Speaking Math from Lisp Input: A Description of Math2Speak
Albert Shau

Eric Chang
Richard Fateman
Speaking mathematics aloud is in some ways far more convenient than handwriting or typing. It is easy to say "Bold Script Capital S" but hard to type or handwrite. On the other hand, speaking is not without ambiguity: Consider reading aloud a simple example
[image: image1.wmf])

(

c

b

f

+

. One might suspect that this is an application of the function “f” to the argument (b+c) but might alternatively be multiplication of “f” by (b+c). Since “f” is usually a function name, the first interpretation is favored, and in fact it may not be apparent that this is ambiguous. But now compare it to a(b+c), which appears to be multiplication: simply shifting the name down in the alphabet makes a difference! If the function is cos rather than f,
[image: image2.wmf]c

b

+

cos

could mean
[image: image3.wmf]c

b

+

)

(cos(

 or
[image: image4.wmf])

(cos(

c

b

+

. Reading one of these aloud, the speaker either has to make some effort to disambiguate, or hope that the context is sufficient to determine a choice for the person (or computer!) hearing the utterance.
Often people view ambiguity of spoken mathematics as something related to 2-D positioning on paper: where does the exponent end in
[image: image5.wmf]b

a

x

+

 but the example of
[image: image6.wmf]c

b

+

cos

 shows the ambiguity occurs on a single line as well.

If we look at 2-D positioning, as in the example above, reading indeed sometimes adds its own ambiguity to a displayed expression. Because a visual hand-printed presentation groups terms through sub/superscript positioning, this is in fact an additional challenge for verbalization, but in our experience, one that is easy to overcome because it is relatively obvious. Something akin to explicit parentheses must be used at times.

Math2Speak is a Lisp program written to verbalize Lisp representations of mathematical expressions. The intention is to provide a testbed for speaking mathematics so that it is easy to comprehend as well as unambiguous.

Interfacing with Microsoft .Net’s Text-To-Speech (TTS) facilities for speaking, the program can give solutions to speaking precisely. The trick is to make it relatively natural as well.

Speaking mathematics is not especially novel (see for example AsTeR (ref)), but the program for accessing TTS is just a handful of lines of code, and thus we can concentrate on those aspects of math speech that are required for comprehension and for disambiguation.

The raw speech capabilities include changes in speaker (several male and female voices are available), pitch, speed, volume, emphasis, and other factors available in standard SpeechXML (ref). By encoding the subtleties as tags in XML, these features are passed on to the TTS facilities.

The raw access to TTS from Lisp allows us to speak from text strings with tags as text:

(speak "<p>One plus two.</p>")
By comparison, our processing starts with Lisp s-expressions such as:

(math2speak '(+ 1 2))
The fundamental text-to-speech component is accessed via Microsoft Window's facilities using "OLE". To reiterate, simple tasks are simple. The challenge is to make this transition to speech while maintaining ease of comprehension and precision.
Algebraic Operators

Math2Speak can handle addition, subtraction, multiplication, division, exponents, and functions, nested to any depth. Ambiguities with these operators and all operators in general concern placement of parentheses, or scope of operators such as log or cos, or perhaps other variations in the math such as font changes (Bold, Italic, Script). As an example of explicit parentheses, consider
[image: image7.wmf])

4

(

)

(

b

a

y

x

+

+

. Note that removing the parentheses on the baseline changes the meaning of the expression. Removing the parentheses in the exponent also changes the meaning unless we can indicate by speech modification (as done by Aster) to speak “high and small” for the duration of the exponent. A naïve speaker might verbalize this expression as “x plus y to the four a plus b.” This spoken expression can be interpreted variously as one of the following:

[image: image8.wmf])

4

(

b

a

y

x

+

+

,
[image: image9.wmf]b

y

x

a

+

+

4

)

(

,
[image: image10.wmf]b

y

x

a

+

+

4

,
[image: image11.wmf])

4

(

b

a

y

x

+

+

, or
[image: image12.wmf])

)(

(

4

b

a

y

x

+

+

.
 Our goal is to speak any expression in such a way that there can only be one valid interpretation. We also want to do this as clearly as possible, requiring no training on the part of the listener, and minimal “discomfort.” The simplest way, based on our computer-science background, to be precise is essentially to linearize any expression as though it were being inserted into the text of a computer program in some well-defined language. Then we can use the more-or-less well known precedences for operations, and in the case of groupings, say “open parenthesis” and “close parenthesis”. This method is not necessarily appealing for a mathematics student who has not seen a computer language (hard as it is to believe such people exist). In any case, it gets confusing pretty quickly when there are multiple “close parentheses” in a row. We will still use parentheses but we can give them operator-dependent names to make it clearer. For example, instead of saying “start parenthesis x plus y end parenthesis” we say “start addition x plus y end addition.” Though this method of speaking may be clumsy for a person, it is precise and also more understandable than an expression using only parentheses. We will consider backing off from such rigor when there is a well-stood convention.
Addition/Subtraction/Multiplication

Basic format: “sum/product/difference term1 plus/minus/times term2 plus/minus/times/ term3 …. end sum/product/difference”

Lisp format: (+/*/- t1 t2 t3 …)

Division
Basic format: “fraction with numerator term1 divided by denominator term2.”

Lisp format: (/ t1 t2)

Exponents

Basic format: “term1 to the power term2”. If term2 is complicated, it might need grouping as exponent … end exponent. It could be “term1 to the term2-uth power” if term2 is a simple name. Special names are used for squaring and cubing.
Lisp format: (^ t1 t2)

Ex:
[image: image13.wmf])

4

(

)

(

b

a

y

x

+

+

Spoken as: “sum x plus y end sum, to the power, sum, product four times a end product, plus b end sum end power.”
Lisp: (^ (+ x y) (+ (* 4 a) b))

Ex2:
[image: image14.wmf]b

x

Spoken as: “x to the b-uth power.”

Lisp: (^ x b)

Ratio a:b::c:d
Basic format: “term1 is to term2 as term3 is to term4”

Lisp format: (as (isto term1 term2) (isto term3 term4))

Units
Basic format: “start addition, term1 kilograms plus term2 kilograms, end addition equals term3 kilograms”

Lisp format: (= (+ (kg term1) (kg term2)) (kg term3))

Also applies for milligrams, grams, centigrams and dollar signs ($). Other units easily added.
Expressions with Large Number of Terms

In cases where there are a large number of terms Math2Speak has an option for which it stops speaking after a default number of terms (the default is 6), at which point the user can choose which term to speak next. The default length can be changed by setting the parameter speaklength and this option can be toggled on by setting the variable abbreviate-speak to t. For example, if abbreviate-speak is true, speaklength is set to three and we are trying to say,

[image: image15.wmf](

)

x

x

x

ac

x

x

f

*

+

+

+

+

+

+

+

5

4

25

5

)

(

2

2

Math2Speak would say, “f of x end f, plus five, plus square root twenty-five plus x squared end root, plus three more terms.” The entire expression is then saved. We can then speak the next term, speak the next n terms, or speak a specific term. The following sequence of commands will then yield the corresponding results.

	Command
	Result

	(speak-next-nterms 2)
	“term four is product four times a times c end product.

 term five is x squared.”

	(speak-next-term)
	“term six product, sum x plus five end sum, times x end product.”

	(speak-term 1)
	“term one is f of x end f.”

	(speak-next-term)
	“term two is five.”

	(speak-term 5)
	“term five is x squared.”

	(speak-next-term)
	“term six is product, sum x plus five end sum, times x end product.”

Note that calling (speak-next-term) or (speak-next-nterms x) after calling (speak-term n) will speak the next terms after the term just spoken. In this way long expressions are broken up into more manageable chunks.

Our current design does not deal with deeper expressions. Long expressions can be broken up into individual terms, but only at the top level expression. If one of these terms also happens to be a long expression, Math2Speak does not break that term up into subterms.
 We hope to address this in the near future so that Math2Speak will be able to break up long expressions nested within expressions. The following paragraph elaborates.
If term3 of the previous example,
[image: image16.wmf]2

25

x

+

, were replaced by
[image: image17.wmf]5

3

25

2

-

-

-

+

+

+

+

+

+

z

y

x

e

d

c

b

a

x

there would be long expressions within a long expression. In other words, the subterms of terms can be long expressions as well. If this is the case, the term is not spoken. In its place “term n” is said where n is the term number. An analysis of the above example helps clear things up. In this example term3 is actually not directly a long expression because it can be seen as two subterms where subterm1 is the base of an exponent and subterm2 is the power that base is raised to.
term3:subterm1 =
[image: image18.wmf]5

3

25

2

-

-

-

+

+

+

+

+

+

z

y

x

e

d

c

b

a

x

term3:subterm1 =
[image: image19.wmf]2

1

However, term3:subterm1 is a long expression because it is longer than speaklength (for this example, 3) terms.
term3:subterm1:subterm1 =
[image: image20.wmf]25

term3:subterm2:subterm2 =
[image: image21.wmf]2

x

term3:subterm3:subterm3 =
[image: image22.wmf]a

term3:subterm4:subterm4 =
[image: image23.wmf]5

3

-

-

-

+

+

+

z

y

x

e

d

c

b

Similarly, term3:subterm4:subterm4 is not directly a long expression because it is one subterm divided by another. However, both of its subterms are long expressions.

term3:subterm4:subterm4:subterm1 =
[image: image24.wmf]e

d

c

b

+

+

+

3

term4:subterm4:subterm4:subterm2 =
[image: image25.wmf]5

-

-

-

z

y

x

As the above example shows, if we want to abbreviate every nested long expression, things can get complicated rather quickly. Math2Speak therefore has the option of abbreviating only to a certain degree. In other words, the user can decide up to which level of subterms for which abbreviation will occur. This is set by the abbreviate-level variable. When abbreviate-level is set to 1, no subterms are abbreviated. They are just spoken straight through. When abbreviate-level is set to 2, one level of subterms can be abbreviated and so on. To speak the subterms, the previously described (speakterm) function is used. Instead of taking in a term number it can also take in a list of numbers. The list consists of the term and the subterms one wishes to speak. For example, to speak term3:subterm1:subterm1, (speak-subterm (3 1 1)) would be called, which would return “term3, subterm1, subterm1, is twenty five”. To further clarify, if abbreviate-level is set to 2 and (speak-subterm (3 1)) is called, “term3, subterm1, is sum twenty-five plus x squared plus a plus one more term” will be returned. Since abbreviate level is 2, the first level of subterms is abbreviated. If (speak-subterm (3 1 4)) is called, even though term3:subterm1:subterm4 contains long subterms, the whole thing will be spoken without abbreviations because abbreviate-level is only 2. If it were set to 4, term3:subterm1:subterm4 would be spoken as “term3, subterm1, subterm4, subterm1 over term3, subterm1, subterm4, subterm2.”

Since speaking out term3, subterm1, subterm4, subterm1 will be long and cumbersome to speak, Math2Speak will instead say “term 3 sub 1, 4, 1.” REWRITE ALL THIS AS A RECURSIVE DESCRIPTION, PERHAPS.
Expressions that are deeply nested

In cases where there are terms that are nested past a threshold level (default of 4), Math2Speak will substitute “term n” for that term. (speakterm n) can be used afterwards to speak the term by itself. The default can be changed by setting the parameter speaklevel. An example is shown below.

Ex:
[image: image26.wmf]2

2

)

(

)

(

2

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

b

a

f

x

f

Spoken as: “f of x end f plus term 2 plus 2.”
In this example, the lisp expression for term 2 is (f (^ (/ (^ (+ a b) 2) 2) ½)) which means it is nested with 5 levels. Like with long expressions, the entire expression is saved. (speakterm 2) will result in “term two is f of, square root of, fraction with numerator, sum a plus b end sum, squared, divided by denominator 2, end root, end f.” (speak-next-term) and (speak-next-nterms n) will work just as they did before.

Speaklevel is different than abbreviate-level. Abbreviate-level determines at which level Math2Speak will stop replacing long expressions with “term n.” Speaklevel determines how deeply nested a term must be before it is replaced by “term n.”

Currently, this abbreviation will only take place at the top level expression. If there are deeply nested expressions within a term, those expressions will be spoken out completely instead of being replaced by a term number. In the future, speaking deeply nested terms within a deeply nested term will be done in the same way as speaking long expressions within a term. In fact, this must be the case since there can be deeply nested expressions within a long expression and there can be a long expression within a deeply nested one. The same system of subterms will be used to specify which subterm to speak.
This is not as much of a problem as not being able to abbreviate nested long expressions since deeply nested expressions likely have deeply nested terms. For example, if we had an expression that was nested with 10 levels, it must also consist of at least one expression that is 9 levels deep, 8 levels deep, and so on. It may therefore be better to speak out the entire expression when (speakterm n) is called instead abbreviating all the deeply nested subterms in it. However, to be consistent with the speaking of long expressions, (speakterm (term, subterms)) will be used to speak ??
Functions

Basic format: “funcName of arg1 and arg2 and … end funcName.”

Lisp format: (funcName arg1 arg2 …)

Ex:
[image: image27.wmf])

,

,

(

z

y

x

f

Spoken as: “f of x and y and z end f.”

Lisp: (f x y z)

Calculus Operators

Math2Speak can handle summations, multiple integrals, multiple derivatives, and multiple partial derivatives. Some calculus operators can be spoken precisely because they inherently have an end marker. For example, in integrals, we do not have to put parentheses around the expression to be integrated since the dx serves as an “end parenthesis.” This means we do not need to say “start integral or end integral.” We are not so fortunate with Summation, but there is a convention for indicating limits of sums.
Limits

Basic format: “limit of expression as term1 goes to term2.”

Lisp format: (lim exp term1 term2)

Ex: limh→0
[image: image28.wmf]÷

ø

ö

ç

è

æ

-

+

h

x

f

h

x

f

)

(

)

(

.

Spoken as: “limit of fraction with numerator, difference, f of, sum x plus h end sum, end f, minus f of x end f, end difference, divided by denominator h as h goes to zero.”

Lisp: (lim (/ (- (f (+ x h)) (f x)) h) h 0)

Summations

Basic format: “sum of expression as term1 goes to term2.”

Lisp format: (sum exp term1 term2)

Ex:
[image: image29.wmf](

)

å

=

n

x

x

x

f

2

)

sin(

)

(

Spoken as: “summation of product, f of x end f, times, sine of x end sine, end product, from x equals two to n [end summation].”

Lisp: (sum (* (f x) (sin x)) (= x 2) n)

Integrals

Basic format: “integral of expression with respect to term1 from lo to hi and with respect to term2 from lo to hi, etc.”

Lisp format: (int ee (term1 low hi) (term2 lo hi) …) in Lisp

Ex:
[image: image30.wmf]÷

÷

ø

ö

ç

ç

è

æ

ò

ò

ò

=

=

=

=

=

=

y

z

x

z

y

y

x

x

dxdydz

z

y

x

f

)

,

,

(

5

4

10

0

Spoken as: “integral of, f of x and y and z end f, with respect to x from zero to ten and with respect to y from four to five and with respect to z from x to y.”

Lisp: (int (f x y z) (x 0 10) (y 4 5) (z x y)))

Derivatives

Basic format: “nth derivative of expression with respect to term1 num1 times and with respect to term 2 num2 times, etc.” Or

 “d to the nth by d term1 to the num1, d term2 to the num2, …, of expression.”

Lisp format: (deriv ee (term1 num1) (term2 num2) …) in Lisp.

Ex:
[image: image31.wmf](

)

z

y

x

f

dz

dy

dx

d

,

,

3

2

6

Spoken as: “sixth derivative of, f of x and y and z end f, with respect to x two times, with respect to y three times, and with respect to z.” Or

“d to the sixth power by d x squared, d y cubed, d z, of f of x and y and z end f.”

Lisp: (deriv (f x y z) (x 2) (y 3) (z 1))

Partial derivatives are spoken in exactly the same way as derivatives except “d” is replaced by “partial” and “derivative” is replaced by “partial derivative.”
As is the case for computer algebra systems that have noticed this problem, there is a need for a notation for partial derivatives for “derivative with respect to the nth argument” if we are to be able to express the chain rule. Given a particular notation, we should be able to read it.

Simplifying Speech
The method of speaking math described above is rigorous and precise, but for some expressions seems very unnatural. As a result, any expression involving multiple operators becomes difficult to understand, even though it is unambiguous. It is therefore important to make some simplifications.
Simplifying Multiplication

There are two simplifications we can make to multiplication. The first is to only use “start multiplication” and “end multiplication” for the base of an exponent. The second is to remove “times” if we are multiplying variables. These modifications would still keep the speech precise and unambiguous while also making it easier for a person to hear. Some examples are listed below:

	Math
	Lisp
	Speech

	4ac2b
	(* 4 a c 2 b)
	“four a c times two b”

	2*2 = 4
	(= (* 2 2) 4)
	“two times two equals four”

	abc2
	(* a b (^ c 2))
	“a b times c squared”

	(ab+c)d
	(* (+ (* a b) c) d)
	“sum a b plus c end sum, times d”

	ab(4c)2
	(* a b (^ (* 4 c) 2))
	“a b times product four c end product, squared”

Simplifying Addition/Subtraction

Not much can be done to simplify addition and subtraction. The markers “sum … end sum” are required if the sum is inside of some operator other than addition or subtraction. The markers are not needed if other operators are in the sum. For example, we do not need parentheses in a + b + c*d so it is spoken as “a plus b plus c d”. We do need the parentheses in (a + b)*c so it is spoken as “sum a plus b end sum, times c”
Simplifying Division

Not much can be done to simplify division either. We can leave out the marker “fraction with numerator … divided by denominator …” if both the numerator and denominator consist of one number or variable. For example,
[image: image32.wmf]d

c

b

a

+

+

would be spoken as “a, plus b over c, plus d.” The commas denote short pauses that remind people that this speech does not mean
[image: image33.wmf]d

c

b

a

+

+

.
Simplifying Functions

There are several ways to simplify functions. For now it simply speaks F(x) out as it appears on paper, which is “F of X, end F.” We can recognize functions so that F(x) is spoken as “F of x.” For functions with more than one argument, such as F(x, y, z), we can still keep the original way of saying it, “F of X, Y, and Z, end F.” Although this simplified way may sound like F(x y z), the structure of a function makes it clear that even with the simplified speech representation, the function is easy to understand.

Further work
Where are we heading with this: the goal, recall, is to provide a recipe so that people can speak math INTO the computer. Math2speak can serve in two ways:

1. Provide examples of spoken math,

2. Provide feedback on math that is in the computer, perhaps computed from symbolic operations.

Refinements of Math2speak may be based on context and conventions.

The program itself is available from the authors.

_1225568131.unknown

_1232869272.unknown

_1232869405.unknown

_1232869493.unknown

_1232869441.unknown

_1232869375.unknown

_1225572051.unknown

_1226121101.unknown

_1232869183.unknown

_1225572184.unknown

_1225652365.unknown

_1225572156.unknown

_1225571159.unknown

_1225571835.unknown

_1225571851.unknown

_1225571827.unknown

_1225571778.unknown

_1225568659.unknown

_1224575365.unknown

_1224581002.unknown

_1224581262.unknown

_1224924554.unknown

_1224926550.unknown

_1224924531.unknown

_1224581117.unknown

_1224578928.unknown

_1224579804.unknown

_1224580124.unknown

_1224575458.unknown

_1224575290.unknown

_1224575309.unknown

_1224575195.unknown

_1223628856.unknown

