing that value mod ��
returns 	�

Maple�s evalr implements a kind of interval arithmetic�
here called �range arithmetic� to compute a con
dence in�
terval for a calculation� An associated function shake pro�
duces a interval to be fed into such functions�

The implementation details of evalr can be found� as is
the case for much of Maple �everything but the kernel� by
looking at the de
nitions which can be extracted in source
code form from the running Maple system� In fact� the
evalr system cannot work too well for the reasons given
earlier� the Maple kernel assumes that two intervals with
the same endpoints are identical� and that their di�erence
is exactly zero�

In the versions of Mathematica prior to ���� the same er�
ror occurred� eventually the vagaries of the Interval struc�
ture were incorporated into the equivalent of the Mathemat�
ica kernel�

�� Mathematica

The underlying scheme for evaluation in Mathematica ����
is based on the notion that when the user types in an ex�
pression the system should keep on applying rules to it �and
function evaluation means rule application in Mathematica��
until it stops changing�

The evaluation strategy in Mathematica� as is typical
with every computer algebra system� works well for easy
cases� For more advanced problems� Mathematica�s evalua�
tion tactics� intertwined with pattern matching and its no�
tion of Packages is more elaborate than most� It is clear that
the evaluation strategy is incompletely described in the ref�
erence ����� furthermore it appears it is never fully described
in the Mathematica literature� Experimentation may be a
guide�

It appears that the usual block structure expected of an
Algol�like language is only partly simulated in Mathematica�
The usual notion of contexts for bindings� as one might see
in Pascal or C is actually simulated by another mechanism
of Packages� De
ning� setting or evaluating a simple sym�
bol� say x� at the command level actually de
nes it in the
Global �top level� Package� Its evaluation returns its binding
Global�x� Evaluation of a symbol de
ned but uninitialized
in a Module� for example by Module��x�� ��x���� is actu�
ally the same as a symbol Global�x���� That is� a lexical
context is implemented by mashing together names with se�
quentially generated numbers that are incremented at each
use� There is also a Block construction� a remnant from an
earlier attempt to implement block structure in Mathemat�
ica� The evaluation mechanism of �repeated evaluation until
no change� pretty much defeated the local�name mechanism
of Block� If the global value of x is �� then Block��x��x�
evaluates to � �presumably in two stages� x evaluates to x
in the outer block� and then x evaluates to ���

Names can be de
ned in di�erent Packages� perhaps
nested� in which case inter�package visibility and remote�
naming requires additional syntax of the form elaborate
compound form package��subpackage�name�

Evaluating a function or operator is quite elaborate� First�
the name of a function is evaluated �until no change� to
some symbol s� If s has a function de
nition� �or a re�writing
rule� actually� with an appropriate number of arguments�
those arguments are evaluated in turn� unless s has one of
the attributes HoldFirst� HoldRest� orHoldAll� These in�
dicate that some or all of the arguments are not to be eval�
uated immediately� They are set by using SetAttribute� as
in the example below� Yet if a Held argument is evaluated
once� it is evaluated �until no change�� Thus confusingly�

given

SetAttribute�foo�HoldAll��
z���
foo�x����x�
bar�x����x�

the two functions de
ned are indistinguishable� foo�z� and
bar�z� will return ��

But

foo�x����x
bar�x����x

are di�erent� foo�z� returns � and sets z to �� bar�z� is an
error� one cannot increment a number�

It is also possible to prevent an evaluation by the judi�
cious use of Hold�� and ReleaseHold��as well as Unevaluated��
and Evaluate��� Distinguishing between the semantics of
these pairs seems pointless� since they all appear to be in�
adequate attempts to mimic the mechanism �quote� in an
environment in which the �until no change� rule holds� It
may be that a study of macro�expansion in Common Lisp or
some other language in which these issues have been care�
fully designed and tested for a period of years� would provide
a model for some other components of the Mathematica se�
mantics�

Returning to the task at hand� assume now that the sym�
bol s is a function de
nition and we�ve found one �the
rst in
some heuristic ordering� rule that can be applied to rewrite
the expression� If that fails� we try the next rule� etc� If
all rules fail� then the expression is returned as s with its
arguments�

To determine if some rule can be applied� we look at
the possible de
nition structure for a function f� Even in a
somewhat simpli
ed explanation� we must deal with at least
the following kinds of cases �we give prototypical examples��

�� f�x��y���� for the usual parameter binding of two
arguments�

�� f��x��y����� or any other f�g������ for parameter de�
structuring�

�� f�x�foo��� for explicit self�descriptive manifest�type
checking�

�� f�x� NumberQ��� for implicit type�checking by predi�
cate satisfaction�

�� f�x������ for special case arguments�

�� f�a����� memo function for a particular set of argu�
ments�

�� f�x����� �exible patterns for one or more arguments�

�� f�x������ for zero� one� or more arguments�

 � f�x������� � f�x������ it is possible to have multiple
�even con�icting� de
nitions�

��� g��f����g�����������which de
ne �uprules� that al�
ter the meaning of f� but only if one of the arguments
of f has a Head that is g�

A brief explanation of the uprule is probably warranted�
This is a rule for rewriting f� but keyed to the evaluator
noticing that g is in the top level of arguments to f� This is
an optimization to prevent slowing down common operators
where f is say or �� Cluttering these common operators

with rules �say� to deal with the sum and product of a user�
de
ned introduced function� would lead to ine�ciencies�

Using the
xed�point philosophy throughout the system
�not just at command level as in Maple� requires Mathemat�
ica to e�ciently determine that when a rule is attempted�
that in fact no change has happened �because such a change
could trigger further rule application�� Just as Maple falls
short in its use of �option remember�� Mathematica also ap�
pears to hold on to outmoded values� Mathematica applies
some clever and apparently non�deterministic heuristics to
determine this no�change termination condition� Because it
is possible to change the global state of the system by rules
that fail as well as by rules that succeed� the heuristic can
easily be subverted� While we show� by deliberate means
below� how to do so� the casual user can avoid it by using
only simple rules where no side�e�ects on global state are
possible if the rule fails� �This may not be entirely obvious�
of course��

Here is a de
nition of a Mathematica function g�

i�	�
g�x���� xi �� i �x

The two allegedly equivalent expressions �g�	��g�	��
and Table�g�	������ result in �g�	�� �� and �g�	�� g�	��
respectively�

Furthermore� Mathematica can be easily fooled into think�
ing the system has changed some dependent structure and
thus will spend time re�evaluating things without e�ect�
For example� after setting an element of an array r� by
r������r����� the system must check that no rules are
newly�applicable to r� This depends on how many elements
there are in r� If r has length �� this takes ��� ms�� but at
length �������� some ��� ms��

There are additional evaluation rules for numerical com�
putation in which Accuracy and Precision are carried along
with each number� These are intended to automatically keep
track of numerical errors in computation� although their fail�
ure to do so is one problem noted by Fateman ����

Some expressions that are supposed to be purely �oating�
point �real� are �compiled� for rapid evaluation� This is
useful for plotting� numerical quadrature� computing sound
waves� and solving di�erential equations� The evaluation
of compiled functions provides another set of semantics dif�
ferent from the usual arithmetic� This seems to be in a
state of �ux as versions change� In at least one version�
the temporary excursion of a real�valued function to use a
complex�valued intermediate result causes problems�

Evaluation of expressions involving certain other kinds
of expressions� among them real intervals� and series� also
seem to have special treatment in the Mathematica ker�
nel� This must be handled rather gingerly� Consider that
O�x��!�O�x��!� a series expression� is not zero but is �equal�
to O�x��! and Interval���������Interval�������� is not
zero either� but Interval����� ����

�� REDUCE

The REDUCE system ���� uses a model of evaluation sim�
ilar to that in Lisp� a language in which it has historically
been implemented� although a C�based version now exists�
REDUCE has two modes� The
rst is called symbolic� and
consists of a syntactic variant of Lisp with access to the
REDUCE library of procedures and data structures� This

�times for version ��� on a Sparc�
� workstation�

provides an implementation language level for the system�
builder and the advanced user� The second mode is called
algebraic� in which the user is expected to interact with the
system� Among other features� unbound variables can be
used as symbols� and unde
ned operators can be introduced�
In both modes there is a general in
x orientation of the
language� but the programming and expression semantics
are still generally based upon the Lisp model of recursively
traversing a tree representing a program� evaluating argu�
ments and applying functions� but with resubstitution until
the expression being handled ceases to change� The simpli
�
cation process is a reduction to a nearly canonical form� and
subject to a certain number of �ags �exp� gcd�� A major
model for the use of REDUCE is for the user to supply a
number of rules that are de
ned via �let and match� state�
ments� and then interact with user input� This has both
the advantages and disadvantages stated earlier concerning
rules�

The REDUCE system is admirably brief� at least if one
ignores the size of the underlying Lisp system� and avoids
some of the distressing aspects of more elaborate systems�
The trade�o� is that the REDUCE notation is somewhat
more distant from mathematical notation� and some of the
advanced capabilities of the system are available only after
loading in modules from the substantial library�

�
 Other systems

There are a number of new systems under development�
Space does not permit comparison here� but we expect that
to the non�expert� each appears to have an evaluation strat�
egy similar to one or more described above�

� Boundaries for Change

Various systems take di�erent approaches in allowing the
user to alter the course of evaluation�

Within the bounds of what can be programmed by the
user� Maple provides some handle on the evaluation task�
the code for evaluation is in part accessible� and distributed
as properties of the operators� A similar argument can
be made for user�extended parts of Mathematica� That is�
one can specify rules for new user�introduced operators� In
Maple or Mathematica one has rather little chance to inter�
vene in the proprietary kernel of the system� Since so much
more of the system in Mathematica is in the kernel� it makes
changes of a fundamental nature rather di�cult�

Macsyma�s user�level system has similar properties to
that in Mathematica� both with respect to adding and spec�
ifying new operators and changing existing ones� However
for nearly any version of Macsyma �and REDUCE�� it is pos�
sible by means of re�de
ning programs using Lisp� to change
the system behavior� Although this is rarely recommended�
a well�versed programmer� aided by available source code�
has this route available� Such alternation is error�prone and
risky since a programmer may inadvertently violate some
assumptions in the system and cause previously working fea�
tures to fail�

An example mentioned previously that causes problems
in any of these systems� the correct implementation of an
Interval data type� e�ectively cannot be done without ker�
nel changes� since intervals violate the rule that x� x � ��
�According to interval rules� �a� b���a� b� � �a� b���b��a� �
�a� b� b� a���

Axiom would simultaneously have less formal di�culty�
and perhaps more practical di�culty handling intervals� I

suspect that such an algebraic system that violates x�x � �
cannot inherit any useful properties of the algebraic hierar�
chy� Thus a new set of operators would have to be de
ned for
intervals� from to cos to integrate� This has the advan�
tage of a relatively clean approach� but on the practical side�
it means that many commands in the system that previously
have been de
ned over �say� reals� and might be useful for in�
tervals will require explicit reprogramming� The general rule
that f�X� for X an interval is �minx�X f�x��maxx�X f�x��
cannot be used because it is not su�ciently constructive�

Plausible goals for any scheme that would modify an
evaluator are

�� It must leave intact the semantics and e�ciency of un�
related operators �including compilation of programs
involving them��

�� It must reserve natural notations�

�� It must display an economy of description�

�� It must� to the greatest extent possible� allow e�cient
compilation of programs using the modi
ed evaluation�

� Summary and Conclusions

From the view of studying programming languages� there
are many well�understood �evaluation� schemes based on a
formal model and#or an operational compiler or interpreter
and run�time system� Traditional languages in which the
distinction between data and program are immutable can
be described more simply than the languages of computer
algebra systems�

Among �symbolic� language systems where the data!
program dichotomy is less clear� Common Lisp is rather
carefully de
ned� the semantics of computer algebra sys�
tems tends to be described informally� and the semantics
generally change from time to time�

Compromises in mathematical or notational consistency
are sometimes submerged in considerations of e�ciency in
representation or manipulation�

Is there a way through the morass� A proposal �elo�
quently championed some time ago by David R� Barton at
MIT and more recently at Berkeley� goes something like
this� Write in Lisp or another suitable language� and be
done with it� This solves the second criterion of our intro�
ductory section� As for the
rst criterion of naturalness !
let the mathematician#user learn the language� and make
it explicit� If the notation is inadequately natural� perhaps
a package of �notational context� can be implemented for
that application area on top of the unambiguous notation
and semantics�

Providing a context for �all mathematics� without mak�
ing that unambiguous underpinning explicit is a recipe that
ultimately leads to dissatisfaction for sophisticated users�

What makes a language suitable� We insist that it be
carefully de
ned� Common Lisp satis
es this criterion� the
�much simpler� Scheme dialect of Lisp might do as well	 �
even a computer algebra systems language could work if it

�Newspeak ���� Andante� were experimental languages developed
at the University of California at Berkeley for writing computer al�
gebra systems based on an algebraic mathematical abstraction that
embodied most of what people have been trying to do� AXIOM�s base
language is similar in many respects�

	The usual criticism of Scheme is that it sacri�ces too much e��
ciency for purity of concept�

were presented in terms of unambiguous� aesthetically ap�
pealing� and consistent speci
cations�

Among the more appealing aspects of Lisp and related
languages is that a clear distinction between x and �quote
x� which is also denoted by
x� Evaluation is done by ar�
gument evaluation �one level�� or by macro�substitution of
parameters� or by explicit calls to eval� apply or funcall�
The scope of variables� etc� are carefully speci
ed by Lisp�

Another appealing although complicating aspect of Com�
mon Lisp is the elaboration of name�spaces �via its package
concept�� The relationships possible by importing� export�
ing� and shadowing names in a large collection of programs
from potentially di�erent sources is a welcome relief from
systems in which arbitrary naming conventions must be im�
posed on programmers just to keep the cross�talk down to
a low level� Mathematica�s package notion may have been
inspired by this development�

A minor variation to Lisp�s evaluation ! to avoid report�
ing certain error when a symbol is used unquoted� is used in
MuLisp� a dialect of Lisp that supports the CAS Derive � ��

Consider a version of Lisp that has a modi
ed eval that
is exactly like eval in almost all respects except that errors
caused by unbound variables or unde
ned functions result
in �quoted� structure� Such a version of Lisp can be written
as an interpreter in Lisp� or built within Common Lisp by
altering the evaluator� Such an alteration makes it di�cult
to
nd true programming errors� since there is a tendency
for erroneous input or programming errors to result in the
construction of huge expressions� This crude model of a
computer algebra system� among other consequences� allows
any result or any argument to be of the type �unknown
symbolic�� It may be that a formalization and extension
of this interpreter can serve as a guide for variations on
evaluation�

An alternative view as to how one should construct of
large systems that has been promoted recently is that of
object�oriented programming� Indeed� writing certain com�
puter algebra programs in Common Lisp�s object system
�CLOS� is somewhat more convenient than otherwise� The
hierarchy of classes� coercions and de
nitions of methods
that are needed for writing computer algebra can to a large
extent be mirrored by CLOS� Work by R� Zippel ���� takes
this view� The demands of computer algebra seem� how�
ever� to strain the capabilities of less sophisticated systems�
In fact� Newspeak�s multiple�generic functions ��� �where the
types of all the arguments� not just the
rst� determine the
method to be used� were adopted by CLOS� and are partic�
ularly handy
 �

Variations on the symbolic�interpreter model for CAS
evaluation have dominated evaluation in the past� it seems
that an object�oriented view may dominate thoughts about
systems for a bit more time� perhaps a tasteful combination
of the two will emerge in the future�

We have come to believe that the role of a computer alge�
bra system is to make available those underlying algorithms
from concrete applied mathematics� clearly speci
ed� that
might be useful to the experienced and demanding user of
symbolic scienti
c computing� Such an explicit recog�
nition of the needs of the application programmer as
well as the system builder is key to providing fa�
cilities that will solve important problems� An ap�
plication programmer �perhaps with the help of a system�

Simpler object�oriented systems where� in e�ect� the type of only
one argument is used for determining the meaning of an operation�
seem to defer but not eliminate painful programming�

building expert� has a chance of providing 	in a particu�
lar domain	a natural� intuitive notation� These specialized
�mini�languages� may be clustered in libraries� or may be
stand�alone programs�

Perhaps if there is a lesson to be learned from the activ�
ity of the last few decades� it is this� For computer scientists
to provide at one fell swoop a natural notation and evalua�
tion scheme for allmathematicians and mathematics is both
overly ambitious and unnecessary�

 Acknowledgments

Thanks to R� D� Jenks� Keith O� Geddes� and M� Monagan�
and Je�rey Golden for comments on evaluation in AXIOM�
Maple� and Macsyma� This work was supported in part
by NSF Infrastructure Grant number CDA�������� and by
NSF Grant number CCR� ��� ���

References

��� Abdali� S� K�� Cherry� G� W�� and Soiffer� N�

Spreadsheet computations in computer algebra� ACM
SIGSAM Bulletin ��� � �Apr� � ��� ��!���

��� Brownston� L�� Farrell� R�� Kant� E�� and Mar�
tin� N� Programming Expert Systems in OPS�� An

Introduction to Rule�Based Programming� Addison�
Wesley� � ���

��� Buchberger� B�� Collins� G�� Loos� R�� and Al�
brecht� R�� Eds� Computer Algebra� Symbolic and

Algebraic Computation� Springer Verlag� � ���

��� Davis� M� Computability and Unsolvability� McGraw�
Hill� � ���

��� Fateman� R� J� Macsyma�s general simpli
er� Philos�
ophy and operation� Proc� 	
�
 Macsyma Users Con�
ference� Washington� D�C� �� � �� ���	����

��� Fateman� R� J� A review of Mathematica� J� Symbolic
Comp� 	� � �May � ��� ���	�� �

��� Foderaro� J� K� The Design of a Language for Alge�

braic Computation Systems� PhD thesis� Univ� of Calif�
at Berkeley� � ���

��� Gradshteyn� I� S�� and M�Ryzhik� I� Table of In�
tegrals� Series� and Products� �th ed� Academic Press�
� ���

� � Soft Warehouse Inc� DERIVE User Manual version

�� Soft Warehouse� Inc� Honolulu� Hawaii� � ��

���� Jenks� R� D�� and Sutor� R� S� AXIOM� the Scien�

ti�c Computation System� NAG and Springer Verlag�
NY� � ��

���� MacCallum� M� A� H�� and Wright� F� Algebraic
Computing with REDUCE� Oxford University Press�
� ��

���� Wolfram� S� Mathematica� A System for Doing

Mathematics by Computer� �nd ed� Addison Wesley�
� ��

���� Zippel� R� The Weyl computer algebra substrate�
Tech� Rep� ������� Dep�t of Computer Science Cor�
nell Univ�� � ��

Appendix I� Rule Ordering

There are many options to rule ordering� and a transforma�
tion may be successful with one order but lead to �in
nite
recursion� with another�

The exact nature of pattern matching and replacement
need not be speci
ed in the discussion below� Convention�
ally� patterns and their replacements would have zero or
more �pattern variables� in them� and there might be asso�
ciated predicates on these variables�

Given rules ri �� pi � ei� i � �� � � � � n where pi and ei
are in general tree descriptions� apply the �ordered� set of
rules frig to a tree E�

Scheme �� Starting with i � � apply rule ri exhaustively
by trying it at each node of the tree E� explored in some

xed order �let us assume pre
x� although other choices are
possible�� If the rule ri applies� �namely� an occurrence of
pi is discovered�� then replace it with ei� Continue to the
next subtree in the transformed E� When the initial tree is
fully explored� then proceed to the next rule �i �� i�� and
repeat until all rules are done�

Scheme �a� Halt at this time�
Scheme �b� Start again with i � � with the transformed

tree E and repeat again until a complete traversal by all
rules makes no changes�

Scheme �c� In case the tree keeps changing� repeat only
until some maximum number of iterations is exceeded�

Variants to scheme �a� When a rule rj succeeds at a
given position� immediately attempt to apply rules rk for
k � j or k � j to its replacement�

Scheme �� Starting with the root of the tree E �or using
some other
xed ordering�� and starting with the
rst rule
�i � �� try each rule ri at the initial node� If they all fail�
continue to explore the tree in order� If some rule rj applies�
then replace that node pj by ej� Then continue to the next
subtree in the transformed E until it is fully explored�

Scheme �a� Halt at this time�
Scheme �b� Starting with the root of the tree E repeat

until there are no changes�
Scheme �c� Repeat until some maximum number of iter�

ations is exceeded� Variants to scheme �a� When a rule rj
succeeds at a given position� immediately attempt to apply
rules rk for k � j or k � j to its replacement�

Heuristics� Some rules �shadow� others� Re�order the
rules to favor the speci
c over the general� Use partial
matching �or failure� of one pattern to deduce partial match�
ing �or failure� of a similar pattern �e�g� commutative pat�
tern matching can have repetitive sub�matches��

In any of these schemes there is typically an implicit
assumption that the testing of the rules� patterns is deter�
ministic and free of tests on global variables� and thus once
a pattern fails to match it will not later succeed on the
same subexpression� In some systems the replacement �ex�
pressions� are arbitrary programs that could even rede
ning
the ruleset��

Several application schemes were implemented in Mac�
syma� using di�erent sequencing in the expression and through
the rules� If only one rule is used �a common situation� sev�
eral of the variations are equivalent� Mathematica has two
basic variants of scheme �� ReplaceAll and ReplaceRepeatedly�
which in combination with mapping functions and a basic
Replace provide additional facilities� In fact� elaborate rule
schemes are rarely used for several reasons� The pattern�
speci
cation language and the manner of matching is al�
ready di�cult to understand and control� and somewhat

separated from the major thrust of the language� Rules that
do not converge under essentially any sequence are particu�
larly di�cult to understand� Especially for the naive user� it
is more appealing to attach rules in Macsyma to the simpli�

er ���� or in the equivalent Mathematica form� to particular
operators� than to use them in a free�standing rule�set mode�

Appendix II� Conditional Expressions

Consider the construction �if f�x� then a�x� else b�x��� As a
traditional programming language construct it is clear that
f�x� should evaluate to a Boolean value true or false� and
then the evaluation of either a�x� or b�x� must provide the
result� It is quite important that only �and exactly� one
of them is evaluated� for the purposes of reasoning about
programs� If the evaluation of f�x� provokes some error
then the locus of control is directed elsewhere�

Let us assume now that these cases do not hold� We
must come up with a possible CAS alternative for the case�
f�x� evaluates to g� a variable or �in general� an expression
which is not known to be true or false�

�� We could insist in this case that anything non�false is
true� and evaluate the a�x� branch�

�� We could insist that this is an error and signal it as
such�

�� We could defer the testing until such time as it could
be determined to be true or false �the example below
is somewhat hacked together to simplify the concept
of scope here��

x����
r�� if �x�y� then g�x� else h�y��

could result in

deferred�if ���y� then
eval�substitute�x��� g�x��� else eval�h�y��

If r is later re�evaluated� say with

y����
eval�r� ��� g��� evaluated
y����
eval�r� ��� h��� evaluated�

�� We could defer the testing but be less careful with
the scope of variables� as is apparently done by Maple
�Vr���s if construct� the scope of all variables in the
deferred evaluation is taken to be that of the dynamic
scope� so the meaning of the x in the Boolean ex�
pression �x � y� could be di�erent from the x in the
g�x�then clause�

Macsyma allows the speci
cation of several di�erent op�
tions here� depending upon the setting of prederror� It
also has a a program that may stop and ask the user for an
opinion on logical expressions if it can�t deduce the value�
Mathematica has a version of the If with an extra branch�
for �can�t tell� although perhaps it should have yet another
for �evaluation of the boolean expression caused an error��

