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Abstract

Algorithm differentiation is a technique used to take a program F computing a numerical function of
one argument F (x) and transform it into another program G that returns a pair, 〈F ′(x), F (x)〉 where
by F ′(x) we mean the derivative of F with respect to its argument, evaluated at x. That is, we have
a program AD that takes as input a program, and returns another: G := AD(F ). This task has been
specialized so that F may be expressed in a subset of any of several prominent programming languages.
The task is especially simple in Lisp. We show why this is the case, how the results can be extended easily,
and how, in spite of the brevity of the “ADIL” program, we can provide features which are unsupported
in other AD programs. In particular, recursive functions are easily accommodated.

1 Introduction to Automatic Algorithm Differentiation (AD)

For a complete introduction to the topic of Automatic Differentiation as used in this paper we recommend
a visit to the website www.autodiff.org. Here you can find a collection of links to the standard literature,
including AD programs and applications. There are also links to recent conference publications and arti-
cles. There are two variation of AD techniques, forward and “reverse” differentiation. Although we have
programmed both, this paper deals only with the forward version.

1.1 A brief tangent

AD is not the same as “symbolic differentiation of algebraic expressions,” a well-known task for symbolic
languages such as Lisp. In order to distinguish the situation, we note that the compact representation for
a symbolic differentiation program is cited as one driving application for the original Lisp language design.
In a conventional setup for Lisp, x sinx log x + 3 would be written as (+ (* x (sin x) (log x)) 3)1. A
brief program2 can differentiate this with respect to x to get

(+ (* (* x (sin x) (log x))
(+ (* 1 (expt x -1)) (* (* (cos x) 1) (expt (sin x) -1))

(* (* (expt x -1) 1) (expt (log x) -1))))
0)

an answer which is correct but unsimplified and clumsy in appearance, even if it were converted to more
conventional infix.

A proper “computer algebra system” or CAS would contain a (much longer) simplification program to
take the symbolic result and reduce it to simpler terms, removing multiplications by 1 and additions with 0,
perhaps finding common factors, etc.

1If you are uncomfortable with this notation, many parsers from more “conventional” infix notation are available. The
interface may be as simple as using a normal Lisp program text, but enclosing such infix expressions in markers, for example
[x*sin(x)*log(x)+3].

2see Appendix 1
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1.2 An analogy in CAS

AD does not simulate the CAS feature just described. It does not offer explicit symbolic differentiation.
AD technology is far more analogous to another CAS feature: arithmetic with truncated Taylor series. AD
converts a conventional program treating each conventional scalar value u to a program operating on a
pair such as p = 〈u, v〉 representing that scalar function u and its derivative v with respect to an implicit
parameter, say t. In particular, a constant has v = 0, and the parameter t has derivative v = 1. As a
series, the pair p represents s = u + v t + · · ·. The equivalence to computation with Taylor series provides
guidance as to how to compute with these pairs. (If there is any question, a CAS Taylor series program
can generally provide an appropriate result.) The Taylor expansion of cos s is cosu − sinu v t + · · · and so
cos p = 〈cosu, − v × sinu〉.

The extension of this idea to higher derivatives is straightforward although tedious. Here is how it would
work: we use triples, e.g. where the second derivative is called w: If p = 〈u, v, w〉, the operation of cos
yields:

cos p = cosu− sinu v t−
(
cosu v2 + 2 sinuw

)
t2

2
+ · · ·

The result triple consists of the coefficients of different powers of t. A program computing those coefficients
naturally will need to compute sinu and cosu only once.

2 AD in Lisp

There are two fundamentally different approaches to building a forward AD system, and a third that looks
plausible, at least briefly, for Lisp.

1. We can take a program P in (more-or-less) unchanged form and by overloading each of its operations,
make P executable in another domain in which scalars are replaced by pairs.

2. We can transform the source code of P into another program in which computations are “doubled” in
a particular way to compute the original function as well as the requested derivative.

3. A third technique, usually ignored, could be used in Lisp: write a new version of Lisp’s eval to do AD.
This is not a good idea, even in Lisp, because most Lisp programs don’t use eval: they are compiled
into assembler. The technique of overloading operators is conceptually similar to patching the eval
program anyway, and so we discard this option.

We provide code for both approaches. Because it inherits all the Lisp facilities not specifically shadowed
by AD variations, the overloading method has the advantage of covering just about everything one can do
in Lisp. The code is structured in a way that is fairly easy to understand.

Overloading is unfortunately not as speedy as the second method, which tends to run at a (small) multiple
of the original code’s speed. But source code transformation is ticklish, requiring attention to almost every
aspect of the language. Thus our version dcomp does not cover as much of Lisp as overloading. The two
first techniques can, fortunately, be used together. That is, a large program can be run mostly unchanged.
If there is a bottleneck, some sub-part can be compiled to remove some of the run-time overhead.

Regardless of the programming technique, one part of the task is to represent the pair as a some kind of
compound object, perhaps vector, a defstruct, a Common Lisp Object System (CLOS) object, or just a
list. Each would be easily distinguished from a conventional scalar, should that be necessary, and each has
space for a value and one (or possibly more) derivatives. For source-code transformation it may be adequate
to just make near-duplicate names, e.g. if the original program has variable v, generate v diff x (etc.)

2.1 Overloading

Here we overload the arithmetic operators and let the rest of the language be inherited from Lisp’s standard
implementation. In ANSI standard Common Lisp, the accepted route to this is to establish a package to
“shadow” the overloaded operations. We named the package ga for Generic Arithmetic, and can specify all
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the operations that are distinct as implemented for AD. All else is the same as in the standard common-lisp
package. Here’s the beginning of that package declaration. It could be extended easily. (For example, to
add the hyperbolic tangent requires only one line).

(defpackage :ga ;generic arithmetic
(:shadow "+" "-" "/" "*" "expt" ;binary arith

"=" "/=" ">" "<" "<=" ">=" ;binary comparisons
"sin" "cos" "tan" ;... more trig
"atan" "asin" "acos" ;... more inverse trig
"sinh" "cosh" "atanh" ;... more hyperbolic
"expt" "log" "exp" "sqrt" ;... more exponential, powers
"1-" "1+" "abs" ;... odds and ends
)

(:use :common-lisp))

The implementation of a consistent shadowing of Lisp arithmetic + and *, as well as comparisons is
complicated by the fact that these operators can take any number of operands (including in some cases
zero), in the “obvious” extension of the concept. Thus we wrote generic programs like two-arg-* for
multiplying each possible pair of types, and then melded them together with an n-ary programs like *.
Since the programs for each operator are very nearly the same, we wrote macro programs (program-writing
programs) that helped us along. Thus to write the bulk of the “*” sub-programs we wrote (defarithmetic
*). The comparison and single-argument programs are easier. We include each of them by, for example
(defcomparison /=) for the not-equal, and (r sin (cos x)) to tell ADIL about sin and its derivative.

2.2 Using ADIL

Consider the function f(x) = x× sinx× log x+ 3 written in Lisp as
(defun f(x)(+ (* x (sin x) (log x)) 3)).
We can evaluate f at a point x where x is 1.23, and the derivative of x wrt x, namely 1.0, is the second part
of the pair. (f (df 1.23 1.0)) which returns

<3.2399835288524628d0, 1.2227035>

In this system we define df as a constructor for a pair of numbers. This pair is displayed in angle-brackets.
p = 〈1.23, 1.0〉. Note that the program f has not changed at all; applying the function to a different type of
argument, and running the program within the :ga package is all that is needed.

A more interesting program is this one.

(defun s(x) (if (< (abs x) 1.0d-5) x
(let ((z (s (* -1/3 x))))
(-(* 4 (expt z 3))
(* 3 z)))))

While it is not obvious, this computes an approximation to sinx by applying an identity recursively. That
is, sinx is a polynomial 4z3 − 3z in z = sin(−x/3). For small enough x, sinx = x. Let us try it out by
typing (s (df 1.23 1)). We get

<0.942489, 0.33423734>

This not only provides a value for sin(1.23) but also computes 0.33423734, the second part of the pair, which
happens to be cos(1.23). ADIL, starting with s, ran a program that computed sin() and also ran a program
that consequently computed cos() because it ran the derivative of the program that computes sin.

The classic recursive program in Lisp is factorial:
(defun fact(x) (if (= x 1) 1 (* x (fact (1- x)))))
which we modify to
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(defun fact(x) (if (= x 1) (df 1 0.422784335098d0) (* x (fact (1- x)))))
whose peculiar case is now the value one, with a peculiar derivative. We do this so as to make it correspond
to the derivative of the Gamma function3. With this form we can provide not only the factorial but its
“derivative” (at least at integer points).

In these examples we have not modified Lisp syntax at all. Anything else from Lisp is imported without
attention or comment. Thus to compute and print ten sinx values, we can use the iterator dotimes as in
(dotimes (i 10) (print (s (df i 1)))).

2.3 Newton Iteration, or, Why is AD useful?

The point is that if we are given a complicated function F : R → R arranged as an expression, and
all the sub-functions “cooperate” properly, we can feed in a pair 〈c, 1〉, representing the expression x and
its derivative with respect to x, namely 1, each evaluated at x = c. We get out pairs 〈f, f ′〉 = F (〈c, 1〉)
where the latter is the pair f = F (c), and f ′ = Dx(F (x))|x=c. and this may be exactly what we want in
an application. These are discussed in papers available via www.autodiff.org. Here we take one of the
simplest but non-trival examples, but perhaps the easiest to motivate, the quadratically convergent Newton
iteration.

For example, to converge to a root in a Newton iteration for f(z) = 0 given an initial guess c0 or
t0 = 〈c0, 0〉 , we compute F (ti) = 〈f(ti), f ′(ti)〉. Then the next iteration ti+1 = ti − f(ti)/f ′(ti). If this is
not sufficiently accurate we consider repeating with 〈f, f ′〉 = F (ti+1), etc.

In this Newton iteration program, which by its nature must know that it is getting a value and derivative,
we have used three functions particular to ADIL, namely df-p, a predicate which will return true if applied
to a df object, as well as the two selection functions, df-f and df-d for extracting the value and derivative
respectively from a df object.

The program is shorter than the explanation.

;; Newton iteration: (ni fun guess)
;; usage: fun is a function of one argument
;; guess is an estimate of solution of fun(x)=0
;; output: a new guess. (Not a df structure, just a number)

(defun ni (f z) ;one Newton step
(let* ((pt (if (df-p z) z (df z 1))) ; make sure init point is a df

(v (funcall f pt))) ;compute f, f’ at pt
(df-f (- pt (/ (df-f v)(df-d v)))))) ; return the new improved value

As a simple example, consider f(x) = sin(1 + 2x) or
(defun f(x)(sin(+ 1 (* 2 x)))). then

(setf h 2.0d0);; just a guess
(setf h (ni ’f h)) ;; one step
(setf h (ni ’f h)) ;; another step
;; h converges to 1.0707963267948966d0

A more useful version of Newton iteration might return the value of f(h), too. Then the residual and
the derivative can be taken into account in testing whether the Newton iteration has converged sufficiently.
That program would look like:

(defun ni2 (f z)
(let* ((pt (if (df-p z) z (df z 1)))

(v (funcall f pt))) ;compute f, f’ at pt
(values
(df-f (- pt (/ (df-f v)(df-d v)))) ;the next guess
v))) ; the residual and derivative

3a continuous version of factorial well-known among the “special functions”.
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;; A harder test for Newton iteration is this function,

(defun test(x)(+ (* 1/3 x) 1 (sin x))) ;; f(x) = x/3+1+sin x.
;; which is good if you start close enough to -0.8 or -3.2 or -5.4
;; but ni fails for most other initial guesses.

Now that we have a program for only one step, we can show a program that can use it to find the zero. This
is a ticklish proposition because sometimes this iteration does not converge. We have to use some stopping
heuristic. We could stop when two successive iterations are close in terms of relative or absolute error, or
use some other measure like a limit on the number of iterations.

A particularly simple iteration driver program uses ni2 which returns the value of the residual, and so
we test this residual, or quit after some count is exceeded.

(defun run-newt2(f guess &key (abstol 1.0d-8) (count 18)) ;; Solve f=0
;; It looks only at the residual.
(dotimes (i count ;; do at most count times. failure prints msg

(error "~%Newton quits after ~s iterations: ~s" count guess))
(multiple-value-bind

(newguess v)
(ni2 f guess)

(if (< (abs (df-f v)) abstol)
(return newguess)
(setf guess newguess)))))

2.4 What about speed?

The generic arithmetic (GA) system produces code that is slower than ordinary Lisp code, especially if that
ordinary Lisp is “optimized”4.

With appropriate instructions to the compiler, Common Lisp arithmetic can be compiled to “non-generic”
straight-line floating-point code, comparable to that of other high-level languages.

How much of a speed difference is there? On a variety of benchmarks involving arithmetic computations,
much of the time is spent figuring how to dispatch-to-the-right-method, using the generic arithmetic for
ADIL. This seems to be about a factor of 10 over “normal Lisp” and perhaps a factor of 50 over “optimized”
Lisp (constrained to double-floats.) On tests where most of the work is done in subroutines such as sin or
log, the difference is much less: the log routine takes the same time whether it is called from the ga package
or from the user package. On tests where most of the operations are other than arithmetic such as looping
over indexes, the ga programs run at full speed because they are in fact identical.

2.5 Source code transformation

As mentioned earlier, there is another part of ADIL. We wrote a program called dcomp that can compile
programs, in-line, in a restricted language subset of Lisp. The subset is essentially that of functional-style
arithmetic programs. In this situation, benchmarking a simple example suggests that the comparison between
the ordinary Lisp for computing a function f and the ADIL Lisp for computing a function f and also its
derivative is about a factor of two, which is about the best you would expect if you assume that evaluating
the derivative is roughly similar in cost to the function itself.

This experiment computes 3 + z ∗ (4 + z) where z = sinx. In Lisp this looks like
(defun kk(x) (setf z (sin x))(+ 3.0d0 (* z (+ 4.0d0 z)))).
A nicer version binds z locally, as shown below. The dcomp version is shown with the defdiff defining form.
All code is run through the Lisp compiler before timing.

4Note that without type declarations and compilation, ordinary Lisp already has its own burden of generic arithmetic.
Short and long (arbitrary length) integers, single or double floats, rationals, and complex numbers, as well as all plausible
combinations are handled by standard ANSI Common Lisp. Indeed, code in the ADIL system using overloading also works for
all these number types as much as in Common Lisp.
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;; each timing is a run of 10000 in a compiled loop

package
||||
user:(defun kk(x &aux z)(declare (double-float x z)(optimize (speed 3)(safety 0)))

(setf z (sin x))(+ 3.0d0 (* z (+ 4.0d0 z)))) ;;optimized version
user: (defdiff kz(x)(progn (setf z (sin x))(+ 3.0d0 (* z (+ 4.0d0 z)))))

user: (kk 1.2d0) --> 30 ms /no derivs!
user: (kz 1.2d0) --> 70 ms /with derivs!!

ga:(defun kk(x &aux z) (setf z (sin x))(+ 3.0d0 (* z (+ 4.0d0 z))))

ga: (k (df 1.2d0)) --> 40100 ms /with derivs
ga: (k ( 1.2d0 ) --> 1523 ms /no derivs!

The body of kz can be examined by tracing the internal program dc:

(lambda (g94)
"(progn (setf z (sin x)) (+ 3.0d0 (* z (+ 4.0d0 z)))) wrt x"
(declare (double-float g94))
(declare (optimize (speed 3) (debug 0) (safety 0)))
(let ((t102 0.0d0) (f101 0.0d0)

(t100 0.0d0) (f99 0.0d0)
(t98 0.0d0) (f97 0.0d0)
(z_DIF_x 0.0d0) (t96 0.0d0)
(f95 0.0d0))

(declare (double-float t102 f101 t100 f99 t98 f97 z_DIF_x t96 f95))
(setf f95 (sin g94))
(setf t96 (cos g94))
(setf z f95)
(setf z_DIF_x t96)
(setf t98 0.0d0 f97 3.0d0)
(setf t100 z_DIF_x f99 z)
(setf t102 0.0d0 f101 4.0d0)
(setf t102 (+ z_DIF_x t102))
(setf f101 (+ z f101))
(setf t100 (+ (* f101 t100) (* t102 f99)))
(setf f99 (* f101 f99))
(setf t98 (+ t100 t98))
(setf f97 (+ f99 f97))
(df f97 t98)))

What else can dcomp do? In addition to the usual arithmetic operations and built-in functions (sin, cos,
log, etc.) as declared in the generic arithmetic, dcomp can handle if, progn, setf. Functions defined with
defdiff take only scalar arguments, not df structures. They return only df structures. The derivative is
always with respect to the first formal argument. Thus (defdiff f(x y z)(cos (+ x y z))) computes
the derivative with respect to x only. Initially we wrote a version of dcomp which systematically allowed
recursion, but full support led to too much complexity and was taken out. A function like f above can
be used directly by the generic arithmetic system, and if suitable, will be substantially faster. The dcomp
file is surprisingly short, and uses the rarely-used but often maligned property of Lisp programs that Lisp
programs, prior to compiling can be treated as data. The dcomp file is about 266 lines of text, including
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comments.

3 Why use Lisp?

For fans of Lisp, there is no question that one motivation is to show how easy it is to implement in Lisp.
Lisp provides a natural representation for programs as data and a natural form for writing programs that
write programs, which is what we do in ADIL. The code is short, and is in ANSI standard Common Lisp.
Since it is not “naive” code written in just the obvious idioms of introductory Lisp, it illustrates, for those
with only a cursory familiarity, that Lisp is more than CAR and CDR. In fact we did not use those routines
at all. For persons only slightly familiar with Lisp, but familiar with AD, the use of Lisp shows how much
shorter some of the ideas of automatic differentiation can be expressed when presented in a Lisp context.

If you care not a whit about Lisp or implementation strategies, you may prefer to refer to the recently-
revised online documentation for ADIFOR 2.0 version D, some 99 pages, and read in detail how programs to
be differentiated must be distinguished from ordinary FORTRAN (77) programs. Using ADIFOR requires
declaring and marking program variables, adjusting numerous parameters, perhaps revising the FORTRAN
in order to obey various restrictions, and following detailed guidelines on the use of these programs.

Since the Lisp programs are relatively short, simple and entirely open to view and are entirely standard
ANSI Common Lisp, they should run in any ANSI-conforming implementation. The flexibility one gets is
apparent by looking at the code in which Lisp macro-definitions have made the addition of new derivative
information simple. For example, to insert a new rule for differentiation of tanhx one adds the text"tanh"
to the shadow list, and adds to the executable code in the file
(r tan (expt (cosh x) -2)).
By comparison, other AD systems are relatively rigid, and require some effort to port, extend or optimize:
the original designers must anticipate the spectrum of possible choices, perhaps freezing some choices, and
then describe all the variants in detail. The user must then read the details, and hope there are no bugs.
The user is unlikely to be able, in any case, to repair them. Some of the restrictions of the large systems
seem to be arbitrary–perhaps a small point, but it did not occur to us to have to exclude recursive functions.
Recursion is a feature lacking in ADIFOR.

Finally, we wish to point out that Lisp is perfectly adequate for expressing numeric computation; some
sophisticated compilers are available for generating efficient code.

3.1 Comments on the usefulness of AD

Shouldn’t AD (whether of Lisp or not) be widely used since it appears to be so useful? Our understanding is
that getting computational scientists to adopt the relatively unfamiliar technique of AD at all, rather than
using finite differences or programming a separate derivative algorithm, already presents a barrier. There are
simpler (but generally far less accurate and perhaps slower) ways of approximating derivatives of “programs”
with finite differences. There is also a complex-step evaluation strategy [5], which says essentially that for
an analytic function f and an appropriately chosen small value of h, Imag(f(x + ih))/h is approximately
f ′(x) 5. Choosing h may be ticklish.

Further complicating our particular “sales pitch” is the premise that the computation to be differentiated
is available as a Lisp program. This can be aided by using existing programs to translate into Lisp from
FORTRAN or C.

AD comes into the picture when computational scientists which to use a large existing program P as
a module in an optimization tool, or for sensitivity analysis. The optimization tool may require separate
modules to compute values for functions and derivatives, which in the absence of AD, might require under-
standing P and writing and debugging a new program for the derivative of PPRIME. AD promises to write
PPRIME correctly and with low or zero effort, through tools like ADIFOR, for FORTRAN, and ADOL-C
for C or C++.

The AD programs for FORTRAN, C, C++ generally work on “black box” programs in those languages,
but not entirely automatically. They may reduce the programming effort to take a program and produce a

5For our earlier example, if we can compute the imaginary part of sin(1.23 + 1.0e − 10) and divide by 1.0e-10, we get
0.3342376, which is close to cos(1.23).
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“derivative” program considerably, say reducing the time from a year to a week. A visit to the previously
mentioned http://www.autodiff.org website has links to some applications illustrating the level of hu-
man effort to build automation tools, document them for others to use, and then the continued effort and
partnerships needed to use them. While the goal has been to differentiate nearly any program written in
FORTRAN or C, it seems that some attention is required for success.

As for our own tools, we could, oddly enough, convert FORTRAN to Common Lisp using a program
f2cl and try to differentiate that, and we could easily print out equivalent FORTRAN or C (etc.).

However, to keep this paper brief, we start and end with the Lisp; the integration of tools in Lisp is quite
good, even if you are addicted to graphical interactive development environments. We ordinarily convert the
AD code into assembly language without ever leaving the Lisp system.

There may be additional issues arising in ADIL if it enjoys wider use, but we are confident that the
structure we have set out is consistent with solving the forward-differentiation AD task for Lisp. The major
barrier may be convincing a computational scientist to use a tool chain that converts FORTRAN to Lisp
and executes in a Lisp environment, much less write in Lisp (or a computer algebra system supporting Lisp)
in the first place.

4 A brief defense of Forward Differentiation for ADIL

Consider a space of “differentiable functions evaluated at a point c.” In this space we can represent a
“function f at a point c” by a pair 〈f(c), f ′(c)〉. That is, in this system every object is a pair: a value f(c)
and the derivative with respect to its argument Dxf(x), evaluated at c. (written as f ′(c)).

For a start, note that every number n is really a special case of its own Constant function, Cn(x) such
that Cn(x) = n for all x. C3(x) is thus 〈3, 0〉. The constant π is t1 = 〈3.14159265 · · · , 0.0〉, which represents
a function that is always π and has zero slope. The object t2 = 〈c, 1〉 represents the function f(x) = x
evaluated at c. At this point we must be clear that all our functions are functions of the same variable, and
that furthermore we will be fixing a point x = c of interest. It does not make sense to operate collectively
on 〈f(y), Dyf(y)〉 at y = a and 〈g(x), Dxg(x)〉 at x = b.

We can operate on these objects. For example, sin operating on t2 is the pair 〈sin(c), cos(c)〉. In general,
sin(〈a, a′〉) is 〈sin(a) , cos(a)× a′〉.

We can compute other operations unsurprisingly, as, for example the sum of two pairs: 〈a, a′〉+ 〈b, b′〉 =
〈a+ b , a′ + b′〉. Note, we have abused notation somewhat: The “+” on the left is adding in our pair-space,
the “+” on the right is adding real numbers. Such distinctions are important when you write programs!
Similarly, the product of two pairs in this space is 〈a, a′〉 × 〈b, b′〉 = 〈a × b, a × b′ + a′ × b〉. This can be
extended to many standard arithmetic operations in programming languages, at least the differentiable ones
[4]. AD implementors seek to find some useful analogy for other operations which do not have obvious
derivatives. Fallling in this category are most data structure manipulations, calls to external routines, loops,
creating arrays, etc.6 In ADIL, these mostly come free.

5 Is AD patented?

At least two US patents have been issued on AD: 6,223,341 and 6,397,380; also see application 20030023645
(2001). There are free on-line copies of these and all other patents.

6 Conclusion

AD programs can be easily written and executed in Lisp. This is not surprising. What is perhaps surprising
is that no one has written this paper earlier.

We have experimented with alternative approaches, both for forward and reverse differentiation, but this
approach seems to be a good combination of brevity, clarity, extensibility, generality, and efficiency.

6It is a mistake to declare variables to be (say) double-floats, when in the ADIL framework they will be df structures. We
are not aware of any other systematic problems.
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Appendix 1

First we display a seven line Lisp differentiation program (similar to many others written over the years)
that is distinguished by brevity. This one was posted on a Lisp newsgroup by Pisin Bootvong, some time
ago, and makes use of the Common Lisp object system (CLOS) and destructuring-bind nicely:

(defmethod d ((x symbol) var) (if (eql x var) 1 0))
(defmethod d ((x number) var) 0)
(defmethod d ((expr list) var)

(destructuring-bind (op e1 e2) expr
(case op
(+ ‘(+ ,(d e1 var) ,(d e2 var)))
(* ‘(+ (* ,(d e1 var) ,e2) (* ,e1 ,(d e2 var)))))))

Here’s a more elaborate, but still short Lisp program with more capabilities and greater extensibility [1].

(defun d(e v)(if(atom e)(if(eq e v)1 0)
(funcall(or(get(car e)’d)#’undef)e v)))

(defun undef(e v) ‘(d ,e ,v)) ;;anything unknown goes here

(defmacro r(op s)‘(setf(get ’,op ’d) ;;define a rule to diff operator op!
(compile() ’(lambda(e v)

(let((x(cadr e)))
(list ’* (subst x ’x ’,s) (d x v)))))))

(r cos (* -1 (sin x)))
(r sin (cos x))
(r exp (exp x))
(r log (expt x -1)) ;; etc,
(setf(get ’+ ’d) ;; rules for +, *, expt must handle n args, not just 1
#’(lambda(e v) ‘(+,@(mapcar #’(lambda(r)(d r v))(cdr e)))))

(setf(get ’* ’d)
#’(lambda(e v) ‘(*,e(+,@(mapcar #’(lambda(r) ‘(*,(d r v)(expt,r -1)))(cdr e))))))

(setf(get ’expt ’d)
#’(lambda(e v) ‘(*,e,(d ‘(*,(caddr e)(log,(cadr e)))v))))

Other programming languages, especially ones with a “functional” approach, can usually handle this task
nicely, but the major issue (and one not addressed here) is simplification of the result. Trying to write
a simplifier adds substantially to the programmer’s burden. The differentiation program in a computer
algebra system like Macsyma is much larger, not only because it handles a larger class of functions, and
trades code-size for speed, not generating such naive forms, and simplifying along the way.

Another program whose specifications seem superficially like the previous one does not build any list
structure. It assume that the result of interest is the value of the derivative at a point, not its symbolic
representation. Thus the d function takes another argument, the point p. It returns the derivative of the
expr with respect to the var at the point p. We are no longer returning lists. Note that we now have to
evaluate expressions involving the variable, for which we have defined the val method. Although such a
program can be written entirely using the skeleton of the previous few programs, we illustrate a different
approach using generic programming (a handle on object-oriented programs) supported in Common Lisp.

(defmethod d ((x symbol) var p) (if (eql x var) 1 0))
(defmethod d ((x number) var p) 0)
(defmethod d ((expr list) var p)

(destructuring-bind (op e1 e2) expr
(case op
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(+ (+ (d e1 var p) (d e2 var p)))
(* (+ (* (d e1 var p) (val e2 var p)) (* (val e1 var p) (d e2 var p)))))))

(defun val(expr var p)(funcall ‘(lambda (,var) ,expr) p))

This program’s case statement would have to be expanded for other two-argument functions, and would
also need to be altered for one-argument functions like sin and cos.

Appendix 2: Generic Arithmetic, AD

;; Automatic Differentiation code for Common Lisp
;; Richard Fateman, November, 2005
;; This is all provided in the context of a Generic Arithmetic Package.
;; Package based in part on code posted on comp.lang.functional newsgroup by
;; Ingvar Mattsson <ing...@cathouse.bofh.se> 09 Oct 2003

(defpackage :ga ;generic arithmetic
(:shadow "+" "-" "/" "*" "expt" ;binary arith

"=" "/=" ">" "<" "<=" ">=" ;binary comparisons
"sin" "cos" "tan" ;... more trig
"atan" "asin" "acos" ;... more inverse trig
"sinh" "cosh" "atanh" ;... more hyperbolic
"expt" "log" "exp" "sqrt" ;... more exponential, powers
"1-" "1+" "abs"
)

(:use :common-lisp))

(in-package :ga)

;; df structure for f,d: f is function value, and d derivative, default 0
(defstruct (df (:constructor df (f &optional (d 0)))) f d )

;; print df structures with < , >
(defmethod print-object ((a df) stream)(format stream "<~a, ~a>" (df-f a)(df-d a)))

;;function ARITHMETIC-IDENTITY: When fed an operator and a non-nil
;;argument, it returns a value for unary application. What does (+ a) mean?
;;A nil arg means there were NO operands. What does (+ ) mean.
;;It is used only by defarithmetic, which in turn helps
;; us to write out + * - / of arbitrary number of args.

(defmacro arithmetic-identity (op arg)
‘(case ,op
(+ (or ,arg 0))
(- (if ,arg (two-arg-* -1 ,arg) 0))
(* (or ,arg 1))
(/ (or ,arg (error "/ given no arguments")))
(expt (or ,arg (error "expt given no arguments")))
(otherwise nil))) ;binary comparisons?

(defun tocl(n) ; get corresponding name in cl-user package
(find-symbol (symbol-name n) :cl-user))
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(defmacro defarithmetic (op)
(let ((two-arg

(intern (concatenate ’string "two-arg-" (symbol-name op))
:ga ))

(cl-op (tocl op)))
‘(progn
(defun ,op (&rest args)

(cond ((null args) (arithmetic-identity ’,op nil))
((null (cdr args))(arithmetic-identity ’,op (car args)))
(t (reduce (function ,two-arg)

(cdr args)
:initial-value (car args)))))

(defgeneric ,two-arg (arg1 arg2))
(defmethod ,two-arg ((arg1 number) (arg2 number))
(,cl-op arg1 arg2))

(compile ’,two-arg)
(compile ’,op)
’,op)))

(defarithmetic +) ;; defines some of + programs. See below for more
(defarithmetic -)
(defarithmetic *)
(defarithmetic /)
(defarithmetic expt)

;; defcomparison helps us generate numeric comparisons: 2 args
;; and n-arg. CL requires they be monotonic.
;; That is in Lisp, (> 3 2 1) is true.

(defun monotone (op a rest)(or (null rest)
(and (funcall op a (car rest))

(monotone op (car rest)(cdr rest)))))

(defmacro defcomparison (op)
(let ((two-arg (intern (concatenate ’string "two-arg-"

(symbol-name op)) :ga ))
(cl-op (tocl op)))

‘(progn
(defun ,op (&rest args)
(cond ((null args) (error "~s wanted at least 1 arg" ’,op))

((null (cdr args)) t) ;; one arg e.g. (> x) is true
(t (monotone (function ,two-arg)

(car args)
(cdr args)))))

(defgeneric ,two-arg (arg1 arg2))
(defmethod ,two-arg ((arg1 number) (arg2 number)) (,cl-op arg1 arg2))
(defmethod ,two-arg ((arg1 df) (arg2 df)) (,cl-op (df-f arg1)(df-f arg2)))
(defmethod ,two-arg ((arg1 number) (arg2 df))(,cl-op arg1(df-f arg2)))
(defmethod ,two-arg ((arg1 df) (arg2 number))(,cl-op (df-f arg1) arg2 ))
(compile ’,two-arg)
(compile ’,op)
’,op)))
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(defcomparison >) ;;provides ALL the comparison methods
(defcomparison =)
(defcomparison /=)
(defcomparison <)
(defcomparison <=)
(defcomparison >=) ;; that’s all

;; extra + methods specific to df
(defmethod ga::two-arg-+ ((a df) (b df))

(df (cl:+ (df-f a)(df-f b))
(cl:+ (df-d a)(df-d b))))

(defmethod ga::two-arg-+ ((b df)(a number))
(df (cl:+ a (df-f b)) (df-d b)))

(defmethod ga::two-arg-+ ((a number)(b df))
(df (cl:+ a (df-f b)) (df-d b)))

;;extra - methods
(defmethod ga::two-arg-- ((a df) (b df))

(df (cl:- (df-f a)(df-f b))
(cl:- (df-d a)(df-d b))))

(defmethod ga::two-arg-- ((b df)(a number))
(df (cl:- (df-f b) a) (df-d b)))

(defmethod ga::two-arg-- ((a number)(b df))
(df (cl:- a (df-f b)) (df-d (cl:- b))))

;;extra * methods
(defmethod ga::two-arg-* ((a df) (b df))
(df (cl:* (df-f a)(df-f b))

(cl:+ (cl:* (df-d a) (df-f b)) (cl:* (df-d b) (df-f a)))))
(defmethod ga::two-arg-*

((b df)(a number)) (df (cl:* a (df-f b)) (cl:* a (df-d b))))
(defmethod ga::two-arg-*

((a number) (b df)) (df (cl:* a (df-f b)) (cl:* a (df-d b))))

;; extra divide methods
(defmethod ga::two-arg-/ ((u df) (v df))
(df (cl:/ (df-f u)(df-f v))

(cl:/ (cl:+ (cl:* -1 (df-f u)(df-d v))
(cl:* (df-f v)(df-d u)))

(cl:* (df-f v)(df-f v)))))
(defmethod ga::two-arg-/ ((u number) (v df))
(df (cl:/ u (df-f v))

(cl:/ (cl:* -1 (df-f u)(df-d v))
(cl:* (df-f v)(df-f v)))))

(defmethod ga::two-arg-/ ((u df) (v number))
(df (cl:/ (df-f u) v)

(cl:/ (df-d u) v)))

;; extra expt methods
(defmethod ga::two-arg-expt ((u df) (v number))
(df (cl:expt (df-f u) v)

(cl:* v (cl:expt (df-f u) (cl:1- v)) (df-d u))))
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(defmethod ga::two-arg-expt ((u df) (v df))
(let* ((z (cl:expt (df-f u) (df-f v))) ;;z=u^v

(w ;; u(x)^v(x)*(dv*log(u(x))+du*v(x)/u(x))
;; = z*(dv*log(u(x))+du*v(x)/u(x))

(cl:* z (cl:+
(cl:* (cl:log (df-f u)) ;log(u)

(df-d v)) ;dv
(cl:/ (cl:* (df-f v)(df-d u)) ;v*du/ u

(df-f u))))))
(df z w)))

(defmethod ga::two-arg-expt ((u number) (v df))
(let* ((z (cl:expt u (df-f v))) ;;z=u^v

(w ;; z*(dv*LOG(u(x))
(cl:* z (cl:* (cl:log u) ;log(u)

(df-d v)))))
(df z w)))

;; A rule to define rules, a new method for df, the old method for numbers
(defmacro r (op s)
‘(progn
(defmethod ,op ((a df))

(df (,(tocl op) (df-f a))
(,(tocl ’*) (df-d a) ,(subst ’(df-f a) ’x s))))

(defmethod ,op ((a number)) (,(tocl op) a))))

;; Add rules for every built-in numeric program.
;; Must insert the name in the shadow list too.
;; This is just a sampler.
(r sin (cos x)) ;; provides EVERYTHING ADIL needs about sin
(r cos (* -1 (sin x)))
(r asin (expt (+ 1 (* -1 (expt x 2))) -1/2))
(r acos (* -1 (expt (+ 1 (* -1 (expt x 2))) -1/2)))
(r atan (expt (+ 1 (expt x 2)) -1))
(r sinh (cosh x))
(r cosh (sinh x))
(r atanh (expt (1+ (* -1 (expt x 2))) -1))
(r log (expt x -1))
(r exp (exp x))
(r sqrt (* 1/2 (expt x -1/2)))
(r 1- 1)
(r 1+ 1)
(r abs x);; hm does this matter?

(defun re-intern(s p) ;; move expression to :ga package
(cond ((or (null s)(numberp s)) s)

((symbolp s)(intern (symbol-name s) p))
(t(cl-user::cons (re-intern (car s) p)

(re-intern (cdr s) p)))))

(defun cl-user::deval(r x p &optional (dx 1))
(ga::deval (ga::re-intern r :ga)

(ga::re-intern x :ga) p dx))
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;; factorial with "right" derivative at x=1 to match gamma function

(defun fact(x) (if (= x 1) (df 1 0.422784335098d0) (* x (fact (1- x)))))

;; an integer (arbitrary! ) factorial
(defun ifact(x) (if (= x 1) x (* x (ifact (1- x)))))

;; compare fact, ifact to Stirling’s approximation to factorial

(defun stir(n) (* (expt n n) (exp (- n))
(sqrt (*(+ (* 2 n) 1/3) 3.141592653589793d0))))

(defun ex(x)(ex1 x 1 15))

(defun ex1(x i lim) ;; generate Taylor summation for exp()
(if (= i lim) 0 (+ 1.0d0 (* x (ex1 x (+ i 1) lim)(expt i -1)))))

’(defun ex1(x i lim) ;; generate Taylor summation exactly for exp()
(if (= i lim) 0 (+ 1 (* x (ex1 x (+ i 1) lim)(expt i -1)))))

;; what you say depends on which package is current in your
;; top-level read-eval-print loop
;; in :user (setf one (ga::df 1 1))
;; in :user (deval ’(dotimes (i 10)(print (fact (+ i one)))) ’x ’irrelevant)

;; in :ga (setf one (df 1 1))
;; in :ga (dotimes (i 10)(print (fact (+ i one))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

#|Some timing results suggest that we lose about a factor of 10 in
speed just using generic arithmetic, even if we are using (say)
floating point numbers, if we are doing mostly calls and returns, but
only trivial arithmetic. Under these conditions, if we actually use df
numbers, it is perhaps a factor of two further.

The big slowdown here is in generic over the built-in (but still generic)
Lisp arithmetic that allows floats, doubles, rationals, bignums.

If we compile with declarations for fixnum types among the lisp built-ins,
we improved by another 30 percent.

(time (dotimes (i 10)(slowmul 1000000 2 0))) ;compiled 19.38s in :ga
(time (dotimes (i 10)(slowmul 1000000 2 (df 0)))) ; 24.45s in :ga
(time (dotimes (i 10)(slowmul 1000000 2 0))) ;compiled .37s in :user
(time (dotimes (i 10)(slowmulx 10000.0d0 2.0d0 0.0d0))); .38 in :user declared doubles
(time (dotimes (i 10)(slowmulx 1000000 2 0))) ; .29 in :user declared fixnums

(defun slowmul(x y ans)(if (= x 0) ans (slowmul (1- x) y (+ y ans))))

(defun slowmulx(x y ans)
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(declare (fixnum x y ans) ;; or (double-float x y ans)
(optimize (speed 3)(safety 0)(debug 0)))
(if (= x 0) ans (slowmulx (1- x) y (+ y ans))))

|#
;; this is an interesting function that numerically computes (sin x)

(defun s(x) (if (< (abs x) 1.0d-5) x
(let ((z (s (* -1/3 x))))
(-(* 4 (expt z 3))
(* 3 z)))))

#| (s (df 1.23d0 1.0)) computes both sin and cos of 1.23.

(time (dotimes (i 100) (s (df 100000.0d0 1))) ) :ga 40ms
(time (dotimes (i 100) (s 100000.0d0 ))) :ga 20 ms
(time (dotimes (i 100) (s 100000.0d0 ))) :user 10ms av over more runs

;; we can compile this to run faster..

(defun ss(x) (declare (double-float x)
(optimize (speed 3)(safety 0) (debug 0)))

(if (< (abs x) 1.0d-5) x (let ((z (ss (* #.(/ -1 3.0d0) x))))
(-(* 4.0d0 (expt z 3))
(* 3.0d0 z)))))

(time (dotimes (i 100) (ss 100000.0d0 ))) :user 8ms av over more runs
|#

;; newton iteration (ni fun guess)
;; usage: fun is a function of one arg.
;; guess is an estimate of solution of fun(x)=0
;; output: a new guess. (Not a df structure, just a number

(defun ni (f z) ;one newton step
(let* ((pt (if (df-p z) z (df z 1))) ; make sure init point is a df

(v (funcall f pt))) ;compute f, f’
(df-f (- pt (/ (df-f v)(df-d v))))))

(defun ni2 (f z) ;one newton step, give more info
(let* ((pt (if (df-p z) z (df z 1)))

(v (funcall f pt))) ;compute f, f’ at pt
(format t "~%v = ~s" v)

(values
(df-f (- pt (/ (df-f v)(df-d v)))) ;the next guess
v)))

(defun run-newt1(f guess &optional (count 18)) ;; Solve f=0
;; Look only at the guesses.
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;; though if the derivative goes to 0, we are stuck
;; in the newton step.
(let ((guesses (list guess))

(reltol #.(* 100 double-float-epsilon))
(abstol #.(* 100 least-positive-double-float)))

(dotimes (i 6)(push (ni f (car guesses))
guesses)) ;; make 6 iterations.

(incf count -6)
(cond ((< (abs (car guesses)) abstol)

(car guesses))
((< (abs(/ (-(car guesses)(cadr guesses))(car guesses))) reltol)
(car guesses))

((<= count 0)
(format t "~%newt1 failed to converge; guess =~s" (car guesses))
(car guesses))

(t (run-newt1 f (car guesses) count)))))

(defun run-newt2(f guess &key (abstol 1.0d-8) (count 18)) ;; Solve f=0
;; Looks only at the residual.
(dotimes (i count

(format t "~%Newton iteration not convergent after ~s iterations: ~s" count guess))
(multiple-value-bind

(newguess v)
(ni2 f guess)

(if (< (abs (df-f v)) abstol) (return newguess)
(setf guess newguess)))))

;;try (run-newt2 ’sin 3.0d0)

Appendix 3 Dcomp

;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*-
;; dcomp, use instead of /or with/ generic3.lisp for ADIL, automatic differentiation
;; Richard Fateman 11/2005
;; structure for f,d: f is function value, and d derivative, default 0

(defstruct (df (:constructor df (f &optional (d 0)))) f d )
(defmethod print-object ((a df) stream)(format stream "<~a, ~a>" (df-f a)(df-d a)))

(defvar *difprog* nil);; the text of the program
(defvar *bindings* nil) ;; bindings used for program

(defun dcomp (f x p)
;; the main program
(let ((*difprog* nil)

(*bindings* nil))
(multiple-value-bind

(val dif)
(dcomp1 f x p)
(emit ‘(values ,val ,dif))
‘(let ,*bindings*

,(format nil "~s wrt ~s" f x)
,@(nreverse *difprog*)))))
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;; Assist in compilation of a function f and its derivative at a point x=p
;; dcomp1 changes *bindings* and *difprog* as it munches on the expression f.

(defun dcomp1 (f x p)
(declare (special *v*))
(cond((atom f)

(cond ((eq f x) (values p 1.0d0))
((numberp f)(values f 0.0d0))
(t (let ((r (make-dif-name f x)))

(push r *bindings*)
(emit ‘(setf ,r 0.0d0)); unnecessary? already bound to 0.0d0
(push (cons f r) *lvkd*)
(values f r)))))

(t (let* ((op (first f))
(program (get op ’dopcomp)));otherwise, look up the operator’s d/dx

(if program
(funcall program (cdr f) x p)

(error "~% dcomp cannot do ~s" f);; for now
)))))

(defun gentempb(r)
(push (gentemp r) *bindings*) (car *bindings*))

(defun emit(item)(unless (and (eq (car item) ’setf)
(eq (cadr item)(caddr item)))

(push item *difprog*)))

;; simple unary f(x) programs.
;;We define them all with the same template.

(defmacro dr(op s)
(setf(get op ’dopcomp) ;;define a rule for returning v, d for dcomp
(dr2 op (treefloat s))))

(defun dr2 (op s) ;; a rule to make rules for dcomp
‘(lambda(l x p)

(cond ((cdr l)
(error "~&too many arguments to ~s: ~s" ’,op l))

(t (let ((v (gentempb ’f))
(d (gentempb ’t)))

(multiple-value-bind
(theval thedif)
(dcomp1 (car l) x p)

(emit (list ’setf v (list ’,op theval)))
(emit (list ’setf d (*chk thedif (subst theval ’x ’,s)))))

(values v d))))))

(defun treefloat(x) ;; convert all numbers to double-floats
(cond ((null x) nil)

((numberp x)(coerce x ’double-float))
((atom x) x)
(t (mapcar #’treefloat x))))
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;; Here’s how the rule definition program works.
;; Set up rules.
(dr tan (power (cos x) -2))
(dr sin (cos x))
(dr cos (* -1 (sin x)))
(dr asin (power (+ 1 (* -1 (power x 2))) -1/2))
(dr asin (power (+ 1 (* -1 (power x 2))) -1/2))
(dr acos (* -1 (power (+ 1 (* -1 (power x 2))) -1/2)))
(dr atan (power (+ 1 (power x 2)) -1))
(dr sinh (cosh x))
(dr cosh (sinh x))
(dr log (power x -1))
(dr exp (exp x))
(dr sqrt (* 1/2 (power x -1/2)))
;; etc etc

;; Next, functions of several arguments depending on x
;; These include + - * / expt, power

(setf (get ’* ’dopcomp) ’*rule)
(setf (get ’+ ’dopcomp) ’+rule)
(setf (get ’/ ’dopcomp) ’/rule)
(setf (get ’- ’dopcomp) ’-rule)
(setf (get ’power ’dopcomp) ’power-rule)
(setf (get ’expt ’dopcomp) ’expt-rule)

(defun +rule (l x p)
(let ((valname (gentempb ’f))

(difname (gentempb t)))
(multiple-value-bind (v d) (dcomp1 (car l) x p)

(emit ‘(setf ,difname ,d ,valname ,v)))
(dolist (i (cdr l))(multiple-value-bind (v d) (dcomp1 i x p)

(emit ‘(setf ,difname ,(+chk d difname)))
(emit ‘(setf ,valname ,(+chk v valname)))))

(values valname difname)))

(defun -rule (l x p)
(let ((valname (gentempb ’f))

(difname (gentempb t)))
(cond ((cdr l)

(multiple-value-bind (v d) (dcomp1 (car l) x p)
(emit ‘(setf ,difname ,d ,valname ,v)))

(dolist (i (cdr l))(multiple-value-bind (v d) (dcomp1 i x p)
(emit ‘(setf ,difname (- ,difname ,d)))
(emit ‘(setf ,valname (- ,valname ,v ))))) )

;; just one arg
(t (multiple-value-bind (v d) (dcomp1 (car l) x p)

(emit ‘(setf ,difname (- ,d) ,valname (- ,v))))))
(values valname difname)))

;; (- x y z) means (+ x (* -1 y) (* -1 z)). (- x) means (* -1 x)
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(defun *rule (l x p)
(let ((valname (gentempb ’f))

(difname (gentempb t)))
(multiple-value-bind (v d) (dcomp1 (car l) x p)

(emit ‘(setf ,difname ,d ,valname ,v)))
(dolist (i (cdr l))(multiple-value-bind (v d) (dcomp1 i x p)

(emit ‘(setf ,difname ,(+chk (*chk v difname)
(*chk d valname))))

(emit ‘(setf
,valname ,(*chk v valname)))))

(values valname difname)))

(defun /rule (l x p)
(let ((vname (gentempb ’f))

(dname (gentempb t)))
(multiple-value-bind (v d) (dcomp1 (car l) x p)
(emit ‘(setf ,dname ,d ,vname ,v)))

(multiple-value-bind (v d) (dcomp1 (cadr l) x p)
(emit ‘(setf ,dname (/ (- (* ,v ,dname)(* ,vname ,d))

(* ,v ,v))
,vname (/ ,vname ,v))))

(values vname dname)))

(defun power-rule (l x p)
(cond ((cddr l) (error "~&too many arguments to power: ~s" l))

;; now we assume that everything is a-ok
;; i.e. power has only two arguments, the second argument
;; which is the power to be raised to is independent of x
;; so we can use for sqrt, cube-root etc.
(t (let ((vname (gentempb ’f))

(dname (gentempb t)))
(multiple-value-bind (v d) (dcomp1 (car l) x p)
;;; We could use +chk and *chk in the following emissions
;;; but they are really inessential.
(emit ‘(setf ,vname (power ,v ,(cadr l))))
(emit ‘(setf ,dname (* ,d (power ,v (1- ,(cadr l))) ,(cadr l)))))

(values vname dname)))))

(defun expt-rule (l x p)
"this is the general power rule where the exponent could be an
arbitrary function of x"

(cond ((cddr l) (error "~&too many arguments to expt : ~s" l))
((numberp (cadr l))(power-rule l x p))
;; we had z = (expt f g)
;; z’ = z*(g*log f)’ = z*(g*f’/f + g’*log f)
(t (let ((vname (gentempb ’f))

(dname (gentempb t)))
(multiple-value-bind (v d) (dcomp1 (cadr l) x p)
(emit ‘(setf ,vname ,v ,dname ,d)))

(multiple-value-bind (v d) (dcomp1 (car l) x p)
(emit ‘(setf ,dname ,(+chk ‘(/ ,(*chk vname d) ,v)

(*chk dname ‘(log ,v)))))
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(emit ‘(setf ,vname (expt ,v ,vname)))
(emit ‘(setf ,dname ,(*chk vname dname))))

(values vname dname)))))

;; the next two programs, "optimize":
;; generated code so as to not add 0 or mult by 0 or 1
(defun +chk (a b)(cond ((and (numberp a)(= a 0)) b)

((and (numberp b)(= b 0)) a)
(t ‘(+ ,a ,b))))

(defun *chk (a b)(cond ((and (numberp a)(= a 1)) b)
((and (numberp b)(= b 1)) a)
((and (numberp a)(= a 0)) a)
((and (numberp b)(= b 0)) b)
(t ‘(* ,a ,b))))

;;;; this is the main program for compiling

(defun dc (f x &optional (otherargs nil))
;; produce a program, p(v) ready to go into the compiler to
;; compute f(v), f’(v), returning result as a structure, a df
(let ((*difprog* nil)

(*bindings* nil)
(*v* (gentemp "g")))

(declare (special *v*))
(multiple-value-bind

(val dif)
(dcomp1 f x *v*)

(emit ‘(df ,val ,dif))
‘(lambda (,*v* ,@otherargs)

,(format nil "~s wrt ~s" f x)
;;; comment out these declares if you prefer v’s type to be unknown
(declare (double-float ,*v*))
(declare (optimize (speed 3)(debug 0)(safety 0)))
; (assert (typep ,*v* ’double-float))
(let ,(mapcar #’(lambda (r)(list r 0d0)) *bindings*)
(declare (double-float ,@*bindings*))
,@(nreverse *difprog*))))))

;; A plausible way to use dc is as follows:

(defmacro defdiff (name arglist body) ;; put the pieces together
(progn
(setf (get name ’defdiff) name)

(let ((r (dc body (car arglist) (cdr arglist)))) ;; returns a df.
‘(defun ,name , (cadr r) ,@(cddr r)))))

;; usage (defdiff f (x) (* x (sin x)))
;; Then you can call (f 3.0d0)

;; a few more pieces to allow inside defdiff: if, progn, setf.
;; we could try for a few more. Oh, > < = etc. work "automagically."
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(defun if-rule (l x p)
(let ((valname (gentempb ’f))

(difname (gentempb t)))
(emit ‘(multiple-value-setq

(,valname ,difname)
;; assume only variables, not derivatives in condition
(if ,(subst p x (car l))

(funcall (function ,(dc (cadr l) x)) ,p)
(funcall (function ,(dc (caddr l) x)) ,p))))

(values valname difname)))

(defun progn-rule(l x p)
(mapc #’(lambda (k)(dcomp1 k x p)) (butlast l))
(dcomp1 (car (last l)) x p))

(defun setf-rule(l x p)
(if (not(symbolp (car l)))(error "dcomp cannot do setf ~s" (car l)))
(multiple-value-bind (v d)

(dcomp1 (cadr l) x p)
(emit ‘(setf ,(car l) ,v))
(let ((dname (make-dif-name (car l) x)))
(push dname *bindings*)
(emit ‘(setf ,dname ,d)))

(values v d)))

(defun make-dif-name(s x) ;s is a symbol. make a new one like s_dif_x
(intern (concatenate ’string (symbol-name s) "_DIF_" (symbol-name x))))

(setf (get ’if ’dopcomp) ’if-rule)
(setf (get ’progn ’dopcomp) ’progn-rule)
(setf (get ’setf ’dopcomp) ’setf-rule)
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