Macsyma

User's Guide
Second Edition

Macsyma User's Guide

This document corresponds to Macsyma 2.0, Macsyma 419 and successors.
The software described in this document is furnished only under license, and may be used or copied only in accordance with the terms of such license. Nothing contained in this document should be construed to imply the granting of a license to make, use, or sell any of the software described herein. The information in this document is subject to change without notice, and should not be construed to imply any representation or commitment by Macsyma Inc.

Macsyma and Macsyma Newletter are registered trademarks of Macsyma Inc. PC Macsyma is a trademark of Macsyma Inc. All other product names mentioned herein are trademarks of their respective owners.

This document may not be reproduced in whole or in part without the prior written consent of Macsyma Inc.

Printed in the USA.

Copyright © 1996 Macsyma Inc. All Rights Reserved

	Macsyma, Inc.
telephone:	800-macsyma 800-622-7962
email:	info-macsyma@macsyma.com
Internet:	service@macsyma.com
URL http://www.macsyma.com	

Printed in the USA.
Printing year and number: 963

Contents

1 Introduction to Macsyma 1
1.1 Symbolic and Numerical Computation 1
1.1.1 Exact and Floating Point Numbers 2
1.1.2 Exact and Floating Point Arithmetic 3
1.1.3 Exact and Floating Point Solutions of Algebraic Equations 5
1.1.4 Exact Solution of a Differential Equation 5
1.2 Example Problem: Modeling a Robot Arm 6
2 Getting Started 9
2.1 Entering and Exiting Macsyma 9
2.2 Typing in Command Lines 10
2.3 Getting On-line Help 12
2.3.1 The Interactive Primer 12
2.3.2 The Mathematics Topic Browser 12
2.3.3 Hypertext Topic Descriptions 13
2.3.4 Executable Examples and Demonstrations 13
2.3.5 Function Templates 14
2.3.6 The apropos Command 14
2.3.7 Tips 14
3 Creating Expressions 15
3.1 What is a Macsyma Expression? 15
3.1.1 Operators 15
3.1.2 Numbers 17
3.1.3 Variables 20
3.1.4 Constants 23
3.2 Creating Equations 24
3.3 Defining Functions 25
3.4 Using Lists 28
3.5 Using Arrays 29
4 Algebra 31
4.1 Expanding Expressions 31
4.2 Simplifying Expressions 36
4.3 Factoring Expressions 40
4.4 Making Substitutions 42
4.5 Extracting Parts of an Expression 45
4.6 Using Trigonometric Functions 50
4.6.1 Evaluating Trigonometric Functions 50
4.6.2 Expanding and Simplifying Trigonometric Expressions 53
4.7 Evaluating Summations 55
4.8 Practice Problems 63
5 Solving Equations 67
5.1 Solving Linear Equations 68
5.2 Solving Non-Linear Equations 69
5.3 Finding Numerical Roots 72
5.4 Finding Approximate Symbolic Solutions 73
5.5 Practice Problems 74
6 Calculus 77
6.1 Differentiating Expressions 77
6.2 Integrating Expressions 81
6.2.1 Indefinite Integration 81
6.2.2 Definite Integration 84
6.2.3 Numerical Integration 88
6.3 Taking Limits 89
6.4 Computing Taylor and Laurent Series 91
6.5 Solving Ordinary Differential Equations (ODEs) 95
6.5.1 Symbolic Solutions of ODEs 95
6.5.2 Symbolic Approximate Solution of an ODE 101
6.6 Numerical Solutions of ODEs 105
6.7 Computing Laplace Transforms 107
6.8 Practice Problems 110
7 Matrices 115
7.1 Creating a Matrix 115
7.2 Extracting From and Adding to a Matrix 119
7.2.1 Extracting Rows, Columns, and Elements 120
7.2.2 Adding Rows and Columns to a Matrix 124
7.2.3 Changing the Elements in a Matrix 124
7.3 Arithmetic Operations on Matrices 126
7.4 Producing the Echelon Form of a Matrix 128
7.5 Calculating Determinants 129
7.6 Eigenanalysis of Matrices 130
7.7 Transposing a Matrix 131
8 Plotting 137
8.1 Creating Two-Dimensional Plots 137
8.2 Creating Three-Dimensional Plots 143
8.3 Changing the Appearance of a Plot 146
8.3.1 Changing a Plot's Scale 146
8.3.2 Changing the Viewpoint of a Three-Dimensional Plot 149
8.3.3 Changing Plot Titles and Axes Labels 150
8.4 Saving Plots 150
8.4.1 Notebook Graphics in Macsyma 2.0 and Successors 152
8.4.2 File Based Graphics in Macsyma 419 and Successors 152
9 Macsyma File Manipulation 153
9.1 Specifying Pathnames 153
9.1.1 Logical Pathnames 154
9.1.2 Filename Extensions 154
9.2 Customizing Your Macsyma Init File 155
9.3 Submitting Macsyma Batch Jobs 156
9.3.1 Batch Jobs in Unix 157
9.3.2 Batch Jobs in VMS 158
9.3.3 Batch Jobs in DOS-Windows 159
9.4 Saving Your Work 160
9.4.1 Saving an ASCII Transcript of Your Work 160
9.4.2 Saving a Macsyma Notebook 161
9.4.3 Saving Your Computation Environment 161
10 Translating Macsyma Expressions to Other Languages 163
10.1 Translating Expressions to FORTRAN 163
10.2 Translating Macsyma Expressions to C 164
10.3 Typesetting Macsyma Expressions with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 164
11 Using the Macsyma Programming Language 165
11.1 Using Conditionals 165
11.2 Using Iteration 166
11.3 Compound Statements 168
11.4 Making Program Blocks 169
11.5 Tagging Statements 170
11.6 Writing Recursive Functions 171
11.7 Functional Arguments and Formal Parameters 173
11.8 Practice Problems 173
12 Advanced Programming Topics 175
12.1 Functional Evaluation Revisited 175
12.2 Lambda Forms 176
12.2.1 Evaluation of lambda Forms 176
12.2.2 Using opsubst and lambda Forms to Modify Expressions 176
12.3 Subscripted Functions 177
12.3.1 Example: Incorporating A Definite Integral Into A Function Definition 178
12.4 The Debugger 183
12.4.1 The Trace Utility 184
12.4.2 Tracing Simple Functions 184
12.4.3 Tracing a Recursive Function 185
12.4.4 Using the break Facility 186
12.4.5 Entering the Debugger Automatically 188
12.5 Handling Errors 189
12.5.1 General Error Handling 189
12.5.2 Example: Catching errors 189
12.5.3 Example: Using errcatch 190
12.5.4 Catching Special Classes of Errors 191
12.5.5 Example: Selectively Trapping Mathematical Errors 191
12.6 Macros 192
12.6.1 Writing Simple Macros 192
12.6.2 Writing a Macro to Implement a Boolean Operator 193
12.7 Localizing Information 195
12.7.1 Program Blocks Revisited 196
12.7.2 Localizing Other Information Inside Program Blocks 196
12.7.3 Program Contexts 197
12.8 Translating Macsyma Functions 197
12.8.1 Translating Files and Functions 198
12.8.1.1 Example: Translating a Function Definition 198
12.8.1.2 Example: Translating a Macsyma File 198
12.8.2 Data Type Declarations 199
12.8.2.1 Declaring Data Types With mode_declare 199
12.8.2.2 Defining Complex Data Types With mode_identity 200
12.8.3 Defining Option Variables For Packages 200
12.8.3.1 The special Declaration 202
12.8.3.2 Customizing the Translation Environment 203
12.8.3.3 Compilation vs. Translation 203
12.8.4 Additional Notes on Translation 203
12.9 Hints for Efficient Programming 204
13 Displaying Expressions 207
13.1 The Macsyma Display Package 207
13.2 Changing the Default Display 207
13.3 Rewriting Expressions 208
13.4 The mainvar Declaration 212
13.5 Inhibiting Simplification 213
13.5.1 Using Invisible Boxes 213
13.5.2 Using Null Functions 215
13.6 The ordergreat and orderless Commands 216
14 The Macsyma Pattern Matcher 219
14.1 Introduction to Pattern Matching Techniques 219
14.2 An Overview of the Pattern Matcher Facilities 220
14.2.1 Examples of Predicates 221
14.2.2 An Example of a Pattern Matching Rule 221
14.2.3 An Example of a User-Defined Pattern-Testing Predicate 223
14.2.4 Examples of Rewrite Rules 224
14.2.5 General Pattern Matcher Issues 225
14.3 Simple Pattern Testing: Predicates 225
14.4 Literal vs. Semantic Matches: matchdeclare 227
14.5 The General Pattern Matcher 228
14.5.1 An Overview of the General Pattern Matcher 228
14.5.2 Identifying Subexpressions: defmatch 229
14.5.2.1 defmatch Summary 229
14.5.2.2 Examples of defmatch 230
14.5.3 Transforming Expressions with Rewrite Rules: defrule 233
14.5.3.1 defrule Summary 234
14.5.3.2 Examples of defrule 234
14.5.4 Automatic Simplification of Expressions: tellsimp and tellsimpafter 238
14.5.4.1 tellsimpafter Summary 239
14.5.4.2 Differences between tellsimp and tellsimpafter 240
14.5.4.3 Examples of tellsimp and tellsimpafter 240
14.5.4.4 Additional Information on tellsimp and tellsimpafter 244
14.5.5 Defining Taylor Expansions of Unknown Functions 244
14.5.6 Translating and Compiling Rules 245
14.6 The Rational Function Pattern Matcher 246
14.6.1 Defining Substitution Rules: let 246
14.6.1.1 let Syntax 246
14.6.2 Applying let Rules: letsimp 248
14.6.2.1 letsimp Summary 248
14.6.3 Examples of let Rules 249
14.6.3.1 Example 1 249
14.6.3.2 Example 2 249
14.6.3.3 Example 3 250
14.6.3.4 Example 4 251
14.6.3.5 Example 5 251
14.6.3.6 Example 6 252
14.6.3.7 Example 7 252
14.6.3.8 Example 8 253
14.6.3.9 Example 9 253
14.7 Debugging Pattern Matching Routines 254
14.7.1 Example: Failure to Match 254
14.7.2 Example: Incorrect Matching 258
14.8 Patterns versus Functions 259
14.9 Complex Example of Pattern Matching 260
A Hints for New Users of Macsyma 265
B Answers to Practice Problems 267
B. 1 Answers for Chapter 4 267
B. 2 Answers for Chapter 5 272
B. 3 Answers for Chapter 6 276
B. 4 Answers for Chapter 11 288

List of Tables

1 Notation conventions used in this book x
3.1 Mathematical Operators 15
3.2 Some Predefined Macsyma Constants 23
4.1 A Comparison of distrib, multthru and expand 35
4.2 Using the part Command 46
4.3 Trigonometric Functions and their Inverses 50
6.1 Summary of the intanalysis Option Variable 85
9.1 Literal pathname extensions from logical pathnames 155
11.1 Predefined Logical Operators 166

Preface

Macsyma is a general purpose symbolic-numerical-graphical mathematics software product. You can use it to solve simple problems specified by one-line commands (such as finding the indefinite integral of a function), or to perform very complicated computations by means of a large Macsyma program. This document provides explanations and examples of tools for doing algebra, trigonometry, calculus, numerical analysis, and graphics. In addition to introductory information about these topics, this guide provides extended examples showing you how to use Macsyma to solve more complex problems.
If you have never used Macsyma before, you might want to start by reading Your First Session With Macsyma, a brief tutorial which introduces you to Macsyma's user interface and on-line help facilities. The on-line help system, includes a mathematical topic browser, hypertext topic descriptions, command templates, an interactive primer, and executable examples and demonstrations. You will also see how to enter commands to Macsyma, and how to produce a document which combines mathematical expressions and formatted text. You can run an on-line tutorial for Macsyma using the primer command (see page 12). Users who are new to Macsyma should read the first four chapters of this User's Guide carefully before going on to other chapters of interest.

Even if you have prior experience with Macsyma, you might look over the material presented in the first four chapters before continuing to other chapters that interest you. Both new and experienced users might find it helpful to look over Chapter 1, which discusses symbolic and numeric computation and how they complement each other. Starting with Chapter 5, each chapter builds on the concepts presented in the earlier chapters.
This document assumes you are already familiar with basic mathematical terminology and notation. Some additional notation conventions and terminology appear in this document to make it easier to read and understand. The notation conventions followed in this User's Guide are summarized in Table 1.

Although this document introduces many commands and option variables, its scope allows only a limited introduction to Macsyma's capabilities. To find out more, consult Macsyma's Mathematics and System Reference Manual, where you will find a comprehensive description of the mathematical functionality of Macsyma, including algebraic and calculus operations, matrix and vector algebra, vector and tensor analysis, plotting, and graphics. In addition, the Graphics and User Interface Reference Manual contains a complete description of the non-mathematical aspects of Macsyma, including the user interface, programming in Macsyma, file management, and interfacing to other languages.

In general, you should know that Macsyma commands are either functions or special forms. Both accept zero or more arguments, perform some computation, and return a result. For example, the function sqrt with an argument of 4 returns the result 2. The arguments to a function are each evaluated in order from left to right. A special form is similar to a function, except that the evaluation of some of the arguments to a special form may be delayed or may not occur at all.
By resetting option variables to new values, a user can change the environment in which Macsyma evaluates command lines. For example, the function plot3d can display different projections of the same threedimensional plot, depending on the value of the option variable viewpt.

Example	Meaning
ratsimp, integrate	Commands and other Macsyma objects as they appear in the text.
RETURN, SPACE, C-F	Keyboard keys.
fib(2);	Characters entered on the command line, or Macsyma code in a file. Macsyma is not case-sensitive unless you precede an input character with a backslash ($($).
diff(exp, var, n)	Description of the format for the diff command, where exp, var, and n describe the expected arguments.
Division by 0.	A system message or error.
(x + 1)	Results returned on the display line. Current releases of Macsyma display output in lower case by default; users can alter the display case.
testing.com	A file or directory name.
$/ *$ comment $* /$	Explanatory comments in Macsyma examples. (In versions of Macsyma running under VMS, double quotes delimit interactive comments and $/ * * /$ delimit batch comments.)

Table 1: Notation conventions used in this book

Chapter 1

Introduction to Macsyma

Macsyma is an interactive symbolic-numerical-graphical mathematics software system that helps you solve complex mathematical problems. Macsyma can also help you visualize scientific data or prepare high-quality technical reports. This User's Guide provides explanations and examples of the basic methods for solving many kinds of problems in algebra, trigonometry, calculus, numerical analysis, and graphics.

Macsyma offers a wide range of capabilities, including differentiating and integrating expressions, factoring polynomials, plotting expressions, solving equations, manipulating matrices, and computing Taylor series. Macsyma also provides a programming environment in which you can define mathematical procedures tailored to your own needs.
Section 1.1 contrasts the symbolic-numerical approach to computation provided by Macsyma with the strictly numeric approach provided by computer languages such as FORTRAN. Read this section to learn about the advantages of combining symbolic and numerical computation.
Section 1.2 presents an extended example that shows how Macsyma can perform calculations that would be tedious and time-consuming when done by hand. For example, Macsyma can expand, factor, and simplify long expressions, and manipulate large matrices, allowing you to eliminate much of error-prone manual calculation.

1.1 Symbolic and Numerical Computation

Computers have traditionally been used to solve scientific problems that could be expressed in terms of numbers. FORTRAN, for example, assists scientists and mathematicians in dealing with numeric problems. When a problem can easily be expressed in terms of calculations with numbers, this approach to problem solving works well. On the other hand, some problems can be expressed best in symbolic terms or perhaps can only be expressed that way.

Macsyma can work with numbers, symbols, polynomial expressions, matrics and equations. Macsyma can return results in either numeric or symbolic form.
Unlike Macsyma, numerical systems must operate using floating-point approximations, whose precision is limited by the computer hardware. By carrying out computations in symbolic form, Macsyma can work with exact quantities rather than approximations. When you choose to convert a symbolic result to a floating-point number, you can set the precision yourself.

1.1.1 Exact and Floating Point Numbers

In scientific computation, numbers are frequently represented approximately as floating point numbers. For some purposes, it is necessary to use exact representations of numbers, or to use symbolic variables to stand for a class of possible numerical values. For example:

```
(c1) .66667;
(d1) 0.66667
(c2) 2/3;
    2
(d2) -
    3
(c3).66667*3;
(d3) 2.0001
(c4) (2/3)*3;
(d4) 2
```

In many computations, radicals need to be represented exactly.

```
(c5) 1.414;
(d5) 1.414
(c6) sqrt(2);
(d6)}\sqrt{}{2
(c7) 1.414^2;
(d7) 1.9994
(c8) sqrt(2)^2;
(d8) 2
```

Trigonometric identities often require that numbers be represented exactly.

```
(c9) %pi;
(d9) \pi
(c10) sfloat(%pi);
(d10) 3.14159
(c11) dfloat(%pi);
(d11) 3.14159265358978dO
(c12) bfloat(%pi), bfprecision:40;
(d12) 3.141592653589793238462643383279502884197b0
(c13) sin(sfloat(%pi));
(d13) 6.27833e-7
(c14) sin(%pi);
(d14) 0
```


1.1.2 Exact and Floating Point Arithmetic

The following example illustrates how numeric and symbolic computation differ in a simple arithmetic problem.
Addition and subtraction are associative operations. To compute $\mathrm{a}-\mathrm{b}+\mathrm{c}$ you can group the expression either as $(\mathrm{a}-\mathrm{b})+\mathrm{c}$ or as $\mathrm{a}+(-\mathrm{b}+\mathrm{c})$. For some floating-point numbers, however, the associative property will not hold. Consider this example of FORTRAN code:

```
program main
a = 12345678.0
b = 12345679.0
c = 12.0/5.0
temp1 = (a - b) + c
temp2 = a + (-b + c)
print *, temp1, temp2
end
```

Clearly, both temp1 and temp2 should be 1.4, but on most systems FORTRAN returns unequal results for temp1 and temp2. Typical results are 1.4 for temp1 and 1.0 for temp2, showing that associativity does not hold for all floating-point calculations.

In Macsyma you can preserve precision by expressing numbers as ratios of integers. Even if you are not yet familiar with Macsyma notation, you can see that Macsyma returns the correct answer to this problem. Set a, b, and c to the same values as in the FORTRAN example. Note that in Macsyma, ":" is the assignment operator.

```
(c1) a:12345678;
(d1) }1234567
(c2) b:12345679;
(d2)
12345679
```

Notice that Macsyma stores the value of c as a ratio of integers.

```
(c3) c:12/5;
```

(d3) --

5

The result for temp1 is a ratio of integers.

```
(c4) temp1:(a - b) + c;
```

 7
 (d4)

5

The result for temp2 is the same as temp1. Associativity is preserved.

```
(c5) temp2:a + (-b + c);
```

(d5)
-
5

You can convert either result to a floating-point number. The (d5) below refers to the result returned on line (d 5).

```
(c6) sfloat(d5);
(d6) 1.4
```

To avoid introducing floating-point errors into your calculations, Macsyma generally does not return a floating-point result unless you specifically request it. Experienced Macsyma users learn to work with this feature to achieve exact results in their calculations. Consider the following Macsyma example working with square roots.

Macsyma simplifies square roots of integers without converting them to floating-point.

```
(c7) sqrt(32);
(d7) 4 sqrt(2)
(c8) sqrt(2);
(d8) sqrt(2)
```

Since (c9) simplifies to sqrt (32*2) $=$ sqrt (64), an exact integer result can be returned.

```
(c9) sqrt(32)*sqrt(2);
```

(d9) 8

Computing the square root of a floating-point number results in an approximation.

```
(c10) sqrt(32.0);
(d10) 5.656854
(c11) sqrt(2.0);
(d11) 1.4142135
```

Macsyma does not return 8 here because $5.656854 * 1.4142135$ is not the same as the square root of 64 .

```
(c12) sqrt(2.0)*sqrt(32.0);
(d12) 7.9999995
```

The square root of a rational number is maintained as an exact quantity.

```
(c13) sqrt(21555/44);
    3 sqrt(2395)
(d13)
------------
    2 sqrt(11)
```


1.1.3 Exact and Floating Point Solutions of Algebraic Equations

Symbolic mathematics combines the exactness of exact arithmetic with the generality obtained by representing an entire class of possible numbers by a symbolic variable. It also helps you to form insights through inspection of symbolic solutions, which are harder to gain from numerical solutions. The most elementary use of symbolic mathematics employs a symbolic variable to stand for an arbitrary real number (or a class of possible real numbers). For example, the symbolic case of a linear equation generalizes any particular numerical case, in the example below.

```
(c1) eqf: 3.*x+5.=7.;
(d1) }\quad3.0\textrm{x}+5.0=7.
(c2) linsolve(eqf,x), keepfloat:true;
(d2) [x = 0.66667]
(c3) eqi: 3*x+5=7;
(d3) 3x = 5 = 7
(c4) linsolve(eqi,x);
    2
(d4) [x = - ]
    3
(c5) eqs: a*x+b = c;
(d5) ax + b = c
(c6) linsolve(eqs,x);
(d6)
                    [x = ----- ]
a
```


1.1.4 Exact Solution of a Differential Equation

Symbolic computation can make computations involving the constant π more accurate. Consider this differential equation, taken from an example in [Va]:

$$
\begin{aligned}
y^{\prime}(x) & =(2 / \pi) x y(y-x \pi), \quad 0 \leq x \leq 10 \\
y(0) & =y_{0}
\end{aligned}
$$

In a numerical solution, if $y_{0}<\pi$, the solution tends to zero as $x \rightarrow \infty$, and if $y_{0}>\pi$, the solution goes to infinity. If the input data specified the value of π for y_{0}, then recalling that $\pi=3.14159 \ldots$ you can see that the five-digit rounded approximation 3.1416 leads to a solution that goes to infinity, while a five-digit truncated approximation 3.1415 gives a solution that goes to zero. In Chapter 6, 97, Macsyma obtains the following exact solution to this problem:

This is the exact result returned by Macsyma in its two-dimensional format. The \%pi denotes the constant π, and \%e is the base of the natural logarithms.

1.2 Example Problem: Modeling a Robot Arm

The best way to see Macsyma solving some simple application problems is to run some of the demonstrations which come with Macsyma. After starting Macsyma type:

```
demo(begin); a short collection of simple computations
demo(general);
demo(ballistics);
demo(oscillator);
```

a short collection of simple computations
a longer collection of simple computations
a solution for the trajectory of a cannon ball
a solution for the motion of a harmonic oscillator

Macsyma is an excellent tool for verifying published computational results. The rest of this section consists of a Macsyma session which verifies published results concerning the dynamic behavior of a robot arm.
To describe the dynamic behavior of a robot arm, [Le] derives a set of differential equations of motion for a manipulator with n degrees of freedom. The derivation of a dynamic model based on the Euler-Lagrange method is simple and systematic. For $n=2$, however, the Euler-Lagrange formulation involves about 3200 multiplications and 2500 additions, making the calculations both time-consuming and error-prone when done manually.

An experienced Macsyma user can reproduce the results published in [Le] for $n=2$ in a single afternoon. The session below illustrates how Macsyma can reproduce these calculations. The numbered equations in the session correspond to those in [Le].
The first two commands define a general rule to convert all occurrences of $\sin ^{2} x$ to $1-\cos ^{2} x$.

```
(c1) matchdeclare(any,true)$
(c2) tellsimp(sin(any)^2, 1 - cos(any)^2)$
```

Equation 1. Define a 4×4 homogeneous transformation matrix tra_mat to give the spatial relationship between adjacent links.

```
(c3) tra_mat(j):=(j1:j + 1,
    matrix([cos(th[j1]), -cos(al[j1])*sin(th[j1]),
        sin(al[j1])*sin(th[j1]), aa[j1]*cos(th[j1])],
        [sin(th[j1]), cos(al[j1])*cos(th[j1]),
        -sin(al[j1])*\operatorname{cos}(th[j1]), aa[j1]*sin(th[j1])],
        [0, sin(al[j1]), cos(al[j1]), d[j1]],
        [0, 0, 0, 1]))$
(c4) a(j, i):=if j < i then tra_mat(j).a(j + 1, i) else ident(4)$
```

Equation 13. Define matrix U to describe the rate of change of all the points r_{i} on link i relative to the base coordinate frame as q_{j} (the generalized coordinate) changes.

```
(c5) q:matrix([0,-1, 0, 0],
    [1, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0])$
(c6) u(i, j):=if j <= i then a(0, j - 1).q.a(j - 1, i) else 4*ident(4)$
```

Define the inertia tensor matrix.

```
(c7) inertia(j):=matrix([mass[j]*aa[j]^2/3, 0, 0, -mass[j]*aa[j]/2],
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [-mass[j]*aa[j]/2, 0, 0, mass[j]])$
```

Equation 15. Define matrix $D U$ to describe the interaction effects between joints j and k.

```
(c8) du(i, j, k):=if i >= k and k >= j
    then a(0, j - 1).q.a(j - 1, k - 1).q.a(k - 1, i)
        else (if i >= j and j >= k
            then a(0, k - 1).q.a(k - 1, j - 1).q.a(j - 1, i)
            else zeromatrix(4, 4))$
```

The next set of commands defines three matrices to describe the gravity-related terms, the coriolis and centrifugal terms, and the acceleration-related terms for the robot arm respectively.
Equation 31. Define the gravity-related terms in matrix G.

```
(c9) g(i):=trigreduce(sum(mass[j]*matrix([0,-gr,0,0])
    .u(j,i).matrix([-aa[j]/2,[0],[0],[1]]),j,i,n))$
```

Equation 32. Define the coriolis and centrifugal terms in matrix H.

```
(c10) hh(i,k,m):=sum(matrix_trace(du(j,k,m).inertia(j).transpose(u(j,i))),j,max(i,k,m),n)$
(c11) h(i):=(sum(sum(hh(i,k,m)*thdot [k]*thdot [m],m,1,n),k,1,n), expand(%%))$
```

Equation 33. Define the acceleration-related terms in matrix D.

```
(c12) d(i,k) := expand(sum(matrix_trace(u(j,k).inertia(j).transpose(u(j,i))),j,max(i,k),n))$
```

Now that the matrices have been defined, the following commands calculate the results for the motion of a robot arm with 2 degrees of freedom.

The commands used in this example are explained more fully in subsequent chapters. Look in the index to locate information about specific commands or in the Macsyma Reference Manual.
The references cited in this chapter appear on page 263. Consult [Ru] or [Wa] for more information about symbolic algebra, [Va] for examples of pitfalls in numerical computation, and [Go] for using Macsyma to analyze robotic mechanisms. For an historic perspective of applications using Macsyma up until 1986, contact Macsyma Inc. for a copy of the Bibliography of Publications Referencing Macsyma. With so many applications written in Macsyma, the company no longer publishes comprehensive listings since that time.

Chapter 2

Getting Started

This chapter describes Macsyma's user interface and explains how to communicate with Macsyma. It describes the basic things you need to know to get started: how to enter and exit Macsyma: how to type in command lines, how to refer to the results Macsyma returns in subsequent calculations, how to get help, and how to correct errors. If you have read Chapter 1, you have already seen some sample interactions with Macsyma. Since the user interface differs slightly in different versions of Macsyma, the best information for getting started in Macsyma is found in the document called Your First Session With Macsyma, written for your particular Macsyma release.

2.1 Entering and Exiting Macsyma

If you have a PC window system and you have installed a Macsyma icon, enter Macsyma by clicking on the icon with your mouse. Otherwise, enter Macsyma by typing macsyma at the command processor or your operating system, exec, or monitor level. Depending on which version of Macsyma you have, there are other ways of entering Macsyma. Refer to the Release Notes for your version for more information.
Upon entering Macsyma, the system either prints a message telling you that Macsyma is loaded, or it prints a herald that displays the Macsyma version number and other information pertaining to your site. For example, in PC Macsyma 2.0 and its successors, the message appears something like Figure 2.1.

Figure 2.1: The Initial Macsyma 2.0 Message
Figure 2.2 shows a typical herald displayed by Macsyma 420 and its successors.
The number 420.0 in Figure 2.2 identifies the Macsyma version. This number changes for each new release. The input prompt, (c1), marks the first command line or c-Line. Typing commands on the c-Line is explained in more detail in Section 2.2, page 10.
To exit Macsyma, use the quit command, or, in a windows environment, select another window.

```
This is Macsyma 420.0 for RS6000 (AIX 3.2.X) computers.
Copyright (c) 1982 - 1996 Macsyma Inc. All rights reserved.
Portions copyright (c) }1982\mathrm{ Massachusetts Institute of Technology.
All rights reserved.
Type ''DESCRIBE(TRADE_SECRET);', to see important legal notices.
Type ''HELP();'' for more information.
/tmp_mnt/net/hamilton/devo/rs6000/mac420/system/init.lsp being loaded
(c1)
```

Figure 2.2: An Initial Macsyma 420 Herald

The quit command allows you to leave Macsyma, terminating the Macsyma session. You should use this command only when you do not intend to continue this session. If you plan to return, you should simply select another window. To use this command type quit () ; . Refer to quit in the Macsyma Reference Manual for more information.

You can save a transcript of what goes on during your Macsyma session. For complete instructions see Section 9.4.1, page 160.

2.2 Typing in Command Lines

As shown in the two Figures, a c-line prompt appears when you invoke Macsyma. When you type a command or expression on the c-Line, Macsyma generally answers by displaying a result on a corresponding display line, called the d-Line. Intermediate steps in large calculations are shown on e-lines. For an example, see page 27 .
In Macsyma, c-Lines are labeled consecutively in the form (ci), where i is the number of the current command line. Similarly, D-LINEs are labeled ($\mathrm{d} i$) where i is the number of the corresponding C-LINE. These labels provide an easy way of referring to previously typed commands and output expressions without retyping them.
Consider the following expression: ${ }^{1}$

```
(c1) (x + 1)`3;
    3
(d1) (x+1)
```

The c-Line above ends with a semicolon (;). Ending the line with a semicolon tells Macsyma to display the result of the command on the screen. ${ }^{2}$ In this example, the expression $(x+1)^{3}$ is associated with the label (d1). Macsyma then prints a new c-Line prompt, (c2) in this example, for your next command.
You terminate all c-LINEs by typing either a semicolon or a dollar sign (\$), then pressing RETURN. Ending the command line with a dollar sign tells Macsyma not to display the result of the command. Semicolons usually end the command lines in the examples shown here, so that you can see exactly what is going on during a calculation. In practice, you will often use the dollar sign to finish lines where you do not need to see Macsyma's result (for example, when assigning values to variables).

[^0]After entering an expression on a C-LINE, you can manipulate it with a variety of commands. The percent $\operatorname{sign}(\%)$ is a system variable whose value is the result of the most recent D-LINE. More generally, you can use $\% \operatorname{th}(i)$ to refer to the i th previous computation. Thus, \%th(1) is equivalent to \%.

To add 5 to the most recent result, the expression shown in (d1).
(c2) $\%+5$;
(d2) $(x+1)+5$

Multiply the result shown on (d1) by z.
(c3) $\% \operatorname{th}(2) * z$;
3
(d3)

$$
(x+1) \quad z
$$

You can also refer to any D-LINE or C-LINE explicitly, as shown below.
Multiply the expression on line (d 1) by $(x+1)$.

```
(c4) d1 * (x + 1);
    4
(d4)
(x + 1)
```

Even if you suppress the display of the D-LINE by ending the command line with a dollar sign, you can reference it either explicitly or with \%.

```
(c5) -y + d2$
(c6) z + %;
\[
3
\]
(d6)
\[
z-y+(x+1)+5
\]
```

The previous examples show that \% stands for the most recent D-LINE, and that you can use an explicit label to stand for any other command or display line. These facilities are useful to you only as long as you can see the desired expression on the screen or remember its associated label. Macsyma also provides a way for you to name an expression for later use by assigning it to a variable. For more information, see Section 3.1.3, page 20 .

The system provides many commands to edit the command line if you make a mistake while typing it. Refer to your Release Notes and Your First Session with Macsyma for the editing techniques for your version of Macsyma.
Information intended for human readers of Macsyma code or output is contained in comments. Such information will not be evaluated by Macsyma. Comments can be included in your Macsyma session by enclosing them in $/ *$ and $* /$. A comment can be of any length.

```
/* This is a comment. */
(c7) x /* this is a comment too inside an
    expression */ : y /* */ + 2;
(d7) y + 2
(c8) z: x^2 /* and this /* is a nested */ comment */;
    2
(d8) x
```


2.3 Getting On-line Help

This section describes the facilities you can use to get on-line help during a Macsyma session. The Macsyma on-line help system is designed so that the user can obtain nearly all help on-line, rarely referring to the hardcopy documentation. On-line help is available through keyboard commands and, in versions of Macsyma with modern window interfaces, through menus.

The Macsyma command help summarizes the main facilities for obtaining on-line help. To use this command type help(); or select the [Help]menu item.
The main on-line help facilities are:

- The Interactive Primer
- The Mathematics Topic Browser
- Hypertext topic descriptions
- Executable examples and demonstrations
- Function templates
- The apropos command
- Tips

2.3.1 The Interactive Primer

The Macsyma primer presents an interactive tutorial on the fundamentals of Macsyma, including an introduction to syntax, assignment, defining functions, and the simplification commands. Type primer () ; or select the menu item [Help]|[Primer] to run the primer.

The primer function accepts an optional argument of scriptname, which allows the user to indicate the topic in which they are interested. For example, primer(simplification); enters directly at the simplification section of the script. The possible values for scriptname are: intro, simplification, scratchpad, syntax, and assignment.

Users who are familiar with some mathematics software may want to skip the Interactive Primer, and start with the Mathematics Topic Browser.

2.3.2 The Mathematics Topic Browser

Sometimes you know what mathematical operation you wish to perform, but you do not know the name of the appropriate command, or whether Macsyma has the capability which you seek. In this case you can explore the available commands in your area of interest by using the Mathematics Topic Browser. In some versions of Macsyma, the top level topics appear along the top of the Macsyma Front End Window. In Macsyma 2.0 and its successors, the top level math topics are found in the [MathHelp!] menu. Each mathematics topic menu has a submenu of more narrowly defined topics to choose from. After you select a submenu, a dialog box shows you a list of the most common commands available in this topic area. You can then choose to [Describe] the command, to run an executable [Example], or to open a function [Template].

In most of the topics in the Mathematics Topic Browser, the last choice is [Packages], which provides a list of the external packages in Macsyma in the given topical area. When you select [Packages], the buttons in the resulting window offer a different set of choices for help information: [Describe], [Usage] (a more in-depth description), [Demo], and [Load].

If you do not have a windowed version of Macsyma, type options(); to display a hierarchical menu of topics. When you choose the topic you want to find out more about, a new menu appears, listing subtopics as menu items. Choose a subtopic to further refine your choice.

2.3.3 Hypertext Topic Descriptions

After choosing a command in the topic browser, click on the [Describe] button to enter the database of hypertext topic descriptions. Alternatively, if you know the name of the command or topic you need to explore, but you are unsure of the calling syntax of the command, or exactly how it is used, you can look up the command name by using the menu choice [Help] | [Index] or the Macsyma command describe(topic);

Recent releases of Macsyma contain nearly 2000 topic descriptions with hypertext cross references. If you click your mouse on one of the active words in the text, you will see a description of the topic named by that word.

The basic description of any topic can be found by using the describe command, and more in-depth information can be accessed by using the usage command. The describe command takes a single argument (the name of a topic) and displays a description of the topic, which can be a command, an option, or a concept.

If describe fails to find information about a feature that you think should be present, try selecting usage to find a function located in an external library. Also, try using apropos (see Section 2.3.6) to generate other candidates that describe might know about.

The usage command prints useful information about its single argument (the name of a topic), particularly if the topic is an external library file. For example, type usage(fourier); to find out about the fourier function.

2.3.4 Executable Examples and Demonstrations

We use the terms example and demo for executable sample programs which illustrate two slightly different types of topics in Macsyma.

- An example is a short program illustrating the basic use of one Macsyma command.
- A demo is a longer program illustrating either an application of Macsyma or the use of some external package or major facility in Macsyma.

Recent releases of Macsyma include about 600 examples and 200 demonstrations. In windowed versions of Macsyma, all of these programs are accessible through the menu system. To see a list of demos in your Macsyma, click your mouse on the menu item [Help] | [Demos] or [Help] | [Demo a Feature] (depending on the version of Macsyma you are using). You can start a Demonstration in several ways:

- Click on the name of a Demonstration in the [Help] | [Demos] or [Help] | [Demo-a-Feature] list.
- Click on the name of a Demonstration when it appears in the hypertext description of some topic.
- Type demo(topic); .

The demo command initiates an executable demonstration. The demonstration pauses after each command line until you press the RETURN key or the SPACE bar. To interrupt the demo, press any other key. An interrupted demo can be continued by typing batcon(); When the demo is finished, it prints done.

The example command takes the name of a command as an argument and presents an example of that command in a manner similar to demo, pausing after each command line until you press the RETURN key or the SPACE bar. For example, type example (linsolve) ; to display an example of the linsolve function.
You can create your own examples by placing a file called topic.example in the example directory in your Macsyma.

2.3.5 Function Templates

A Function Template is a dialog box which specifies the arguments to a Macsyma command, indicating which ones are optional. It provides blank spaces for you to fill in the arguments to define your own command. You can obtain a Function-Template for nearly all of the functions and special forms, (but not option variables) which appear in the Mathematics Topic Browser by pressing the button labeled [Template] in the Mathematics Topic Browser. Recent releases of Macsyma contain function templates for 500 Macsyma commands.

2.3.6 The apropos Command

Sometimes you know part of the name of the command you want to use. The apropos command may then be of assistance. The apropos command takes a symbol or a string as its argument and looks through all the Macsyma symbols with describe entries for ones containing that symbol or string. For example, apropos (exp) ; returns a long list of all the flags and functions that have exp as part of their names, such as exp, expand, ratexpand, trigexpand, and exponentialize. If you can only remember part of the name of a command, you can use apropos to find the complete name.
For Unix-based systems only, Macsyma provides an online "manual" page for Macsyma through the shell command man. To see it, type man Macsyma at the Unix prompt.

2.3.7 Tips

The on-line help system includes Tips - a quick and simple guide to Macsyma commands and examples of their behavior. The Tips interface consists of a topics browser allowing you to choose the area of interest. Tips offers a one-line description of a sample computation. Tips adds an example that consists of a problem statement, code to apply, and the output of applying that code. You can browse through a number of different problems until you see a Tip similiar to your problem. Then you try the code to produce the effect you want.
Since the user interface differs slightly in different versions, you can find the most up-to-date information for Tips in Macsyma in the documents for your particular Macsyma release.

Chapter 3

Creating Expressions

You can perform calculations in Macsyma by acting on expressions. This chapter describes the components of a Macsyma expression, which can include numbers, variables, operators, and constants. Using expressions as building blocks, you will learn how to assign values to variables, create equations, and define your own functions.

Starting with the next chapter, you will learn about the many ways that you can manipulate expressions, including expanding, simplifying, and factoring.

3.1 What is a Macsyma Expression?

The basic unit of information in Macsyma is the expression. An expression is made up of a combination of operators, numbers, variables, and constants. Sections 3.1.1 through 3.1.4 describe how to use these components to form expressions.

3.1.1 Operators

Macsyma uses familiar symbols to perform operations. Table 3.1 summarizes these operators in order of priority, from lowest to highest.

Operator	Description
+	addition
-	subtraction
$*$	multiplication
$/$	division
-	negation
\wedge	exponentiation
	non-commutative multiplication
	non-commutative exponentiation
	factorial

Table 3.1: Mathematical Operators

Macsyma also provides some other operators that are not discussed in this section. The ":" operator (page 20) assigns values to variables, the "=" operator (page 24) creates equations, and the ":=" operator (page 25) defines functions.
Macsyma performs operations of equal priority from left to right. You can use parentheses to change the order of evaluation. Note that, as illustrated in the examples below, the application of a function has the highest priority.

Binding power is a measure of the amount of precedence an operator has over the operator tokens near it. For example, the binding power of the "*" operator is greater than that of the " + " operator, so $\mathrm{a}+\mathrm{b} * \mathrm{c}$ means $\mathrm{a}+(\mathrm{b} * \mathrm{c})$ rather than $(\mathrm{a}+\mathrm{b}) * \mathrm{c}$.
The application (in the case of the next example, \sin) has a higher priority than " " "

```
(c1) \(\sin \left(a * x^{\wedge} y / z!\right)^{\wedge} 2\);
    y
    2 a x
(d1)
\(\sin (-----)\)
    \(z!\)
```

To square the argument of a function, you need an extra pair of parentheses.
(c2) $\sin \left(\left(a * x^{\wedge} y / z!\right)^{\wedge} 2\right)$;
${ }^{2}{ }^{2} \mathrm{x} y$
$\sin (------)$
2
$z!$

Notice that "*" is commutative but "." is not.
(c3) $\mathrm{a} * \mathrm{~b}-\mathrm{b} * \mathrm{a}+\mathrm{c} . \mathrm{d}-\mathrm{d} . \mathrm{c}$;
(d3)
c. d - d . c

The " n " operator distributes over the multiplication operator "*".
(c4) $\mathrm{b}^{\wedge} 2 * \mathrm{~b}^{\wedge} 3$;
5
(d4)
b

The "~~" operator distributes over the non-commutative multiplication operator ".".

$$
\text { (c5) } \mathrm{b}^{\wedge} 2 \cdot \mathrm{~b}^{\wedge}{ }^{\wedge} \text {; }
$$

<5>
(d5)
b

Notice that " " does not distribute over "." and that "~~" does not distribute over "*".

```
(c6) b^2 . b^3;
```


The factorial operator "!" is defined as $n!=n(n-1)(n-2) \ldots 1$.
(c9) 8!;
(d9) 40320

The double factorial operator "!!" is defined as $n!!=n(n-2)(n-4) \ldots 1$ or $n!!=n(n-2)(n-4) \ldots 2$ depending on whether n is odd or even.

```
(c8) \(8!!;\)
(d8)
384
```


3.1.2 Numbers

Macsyma knows about several kinds of numbers:

- Integers consist of a string of digits not containing a decimal point. For example, 15934. Integers can grow very large, since their size is bounded only by the total virtual address space accessible to Macsyma.
- Rational numbers are represented as an exact ratio of two integers. For example, 3/2. Macsyma can represent any rational number, subject only to the memory limitations of your machine.
- Floats and bigfloats are floating-point numbers. They consist of a string of digits containing a decimal point, and are optionally followed by an e, a d, or a b and an integer exponent. Examples of floats are 459.3, 83.3495e6, and 79.46d5. Examples of bigfloats are 83.3495b6 and 3957204b15.
The size and precision of a floating point number is limited by each machine's hardware, so calculations involving them can be compromised by round-off errors. Bigfloats can have any number of digits you specify, but because of the performance penalty in using them you should use bigfloats only when necessary.
- Complex numbers are written with the imaginary unit i, which in Macsyma is written as \%i. For example, $4 i$ is written as $4 * \%$ i. Information about predefined constants, including $\% \mathbf{i}$, appears in Section 3.1.4, page 23. Information about using complex numbers appears on page 19. See also \%i and constant.
- Negative numbers are any kind of number beginning with a minus sign. For example, -4, -17.4, -3957204b15.

Macsyma does not limit the number of digits in an integer or rational number, but the range of nonzero floating-point numbers depends on your computer. For example, on Intel PCs a floating point number must have an absolute value between $1.2 \mathrm{e}-38$ and 3.4 e 38 and is limited to approximately eight-digit precision. To determine the range of floating point numbers on your machine do least_positive_float; and most_positive_float;

When you type a number, Macsyma simply returns it.

```
(c1) 15;
(d1) 15
(c2) 427.2;
(d2) 427.2
```

Macsyma preserves ratios as exact numbers rather than converting them automatically to a floating-point approximation.

```
(c3) 1/2;
```

1
(d3)
-
2

At any time, however, you can use the sfloat or dfloat commands to request a float approximation or the bfloat command to request a bigfloat approximation.

```
(c4) sfloat(%);
```

```
(d4)
    0.5
```

Here is a very large integer, called a bignum; the "\#" in the result is Macsyma's way of showing that the number continues on the next line.

```
(c5) 10^506 - 10^253 - 1;
(d5) 99999999999999999999999999999999999999999999999999999999999999999999999#
9999999999999999999999999999999999999999999999999999999999999999999999999999999#
9999999999999999999999999999999999999999999999999999999999999999999999999999999#
9999999999999999999989999999999999999999999999999999999999999999999999999999999#
9999999999999999999999999999999999999999999999999999999999999999999999999999999#
9999999999999999999999999999999999999999999999999999999999999999999999999999999#
9999999999999999999999999999999999999999
```

The default precision for floats is governed by each computer's hardware. In this example the precision shown is 8 , but in some implementations the precision is 16 .

```
(c6) sfloat(1/121);
(d6) 0.008264462
```

You can govern the default precision of bigfloats using the system variable bfprecision, whose default value is 20 .

```
(c7) bfloat(1/121);
(d7) 8.2644628099173553719b-3
```

To change the default precision of bigfloats, reset bfprecision.

```
(c8) bfprecision:125$
(c9) bfloat(1/121);
(d9) 8.264462809917355371900826446280991735537190082644628099173553719008264462#
8099173553719008264462809917355371900826446280991736b-3
```

Generally an operation with an integer and a floating-point number results in a floating-point number.

```
(c10) 4 * 3.0;
(d10)
12.0
```

The following commands allow you to manipulate expressions containing complex numbers:

- realpart and imagpart return the real and imaginary parts of an expression, respectively.
- rectform returns an expression in the form $\mathrm{a}+\mathrm{b} * \% \mathrm{i}$, where a and b are purely real.
- polarform returns an expression in the form $r * \% e^{\sim}(\% i * t h e t a)$ where r and theta are purely real, and \%e is the base of the natural logarithms (See page 23).

Consider the following examples.
The trigonometric functions that appear below, such as sin and cos, are described more fully in Section 4.6, page 50 , and the exponential command \exp is covered on page 24.

```
(c11) }\operatorname{sin}(\operatorname{exp}(%%*y+x))
    %i y + x
(d11) sin(%e )
(c12) realpart(%);
(d12) }\quad\mp@subsup{\operatorname{sin}(%e e}{e}{e
(c13) imagpart(d11);
                            x x
(d13) cos(%e cos(y)) sinh(%e sin(y))
(c14) rectform(d11);
    x x
(d14) %i cos(%e cos(y)) sinh(%e sin(y))
    x x
    + sin(%e cos(y)) cosh(%e sin(y))
```

The trigonometric command atan2, in (d15), returns the arctangent of y / x in the interval $(-\pi, \pi)$.

```
(c15) polarform(d11);
(d15) sqrt(cos (%e cos(y)) sinh (%e sin(y))
    2 x 2 x
+ sin (%e cos(y)) cosh (%e sin(y)))
    X X X
    %i atan2(cos(%e cos(y)) sinh(%e sin(y)), sin(%e cos(y)) cosh(%e sin(y)))
%e
```


3.1.3 Variables

Variables are named quantities. You can either bind a value to a variable, or you can leave the variable unbound and treat it formally. Binding a value to a variable is called assignment. This section shows you how you can use both bound and unbound variables in expressions.

To assign a value to a variable, type the name of the variable, followed by the ":" operator, followed by the value. Don't confuse the " $=$ " operator, which creates equations, with the assignment operator. The equation operator, discussed on page 24, does not assign values to variables.

When you type the name of an unbound variable, Macsyma simply returns that variable.

```
(c1) a;
```

(d1)
a

Assign the value 1234 to the variable a.

```
(c2) a:1234;
(d2) 1234
```

When you type the name of a bound variable, Macsyma returns its value.

```
(c3) a;
(d3)
1 2 3 4
```

Once bound, a stands for 1234 in subsequent expressions.

```
(c4) a + a;
(d4)
2468
```

You can add bound and unbound variables.

```
(c5) a + b;
(d5) b + 1234
```

A single quote before a bound variable supresses evaluation.
(c6) 'a;
(d6)
a

Using the variable a in expressions does not change its original value.
(c7) a ;
(d7)
1234

Confusing results often occur when you use a variable that you do not realize you have previously assigned. To remove a value from a variable use the remvalue command.

```
(c8) remvalue(a);
```

(d8)

```
(c9) a;
(d9) a
(c10) a + b;
(d10) b + a
```

You can also create compound assignment statements by enclosing the assignments, separated by commas, in parentheses. Note that Macsyma returns the value of the last statement.

```
(c11) (a:5, b:15.3e3);
(d11) 15305.0
```

Check the values of a and b.

```
(c12) a;
(d12) 5
(c13) b;
(d13) 15305.0
```

Use the $\mathbf{e v}$ command to re-evaluate (c10); it results in the sum of the values of a and b. Note that the sum of a floating point number and an integer is a floating point number.

```
(c14) ev(c10);
(d14)
15305.0
```

An alternative way of entering ev (c10), as shown below, is ' 'c10.

```
(c15) ''c10;
(d15) b + a
```

You can also use remvalue to remove the values of more than one variable.

```
(c16) remvalue(a,b);
(d16)
[a, b]
```

Now both a and b are unbound.

```
(c17) ev(c10);
(d17) b + a
```

Section 2.2 showed how you can use either the system variable \% or a D-LABEL to refer to a previous expression. Another way to refer to an expression is by name, after assigning it to a variable.

```
(c18) expr1:num \(+x+y\);
(d18) \(\quad \mathrm{y}+\mathrm{x}+\mathrm{num}\)
(c19) num:50;
(d19) 50
```

Notice that the value of expr1 does not change when num is assigned the value of 50 .

```
(c20) expr1;
```

(d20)

$$
y+x+n u m
$$

However, when you use $\mathbf{e v}$ to evaluate the expression, 50 appears in place of num. The commands ev (expr1) and $\mathrm{ev}(\mathrm{d} 18)$ are equivalent.

```
(c21) ev(expr1);
(d21)
y + x + 50
```

Assign the result shown in (d21) to a variable named expr2.

```
(c22) expr2:%;
(d22)
y + x + 50
```

Check its value, noting that it is different from (d20).

```
(c23) expr2;
(d23)
y + x + 50
```

Remove the value from the variable num.

```
(c24) remvalue(num)
(d24) [num]
```

Re-evaluate expr1, noting that the result is different from (d21). The command ' 'expr1 will give the same result as ev (expr1).

```
(c25) ev(expr1);
(d25) y + x + num
```

The value of expr2 remains the same, even though num is unbound.

```
(c26) expr2;
(d26)
y + x + 50
```

These variables can be manipulated just as if they were expressions.

```
(c27) expr2 + 1;
(d27)
y + x + 51
(c28) expr1 * 2;
(d28) 2(y + x + num)
```

The system variable values is a list all variables that have assigned values.
(c29) values;
(d29)

```
[expr1, expr2]
```

Use the keyword all to remove values from all defined variables.

```
(c30) remvalue(all);
(d30) [expr1, expr2]
```

You can assign a value to a variable locally, so that it is bound only for the duration of the current command. To do so, include the variable assignment(s) after the command to be executed, separated by a comma from the command.

In this example the variables u and v are initially unbound.

```
(c31) expr:u + v;
(d31) v + u
```

Locally bind v to 5 . This command is equivalent to ev(expr, v:5).

```
(c32) expr, v:5;
(d32) u + 5
```

After the command on (c32) executes, v reverts to being unbound.

```
(c33) v;
(d33) v
```

You can locally bind more than one variable at a time.

```
(c34) expr, v:a, u:4;
(d34) a + 4
```

Macsyma provides other methods for removing values and properties from variables. Refer to remvalue and kill in the Macsyma Reference Manual for more information.

3.1.4 Constants

Table 3.2 summarizes some commonly-used predefined constants.

Constant	Description
$\%$ e	Base of the natural logarithms (e)
$\%$ i	The square root of $-1(i)$
$\%$ pi	The transcendental constant pi (π)
inf	Real positive infinity (∞)
minf	Real negative infinity $(-\infty)$

Table 3.2: Some Predefined Macsyma Constants

Each term in the following sum simplifies to 1.

```
(c1) log(%e) + sin(%pi/2);
```

(d1)
2

You can use the base of natural logarithms explicitly.

```
(c2) u + sqrt(-1) * v;
(d2)
                                % v + u
(c3) %e %%;
    %i v + u
(d3)
    %e
```

Alternatively, define \%e using the exponential function. \%exp.

```
(c4) exp(u + %i * v);
    %i v + u
(d4)
%e
```

Re-evaluate the expression in (d4) with ev, locally binding u to 0 and v to \%pi.

```
(c5) ev(%, u:0, v:%pi);
(d5)
- }
```

The following notation is equivalent to the command in (c5).

```
(c6) d4, u:0, v:%pi;
(d6) - 1
```

See Section 4.6, page 50, "Using Trigonometric Functions," for examples of complex numbers. See Section 6.3, page 89, "Taking Limits," for examples using the constants inf and minf.

3.2 Creating Equations

You can combine expressions with the " $=$ " operator to describe equations.

```
(c1) eq:m*c^2 = e^2/r_cl;
```


You can manipulate equations like any other mathematical quantities.
(c2) $\% * r_{-} c l$;
(d2)
$c^{2} m r_{-} c l=e^{2}$

Here we solve for the r_{-}classical. Macsyma also has a powerful solve command. Refer to solve in the Macsyma Reference Manual for more information.
(c3) $\% / m / c^{\wedge} 2$;
(d3)

2
c m

The operator " $=$ " generally does not assign a value to a variable, it merely creates an equation. To assign a value to a variable you can use the ":" operator, described on page 20.

The variable $r_{-} c l$ is not bound by the equation operator.

```
(c4) r_cl;
(d4) r_cl
(c5) ev(eq, m=1/2, c=1);
    2
    e
(d5)
    2 r_cl
```

In the second and subsequent arguments to the ev command, you can use the " $=$ " operator to locally bind a value to a variable. In this case, "=" works like the ":" operator.
For more information about solving equations, see Chapter 5.

3.3 Defining Functions

To define a function, use the syntax

$$
\text { function }\left(\arg _{1}, \arg _{2}, \ldots, \arg _{n}\right):=\operatorname{body}
$$

where function is the name of the function, $\arg _{i}$ are the formal arguments in parentheses, ":=" is the function operator, and body is any Macsyma expression involving the variables $\arg _{1}$ through $\arg _{n}$.

Define the function f

```
(c1) \(f(p, q):=9 * p^{\wedge} 4-q^{\wedge} 4+2 * q^{\wedge} 2\);
    \(4 \quad 4 \quad 2\)
    \(f(p, q):=9 p-q+2 q\)
```

Find the value of f at $p=10,864$ and $q=18,817$. Because Macsyma is not limited to integers of a fixed size, it can return the correct answer.
(c2) $f(10864,18817)$;
(d2) 1

Evaluating f at $p=10,864.0$ and $q=18,817.0$ returns the wrong answer since the default precision for floating-point numbers is not high enough.
(c3) $f(10864.0,18817.0)$;
(d3) 0.0

The function l defines a line.

```
(c4) l(x) := m*x + b;
(d4)
    l(x) := m x + b
```

The following (x, y) coordinates are three points on a line.

```
(c5) (x1:5201477, y1:99999,
    x2:5201478, y2:100000,
    x3:5201479, y3:100001)$
```

For optimal curve fitting with respect to least square approximation, use the following formulas for the variables m and b above. (See the LSQ package for finding best least square fits.)

```
(c6) m: (x1*y1 + x2*y2 + x3*y3 - (1/3)*(x1 + x2 + x3)*(y1 + y2 + y3)) /
    (x1^2 + x2^2 + x3^2 - (1/3)*(x1 + x2 + x3)^2)$
(c7) b: (1/3)*(y1 + y2 + y3) - (m/3)*(x1 + x2 + x3)$
```

Calculate the value for $l(5201480)$.
(c8) 1 (5201480);
(d8) 100002

Macsyma also allows you to deal with composite functions.

```
(c9) \(f(x):=x^{\wedge} 2+4\);
(d9) \(f(x):=x^{2}+4\)
(c10) \(\mathrm{g}(\mathrm{x}):=1 / \mathrm{x}+3\);
    1
(d10) \(\quad g(x):=-+3\)
x
(c11) \(f(g(x))\);
(d11) \((-+3)+4\)
    x
(c12) \(g(f(x))\);
(d12)
    1
-----+3
    2
    \(\mathrm{x}+4\)
```

```
(c13) f(g(2));
65
(d13) --
    4
(c14) g(f(2));
(d14) --
8
```

You can change the definition of a function by redefining it, or remove a function definition using remfunction. You can also find out about the functions that are currently defined. The system variable functions holds a list of all defined functions. The command dispfun displays the definitions of the functions you specify.
Redefine g to remove its previous definition.

```
(c15) g(x) := x - a;
(d15)
g(x) := x - a
```

Check which functions are currently defined.

```
(c16) functions;
(d16) [l(x), f(x), g(x)]
```

Check the definitions for both of these functions.

```
(c17) dispfun(f,g);
    2
(e17) f(x) := x + 4
(e18) g(x) := x - a
(d18) done
```

Remove the function definitions from f and g.

```
(c19) remfunction(f, g);
(d19) [f, g]
```

If the function you call is undefined, Macsyma simply returns what you typed.

```
(c20) f(14);
(d20) f(14)
```


3.4 Using Lists

A list in Macsyma is an ordered set of elements, separated by commas and enclosed in square brackets. An element of a list can be any Macsyma expression. You can assign a list as the value of a variable, and then refer to its individual elements as subscripted variables.

Lists can be used as arguments to some commands, such as solve (Chapter 5) and matrix (Chapter 7). Other commands return results in a list, including remvalue, remfunction, and solve.

```
(c1) list1:[aa,bb,cc];
(d1) [aa, bb, cc]
(c2) list2:[dd,ee,ff];
(d2) [dd, ee, ff]
```

Add the elements of the two lists together.
(c3) list1+list2;
(d3)

```
[dd + aa, ee + bb, ff + cc]
```

Multiply the elements of the two lists together, assigning the results to list3.
(c4) list3:list1*list2;
[aa dd, bb ee, cc ff]

Find the inner product of the two lists; notice that the result is not a list.
(c5) list1.list2;
(d5)
cc ff + bb ee + aa dd

You can use the commands first, last, part, and rest to access the elements of a list. These commands work for any expression, but are particularly useful for referring to parts of a list. In addition, the length command returns the length of the specified list. This command is useful in finding out the number of solutions in a list returned by solve (see Chapter 5).

The first command returns the first element in the list.

```
(c6) first(list3);
```

aa dd

The rest command returns a list consisting of all the elements in the list except the first element.
(c7) rest(list2);
(d7) [ee, ff]

The last command returns the last element in the specified list.
(c8) last(list1);
(d8)
cc

Here is how to subtract the second item in list3 from the first item in list3.

```
(c9) first(list3) - first(rest(list1));
(d9)
aa dd - bb
```

Here the rest command returns all but the first two elements.

```
(c10) rest(list2, 2);
(d10)
[ff]
```

The length function returns the number of the elements in the specified list.

```
(c11) length(list1) + length(list2);
(d11) 6
(c12) length(list1 + list2);
(d12) 3
```

You can also extract parts of a list with the part command, described in Section 4.5, page 45. This section also shows you how the first, last, and rest commands work on other kinds of expressions.

3.5 Using Arrays

In Macsyma an array is an n-dimensional data structure. Arrays enable you to refer to a collection of elements using a single name. An element of an array is indexed by a subscripted variable, which is a name followed by a list of subscripts enclosed in square brackets.

Macsyma supports two array types, declared and undeclared. Declared arrays have a fixed size allocation and are indexed by non-negative integers. Undeclared arrays, called "hashed" arrays, are of arbitrary size and indexing. If you assign a value to a subscripted variable without declaring the corresponding array, the system sets up an undeclared array. Declared arrays are similar to the fixed-size arrays that you can declare in other programming languages, such as FORTRAN.

To declare an array, use the command

$$
\text { (arrayname, }\left[\text { dimension }_{1}, \ldots, \text { dimension }_{n}\right] \text {) }
$$

to declare the number of dimensions and indicate the maximum value of each subscript. The system then allocates space for the entire array.

If you know the size of the array you will need, it is generally best to declare it, since this is more efficient. Undeclared arrays are less efficient, but can grow to any size.

In the next example, Macsyma does not know about the array foo.
(c1) foo [5];
(d1) foo

Set up an undeclared array by assigning the value 1 to the first (0 th—Macsyma arrays are 0 based) element.
(c2) my_factorial[0]:1;

Define the other elements of the undeclared array recursively.

```
(c3) my_factorial[n] := n * my_factorial[n - 1];
(d3)
    my_factorial := n my_factorial 
```

Now, asking for the element in slot 8 returns the factorial of 8 .
(c4) my_factorial[8];
(d4)
40320

Declare a one-dimensional array whose maximum subscript value is 8 .

```
(c5) array(your_factorial, 8)$
```

Define the elements of the array as factorials, similar to my_factorial above.

```
(c6) your_factorial[0]:1$
(c7) your_factorial[n] := n * your_factorial[n - 1]$
```

Like my_factorial, the array your_factorial holds the factorial of 8 .

```
(c8) your_factorial [8];
(d8) 40320
```

Unlike the undeclared array, however, your_factorial cannot handle subscripts larger than 8 .

```
(c9) my_factorial[9];
(d9) }36288
(c10) your_factorial[9];
Array YOUR_FACTORIAL has dimensions [8], but was called with [9]
(d10)
```

Another example of recursion appears in Section 11.6, "Writing Recursive Functions."
The system variable arrays is a list of all existing arrays, declared and undeclared.

```
(c11) arrays;
(d11) [my_factorial, your_factorial]
```

For hashed (undeclared) arrays, the command arrayinfo() returns the word "hashed," the number of dimensions, and the subscripts of every element that has a value. For declared arrays, the command returns the word "declared," the number of dimensions, and the maximum value of each dimension's subscript.

```
(c12) arrayinfo(my_factorial);
(d12) [hashed, 1, [0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]
(c13) arrayinfo(your_factorial);
(d13) [declared, 1, [8]]
```

Section 7.1, page 115 describes how you can use arrays to create matrices. Refer to arrays in the Macsyma Reference Manual for more information.

Chapter 4

Algebra

You can manipulate algebraic expressions in many ways. Macsyma provides facilities for expanding, simplifying, and factoring expressions, making substitutions in expressions, extracting parts of an expression for subsequent use in other commands, and using trigonometric functions.

Sections 4.1 through 4.6 cover these topics and provide many examples using the algebraic manipulation commands. Section 4.8, "Practice Problems," presents several problems exercising these capabilities for you to try on your own. Solutions appear in Appendix B.
Although the examples in this chapter introduce many commands and option variables, the scope of this document allows only a limited introduction to Macsyma's algebraic manipulation capabilities. To learn more, consult the Macsyma Reference Manual.

4.1 Expanding Expressions

Macsyma provides several expansion-related commands, each of which expands its argument in a different way. The expand command, for example, multiplies out product sums and exponentiated sums, recursing through all levels of the expression. The distrib command also distributes sums over products, but works only at the top level of the expression.

This section presents the following commands:

- expand expands the given expression by multiplying out products of sums and exponentiated sums at all levels of the expression.expand
- multthru multiplies a term or terms through a sum or equation.
- distrib expands the given expression by distributing sums over products.
- partfrac does a complete partial fraction decomposition, expanding an expression in partial fractions with respect to a given main variable.

For a summary of the differences between expand, multthru, and distrib, see Table 4.1, on page 35.
Macsyma also provides several option variables that you can set to modify the way the expansion commands work. Two option variables, logexpand and radexpand, are discussed in this section.

The command expand (exp) multiplies out products of sums and exponentiated sums, splits numerators of rational expressions that are sums into their respective terms, and distributes both commutative and non-commutative multiplication over addition at all levels of the expression exp. Use expand (\exp , p, n), to
multiply out only terms with exponents e, such that $n \leq e \leq p$. Refer to expand in the Macsyma Reference Manual for more information.

```
(c1) expr1:(1/(a + b) \(\left.)^{\wedge} 2+x /(a-b)^{\wedge} 3\right)^{\wedge} 2\);
(d1)
\({ }^{\mathrm{x}}\left(-------{ }^{1}{ }^{2}{ }^{2}\right.\)
32
\[
(a-b) \quad(b+a)
\]
```

Expand expr1, assigning the result to expr2.

```
(c2) expr2:expand(expr1);
                            2
                            X
(d2)
```



```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6}} \\
\hline & \\
\hline
\end{tabular}
                            2 x
        + --------------------------------------------
            5 4 4 2 3 % 3 2 % 4
            -b +ab + 2a b - 2a b - a b + a
                            1
            + -------------------------------------
            4 b+4ab 3 + 6a a b + 4a a b +a
```

With additional arguments, expand multiplies out specific terms only; (c3) expands certain terms of expr1 with positive exponents.
(c3) expr3:expand(expr1, 2, 0);
2
$\mathrm{x} \quad 2 \mathrm{x}$
(d3)

Expand certain terms of expr1 with negative exponents.
(c4) expand(expr1, 0, -2);
(d4)

You can set option variables to control how much and what kind of expansions are to take place. The option variable logexpand controls the expansion of logarithms of products and powers, and radexpand controls the expansion of expressions containing radicals.

The \log command gives the natural \log of its argument in base \mathbf{e}.
(c5) $\log (\%$ e)
(d5)
1

When logexpand is true, Macsyma does not simplify the logarithms of products and quotients.

```
(c6) logexpand;
(d6) true
(c7) log(a*b);
(d7) log(a b)
(c8) log(a/b);
(d8)
    log(-)
    b
```

Resetting logexpand to all tells Macsyma to simplify these logarithms. Refer to logexpand in the Macsyma Reference Manual for more information.

```
(c9) logexpand:all;
(d9) all
(c10) log(a*b);
(d10) }\quad\operatorname{log}(b)+\operatorname{log}(a
(c11) log(a/b);
(d11)
log(a) - log(b)
```

When radexpand is true, Macsyma does not simplify radicals containing products, quotients, and powers

```
(c12) radexpand;
(d12) true
(c13) sqrt(x^y);
(d13) sqrt(x )
(c14) sqrt(x*y);
(d14) sqrt(x y)
(c15) sqrt(x/y);
(d15)
sqrt(-)
    y
```

Resetting radexpand to all tells Macsyma to simplify these radicals

```
(c16) radexpand:all;
(d16) all
```

```
(c17) sqrt(x^y);
(d17) y/
(c18) sqrt(x*y);
(d18) sqrt(x) sqrt(y)
(c19) sqrt(x/y);
sqrt(x)
(d19)
sqrt(y)
```

For more information on the kinds of option variables that affect expansion, type apropos(expand); or consult the Macsyma Reference Manual.

The command multhru $\left(\exp _{1}, \exp _{2}\right)$ multiplies each term in the expression $\exp _{2}$, which should be a sum or an equation, by the expression $\exp _{1}$. Alternatively, the command multthru(exp) multiplies one of the expression exp's factors, which should be a sum, by the other factors of exp. That is, for an expression

$$
\mathrm{f}_{1} * \mathrm{f}_{2} * \ldots * \mathrm{f}_{n}
$$

where at least one factor f_{i} is a sum of terms, the command multthru($\mathbf{f}_{1} * \mathbf{f}_{2} * \ldots * \mathbf{f}_{n}$) multiplies each term in the sum f_{i} by all the other factors in the product.

Multiply each term in the sum expr3 by $(a-b)^{4}$.

```
(c20) multthru((a - b)^4, expr3);
    2 4
    x 2 (a - b) x (a - b)
(d20)
-------- + ----------- + ---------
    2 2 4
(a-b) (b + a) (b + a)
```

Using multthru, multiply each term in the equation by $(a-b)$.

```
(c21) \(\mathrm{a}=23 * \mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2-\mathrm{y}^{\wedge} 3 /(\mathrm{a}-\mathrm{b})\);
    3
    \(y+{ }^{2}+2\)
    \(\mathrm{a}-\mathrm{b}\)
(c22) multthru(a-b, \%);
    322
(d22)
    \(a(a-b)=-y+(a-b) y+23(a-b) x\)
(c23) expr4: ( \(\left.(\mathrm{b}+\mathrm{a})^{\wedge} 10 *(\mathrm{~s}-\mathrm{t})^{\wedge} 2+2 * a * b *(\mathrm{~s}-\mathrm{t})+\mathrm{a}^{\wedge} 2 * \mathrm{~b}^{\wedge} 2 *(\mathrm{~s}-\mathrm{t})\right)\)
    /a/b/(s - t) 4 ;
            10222
            \((b+a)(s-t)+a b(s-t)+2 a b(s-t)\)
(d23)
```



```
4
a b (s - t)
```

Decompose expr4 into a sum of terms, each of which is factored into lowest terms.

The command distrib (exp) distributes sums over products in the expression exp. Unlike the expand command, distrib works only at the top level of an expression and expands all the sums at that level.

```
(c25) (x + 1)*((u + v)^2 + a*(w + z)^2);
    2 2
(d25)
    (x+1)(a(z+w) + (v + u) )
```

Compare the result returned by multthru, which expands at all levels of the expression, with the results returned by distrib and expand

```
(c26) multthru(\%);
(d26) \(\quad a(x+1)(z+w)^{2}+(v+u)^{2}(x+1)\)
(c27) distrib(d25);
```



```
    \(+\mathrm{aw}+\mathrm{v}+2 \mathrm{uv}+\mathrm{u}\)
```

Table 4.1 summarizes the differences between distrib, multthru, and expand.

\exp	$\operatorname{distrib}(\exp)$	multthru (\exp)	expand (\exp)
$(a+b)(c+d)$	$b d+a d+b c+a c$	$(b+a) d+(b+a) c$	$b d+a d+b c+a c$
$\frac{1}{(a+b)(c+d)}$	$\frac{1}{(b+a)(d+c)}$	$\frac{1}{(b+a)(d+c)}$	$\frac{1}{b d+a d+b c+a c}$
$(b(d+c)+1)(f+a)$	$b(d+c) f+f+a b(d+c)+a$	$(b(d+c)+1) f+a(b(d+c)+1)$	$b d f+b c f+f+a b d+a b c+a$

Table 4.1: A Comparison of distrib, multthru and expand

The partfrac (exp, var) command performs a complete partial fraction decomposition, expanding the expression \exp in partial fractions with respect to the main variable var.

4.2 Simplifying Expressions

Macsyma provides many commands that simplify expressions. The following simplification commands are described in this section:

- ratsimp simplifies an expression by combining the rational functions in the expression, then canceling out the greatest common divisor in the numerator and denominator.
- radcan simplifies expressions containing radicals, logarithms, and exponentials.
- scsimp implements the sequential comparative simplifier, which applies given identities to an expression in an effort to obtain a smaller expression.
- combine and rncombine group the terms in a sum that have the same denominator into a single term.
- xthru combines the terms of a sum over a common denominator without expanding them first.
- map can apply a given function, such as a simplification command, to each term of a very large expression. This can be useful when applying the function to the entire expression would be inefficient.

This section also introduces the option variables algebraic and ratfac.
The command ratsimp (\exp) simplifies the expression exp and all of its subexpressions, including the arguments to nonrational functions. With additional arguments, ratsimp (exp, var $r_{1}, v a r_{2}, \ldots, \operatorname{var}_{n}$) specifies the ordering of each variable var $_{i}$ as well.
ratsimp first combines the sum of rational functions (quotients of polynomials) into one rational function, then cancels out the greatest common divisor of this rational function's numerator and denominator.

$$
\text { (c1) }-\left(x^{\wedge} 5-x\right) /(x-1)+x+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 4+(a+b+c)^{\wedge} 3 ;
$$

$\frac{x}{x}-x \quad 4 \quad 3 \quad 2$
$\left.----x+x+x+x+x+(c+b+a)^{3}\right)$
(d1)

Simplify the expression in (d1) with the ratsimp command.
(c2) ratsimp (\%);
$(d 2) c+(3 b+3 a) c+(3 b+6 a b+3 a) c+b+3 a b+3 a b+a$

Simplify the following expression with Macsyma's normal ordering of variables.

```
(c3) \(\mathrm{d} *(\mathrm{w}+\mathrm{a}) * \mathrm{x}+\mathrm{c} *(\mathrm{w}+\mathrm{a}) * \mathrm{x}+\mathrm{b} * \mathrm{~d}+\mathrm{b} * \mathrm{c}+\mathrm{c} * \mathrm{~d}\);
(d3) \(\quad d(w+a) x+c(w+a) x+c d+b d+b c\)
(c4) ratsimp(\%);
(d4) \(\quad((d+c) w+a d+a c) x+(c+b) d+b c\)
```

Resimplify (d3), ordering d first and c second.

```
(c5) ratsimp(d3, c, d);
(d5)
    d ((w+a) x + c + b ) + c ((w + a) x + b)
```

In (c2) and (d2) Macsyma simplified the terms containing the variable x to zero, but it returned the expanded result of $(a+b+c)^{3}$, which is the canonical form of the polynomial. With some practice, you will learn to use the various simplification commands to transform an expression into the form you want.
You can set the option variable ratfac to true to invoke a partially factored form for canonical rational expressions.

Bind ratfac to true for the duration of this command, and simplify the expression in (d3).

```
(c6) ratsimp(d3, c, d), ratfac:true;
(d6)
    (d + c) ((w + a) x + b)
```

By setting the option variable algebraic to true, you can indicate that algebraic integers are to be simplified. By default, this variable is false.

```
(c7) 1/(sqrt(x) - 2);
    1
(d7)
        sqrt(x) - 2
(c8) ratsimp(%);
(d8)
sqrt(x) - 2
```

Locally bind algebraic is true, then use ratsimp to rationally simplify the expression in (d8).

```
(c9) ratsimp(%), algebraic:true;
sqrt(x) + 2
(d9)
-----------
    x - 4
```

The simplification command radcan (exp) handles expressions containing radicals, logarithms, and exponentials.

Here we simplify an expression using radcan.

```
(c10) ( log(x^2 + x) - log(x))^a/log(x + 1)^(a/2)
    + (%e^x - 1)/(%e^(x/2) + 1)
    + sqrt(x^2 - y^2)/sqrt(x - y);
```



```
(c11) radcan(%);
(d11) sqrt (y + x ) + log(x + 1) + %e - 1
```

The command $\operatorname{scsimp}\left(e x p\right.$, rule $_{1}, \ldots$, rule $\left._{n}\right)$ applies each identity rule ${ }_{i}$ to the expression \exp. If the expression that results from the application of these identities is smaller, the scsimp repeats the process. If the resulting expression is not smaller after all the identities are applied, the command returns the original expression exp.

Use scsimp to simplify expr8, subjected to the constraints eq1 and eq2 as simplification rules

```
(c12) expr8:(k1*k4 - k1*k2 - k2*k3)/k3^2;
    k1 k4 - k2 k3 - k1 k2
(d12)
    --------------------
    2
        k3
(c13) eq1:k1*k4 - k2*k3 = 0;
(d13) k1 k4 - k2 k3 = 0
(c14) eq2:k1*k2 + k3*k4 = 0;
(d14) k3 k4 + k1 k2 = 0
(c15) scsimp(expr8, eq1, eq2);
    k4
(d15) --
k3
```

The command combine (exp) groups terms with the same denominator into a single term.
Using multthru, write this expression as a sum of fractions.

```
(c16) ((b + a)^10*(s - t)^2 + 2*a*b*(s - t) + a^2*b^2*(s - t)) /a/b/(s - t)^4;
```


The command $\mathbf{x t h r u}(e x p)$ combines all terms of the expression \exp, which should be a sum, over a common denominator, without expanding products and exponentiated sums the way multhru does.
Combine the terms of the expression m_expr over a common denominator.

```
(c18) xthru(m_expr);
10
\((b+a)(s-t)+a b(a b+2)\)
(d18)
-------------------------------------
    3
\(\mathrm{a} b(\mathrm{~s}-\mathrm{t})\)
```

Combine all terms with the same denominator into a single term.

```
(c19) cd_expr:x/a + y/a + z/(2 * a);
    z \(\quad \mathrm{y} \quad \mathrm{x}\)
(d19)
    _-_ + _ + _
    2 a a a
(c20) combine(cd_expr);
    \(y+x\)
(d20)
    __ + _-_-_
    2 a a
(c21) rncombine(cd_expr);
    \(z+2 y+2 x\)
(d21)
    ------------
```

 2 a
 The command $\operatorname{map}(f u n c t i o n, ~ e x p)$ applies a function, such as a simplification command, to each term of an expression exp. The map command is useful when applying a function to a large expression would be inefficient. Refer to map in the Macsyma Reference Manual for more information.
(c22) map(f, cd_expr);

z	y	x
$f(---)$	$+f(-)$	$+f(-)$
$2 a$	a	a

4.3 Factoring Expressions

Macsyma provides a number of commands and option variables to factor expressions. This section presents the following commands:

- factor factors an expression into factors irreducible over the integers.
- cfactor factors an expression with respect to one variable, using complex numbers, including radicals.
- factorsum tries to separate the terms in a sum into groups that can have common factors, then factors them.

The section also presents examples of the option variable dontfactor.
To factor irreducibly, you can use the command factor (exp), where exp is an expression containing any number of variables or functions.

Factor an expression irreducibly over the integers. Macsyma does not necessarily return a simplified result.

```
(c1) x^28 + 1;
```


This command does not return x^{28}, as might be expected.
(c3) \% - 1;
$\left(x^{4}+1\right)\left(x^{24}-x^{20}+x^{16}-x^{12}+x^{2}-x^{4}+1\right)-1$

You can resimplify the result before applying it to other commands.
(c4) ratsimp (\%);
(d4)
\square x

Macsyma finds only those factors whose coefficients are polynomials in the coefficients of the input polynomial.
(c5) $\mathrm{a} * \mathrm{x}^{\wedge} 2-4 * \mathrm{a}$;

```
(d5)
ax - 4 a
(c6) factor(%);
(d6)
a (x-2) (x + 2)
```

The factor command does not perform algebraic extensions during the factoring process; $x^{2}-2$ is irreducible over the integers.
(c7) $\mathrm{a} * \mathrm{x}^{\wedge} 2-2 * \mathrm{a}$;
(d7) a $\mathrm{x}-2 \mathrm{a}$
(c8) factor (\%);
(d8)
a ($\mathrm{x}-2$)

The cfactor command factors with complex numbers and radicals.
(c9) cfactor ((a*x^2 - 2*a), x);
(d9)
$\mathrm{a}(\mathrm{x}-\operatorname{sqrt}(2))(\mathrm{x}+\operatorname{sqrt}(2))$

When you solve a polynomial using the function solve (discussed in Chapter 5), Macsyma calls the function factor to factor it, if necessary. If the factors are of degree 4 or less, Macsyma applies standard formulas to generate the solution.
The command factorsum (exp) tries to separate the terms of \exp, which should be a sum, into groups that can have common factors, then factors them.

Here we enter an expression to be factored.

```
(c10) (x + 1)*((u + v)^2 + a*(w + z)^2);
    2 2
(d10) (x+1)(a(z+w) + (v + u))
```

Then we expand the expression, assigning the result to the variable expr7.

```
(c11) expr7:expand(%);
```


Notice that the factor command does not return the expression shown in (d10).

```
(c12) factor(expr7);
```


The command factorsum can convert the expression back into the original factored form.

```
(c13) factorsum(expr7);
```

(d13) $(\mathrm{x}+1)\left(\mathrm{a}(\mathrm{z}+\mathrm{w})^{2}+(\mathrm{v}+\mathrm{u})^{2}\right)$

You can set dontfactor to a list of variables for which factoring is disabled in subsequent commands.

```
(c14) expr9: ( \(\left.x^{\wedge} 2 * y \wedge 2+2 * x * y^{\wedge} 2+y^{\wedge} 2-x^{\wedge} 2-2 * x-1\right) / 36 /\left(y^{\wedge} 2+2 * y+1\right)\);
            \(\begin{array}{lllll}2 & 2 & 2\end{array}\)
    \(\mathrm{x} y+2 \mathrm{x} y+\mathrm{y}-\mathrm{x}-2 \mathrm{x}-1\)
(d14)
    -----------------------------------
\(36\left(y^{2}+2 y+1\right)\)
```

Set dontfactor to a list containing the variable x, which is to be left unfactored.

```
(c15) dontfactor:[x];
(d15) [x]
(c16) factor(expr9);
    2
    (x + 2 x + 1) (y - 1)
(d16)
    ---------------------
    36(y + 1)
```

Reset dontfactor to an empty list, so that the factoring of x is enabled again. Note the difference between (d18) and (d16).

```
(c17) dontfactor:[]$
(c18) factor(expr9);
```

2
$(x+1)(y-1)$
(d18)

$36(y+1)$

4.4 Making Substitutions

Macsyma allows you to perform many kinds of substitution, such as substituting one expression for another in a third. This section presents the following commands:

- ev evaluates a given expression in the specified environment.
- subst makes replacements by substitution, with some restrictions on the expression being replaced.
- ratsubst is similar to subst, but without the restrictions on the expression being replaced.

The $\mathbf{e v}\left(\exp , \arg _{1}, \ldots, \arg _{n}\right)$ command allows you to re-evaluate an expression, specifying a replacement for some variable in that expression. Refer to ev in the Macsyma Reference Manual for more information.
(c1) expr11:z*\% ${ }^{\wedge} \mathrm{z}$;
(d1)
z \%e

Here ev replaces every occurrence of z with x^{2} in expr11 by temporarily binding z to x^{2}, then re-evaluating expr11.

```
(c2) ev(expr11,z=x^2);
(d2)
    2 x
x %e
```

In the next example, (c3) shows an equivalent notation for performing this replacement

```
(c3) expr11, z=x^2;
```

(d3) | $2 \mathrm{x}^{2}$ |
| :---: |
| $\times \% \mathrm{e}^{2}$ |

The variable expr11 itself does not change.

```
(c4) expr11;
(d4)
z %e
```

To make replacements by substitution, you can use the command subst (a, b, c), where a is the expression you want to substitute for expression b in expression c. The argument b must be an atom (i.e. a number, a string, or a symbol) or a complete subexpression of c. When b does not have these characteristics, use ratsubst (a, b, c) instead.

Substitute x^{2} for z in expr11; the actual value of expr11 does not change.

A form which is equivalent to the one above uses the " $=$ " operator.

```
(c6) subst(z = x^2, expr11);
    2
    2 x
(d6)
    x %e
```

To change the value of expr11, reassign it.

```
(c7) expr11:subst(a^2*b^3, z, expr11);
```

 23
 23 a b
 (d7)
a b \%e
(c8) expr11;
(d8)

2	3	a^{2}
a	b	b^{3}
a		

We set expr12 to an expression which contains four atoms, a, b, c, and d, and two complete subexpressions, d and $c+b+a$.
(d9)

$$
c+b+a
$$

d

The subst command cannot replace $a+b$ because it is not a complete subexpression of expr12.

```
(c10) subst(d, a + b, expr12);
    c + b + a
(d10)
    ---------
```

d

Use ratsubst to perform the replacement.

```
(c11) ratsubst(d, a + b, expr12);
    d + c
(d11)
    -----
```

d

The subst command makes only syntactic substitutions.

```
(c12) expr13:expand((1 + sin(x)) ^4);
    4 3
        3 2
(d12) }\quad\operatorname{sin}(x)+4\operatorname{sin}(x)+6\operatorname{sin}(x)+4\operatorname{sin}(x)+
(c13) subst(1 - cos(x)^2, sin(x)^2, expr13);
            4 3 2
(d13) }\quad\operatorname{sin}(x)+4\operatorname{sin}(x)+4\operatorname{sin}(x)+6(1-\operatorname{cos}(x))+
(c14) ratsubst(1 - cos(x)^2, sin(x)^2, expr13);
                            2 4 2
(d14) (8-4 cos (x)) }\operatorname{sin}(x)+\operatorname{cos}(x)-8\operatorname{cos}(x)+
```

You can specify the subexpression to replace explicitly, as shown above. Macsyma also provides commands for indicating the parts of an expression by their position. These commands appear in the next section.

4.5 Extracting Parts of an Expression

You have many commands available for extracting parts of Macsyma expressions for use in other contexts. This section presents the following commands:

- part returns the subexpression you specify, according to its position in the expression. Table 4.2, page 46, summarizes how to use this command.
- dpart is similar to part except that it returns the entire expression, with the selected subexpression displayed inside a box.
- substpart substitutes the characters you specify for the indicated subexpression, then returns the new value of the expression.
- pickapart assigns intermediate display lines (E-LINES) to all subexpressions of an expression, down to a specified depth.
- reveal displays an expression to the specified integer depth, indicating the length of each part.
- lhs and rhs return the left and right sides of the given equation, respectively.
- first and last return the first and last part of the specified expression, respectively.
- rest returns the expression with one or more of its leading elements removed.
- coeff and ratcoef return the coefficient of a given variable in the specified expression.

In addition, the system variable piece holds the last expression selected with one of the part extraction commands. The variable piece is set during the execution of the part extraction command and thus can be used within the command itself.

To extract part of an expression you can use part (\exp , n), where \exp refers to an equation or expression, and n is an integer that represents the part you want. Table 4.2 summarizes the rules for using the part command.

Here part is used to extract the second part of eq3.

```
(c1) eq3: x^2 + 2*x + 2 = y^2 + 1
            2 2
(d1) x + 2 x + 2 = y + 1
(c2) part(%, 2);
(d2)
                    2
    y + 1
```

Now we can extract the first part of the result shown in (d2).
(c3) $\operatorname{part}(\%, 1)$;
(d3)
2
y

Notice in Table 4.5 that part 0 is always the operator and the arguments are the successive parts. The equation $\mathrm{a}=\mathrm{b}$ is interpreted by the part command as if it were in the functional notation " $=$ " (a, b), similar to $f(x, y, z)$.

Command	$\exp : f(\mathrm{x}, \mathrm{y}, \mathrm{z}) ;$	$\exp : \mathrm{a}=\mathrm{b} ;$
$\operatorname{part}(\exp , 0)$	f	$=$
$\operatorname{part}(\exp , 1)$	x	a
$\operatorname{part}(\exp , 2)$	y	b
$\operatorname{part}(\exp , 3)$	z	

Table 4.2: Using the part Command

With additional arguments, $\operatorname{part}\left(\exp\right.$, num $_{1}, \ldots$, num $\left._{n}\right)$ allows you to obtain the part of the expression \exp specified by part $n^{2} m_{1}$, then find the num $_{2}$ part of the resulting expressions, and so on.

This command is equivalent to (c2) and (c3) above.

```
(c4) part(eq3,2,1);
(d4)
y
```

The command dpart $\left(\exp\right.$, num $\left._{1}, \ldots, n u m_{n}\right)$ is similar to part, except that instead of simply returning the specified subexpression, this command returns the entire expression with the selected subexpression displayed inside a box.
In addition, the system variable piece holds the last expression selected with one of the part selection commands, such as part, dpart, and substpart (below).

Select a part of the expression big_expr1 to be highlighted with a box in the output
(c5) big_expr1: ($\left.x^{\wedge} 3+3 * x^{\wedge} 2+3 * x+1\right) /\left(d^{\wedge}\left(x^{\wedge} 3+3 * x^{\wedge} 2+3 * x+1\right)+n\right)$;
(d5)
$\mathrm{x}+3 \mathrm{x}+3 \mathrm{x}+1$

32
$x+3 x+3 x+1$
$\mathrm{n}+\mathrm{d}$
(c6) dpart(big_expr1, 2, 2, 2);
$3 \quad 2$
$\mathrm{x}+3 \mathrm{x}+3 \mathrm{x}+1$
(d6)

$\mathrm{n}+\mathrm{d}$

Return the value of piece, whose value is the subexpression selected by dpart above.
(c7) piece;
(d7)

$$
\begin{gathered}
3 \\
x+3 x+3 x+1
\end{gathered}
$$

The command substpart $\left(x, \exp\right.$, num $_{1}, \ldots$, num $\left._{n}\right)$ substitutes x for a subexpression then returns the new value of the expression exp. You can indicate the subexpression for substpart just as you do for part, by specifying the arguments \exp, num $_{1}, \ldots$, num $_{n}$.
Note that x can be some operator to be substituted for an operator of exp. In some cases, you might need to enclose x in double quotes; for example, the command substpart ("+", a*b, 0); returns $\mathrm{b}+\mathrm{a}$.

Here we factor the part of big_expr1 selected by dpart, then substitute back into the expression.

```
(c8) substpart(factor(piece), big_expr1, 2, 2, 2);
    3 2
    x + 3x + 3 x + 1
(d8)
    ------------------
        3
        (x+1)
        n + d
```

The command pickapart (exp, depth) assigns E-LABELs to all subexpressions of the expression exp down to the specified integer depth. You will find this command useful for dealing with large expressions, and in order to assign parts of expressions to variables without having to use the part command.

Display subexpressions of big_expr2 down to the second level, assigning each subexpression to an E-LABEL.

```
(c9) big_expr2:log(a*x^2 + b*x + c)^4
    - 1/(1 + 1/y)^(1/2)
    + exp(-%i*cos(12*a - b + c))
    + a0*sin(a*x^2 + b)^2
    - x*y;
    4 4 2
    2 2
(d9) - x y - --------- + log (a x + b x + c) + a0 sin (a x + b)
            1
        sqrt(- + 1)
            y
                - %i cos(c - b + 12 a)
                            + %e
(c10) pickapart(big_expr2, 2);
(e10)
(e11)
(e12)
(e13)
            sin (a x + b)
(e14)
(d14)
    %e14}+\textrm{a}0\mathrm{ e13 +e12 - e11 - e10
```

The command reveal (exp, depth) displays the expression exp to the specified integer depth, indicating the length of each part.
Use reveal to break down the expression big_expr2 to a depth of 6 .

```
(c15) reveal(big_expr2, 6);
```

Note that reveal displays sums as $\operatorname{Sum}(n)$, products as Product (n), quotients as Quotient, and exponentials as Expt.

```
    14
(d15) - x y - ---------------- \(+\log (a \operatorname{Expt}+b x+c)\)
    sqrt(Quotient + 1)
            \(2-\% i \cos (\operatorname{Sum}(3))\)
            \(+\mathrm{aO} \sin (\operatorname{Product}(2)+\mathrm{b})+\% e\)
```

The command lhs extracts the left hand side of an equation, and the command rhs extracts the right.
Use rhs to extract the right side of the equation below.

```
(c16) eq4:eq3 - 1;
            2 2
(d16) x + 2 x + 1 = y
(c17) rhs(%);
(d17)
    y
```

Use lhs to extract the left side of eq3.

```
(c18) lhs(eq4);
```

(d18) $\mathrm{x}^{2}+2 \mathrm{x}+1$

If the expression is not an equation, lhs returns the entire expression and rhs returns 0 .

```
(c19) lhs(%);
(d19) x + 2x+1
(c20) rhs(%);
(d20)
    0
```

The command first (exp) returns the first part of the expression \exp, and the command last (\exp) returns the last part of the expression exp. The command rest rest (exp) returns the expression with its leading element removed. With an additional argument, $\operatorname{rest}(\exp$, num $)$ returns the expression \exp with the first num terms removed.
Display the first term in the expression big_expr2.

```
(c21) first(big_expr2);
(d21) - x y
```

Display the last term in the expression big_expr2.

```
(c22) last(big_expr2);
    - %i}\operatorname{cos}(c-b+12 a
(d22)
    %e
```

Display all the terms in the expression big_expr2 except the first.

```
(c23) rest(big_expr2);
            1 4 2 2 2
(d23) - ------- + log (a x + b x + c) + a0 sin (a x + b)
    sqrt(- + 1)
            y
                - %i cos(c - b + 12 a)
                    + %e
```

Display all the terms in the expression big_expr2 except the first two.

```
(c24) rest(big_expr2, 2);
4 2 2 2 - %i cos(c - b + 12 a)
(d24) log (a x + b x + c) + aO sin (a x + b) + %e
```

The commands first, last, and rest are also useful for dealing with lists, as shown on page 28. The commands realpart and imagpart return the real and imaginary parts of the specified expression, respectively. Examples of these commands appear on page 19.
The commands coeff and ratcoefratcoef (also known as ratcoeff) take as arguments an expression, a variable in the expression for which you want the coefficient, and optionally, a power to which the variable is raised. Both functions return the coefficient.

```
(c25) c_expr:a*x^2+b*x+c;
(d25) a x + b x + c
(c26) coeff(c_expr, x);
(d26)
b
(c27) coeff(c_expr, x, 2);
(d27)
a
(c28) ratcoef(c_expr, x);
(d28)
b
(c29) ratcoef(c_expr, x, 2);
(d29) a
```

The function ratcoef expands and rationally simplifies the expression before finding the coefficient, and thus can produce answers different from coeff, which is purely syntactic.

```
(c30) rc_expr:(a*x+b)^2;
```

```
(d30)
(a x + b)
(c31) coeff(rc_expr, x);
(d31) 0
(c32) ratcoef(rc_expr, x);
(d32)
2 a b
```

 2
 The function coeff is acting on the expression $(a x+b)^{2}$ where $(a x+b)$ is seen as a single entity. On the other hand, ratcoef first expands the expression (as in (d33)) and then looks for coefficients of x in the expanded expression.

```
(c33) expand(rc_expr);
```

(d33)

```
2 2
    2
a x + 2 a b x + b
```


4.6 Using Trigonometric Functions

This section outlines macsyma's trigonometric functions. Table 4.6 summarizes the names of the circular and hyperbolic trigonometric functions and their inverses. The derivatives of all these functions are also provided.

Circular functions	Inverse circular functions	Hyperbolic functions	Inverse hyperbolic functions
\sin	asin	\sinh	asinh
\cos	acos	\cosh	acosh
\tan	atan	\tanh	atanh
\cot	acot	coth	acoth
\sec	asec	sech	asech
\csc	acsc	csch	acsch

Table 4.3: Trigonometric Functions and their Inverses

4.6.1 Evaluating Trigonometric Functions

Macsyma always numerically evaluates trigonometric functions (such as sin and cos) that have floatingpoint arguments. To avoid introducing approximations prematurely, it does not do so automatically for trigonometric functions that have integer arguments. In cases where Macsyma can return an exact value, however, a number can result.

This section presents the following commands:

- exponentialize converts the given expression containing trigonometric functions to an exponential with complex variables.
- demoivre converts the given exponential with complex variables to a trigonometric function.

Several option variables control the evaluation of trigonometric functions. numer, exponentialize, and \%emode are introduced in this section.

You can evaluate trigonometric functions with integer arguments numerically by setting the option variable numer to true.

Macsyma does not return a floating-point approximation for (c1).

```
(c1) }\operatorname{sin}(1)
(d1) }\operatorname{sin}(1
```

But since (c2) simplifies to 0 , a number results.
(c2) $\sin (0)$;
(d2)
0

Use numer to obtain the numeric value for $\sin (1)^{1}$.

```
(c3) sin(1), numer:true;
(d3)
0.841471
```

The system is aware of special values of trigonometric functions at points $n \pi / m$, where $m=1,2,3,4,6,12$ and n is an integer.

Define a function f in terms of the trigonometric function sin.
(c4) $f(z):=\sin (z)^{\wedge} 2+1$;

2

(d4)

$$
f(z):=\sin (z)+1
$$

Evaluate f at $z=x+1$.

```
(c5) f(x + 1);
```

$$
2
$$

(d5)

$$
\sin (x+1)+1
$$

Similarly, you can evaluate the following expression at the point $x=\pi / 3$.
(c6) $\cos (x)^{\wedge} 2-\sin (x)^{\wedge} 2 ;$
$2 \quad 2$
(d6)
$\cos (x)-\sin (x)$
(c7) $\%, x=\% p i / 3$;
(d7)
2

You need not convert these expressions to floating point immediately. Macsyma can perform many symbolic operations on expressions involving trigonometric functions. For example, you can differentiate and integrate them (see Chapter 6 for details).

[^1]When you set the option variable exponentialize to true, subsequent computations convert trigonometric functions to exponentials with complex variables. You can also use the command exponentialize(exp), which performs the same transformation on a given expression.

```
(c8) exponentialize:true;
(d8) true
(c9) }\operatorname{sin}(x)
```

$\%$ i $^{\%} \mathrm{~m}^{\mathrm{i}} \mathrm{x}-\% \mathrm{e}^{-\% \mathrm{ix}}$)
(d9)

- ------------------------

2
(c10) exponentialize:false;
(d10) false
(c11) $\tan (x)+\% i * \cos (y)-\sin (z)$;
(d11) $\quad-\sin (z)+\% i \cos (y)+\tan (x)$

Find the real and imaginary parts of the expression t_{-}expr.

```
(c12) t_expr:exponentialize(\%);
```



```
    \(\%\) i (\%e \(-\%\) ) \(\%\) i (\%e \(\quad+\%\) e
(d12) ---------------------- + ------------------------
    2
        2
```



```
(c13) imagpart(t_expr);
(d13)
        \(\cos (\mathrm{y})\)
(c14) realpart(t_expr);
    \(\sin (\mathrm{x})\)
(d14)
                    ------ - \(\sin (z)\)
    \(\cos (\mathrm{x})\)
```

To convert back to exponentials with complex variables back to trigonometric functions, use the command demoivre(exp).

```
(c15) demoivre(t_expr);
    - sin(z) + %i cos(y) + ------
    cos(x)
```

Exponentials with complex arguments of the form $n \pi / m$, where $m=1,2,3,4,6,12$ and n is an integer, are transformed into algebraic numbers if the option variable \%emode is set to true (the default).

```
(d16) true
(c17) t_expr, x = \%pi;
```


4.6.2 Expanding and Simplifying Trigonometric Expressions

You can expand expressions involving trigonometric functions. This section presents the following commands:

- trigexpand expands expressions that contain trigonometric and hyperbolic functions of sums of angles and of multiple angles.
- trigreduce combines products and powers of the trigonometric and hyperbolic functions for a specified variable and tries to eliminate these functions when they occur in the denominator.
- trigsimp converts expressions containing functions such as tan and sec to contain sin, cos, sinh, and cosh instead, so that trigreduce can further simplify the expressions.

The option variables trigexpand, trigexpandplus, trigexpandtimes, and halfangles are also described in this section.

The command trigexpand (exp) converts trigonometric functions with arguments of the form $n x$ (where n is an integer) to the form x in the expression exp. Setting the option variable trigexpand to true causes full expansion of all expressions containing sines and cosines.

Expand an expression involving trigonometric functions

```
(c1) t_expr1: \(\sin (2 * x+y)+\cos (2 * a) ;\)
(d1) \(\quad \sin (y+2 x)+\cos (2 a)\)
(c2) trigexpand(t_expr1);
    \(2 \quad 2\)
(d2)
    \(\cos (2 x) \sin (y)+\sin (2 x) \cos (y)-\sin (a)+\cos (a)\)
```

Setting the option variable trigexpand to true causes the full expansion of sines and cosines in t_{-}expr1

```
(c3) trigexpand(t_expr1), trigexpand:true;
```

 222
 (d3) $(\cos (x)-\sin (x)) \sin (y)+2 \cos (x) \sin (x) \cos (y)-\sin (a)$
2
$+\cos (\mathrm{a})$

The option variable trigexpandplus controls the sum rule for trigexpand. By default, trigexpandplus is true, so Macsyma expands sums like $\sin (x+y)$. Similarly, the option variable trigexpandtimes controls the product rule for trigexpand. By default, trigexpandtimes is true, so that Macsyma expands products like $\sin (2 * y)$.

To simplify half angles in trigonometric expressions, set the option variable halfangles to true.

```
(c4) t_expr2: sin(2*x) + cosh(y-z) + tan(yz/2);
```

yz
(d4)

$$
\cosh (z-y)+\tan (--)+\sin (2 x)
$$

2
(c5) trigexpand(t_expr2);

(d5) $-\sinh (y) \sinh (z)+\cosh (y) \cosh (z)+\tan (--)+2 \cos (x) \sin (x)$
2

Locally bind trigexpandtimes to false to inhibit the expansion of products in t_{-}expr2.

```
(c6) trigexpand(t_expr2), trigexpandtimes:false;
    yz
(d6) - sinh(y) sinh(z) + cosh(y) cosh(z) + tan(--) + sin(2 x)
```

2

Locally bind trigexpandplus to false to inhibit the expansion of sums in t_{-}expr2.

```
(c7) trigexpand(t_expr2), trigexpandplus:false;
    yz
(d7) }\operatorname{cosh}(z-y)+\operatorname{tan}(--)+2\operatorname{cos}(x)\operatorname{sin}(x
```

2

Expand the expression, inhibiting expansion of sums and products, and simplifying half angles.

```
(c8) trigexpand(t_expr2),
    trigexpandtimes:false,
    trigexpandplus:false,
    halfangles:true;
(d8)
    \operatorname{cosh}(z - y) + ----------- + sin(2 x)
        sin}(yz
```

Using the command trigreduce (exp, var), you can perform the inverse operation of trigexpand by converting products and powers of trigonometric functions into functions with multiple angles. If you do not specify a variable var, trigreduce uses all the variables in the expression.

```
(c9) t_expr3:trigexpand(sin(2*z) + sin(2*y));
(d9) 2 cos(z) sin(z) + 2 cos(y) sin(y)
(c10) trigreduce(t_expr3);
(d10) }\quad\operatorname{sin}(2z)+\operatorname{sin}(2y
(c11) trigreduce(t_expr3, z);
(d11) }\operatorname{sin}(2z)+2\operatorname{cos}(y)\operatorname{sin}(y
(c12) trigreduce(t_expr3, y);
(d12)
    2 cos(z) sin(z) + sin(2 y)
```

The command trigsimp (exp) uses the identity rules
$\sin ^{2} x+\cos ^{2} x=1 \quad$ and $\quad \cosh ^{2} x-\sinh ^{2} x=1$
to convert expressions containing functions such as tan and sec to contain $\boldsymbol{\operatorname { s i n }}, \mathbf{c o s}, \boldsymbol{\operatorname { s i n h }}$, and $\boldsymbol{\operatorname { c o s h }}$ instead, so that trigreduce can further simplify the expressions.
Consider the expression below:

```
(c13) t_expr4:(1-\operatorname{sin}(x))*(\operatorname{sec}(x)+\operatorname{tan}(x))
    -cos(x) + (cosh(x)^2 - sinh(x)^2)^3 - 1;
        2 2 3
(d13) (1- sin(x)) (tan(x) + sec(x)) + ( cosh (x) - sinh (x)) - cos(x) - 1
```

You can use either of two methods to simplify this expression.
Method 1

```
(c14) trigsimp(t_expr4);
(d14) 0
```

Method 2

```
(c15) ratsubst(cosh(x)^2 - 1, sinh(x)^2, t_expr4);
(d15) (1 - sin(x)) tan(x) - sec(x) sin(x) + sec(x) - cos(x)
(c16) subst(sin(x)/cos(x), tan(x), %);
            (1- sin(x)) sin(x)
(d16) ----------------- - sec(x) sin(x) + sec(x) - cos(x)
    cos(x)
(c17) trigreduce(ratsimp(%));
(d17)
    O
```

Alternatively, you can reduce t_{-}expr 4 as follows.

```
(c18) t_expr4, exponentialize, ratsimp;
(d18)
    O
```


4.7 Evaluating Summations

This section explains how you can perform summations using the following commands:

- sum performs a summation of the given values as an index ranges over specified values from low to high.
- nusum performs the indefinite summation of an expression with respect to a specified variable.
- sumcontract combines all sums of an addition that have upper and lower bounds that differ by constants.
- intosum takes all factors by which a summation is multiplied, then puts them inside the summation.

This section also provides examples of the option variables simpsum. To obtain a sum, you can use the command sum sum (exp, index, low, high) where exp is any Macsyma expression, index is the index of summation, and low and high are the lower and upper limits of the sum, respectively.
Obtain the sum of i^{2} for $i=1,2, \ldots, 5$

```
(c1) sum(i^2, i, 1, 5);
(d1) 55
```

You can obtain the same result using the for statement (see page 166).

```
(c2) for i thru 5 do (s:s + i^2);
(d2) done
(c3) s;
(d3) s + 55
```

You can evaluate the unbound variable s at $s=0$ as follows.
(c4) ev(\%,s = 0);
(d4)
55

Alternatively, you can re-evaluate (d3). Macsyma evaluates all the variables in it and re-executes all function calls.
(c5) ev(d3);

```
(d5)
s + 110
```

If you set simpsum to true, and the lower and upper limits of the sum do not differ by an integer, sum simplifies its result. Sometimes this can produce a closed form.

To obtain an indefinite summation of a Macsyma expression use the command nusum(exp, var, low, high). This command performs indefinite summation of the expression \exp with respect to the variable var, where low and high are the lower and upper limits of the sum, respectively.

Macsyma also lets you define expressions containing sums that are not evaluated or summable in closed form. Do this by placing a single quote before sum or by supplying an undefined function as the exp argument to sum.

Prevent evaluation of the sum using the single quote.

```
(c6) y='sum(a[i]*x^i, i, 0, 6);
    6
    ====
(d6) > a x
    \ i
    / i
    ====
    i = 0
(c7) fro:ev(%, sum);
```


(c8) sum((x^i + y^i)*(x^i - y^i), i, 1, n);
(c8) sum((x^i + y^i)*(x^i - y^i), i, 1, n);
n

Macsyma can perform the summation with simpsum set to true.
(c9) ev(\%, sum, simpsum:true);
(d9)

> 2
> $x-1$
2
y - 1

Consider the following expression:

```
(c10) expr:i/(4*i^2 - 1)^2;
(d10)
    i
    2 2
    (4 i - 1)
```

Even with simpsum set to true, Macsyma cannot perform this summation.

```
(c11) sum(expr, i, 1, n), simpsum:true;
    n
    ====
(d11)
```



```
    i = 1
```

Use the nusum command to successfully sum the expression expr.

```
(c12) nusum(expr, i, 1, n);
```

$$
\begin{gathered}
n(n+1) \\
2(2 n+1)
\end{gathered}
$$

(d12)

You can also use sum in conjunction with other Macsyma commands.

```
(c13) tobesum:'sum(cos(k*x)*k, k, 1, n);
            n
            ====
(d13)
    \
    > k cos(k x)
    /
    ====
    k = 1
```

The following sequence of commands yields the desired result.

```
(c14) exponentialize(sum(sin(k*x), k, 1, n));
            n
            ==== %i k x - %i k x
            \ %i (%e - %e )
(d14)
                            (- -----------------------------
            ====
            k = 1
(c15) ev(%, sum, simpsum:true);
            - %i(n+1) x - %i x % % (n + 1) x %i x
    %i (%e - %e ) %i (%e - %e )
(d15) ------------------------------ - ------------------------------------
                            - %i x %i x
                            2(%e - 1)
                            2(%ee - 1)
(c16) ev(demoivre(%), ratsimp, trigreduce);
(d16)
                            sin(nx+x) sin(n x) sin(x)
            ------------ - ------------ - --------------
                        2 cos(x)-2 2 cos(x)-2 2 cos(x) - 2
(c17) tobesum = diff (%, x);
```


The command sumcontract (expr) combines all sums of an addition expression expr that have upper and lower bounds that differ by constants. This results in an expression that contains one summation for each set of such summations, and also includes all appropriate extra terms that had to be extracted to form this sum. sumcontract combines all compatible sums and uses one of the indices from one of the sums if it can, then tries to form a reasonable index if it cannot use any of those supplied.
The command intosum (expr) take all factors by which a summation is multiplied, then puts them inside the summation. If the index is used in the outside expression, intosum tries to find a reasonable index, as it does for sumcontract.

The following example uses the power series method to solve a differential equation, illustrating some of the applications of the summation commands.

```
(c18) depends(y, x)$
(c19) eq:diff(y, x, 2) + diff(y, x) - 2*x*y;
                    2
            d y dy
(d19)
    --- + -- - 2 x y
    d dx
dx
```

The origin is a regular point, so the solution can be expressed as a convergent series of this form.

```
(c20) pseries:y = 'sum(a[n]*x^n, n, 0, inf);
    inf
    ====
    \
    > a x
    / n
    ====
    n = 0
```

Substitute the equation above into the original differential equation and carry out the derivative.

```
(c21) ev(eq, pseries, diff);
```


You can re-express the previous line as follows.
(c22) subst(1, n, part(\%, 2, 1)) + substpart(2, \%, 2, 3);

\inf	inf
$======$	inf
$====$	

(c23) subst(2, n, part(\%, 3, 1)) + substpart(3, \%, 3, 3);

\inf	inf	inf
$====$	====	$===$

1
n
n-1
n - 2
a
(d23) $-2 x$
/ n /
===
$\mathrm{n}=0$
$\mathrm{n}=2$
$\mathrm{a}_{\mathrm{n}}^{\mathrm{x}}+\mathrm{>} \quad(\mathrm{n}-1) \mathrm{n} \mathrm{a} \mathrm{x}$
===
$\mathrm{n}=3$

$$
+2 \mathrm{a}+\mathrm{a}{ }_{2}{ }^{2}
$$

Let $n=2+m$ in the second summation, $n=3+m$ in the third summation above.

```
(c24) part(%, [1, 4, 5])
        + changevar(part(%, 2), n = 2 + m, m, n)
        + changevar(part(%, 3), n = 3 + m, m, n);
```


Equate the coefficient of each power of x to zero.
(c26) a2:solve(part(\%, [2, 3]), a[2]);
(d26)

(c27) part(sol, 1, 1);

(c28) solve(\%, a[n + 3]);

$$
(n+2) a \quad-2 a
$$

$$
n+2 \quad n
$$

(d28)

(c29) first(\%);

```
    \((n+2) a \quad-2 a\)
    \(n+2 n\)
(d29)
a
\[
\begin{array}{cc}
\mathrm{n}+3 & 2 \\
& \mathrm{n}+5 \mathrm{n}+6
\end{array}
\]
```

The first five coefficients are:

```
(c30) \([\operatorname{ev}(\%, \mathrm{n}=3)\),
    ev(\%, n = 2),
    ev(\%, n = 1),
    ev (\%, \(\mathrm{n}=0\) ),
    first(a2)];
            \(5 \mathrm{a}-2 \mathrm{a} \quad 4 \mathrm{a}-2 \mathrm{a} \quad 3 \mathrm{a}-2 \mathrm{a}\)
            \(\begin{array}{llll}5 & 3 & 4\end{array}\)
    31
```



```
        \(6 \quad 30 \quad 5\)
```



```
\begin{tabular}{ccc}
\(a=-------\), & \(a=---]\) \\
3 & 6 & 2
\end{tabular}
```

So the solution is:

Recall that this problem could also have been done with the ode command:

(c32) ode(eq, y, x, odeseries);

MANYTERM RELATION

4.8 Practice Problems

Using the commands that you have learned about in this chapter, solve the following problems. Answers appear on page 267 .

Problem 1. Write a function that performs the following substitution:

$$
{ }^{2} \sin ^{2}(x)=1-\cos ^{2}(x)
$$

Your function should work for all x. Test the function on the expression $\sin (y) \wedge 3$.
Problem 2. Write a function that performs the following substitution:

```
    2 1-cos(2x)
sin (x) = -----------
```

 2
 Your function should work for all x, but it should not work for high terms. Test the function on the expressions $\sin (y) \wedge 2$ and $\sin (y) \wedge 3$.

Problem 3. Show that the expression below reduces to zero.

Problem 4. Express

1 $(---------)^{2}$ 4 $3^{2}+(b+a)(d+c)$	
$(y+x)$	$(z+y)$

as

Problem 5. Consider the expression

$$
(d+c)((w+a) x+b)
$$

Show that this expression can be expressed as each of the following:
a) $\mathrm{d} \mathrm{w} \mathrm{x}+\mathrm{c} \mathrm{w} \mathrm{x}+\mathrm{ad} \mathrm{d}+\mathrm{a} \mathrm{c} \mathrm{x}+\mathrm{b} \mathrm{d}+\mathrm{b} \mathrm{c}$
b) $(d+c)(w+a) x+b(d+c)$
c) $d(w+a) x+c(w+a) x+b d+b c$
d) $((d+c) w+a d+a c) x+b d+b c$
e) $\mathrm{d}((\mathrm{w}+\mathrm{a}) \mathrm{x}+\mathrm{b})+\mathrm{c}((\mathrm{w}+\mathrm{a}) \mathrm{x}+\mathrm{b})$
f) $(d+c) w x+a(d+c) x+b(d+c)$

Problem 6. Consider the expression
$d(w+a) x+c(w+a) x+b d+b c$

Show that this expression can be expressed as each of the following:
a) $(\mathrm{d}+\mathrm{c})(\mathrm{w} \mathrm{x}+\mathrm{ax}+\mathrm{b})$
b) $(d+c)((w+a) x+b)$

Problem 7. Consider the expression

$$
\begin{gathered}
\log ((b+a) d+(b+a) c) z+\log ((b+a) d+(b+a) c) y \\
+\log ((b+a) d+(b+a) c) x+w
\end{gathered}
$$

Show that this expression can be expressed as each of the following:
a) $\log ((b+a)(d+c))(z+y+x)+w$
(b) $\log ((b+a) d+(b+a) c)(z+y+x)+w$

Problem 8. Express

as
a)

b)

Problem 9. Express

$$
\begin{gathered}
x+1 \\
---------1 \\
\operatorname{sqrt(x)}-1
\end{gathered}
$$

as

```
sqrt(x) (x + 1) + x + 1
    x - 1
```

Problem 10. Evaluate
n
===
\backslash
$>\quad \mathrm{k} \sin (\mathrm{k} \mathrm{x})$
/
====
$\mathrm{k}=1$

Problem 11. Evaluate

$$
\begin{aligned}
& \text { m } \\
& \text { === } \\
& \text { \} 3 n } \\
{\text { n } 3} \\
{\text { / }} \\
{\text { === }} \\
{\mathrm{n}=1}
\end{aligned}
$$

Chapter 5

Solving Equations

Macsyma has powerful capabilities for solving and obtaining roots of equations. This chapter presents the following commands:

- solve solves a system of simultaneous linear or nonlinear polynomial equations for the specified variable and returns a list of the solutions.
- linsolve solves a system of simultaneous linear equations for the specified variables and returns a list of the solutions.
- taylor_solve computes a series solution to a univariate system of equations.
- nroots finds the number of real roots in the specified real univariate polynomial in a given interval.
- allroots finds all the real and complex roots of a specified real polynomial, which must be univariate and can be an equation.
- realroots finds all of the real roots of a univariate polynomial within a specified tolerance.
- roots finds all of the roots of a univariate polynomial with real or complex coefficients and can be an equation.

This section also discusses the system variable multiplicities and the option variables globalsolve, solvetrigwarn, algexact, solveexplicit, solveradcan, and rootsepsilon.
Although the examples in this chapter introduce many commands and option variables, the scope of this document allows only a limited introduction to Macsyma's equation solving capabilities. For more information, consult the Macsyma Reference Manual.

The command solve (exp, var) solves the expression \exp for a single variable var. You can use the form solve (exp) if exp is univariate. If exp is not an equation, Macsyma sets the expression equal to zero in order to solve it.
When you solve a polynomial with solve, Macsyma uses the factor command to factor it, if necessary. If the factors are of degree 4 or less, Macsyma applies standard formulas to generate the solution.

The system variable multiplicities contains a list of the multiplicities of the individual solutions returned by solve.

```
(c1) neq:x^3 - 5*x^2 + 7*x - 3 = 0;
    3 2
(d1) x - 5 x + 7 x - 3 = 0
```

(c2) ans:solve(neq, x);

$$
\begin{equation*}
[x=3, x=1] \tag{d2}
\end{equation*}
$$

Macsyma returns only two answers, but there should be three; the system variable multiplicities indicates that two of the solutions are $x=1$.

```
(c3) multiplicities;
(d3)
[1, 2]
```

Verify the second solution in (d2) by re-evaluating the equation neq with $x=1$.
(c4) ev(neq, last(ans));
(d4)
$0=0$

Since $e 0$ is not an equation, Macsyma sets it equal to zero to solve it.

```
(c5) e0:-x0^3 + 2*x0^2 + x0 - 2;
    3 2
(d5)
    - x0 + 2 x0 + x0 - 2
```

You need not specify the variable to solve for, since e0 is univariate.

```
(c6) sol_4_x0:solve(e0);
(d6) [x0 = 2, x0 = - 1, x0 = 1]
```


5.1 Solving Linear Equations

To solve a system of simultaneous linear equations, you can use the command linsolve $\left(\left[e q n_{1}, \ldots, e q n_{n}\right]\right.$, $\left.\left[\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right]\right)$, where the first list gives the equations to be solved and the second list gives the unknowns to solve for. Note that linsolve does not check to make sure the equations are linear.
Consider this system of linear equations.

```
(c1) list_of_eqs:[eq1:3*zz + b*yy + a*xx - 2, eq2:4*zz + 2*yy - a = 12,
    eq3:90*zz - 12*yy - 3*a = 45]$
(c2) list_of_vars:[xx, yy, zz]$
```

Solve these equations for the variables $x x, y y$, and $z z$.

```
(c3) linsolve(list_of_eqs, list_of_vars);
    (13 a + 150) b + 9 a + 41 13 a + 150 3 a + 39
(d3) [xx = - ------------------------, yy =----------, zz = -----------
```

In general the "=" operator does not assign a value to a variable, so $x x$, for example, is unbound.
(c4) xx ;
(d4)
xx

If you set the option variable globalsolve to true, Macsyma can bind the variables being solved for to their corresponding solutions. If a variable has multiple solutions, however, setting globalsolve to true has no effect.

To bind $x x, y y$, and $z z$ to the solutions that linsolve returns, set globalsolve to true.

```
(c5) linsolve(list_of_eqs, list_of_vars), globalsolve:true;
    (13 a + 150) b + 9 a + 41 13 a + 150 3 a + 39
(d5) [xx : - -----------------------, yy : ----------, zz : -----------
38 a 38 38
(c6) xx;
    (13a+150) b + 9 a + 41
(d6)

\subsection*{5.2 Solving Non-Linear Equations}

To solve a system of simultaneous (non)linear polynomial equations, use the command solve ( \(\left[e q_{1}, \ldots, e q_{n}\right]\), \(\left[\operatorname{var}_{n}, \ldots, \operatorname{var}_{n}\right]\) ), where the first list gives the equations to be solved and the second list gives the variables for which to solve. In the next example we set the variable eqs to a system of three nonlinear equations.
```

(c1) eqs:[x*y*z = 42,
-z + y + x = -2,
-3*z + 2*y + 3*x = -a];
(d1) [x y z = 42, - z + y + x = - 2, - 3 z + 2 y + 3 x = - a]

```

Solve these nonlinear equations for the variables \(x, y\), and \(z\).
(c2) solve(eqs, \([x, y, z])\);
\(\operatorname{sqrt}\left(a^{4}-20 a^{2}+148 a^{2}-312 a-432\right)-a^{2}+10 a-24\)
(d2)
                            2 a-12

4
\(\operatorname{sqrt}(a-20 a+148 a-312 a-432)+a-10 a+24\),
```

 3 2 2
 sqrt(a - 6) sqrt(a - 14a + 64 a + 72) - a + 10a-24
 y = a - 6,z =- --
2 a - 12

```

When you use solve on an equation containing trigonometric functions, Macsyma prints out a warning that some solutions might be lost. To inhibit this warning message, set the option variable solvetrigwarn to false.
Solve the trigonometric equation below for \(x\); notice that Macsyma displays a warning message.
```

(c3) eq:asin(cos(3*x))*(x-1);
(d3) (x - 1) asin(cos(3 x))
(c4) solve(eq, x);
SOLVE is using arc-trig functions to get a solution.
Some solutions may be lost.
%pi
(d4)
[x = ---, x = 1]

```

Solve the equation again, this time inhibiting the warning message.
```

(c5) solve(eq, x), solvetrigwarn:false;
%pi
(d5)
[x = ---, x = 1]

```

6

You can set the option variable solveexplicit to true to inhibit solve from returning implicit solutions (that is, solutions of the form \(f(x)=0\) ).

Setting the option variable solveradcan to true makes the solve command slower, but allows it to solve certain problems containing exponentials and logs.
```

(c6) eq:-2^(x + 1) + 4^x + 2;
x + 1 x
(d6)
-2+4+2

```

The solve command returns an implicit solution.
(c7) solve(eq, \(x)\);
(d7) \(\left[\begin{array}{lll}4 & =2 & -2\end{array}\right]\)

Inhibit the implicit result by binding solveexplicit to true.
(c8) solve(eq, x), solveexplicit:true;
(d8)

The solve command can return an explicit result to this problem if you set solveradcan to true.
```

(c9) solve(eq, x), solveradcan:true;
log(1-%i) log(%i + 1)
(d9)
[x = ----------, x = ------------]

```

By setting the option variable algexact to true, you can request Macsyma to make every attempt to return exact solutions. Although this option does not guarantee that an exact solution will be found, Macsyma will return an approximate solution only when all else fails.
Solve the equations for \(x\) and \(y\).
```

(c10) equations:[4*x^2 - y^2 = 12, x*y - x = 2];
2 2
(d10)
[4 x - y = 12, x y - x = 2]

```

The first solution, \(x=2\) and \(y=2\), is exact, but the other solutions are floating-point approximations
```

(c11) solutionsn:solve(equations, [x, y]);
(d11) [[x = 2, y = 2], [x = 0.52025944 %i - 0.13312405,
y = 0.076783754-3.6080031 %i], [x = - 0.52025944 %i - 0.13312405,
y = 3.6080031 %i + 0.076783754], [x = - 1.7337519, y = - 0.1535676]]

```

You can iteratively check the solutions that solve found (see the description of for on page 166)
```

(c12) for sol in solutionsn do print(ev(equations, sol, ratsimp, keepfloat:true));
[12.0 - 1.554312234475219e-15 %i = 12, 2.0 = 2]
[1.554312234475219e-15 %i + 12.0 = 12, 2.0 = 2]
[11.99999886045595 = 12, 1.999999906150018 = 2]
[12 = 12, 2 = 2]
(d12) done

```

Locally bind algexact to true, telling Macsyma to try harder to find exact solutions; since the results are long, suppress the display of the D-LINE.
```

(c13) solutionse:solve(equations, [x, y]), algexact:true\$

```

You can iteratively check the solutions that solve found. Note that the result of solutionse given here is exact, while the result of solutionsn is only approximate.
```

(c14) for sol in solutionse do disp(ev(equations,sol,radcan));
[12 = 12, 2 = 2]
[12 = 12, 2 = 2]
[12 = 12, 2 = 2]
[12 = 12, 2 = 2]
(d14)
done

```

\subsection*{5.3 Finding Numerical Roots}

Macsyma can find the numerical roots of a univariate polynomial. The allroots(poly) command finds all the real and complex roots of the real polynomial poly, which must be univariate and can be an equation.

The roots (poly) command finds all the real and complex numerical roots of the real polynomial poly, which must be univariate and can be an equation. roots also accepts polynomials whose coefficients can have real or complex coefficients as well as constants such as \%e or \%pi. In many practical situations, roots is preferred over allroots.
The realroots (poly, bound) command finds all of the real roots of univariate polynomial poly within a tolerance of bound. You can specify bound as small as you like to achieve any desired accuracy. (If you do not specify bound, Macsyma uses the value of the option variable rootsepsilon, whose default is \(1.0 \mathrm{e}-7\).)

The nroots (poly, high, low) command finds the number of real roots in the real univariate polynomial poly in the half open interval from low to high. If you do not specify low and high, nroots assumes that low is minf and high is inf.

The following example uses nroots, realroots, allroots and roots to find the numerical roots of an equation.

Macsyma has a routine for finding the roots of a univariate polynomial.
```

(c1) eq987:x^5/987-3*x + 1;
5
x
(d1) --- - 3x+1
987

```

Find the roots of eq987 in the interval inf to minf.
```

(c2) nroots(eq987);
(d2)
3

```

Find the real roots of eq987.
```

(c3) realroots(eq987), numer:true;
(d3)
[x = - 7.457738, x = 0.3333347, x = 7.290858]

```

For more accuracy, specify a smaller tolerance.
```

(c4) realroots(eq987, 1.0e-3), numer:true;
(d4)
[x = - 7.4575195, x = 0.3334961, x = 7.2905273]

```

Find all the real and complex roots of the real polynomial.
```

(c5) e_987:allroots(eq987);
(d5) [x = 0.3333347, x = - 7.457738, x = 7.379005 %i - 0.08322733,
x = - 7.379005 %i - 0.08322733, x = 7.290858]

```

Find all the real and complex roots of the real polynomial using roots.
```

(c6) roots(eq987);
(d6) [x = 7.3790049600837d0 * %i - 0.08322732941358d0,
x = - 7.3790049600837dO * %i - 0.08322732941358dO,
x = - 7.45773790754828d0, x = 7.29085784320352d0,
x = 0.33333472317194d0]

```

To find numerical roots of equal expressions, see newton in the Macsyma Reference Manual.

\subsection*{5.4 Finding Approximate Symbolic Solutions}

The example in Section 5.3 found the numerical roots of the polynomial eq987. Sometimes, however, a symbolic solution can provide more insight into a problem. You can solve this problem symbolically using the command
\[
\text { taylor_solve }(e q, \text { dep_var, ind_var, point, truncation })
\]

This command attempts to compute a series solution \(\mathrm{y}: \mathrm{dep}_{-} v a r\) (dependent variable) to \(\mathrm{e}(\mathrm{y}, \mathrm{x}): e q\). The solution y will be a series at p:point in v:ind_var (independent variable) truncated to order t:truncation.
Note: The taylor_solve command does not currently handle differential equations and multivariate systems of equations.
Using solve doesn't work.
```

(c1) solve(eq:x^5*e-3*x+1,x);
5
(d1)
[0 = ex - 3x+1]

```

You can obtain an approximate solution by using taylor_solve. The k 0 symbols in one of the solutions are the undetermined coefficients that satisfy the last equation, \(\mathrm{k} 0^{4}=3\).


The next command re-expresses the solutions in a clearer form by substituting the undetermined coefficients back into the solution returned by taylor_solve. See Chapter 11 for a description of the for statement.
```

(c3) (temp1:first(sol),temp2:last(sol),undcoef:solve(last(last(sol)),k0),
for c in undcoef do temp1:endcons(ev(first(temp2),c),temp1),trunc(expand(temp1)));
1/4 1/4
(d3) [x = - + --- + . . ., x m = - -- + ------- + . . ., x m = - -- - ---- + . . .,
e

Macsyma also provides two option variables that you can use in conjunction with the taylor_solve command to control order selection and coefficient selection. These are introduced in practice problem 7 , on page 75 . For more information on Macsyma's Taylor series facilities, see Section 6.4.

5.5 Practice Problems

Using the commands that you have learned about in this chapter, solve the following problems. Answers appear on page 272.

Problem 1. Find the four roots of the equation below:
$x^{4}-7 x^{3}+18 x^{2}-20 x+8=0$

Problem 2. Consider the following equation:

2		
5	x	3
x	----	$-----=0$
	2940	9604000

a) Find the number of real roots.
b) Find all real roots.
c) Find all numerical roots.

Problem 3. Solve the three equations below for (x, y, z) :

$$
\begin{aligned}
z+y+x & =3 \\
y z+x z+x y & =-18 \\
3 \quad 3 & \\
z+y+x & =189
\end{aligned}
$$

Problem 4. Solve the two equations below for (x, y) :

$$
\begin{aligned}
& 2 \\
& x \quad y+y=1 \\
& y-2 x=4
\end{aligned}
$$

Problem 5. Solve the three equations below for (x, y, z)

$$
\begin{aligned}
-5 z-4 c y+x & =0 \\
4 y+x & =c
\end{aligned}
$$

a) with globalsolve set to false,
b) with globalsolve set to true, then remove the values bound to x, y, z.

Problem 6. Solve the equations below for (x, y, z) :

$$
\begin{gathered}
2 \quad 2 \\
y+x=1 \\
-4 x z=0
\end{gathered}
$$

Problem 7. Macsyma provides two methods for selecting only certain solutions returned by taylor_solve. When set to true, the option variable taylor_solve_choose_iorder allows you you to supply the order of the particular solution you want interactively. Similarly, when the option variable
taylor_s $_{-}$solve_choose_coef is set to true, you can choose which of the multiple solutions for a coefficient equation you want.
Consider the following equation:

For small e,
a) Determine the two-term expansions for the equation above.
b) Solve the equation with taylor_solve_choose_order set to true.
c) Solve the equation with taylor_solve_choose_coef set to true.

Chapter 6

Calculus

This chapter explains how to perform calculus operations using Macsyma, including differentiating and integrating expressions, taking limits, computing Taylor and Laurent series, solving ordinary differential equations, performing summations, and taking Laplace transforms.

Although the examples in this chapter introduce many commands and option variables, the scope of this document allows only a limited introduction to Macsyma's calculus capabilities. To learn more, consult the Macsyma Reference Manual.

6.1 Differentiating Expressions

Macsyma provides a facility for differentiating expressions. This section presents the following commands:

- diff differentiates an expression with respect to the given variables.
- gradef defines the gradients for each derivative of a function with respect to the function's arguments.
- depends declares functional dependencies for variables to be used by diff.
- at evaluates an expression with the variables assuming the values as specified for them in an equation or list of equations.

In addition, the option variable derivabbrev controls the display of derivatives as subscripts.
Use the command $\operatorname{diff}(\exp$, var, num) to differentiate the expression exp num times with respect to the variable var. Alternatively, you can use the command $\operatorname{diff}\left(\exp\right.$, var $_{1}, n u m_{1}, \ldots$, var $\left._{n}, n u m_{n}\right)$ to differentiate the expression exp with respect to each variable var_{i} numi ${ }_{i}$ times.

```
(c1) expr:cosh(x*y);
(d1) cosh(x y)
```

The command $\operatorname{diff}(\exp , v a r)$ differentiates an expression \exp once with respect to a variable var.
(c2) $\operatorname{diff}(\operatorname{expr}, \mathrm{x})$;

$$
\begin{equation*}
y \sinh (x y) \tag{d2}
\end{equation*}
$$

Differentiate the expression expr twice with respect to x.

```
(c3) diff(expr, x, 2);
                                    2
(d3) y cosh(x y)
```

Differentiate the expression expr twice with respect x and once with respect to y.
(c4) $\operatorname{diff}(\operatorname{expr}, \mathrm{x}, 2, \mathrm{y}, 1)$;
2
$\mathrm{x} y \sinh (\mathrm{x} y)+2 \mathrm{y} \cosh (\mathrm{x} y)$

To inhibit evaluation, precede the command with a single quote; Macsyma returns the "noun form".

```
(c5) 'diff(expr, x, 3);
    3
    d
(d5)
        --- (cosh(x y))
        3
            dx
```

To evaluate the derivative, use $\mathbf{e v}$.

```
(c6) ev(%, diff);
```

(d6)

$$
y^{3} \sinh (x y)
$$

You can differentiate predefined functions, such as f, as shown below:

```
(c7) f(y, z) := y^z;
```

```
(d7) \(\quad f(y, z):=y\)
(c8) \(\operatorname{diff}(f(y, z), y, 2, z, 1) ;\)
    z-2 z-2 z-2
(d8) \(\quad y \quad \log (y)(z-1) z+y \quad z+y \quad(z-1)\)
```

The command $\operatorname{diff}(\exp)$ returns the total differential of the expression exp. The total differential is the sum of the derivatives of exp with respect to each of its variables times the function del of the variable. Macsyma does not offer any further simplification of del.
(c9) diff(expr);
(d9) $\quad x \sinh (x y) d e l(y)+y \sinh (x y) d e l(x)$

To declare functional dependencies for variables to be used by diff, use the command depends(funlist t_{1}, varlist $_{1}, \ldots$, funlist $_{n}$, varlist ${ }_{n}$) where each list of functions funlist ${ }_{i}$ depends on the corresponding list of variables varlist ${ }_{i}$.

The system variable dependencies is a list of all the dependencies declared with depends. Use the command remove(object, feature) to remove a feature, such as dependency, from an object.
(c10) $\operatorname{diff}(\mathrm{u} * \mathrm{v}, \mathrm{x}, 1, \mathrm{y}, 2)$;
(d10)
0

The functions u and v depend on the variables x and y.

```
(c11) depends([u, v], [x, y]);
(d11) \(\quad[u(x, y), v(x, y)]\)
(c12) \(\operatorname{diff}(\mathrm{u} * \mathrm{v}, \mathrm{x}, 1, \mathrm{y}, 2)\);
```


Alternatively, you can state the dependencies explicitly as follows.
(c13) $\operatorname{diff}(w(x), x)$;
d
(d13) -- (w $(x))$
dx

Check to see the dependencies that are currently in effect.

```
(c14) dependencies;
(d14)
[u(x, y), v(x, y)]
```

The command remove can eliminate a previously declared dependency.

```
(c15) remove([u, v], dependency);
(d15) done
```

When you know only the first derivative of a function and you want to obtain derivatives of higher order, you can define gradients. The command $\operatorname{gradef}\left(f\left(x_{1}, \ldots, x_{n}\right), g_{1}, \ldots, g_{n}\right)$ defines the gradients g_{1}, \ldots, g_{n} for each derivative of the function f with respect to the function's arguments x_{1}, \ldots, x_{n}.

Define the gradients for each derivative of the function h with respect to its arguments, n and x.

```
(c16) gradef(h(n, x), 'diff(h(n, x), n), 2*n*h(n - 1, x));
(d16)
h(n, x)
(c17) diff(h(n, x), n, 2);
    2
    d
(d17)
    --- (h(n, x))
    2
    dn
```

```
(c18) diff(h(n, x), x, 3);
(d18) 8 (n-2) (n-1) n h(n - 3, x)
```

The following example converts the Laplacian from Cartesian coordinates to cylindrical coordinates. Set up dependencies for the function u.

```
(c19) depends(u, [r, t, z]);
(d19)
    [u(r, t, z)]
```

Another acceptable format for defining gradients with gradef is shown below.

```
(c20) gradef(r, x, x/r);
(d20) r
(c21) diff(r, x);
(d21)
(c22) (gradef(r, y, y/r), gradef(t, x, -y/r^2), gradef(t, y, x/r^2))$
(c23) diff(u, x, 2) + diff(u, y, 2) + diff(u, z, 2)$
(c24) ratsubst(r^2 - x^2, y^2, %);
\begin{tabular}{cccc}
2 & 2 & 2 \\
\(2 d u\) & \(d u\) & \(2 d u\) & \(d u\)
\end{tabular}
            r --- + --- + r --- + r --
            2 2 2 dr
(d24)
        -------------------------------
        2
        r
(c25) laplacian_cyl:multthru(%);
            2
            d u
\begin{tabular}{cccc} 
& --- & & \(d u\) \\
2 & 2 & 2 & -- \\
\(d u\) & \(d t\) & \(d u\) & \(d r\) \\
--- & +-- & +-- & + \\
2 & 2 & 2 & \(r\) \\
\(d z\) & \(r\) & \(d r\)
\end{tabular}
```

You can set the variable derivabbrev to true to display derivatives as subscripts.
(c26) derivabbrev:true\$

```
(c27) laplacian_cyl;
```


6.2 Integrating Expressions

This section describes how you can integrate Macsyma expressions. Section 6.2 .1 explains how you can perform indefinite integration, and Section 6.2.2 explains how you can perform definite integration.

6.2.1 Indefinite Integration

This subsection presents the following command:

- integrate finds the indefinite (or definite) integral of an expression with respect to a variable.

This section also introduces the option variables logabs, intanalysis, and laplace_call, which allow you to control some aspects of integration. See Section 6.1, page 85 , for a detailed summary of the intanalysis option variable.
Use the command integrate (exp, var) to find the indefinite integral of the expression exp with respect to the variable var.

This section also introduces the option variable logabs which controls the use of absolute values in some integrals containing log.

```
(c1) i_expr1:1/y^(3/4)/(y - 1);
```

 1
 (d1)

Find the indefinite integral of the expression $i_{-} \operatorname{expr} 1$ with respect to y.

```
(c2) integrate(i_expr1, y);
    1/4 1/4 1/4
(d2)
    - log(y +1) - 2 atan(y ) + log(y - 1)
```

Macsyma uses different algorithms for integrate and diff, so you can check the result of integration with diff.

```
(c3) radcan(diff(%, y));
```

(d3)

1

7/4	3/4
y	J

Macsyma can integrate expressions involving trigonometric functions and other predefined functions (including user-defined functions).

```
(c4) }\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2*\operatorname{cos}(x\mp@subsup{)}{}{\wedge}3
                    3 2
(d4)
    cos (x) sin (x)
(c5) integrate(%, x);
    5 3
    3 sin (x) - 5 sin (x)
(d5)
    - ----------------------
        1 5
(c6) integrate(%th(2), x), exponentialize:true;
        5 %i x 3 %i x
    %i %e %i %e %i x - %i x
(d6) - (- ---------- ----------- + 2 %i %e - 2 %i %e
    5 3
```



```
3
5
```

Define a function f, then integrate it.

```
(c7) f(x) := 1/sqrt(a*x^2 + b);
    1
(d7)
```


2
$\operatorname{sqrt}(\mathrm{a} x+\mathrm{b})$

Macsyma sometimes asks you about the sign of a quantity during integration; suitable responses are p; (positive), n; (negative), and z; (zero).

```
(c8) integrate(f(x), x);
Is a positive or negative?
p;
Is b positive or negative?
p;
```

```
    sqrt(a) \(x\)
\(\operatorname{asinh}(--------)\)
    sqrt(b)
    sqrt(a)
```

(d8)

You can use the assume or assume_ pos command to answer Macsyma's queries in advance.

```
(c9) assume(a > 0, b > 0);
(d9)
    [a > 0, b > 0]
(c10) integrate(f(x), x);
    sqrt(a) x
    asinh(---------)
            sqrt(b)
(d10)
    ----------------
    sqrt(a)
```

You can remove assumptions set up with the assume command using forget.

```
(c11) forget(a > 0, b > 0);
(d11) [a > 0, b > 0]
```

Note that integrate knows only about explicit dependencies; it is not affected by dependencies set up with the depends command.
To inhibit evaluation, precede the command with a single quote; Macsyma returns the "noun form".

```
(c12) i_expr2:'integrate(x/(a - x), x);
    /
    [ x
(d12) I ----- dx
    ] a - x
    /
```

To evaluate the integral, use ev.

```
(c13) assume(a > x);
(d13)
    [a > x]
(c14) ev(i_expr2, integrate);
(d14) - a log(x - a) - x
```

The option variable logabs is false by default. When logs are generated during the integration of certain expressions, such as integrate $(1 / x, x)$; , this setting causes Macsyma to return the answers in terms of $\log (. .$.$) . Setting logabs to true causes Macsyma to return these answers in terms of \log (a b s(. .)$.$) ,$ where abs is the absolute value command.

```
(c15) ev(i_expr2, integrate, logabs:true);
(d15) - x - a log(a - x)
```

When Macsyma cannot integrate an expression, it returns the unintegrated expression as a noun form.

```
(c16) integrate \((\sin (\sin (x)), x)\);
    /
    [
(d16)
    I \(\sin (\sin (x)) d x\)
    ]
    /
```


6.2.2 Definite Integration

This section discusses exact symbolic and numerical definite integration. For floating point numerical integration, see Section 6.2.3. This subsection presents the commands

- integrate finds the indefinite (or definite) integral of an expression with respect to a variable.
- ldefint returns the definite integral of the specified expression by using the command limit (see page 89) to evaluate the indefinite integral of the expression.
- changevar makes the specified change of variable in all integrals occurring in the given expression.

This section also introduces the option variables intanalysis and laplace_call, which allow you to control some aspects of integration.
You can use the command integrate (exp, var, high, low) to find the definite integral of the expression exp with respect to the variable var from low to high.

```
(c1) integrate(log(1/x)/(1 + x ) ^2, x, 0, 1);
(d1)
    log(2)
```

You can use the option variable intanalysis to customize Macsyma's definite integrator. When intanalysis is true, Macsyma tries to determine whether an integral is absolutely convergent before performing the integration by checking for poles in the interval of integration. When false, intanalysis turns off this time-consuming check, assuming that absolute convergence is assumed until proven otherwise. Since this procedure can lead to wrong answers if poles exist, you should use the false setting with caution.

Table 6.1 summarizes the differences between setting intanalysis to true or false.
In the following example, the option variable showtime is set to true so that you can compare the relative speeds of the calculations, depending on the setting of intanalysis.

```
(c2) showtime:true$
Time= 1 msec
```

The first command below uses intanalysis set to true, the second uses it set to false. Notice that in this case both settings return the same answer, but a setting of true takes more time because the function defint checks for poles in the interval of integration. A setting of false bypasses this time consuming check, but can lead to incorrect results if there are poles. Use the false setting with caution.

```
(c3) integrate(1/(x^2 - a), x, 0, inf), intanalysis:true;
Is a positive, negative, or zero?
```

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Setting of } \\
\text { intanalysis }\end{array} & \text { Pros } & \text { Cons } \\
\hline \text { true } & \begin{array}{l}\text { You can have greater confidence in the } \\
\text { result of integration. } \\
\text { The information returned by convergence } \\
\text { testing might be of interest. }\end{array} & \begin{array}{l}\text { The calculation of the integral takes } \\
\text { longer with the convergence check. } \\
\text { Macsyma might make several queries } \\
\text { during integration about the signs of } \\
\text { quantities. }\end{array} \\
\text { The range of parameters for which the } \\
\text { result is valid can be returned. } \\
\text { An expression that can be integrated } \\
\text { might be returned as a noun form } \\
\text { instead, if Macsyma cannot determine its } \\
\text { convergence. } \\
\text { The algorithm for determination of } \\
\text { convergence might not work in all cases. }\end{array}
$$\right\} \begin{array}{l}Results must be used with care, since

they could be wrong.

All convergence information is lost.\end{array}\right\}\)| false |
| :--- |
| Integration is faster. |
| signs of quantities. |
| All integratable expressions are |
| integrated. |

Table 6.1: Summary of the intanalysis Option Variable

```
p;
Principal Value
Time= 24682 msecs
(d3) 0
(c4) integrate(1/(x^2 - a), x, 0, inf), intanalysis:false;
Is a positive or negative?
p;
Time= 21211 msecs
(d4) 0
```

When Macsyma cannot determine if there are poles in the interval of integration, it prints a message and continues with the integration as though intanalysis were false.

```
(c5) integrate(exp((%i*a - b)*x), x, 0, inf), intanalysis:true;
INTEGRATE could not determine whether there are poles in the
interval of integration.
Continuing...
Is a positive, negative, or zero?
p;
Time= 18253 msecs
b %i a
(d5)
                        ------- + -------
(c6) integrate(exp((%i*a - b)*x), x, 0, inf), intanalysis:false;
Is a positive, negative, or zero?
p;
Time= 12570 msecs
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(d6)} & \multicolumn{2}{|c|}{b} & \multicolumn{2}{|l|}{\%i a} \\
\hline & & - & & \\
\hline & 2 & 2 & 2 & 2 \\
\hline & & & & \\
\hline
\end{tabular}
(c7) showtime:false$
```

If you are convinced that a function is best integrated through indefinite integration, then take limits at the end points using the command ldefint (exp, var, low, high). The function ldefint integrates the expression exp indefinitely with respect to the variable var and takes limits at the endpoints low and high. See page 89.

```
(c8) ldefint(exp((%i*a - b)*x), x, 0, inf);
    1
(d8)
    --------
    b - %i a
(c9) forget(b > 0);
(d9) [b > 0]
```

You can set the option variable laplace_call to control the extent to which the integrator attempts to use Laplace transform techniques to solve problems. By default, laplace_call is true.

- When laplace_call is false, Macsyma does not use Laplace transform techniques.
- When laplace_call is true, Macsyma applies Laplace transform techniques only to actual Laplace transforms, that is, problems of the form integrate $(\exp (-s * x) * f(x), x, 0, i n f)$.
- When laplace_call is all, even problems that are not in Laplace transform format are forced into it, and the Laplace transform techniques are applied. The transformation

```
integrate(f(x), x, 0, inf)
    limit(integrate(exp(-s*x)*f(x), x, 0, inf), s, 0, plus)
```

is applied whenever both sides are defined.

For more information about Laplace transforms, see Section 6.7, page 107. For information about the limit command, see Section 6.3, page 89.
Consider the following examples, which illustrate the use of the various settings of laplace_call. In the next two commands, notice that Macsyma cannot solve the problem with laplace_call set to false.

```
(c10) integrate(t*exp(-t)/(t + 1), t, 0, inf), laplace_call:false;
    inf
    / - t
    [ t \%e
(d10) I ------- dt
    ] \(\mathrm{t}+1\)
    /
    0
(c11) integrate (t*exp \((-t) /(t+1), t, 0, i n f), ~ l a p l a c e \_c a l l: t r u e ; ~\)
(d11) \(1-\%\) e \(\operatorname{gamma}(0,1)\)
```

In the next three commands, notice the settings of the option variables intanalysis and laplace_call required to solve the problem.

```
(c12) integrate((cos(t*x) - cos(x))/x, x, 0, inf);
Is t positive, negative, or zero?
p;
Integral is not absolutely convergent. Maybe you
want to try the computation with INTANALYSIS:FALSE.
(d12) []
(c13) integrate((cos(t*x) - cos(x))/x, x, 0, inf), intanalysis:false;
    inf
    /
    [ cos(t x) - cos(x)
(d13) I ---------------- dx
    ] x
    /
    O
(c14) integrate((cos(t*x) - cos(x))/x, x, 0, inf), laplace_call:all,
    intanalysis:false;
```

(d14)

The command changevar $(\exp , f(x, y), y, x)$ makes the change of variable given by $f(x, y)=0$ in all integrals occurring in the expression exp with integration with respect to x. The variable y is the new variable.

```
(c15) 'integrate(f(tau)*g(t - tau), tau, \(0, \mathrm{t})\);
    t
        /
        [
(d15)
\(g(t-t a u) f(t a u) d t a u\)
        ]
        /
        0
(c16) changevar \((\%, u=t-t a u, u, t a u)\);
    0
    /
    [
- I \(f(t-u) g(u) d u\)
    ]
    /
    t
```

Some Macsyma implementations support a more efficient way of doing numerical integration with romberg. Refer to romberg in the Macsyma Reference Manual for more information.

6.2.3 Numerical Integration

Macsyma has three commands for floating point numerical integration.

- quadratr extrapolated Gaussian quadrature.
- romberg Romberg integration.
- quanc8 Newton-Cotes quadrature.

Two other functions, simpson and traprule implement Simpson's rule and the trapezoidal rule, and are useful mainly for instructional purposes.
The quadratr command is the most robust integrator. It can handle integrands which become singular or are ill-behaved. It tends to be slower on most problems.

The romberg command is best for well-behaved integrands.
The quanc8 command is often useful for highly oscillatory integrands.
For more information on these functions, refer to the Macsyma Reference Manual .
Here are some examples. Note that quadratr gives the best answer in all cases.
(c1) integrate $(\log (x), x, 0,1)$;
(d1)
(c2) quadratr $(\log (x), x, 0,1)$;

```
(d2) - 0.99999960994452d0
(c3) errcatch(romberg(log(x), x, 0, 1));
LOG(0) has been generated.
(d3) [ ]
(c4) quadratr(sin(1/x), x, 0.0001, 1);
(d4) 0.50638436625272d0
(c5) quanc8(sin}(1/x),x,0.0001, 1)
(d5) 0.4083
(c6) errcatch(romberg(sin(1/x), x, 0.0001, 1));
ROMBERG failed to converge.
(d6)
[ ]
```


6.3 Taking Limits

This section presents the following commands:

- limit finds the limit of an expression as a given real variable approaches some value, such as infinity.
- tlimit is similar to limit, except that it uses Taylor series (see page 91) when possible.

This section also includes an example using the option variable tlimswitch. In addition, the command ldefint, which integrates an expression indefinitely with respect to a variable and takes limits at the endpoints, was introduced in Section 6.2.2, page 86.

The command limit(exp, var, value, direction) finds the limit of the expression exp as the real variable var approaches the given value from some direction. If you do not specify direction, limit computes a bidirectional limit. However, you can specify a direction with plus to indicate a limit from above, or minus to indicate a limit from below.
If the limit is undefined, limit returns und. If the limit is indefinite, but bounded, limit returns ind. Both und and ind are special symbols.
Take the bidirectional limit of the expression as x goes to infinity.

Take the limit of the expression expr as x goes to zero from above.
(c3) limit(expr, x, 0, plus);
(d3)
0

Take the limit of the expression expr as x goes to zero from below.
(c4) limit(expr, $x, 0$, minus);
(d4)
1

The bidirectional limit of the expression expr as x goes to zero is undefined.

```
(c5) limit(expr, x, 0);
(d5)
und
```

The bidirectional limit of the expression $\sin (1 / \mathrm{x})$ as x goes to zero is indefinite, but bounded.

```
(c6) limit(sin(1/x), x, 0);
(d6) ind
```

To inhibit evaluation, precede the command with a single quote. Macsyma returns the "noun form".

```
(c7) 'limit(tan(x)^cos(x),x,%pi/2);
    cos(x)
(d7) limit tan(x)
    %pi
    x -> ---
    2
```

To evaluate the limit, use $\mathbf{e v}$.
(c8) ev(\%,limit);
(d8)
1

You can also take a limit using the command tlimit(exp, var, value, direction), which instructs Macsyma to use the taylor command when possible (see page 91). Alternatively, you can set the option variable tlimswitch to true to indicate that the limit command should try to use taylor.

```
(c9) tlimit((sin(tan(x)) - tan(\operatorname{sin}(x)))/x^7, x, 0);
```

1
(d9) - --
30
(c10) $\operatorname{limit}\left((\sin (\tan (x))-\tan (\sin (x))) / x^{\wedge} 7, x, 0\right)$, tlimswitch:true;
1
(d10)

- --

30

6.4 Computing Taylor and Laurent Series

Macsyma has a very powerful package for computing Taylor series, or more generally, Laurent series. This section presents the following commands:

- taylor computes a Taylor series by expanding an expression in a given variable around a specified point.
- taylorinfo returns information about the Taylor expansion of the specified expression.

Other Taylor-related commands include taylor_solve, introduced in Section 5.4, and tlimit in Section 6.3. At the end of this section, examples of multivariate Taylor series expansion and asymptotic Taylor series expansion are also presented.
To compute a Taylor series, use the command taylor (exp, var, point, power), where exp is the expression you want to expand in the variable var around the point point. Macsyma generates the terms through (var - point $)^{\text {power }}$. Display lines containing Taylor series representations are labeled with /T/.

You can manipulate the truncated Taylor series; Macsyma recalculates automatically.

The answer in (d1) above gives an indirect value of 1 for the limit of $\sin (x) / x$ at 0 . You can also use $\operatorname{limit}(\sin (x) / x, x, 0)$; to obtain the same value.
The taylorinfo(exp) command returns information about the Taylor expansion of the expression exp, if exp is a Taylor series; otherwise, taylorinfo returns false.

This command indicates that the last expression is a Taylor series expansion, is in x, is about 0 , and is up to the fourth order.
(c3) taylorinfo(\%);

$$
\begin{equation*}
[[x, 0,4]] \tag{d3}
\end{equation*}
$$

The next example computes the Taylor series of an expression with respect to x about b to the second order.

```
(c4) taylor(exp(1/\operatorname{sin}(a*x)), x, b, 2);
```


Macsyma also has capabilities for finite Laurent series expansion.

```
(c5) taylor(cot(%pi*z)/(4*z^2 - 1)^5, z, 1/2, 2);
(d5)/T/ - ----------- +------------------------------------------
1024 (z - -) 1024 (z - -) 3072 (z - -) 3072 (z - -)
                    2 2 2 2
            5 3 (2 %pi + 35 %pi + 378 %pi) (z - -)
    2%pi + 75 %pi + 1050%pi 2
- -------------------------- + ------------------------------------------
```



```
                                    2
- ------------------------------------------------ + . . .
    3 2 2 5 6 0
```

Macsyma also allows you to perform multivariate Taylor series expansion, as shown below.

```
(c6) expr:sin(a*x + b*y)^-1;
    1
(d6)
    -----------
    sin(b y + a x)
(c7) taylor(expr, x, 0, 1, y, 1, 2);
```


As shown in the examples below, Macsyma supports two alternative syntaxes for specifying the terms $(v a r-p o i n t)^{\text {power }}$.

```
(c8) taylor(expr, x, 0, 3, y, 0, 3);
```


b y 6

3

44
b y
(c9) taylor(expr, $[x, y], 0,3)$;
1
a x + b y
(d9)/T/ --------- + ---------
$\mathrm{ax}+\mathrm{by} \quad 6$
$\begin{array}{llllllll}3 & 3 & 2 & 2 & 2 & 2 & 3\end{array}$
$7 \mathrm{a} x+21 \mathrm{~b} a \mathrm{y} \mathrm{x}+21 \mathrm{~b}$ ay $\mathrm{x}+7 \mathrm{~b} \mathrm{y}$

+ --- + . . 360

Macsyma also allows you to perform asymptotic Taylor series expansion, as shown below.

```
(c10) \(\exp : 1 /(1-1 / x)\);
(d10)
1
-----
1 - -
x
(c11) taylor (exp, [x, 0, 5, 'asymp]);
```



```
(c12) \(\operatorname{subst}(\mathrm{e}, 1 / \mathrm{x}, \exp )\);
(d12)
1
    1-e
(c13) taylor (\%, e, 0, 5);
\((\mathrm{d} 13) / \mathrm{T} / \quad 1+\mathrm{e}+\mathrm{e}^{2}+\mathrm{e}^{3}+\mathrm{e}^{4}+\mathrm{e}^{5}+\ldots\).
(c14) \(\operatorname{subst}(1 / x, e, \%)\);
                    \(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\)
(d14)
    \(-+--+--+--+--+1\)
    \(\begin{array}{ccccc}\mathrm{x} & 2 & 3 & 4 & 5 \\ & \mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\)
```

To find the leading behavior of the integral

as $x \rightarrow 0+$, you can use the taylor command.

The command trunc (exp) displays an expression as if its sums were truncated Taylor series.

```
(c16) trunc(expand(integrate(%, t, 0, x)));
Is x positive, negative, or zero?
p;
(d16)
```



```
\(\begin{array}{llll}3 & 5 & 21 & 108\end{array}\)
```


6.5 Solving Ordinary Differential Equations (ODEs)

6.5.1 Symbolic Solutions of ODEs

Macsyma has a symbolic differential equation solver. This section presents the following commands:

- ode solves first and second order ordinary differential equations.
- ic1 sets an initial condition for first order initial value problems.
- ic2 sets an initial condition for second order initial value problems.
- bc2 sets a boundary condition for second order boundary value problems.

In addition, this section discusses the system variables method, intfactor, odeindex, and $\mathbf{y p}$, and the option variable odetutor. See odelinsys, Section 6.7 for solving linear systems of ODEs.
The command ode(equation, depvar, indvar) solves first and second order ordinary differential equations, equation with dependent variable(s) depvar and independent variable(s) indvar. The ode command knows about several methods for solving ODEs. It attempts another method if a previous method fails to return a solution. When successful, ode returns either an explicit or implicit solution for the dependent variable.

If you set the option variable odetutor to true, ode prints out the name of each method as it attempts to solve an ODE. For more information about the ode command, and the methods it employs for solving ODEs, consult the Macsyma Reference Manual.

When solving an ODE, Macsyma sets several system variables that you can use to retrieve information about the solution:

- method denotes the method of solution used. See page 97 for an example of this variable.
- intfactor denotes any integrating factor used. See page 98 for an example of this variable.
- odeindex denotes the index for Bernouilli's method, or for the generalized homogeneous method. See page 99 for an example of this variable.
- yp denotes the particular solution for the variation of parameters technique. See page 99 for an example of this variable.

Macsyma provides commands to help you solve initial value problems and boundary value problems:

- The command ic1(solution, xvalue, yvalue) sets the initial condition for first order initial value problems. The argument solution is a general solution to a first order differential equation; xvalue is an
equation for the independent variable, in the form $x=x_{0}$; and yvalue is an equation for the dependent variable, in the form $y=y_{0}$.
The ic1 command returns an equation obtained by restricting the general solution solution according to the initial condition specified by xvalue and yvalue. See page 97 for an example of this command.
- The command ic2(solution, xvalue, yvalue, derivativevalue) sets the initial condition for second order initial value problems. The argument solution is a general solution to a second order differential equation; xvalue is an equation for the independent variable, in the form $x=x_{0}$; and yvalue is an equation for the dependent variable, in the form $y=y_{0}$; derivativevalue is an equation for the derivative of the dependent variable with respect to the independent variable evaluated at the point xvalue.
The ic2 command returns an equation obtained by restricting the general solution solution according to the initial conditions specified by xvalue, yvalue, and derivativevalue. See page 98 for an example of this command.
- The command bc2(solution, xvalue1, yvalue1, xvalue2, yvalue2) sets the boundary condition for second order boundary value problems. The argument solution is a general solution to a second order differential equation; xvalue1 is an equation for the independent variable, in the form $x=x_{0}$; and yvalue1 is an equation for the dependent variable, in the form $y=y_{0} ; x v a l u e 2$ and yvalue2 are equations for these variables at another point.
The bc2 command returns an equation obtained by restricting the general solution solution according to the conditions specified by xvalue1, yvalue1, xvalue2, and yvalue2 together. See page 98 for an example of this command.

```
(c1) depends(y, x)$
```

Set odetutor to true to keep track of what is happening.
(c2) odetutor:true\$

Macsyma can solve odes with symbolic coefficients.

The \%c symbol in the result represents an arbitrary constant for first order solutions.

(d4) $y=$

```
    b 2 a sqrt(- b/a) x b
    (2 %c b x + 2 %c sqrt(- -)) %e - a sqrt(- -) x - 1
    a
        a
----------------------------------------------------------------------------
    b 2 a sqrt(- b/a) x
2 %c a sqrt(- -) x %e - a x
    a
```

As always, after you find a solution the variable method is set to the name of the method that succeeded.

```
(c5) method;
```

(d5) riccati

It is a good idea to check the solution.
(c6) ev(eq, sol, diff, radcan);
(d6) $\quad 0=0$
(c7) $\operatorname{diff}(\mathrm{y}, \mathrm{x})=2 / \% \mathrm{pi} * x * y *(y-\% p i)$;
dy $2 \times \mathrm{y}(\mathrm{y}-\% \mathrm{pi})$
(d7)
$\mathrm{dx} \quad \% \mathrm{pi}$
(c8) sol:ode (\%, y, x);
Trying ode2
$\log (y-\% p i)-\log (y) \quad x^{2}$
(d8)
--------------------- = -- + \%c
(c9) method;
(d9)
separable

Use ic1 for the initial value problem of a first order ODE.

```
(c10) ic1(sol, x = 0, y = y0);
    log(y - %pi) - log(y) log(y0 - %pi) - log(y0) + x
(d10)
        2
        2
(c11) solve(logcontract(%),y);
            %pi y0
(d11)
```


Macsyma assumes the right side of the equation is zero if you do not specify it.

```
(c12) diff(y, x, 2) + y*diff(y, x)^3;
    2
    d y dy 3
(d12)
    --- + y (--)
    2 dx
    dx
```

The $\mathbf{\% k} \mathbf{k}$ and $\mathbf{\% k} \mathbf{k}$ symbols in the result represent arbitrary constants for second order solutions.

```
(c13) sol:ode(%, y, x);
Trying ode2
            3
            y + 6 %k1 y
(d13)
                        ----------- = x + %k2
                            6
(c14) method;
(d14) freeofx
```

Use ic2 to set the initial conditions for a second order ODE.

```
(c15) ratsimp(ic2(sol, x = 0, y = 0, 'diff(y,x) = 2));
```

(d15)
3
$2 y-3 y$
$--------x=x$

6

Use bc2 to set the boundary conditions for a second order ODE.

```
(c16) bc2(sol, x = 0, y = 1, x = 1, y = 3);
                            3
                            y - 10 y 3
(d16)
    --------- = x - -
                            6 2
(c17) y + (2*x*y - %e^(-2*y))*'diff(y,x) = 0;
                            - 2 y dy
(d17) (2 x y - %e ) -- + y = 0
                            dx
(c18) ode(%,y,x);
Trying ode2
(d18) x % e
(c19) method;
(d19)
    exact
```

When you solve an equation by means of an integrating factor, the variable intfactor is set to the integrating factor.

```
(c20) intfactor;
    1
(d20) -
    y
(c21) \(x^{\wedge} 2 * \operatorname{diff}(y, x)+2 * x * y-y^{\wedge} 3=0\);
    2 dy 3
(d21) \(\quad \mathrm{x}--\mathrm{y}+2 \mathrm{x} \mathrm{y}=0\)
    dx
(c22) ode(\%, y, x);
Trying ode2
(d22) y = ---------------------
            22
        sqrt (---- + \%c) \(x\)
            5
            5 x
(c23) method;
(d23)
    bernoulli
```

When you find a solution for Bernoulli's equation or for a generalized homogeneous equation, the variable odeindex is set to the index of the equation.

```
(c24) odeindex;
(d24) 3
```

After finding the solution to the homogeneous equation, the method of variation of parameters allows you to find the nonhomogeneous solution to the equation.

```
(c25) diff(y, x, 2) - 5*diff(y, x) + 6*y = 2*exp(x);
            2
                d y dy x
(d25)
                --- - 5 -- + 6 y = 2 %e
(c26) ode(%, y, x);
Trying ode2
(d26) y = %k1%e 3x + %k2% e er 2 + % e
(c27) method;
(d27)
    variationofparameters
```

The variable yp denotes the particular solution for the technique of variation of parameters.
(c28) yp;
(d28)
x
\%e

The following example illustrates the use of ode's optional series keyword to obtain a series solution.

The keyword series indicates that you want a series solution; \%\%n is a dummy variable to sum over.

```
(c31) ode(eq, \(y, x\), odeseries);
    inf
    \(====\quad \% \% n\)
    \(\backslash\)
        \(3 \% \mathrm{k} 1>\)
    \(1 \begin{array}{lll}1 & 3 & 1\end{array}\)
    \(===\quad(\% \% n--)(\% \% n--)\)
    \(\% \% \mathrm{n}=0 \quad 2\)
(d31) [y = --------------------------------- \(+\frac{k k 2(1-x) \operatorname{sqrt}(x)] ~}{x}\)
    4
(c32) ode(eq, \(y, x\), odeseries, ode2);
```


6.5.2 Symbolic Approximate Solution of an ODE

Using a perturbation calculation, the following computation finds an approximate solution for a nonlinear oscillator equation (Duffing's equation):

```
2
d y 3 2
--- - e y + w0 y = 0, where e << 1
    2
dx
```

This problem can be solved directly with the lindstedt command, which is one of the perturbation methods available in Macsyma. We will work out a solution without the lindstadt command as an illustration of how to combine Macsyma commands to solve more complicated problems. By assumption, $e \ll 1$. Thus, the solution must be close to that of a simple harmonic oscillator. The solution obtained will be correct to first order in e; higher approximations are left as a practice problem.

```
(c33) assume(w > 0)$
(c34) depends(y, x)$
```

Find an approximate solution to the following equation by perturbation methods, where $e \ll 1$.

```
(c35) duffing_eq:diff(y, x, 2) + w0^2*y - e*y`3;
    2
    dy --- - e y +wO y
(d35)
    2
    dx
```

Assuming y_{0} is the solution to the differential equation when $e=0$, since $e \ll 1$, the solution can be written as follows (to second order in e).

```
(c36) try_y:y = y[0] + e*y[1] + e^2*y[2];
            2
(d36)
    y=y e m y e e + y 
```

Expand $w 0^{2}$ as follows, where a_{1} and a_{2} are chosen to eliminate the secular term.

```
(c37) try_wO:wO^2 = w^2 + a[1]*e + a[2]*e^2;
            2 2 2
(d37)
    wO = w + a e + a e
    2 1
```

Substituting $\operatorname{trg}_{-} y$ and try_w0 into the differential equation $d u f f i n g_{-} e q$ then differentiate.

```
(c38) ev(duffing_eq, try_y, try_wO, diff);
```


Since $e \ll 1$, you can neglect terms in e^{3} or higher.

```
(c39) duffing_eq_pert:ratsubst(0, e^3, \%);
                            2
```



```
    dx dx
```

Equate coefficients of like powers of e.

```
(c40) duffing_e [0]:ratcoef(duffing_eq_pert, e, 0);
    2
(d40)
```



```
(c41) duffing_e[1]:ratcoef(duffing_eq_pert, e, 1);
                            2
            d 3
(d41)
```


(c42) duffing_e [2]:ratcoef(duffing_eq_pert, e, 2);
2
2 d 2
(d42)

Solve y_{0} first, then use the result to solve for y_{1}, then use previous result to solve for y_{2}.

```
(c43) sol[0]:ode(duffing_e[0], y [0], x);
Trying ode2
(d43) y = %k1 sin(w x) + %k2 cos(w x)
                    O
(c44) sol[0]:trigreduce(ic2(sol[0], x = 0, y [0] = a*sin(b),
                'diff(y[0], x) = a*w*cos(b)));
(d44)
    y = a sin(w x + b)
    O
```

Substitute y_{0} into the equation duffing $_{-} e[1]$.

```
(c45) duffing_e[1]:ev(duffing_e[1], sol[0], trigreduce);
```

```
        3 3
    a }\operatorname{sin}(3\textrm{w}x+3\textrm{b})3\textrm{a}\operatorname{sin}(\textrm{w}x+b) 
(d45)
    ----------------- - ---------------- + a a sin(w x + b) + y w
    4
        4
        1
        1
        2
        d
        + --- (y )
    2 1
        dx
```

The terms enclosed in boxes give rise to the secular terms, as shown below.

```
(c46) dpart(%, [2, 3]);
            * """"""""""""""""""""
        3 " 3 "
    a sin(3 w x + 3 b) " 3 a sin(w x + b)" """"""""""""""""""
(d46) ------------------ + "- ----------------" + "a a sin(w x + b)"
```



```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{2} \\
\hline & 2 & d \\
\hline \multicolumn{3}{|l|}{+ y w + --- (y} \\
\hline \multirow[t]{2}{*}{1} & 1 & 2 \\
\hline & & dx \\
\hline
\end{tabular}
(c47) ode(duffing_e[1], y[1], x);
Trying ode2
                    3
                                3
(d47) y = - (- a sin(3 w x + 3 b) + (8 a a - 6 a ) sin(w x + b)
            1
                            1
            3
                                    2
+ wx (12 a cos(w x + b) - 16 a a cos(w x + b)))/(32 w ) + %k1 sin(w x) + %k2 cos(w x)
                                    1
```

Extract the secular terms.

```
(c48) ratcoef(%, x);
```

 3
 (3 a - 4 a a) \(\cos (w x+b)\)
 1
 (d48)
0 = - -------------------------------
8 w

Choose a to eliminate the secular terms.

```
(c49) linsolve(%, a[1]), globalsolve:true;
                                    2
            3 a
        [a : ----]
        1 4
```

Recall that yp yields the particular solution.

```
(c50) sol[1]:y[1] = ev(yp);
```

3
a $\sin (3 \mathrm{w} x+3 \mathrm{~b})$
(d50)
y
1

2 32 w

This is correct to first order in e.
(c51) ev(try_y, sol[0], sol[1], y[2] = 0);
3
a $e \sin (3 \mathrm{w} x+3 \mathrm{~b})$
(d51)

2
32 w
(c52) $\mathrm{w} \wedge 2=\mathrm{wO} 2-\mathrm{a}[1] * e ;$
(d52)

4

6.6 Numerical Solutions of ODEs

This section introduces several commands for finding numerical solutions of ODEs.

- runge_kutta uses $4^{t h}$ order Runge-Kutta method.
- ode_numsolve uses $4^{\text {th }}$ order and adaptive $5^{\text {th }}$ order Runge-Kutta methods.
- ode_stiffsys for stiff systems of ODEs.

Here are some examples.
(c1) eq : 'diff($y, t)=\operatorname{erf}\left(y^{\wedge} 2\right)$;
(d1)

$$
\begin{aligned}
& d y \\
& --=\operatorname{erf}(\mathrm{y}) \\
& d t
\end{aligned}
$$

(c2) ic: $\operatorname{at}(\mathrm{y}, \mathrm{t}=0)=1$;
(d2) $\begin{array}{ll}y \mid & =1 \\ \mid t=0\end{array}$
(c3) runge_kutta(eq,'y,'t,ic, $0,1,0.1$);
(d3) $[t=[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]$, $\mathrm{y}=[1.0,1.08754,1.18054,1.27719,1.37586,1.47543,1.57532$, $1.6753,1.77529,1.87529,1.97529]$, dy
-- = [0.8427, 0.9056, 0.95127, 0.97894, 0.99257, 0.99792, 0.99955,
dt
$0.99993,0.99999,1.0,1.0]]$

We can plot the result.
(c4) graph(assoc('t,\%),[assoc('y,\%), assoc('diff('y,'t),\%)],[0,2])\$

Figure 6.1: Plot of the Numerical Solution to the ODE
(c5) ode_numsol(eq,'y,'t,ic,0,1,0.1);
dy dy
(d5) $[[[y]=[y],[--]=[--]],[t=[0.0,0.1,0.2,0.3,0.4,0.5$,
$\mathrm{dt} d \mathrm{t}$
$0.6,0.7,0.8,0.9,1.0], \mathrm{y}=[1.0,1.08754,1.18054,1.27719$, $1.37586,1.47543,1.57532,1.6753,1.77529,1.87529,1.97529]$, dy
-- = [0.8427, 0.9056, 0.95127, 0.97894, 0.99257, 0.99792, 0.99955,
dt
0.99993, 0.99999, 1.0, 1.0]]]

Again, we can plot the result.
(c6) graph(assoc('t,odns_result), [assoc('y,odns_result), assoc('diff('y,'t), odns_result)], $[0,2]) \$$

This second graph command generates exactly the same plot as shown in Figure 6.1

6.7 Computing Laplace Transforms

This section covers the commands available for computing Laplace transforms and inverse Laplace transforms. The section presents the following commands:

- laplace takes the Laplace transform of an expression.
- atvalue assigns a boundary value to a function or a derivative.
- ilt takes the inverse Laplace transform of an expression.
- odelinsys solves differential equations for the specified dependent variables, where the functional relationships are explicitly indicated in both the equations and the variables.

In addition, the variable laplace_call, which controls the extent to which the integrator attempts to use Laplace transform techniques to solve problems, was introduced in Section 6.2.2, page 86.
The command laplace (exp, ovar, lvar) takes the Laplace transform of the expression exp with respect to the variable ovar and transform parameter lvar. Note that the expression \exp can involve only the functions $\exp , \log , \sin , \cos , \sinh , \cosh$, and erf (the error function). The expression exp can also be a linear constant coefficient differential equation, in which case the atvalue of the dependent variable is used.

To assign a boundary value to a function or a derivative, use the command atvalue (form, equation n_{1}, \ldots, equation $_{n}$, value), which assigns the value value to form at the points specified by the equations equation n_{1} though equation n_{n}. The argument form can be a function of the form

$$
f\left(v a r_{1}, \ldots, v a r\right)
$$

or a derivative of the form

$$
\operatorname{diff}\left(f\left(\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right), \operatorname{var}_{i}, n_{i}, v a r_{j}, n_{j}, \ldots\right)
$$

in which the functional arguments appear. Symbols of the form @1, @2, ... represent the functional variables var $_{1}$.
You can also apply the inverse Laplace transform to obtain the solutions of the differential equations eq1 and eq2. The command ilt (exp, ovar, lvar) takes the inverse Laplace transform of the expression exp with respect to the variable ovar and transform parameter lvar. The expression exp must be a ratio of polynomials whose denominator has only linear and quadratic factors.

By using the laplace and ilt commands with solve, you can solve a single differential or convolution integral equation, or a set of them.
Consider the following example. Let $n_{a}(t), n_{b}(t)$, and $n_{c}(t)$ represent the number of nuclei of three radioactive substances, which decay according to the scheme

$$
a \rightarrow \lambda a \rightarrow b \rightarrow \lambda b \rightarrow c
$$

The functions $n_{a}(t), n_{b}(t)$, and $n_{c}(t)$ are known to obey the system of differential equations as given below:

```
(c1) eq1: diff(na(t),t) = -la*na(t);
            d
(d1)
    -- (na(t)) = - la na(t)
            dt
(c2) eq2: diff(nb(t), t) = -lb*nb(t) + la*na(t);
            d
(d2)
    -- (nb(t)) = la na(t) - lb nb(t)
            dt
(c3) eq3:diff(nc(t), t) = lb*nb(t);
                            d
(d3)
                                    -- (nc(t)) = lb nb(t)
                    dt
```

Assuming that $N_{a}(0)=N_{0}$ and $N_{b}(0)=N_{c}(0)=0$ solve the problem by Laplace transform methods: Set the initial conditions with atvalue.

```
(c4) (atvalue(na(t), t = 0, n0),
    atvalue(nb(t), t = 0, 0),
    atvalue(nc(t), t = 0, 0))$
(c5) assume(s > 0)$
```

Apply the laplace transform to the differential equations eq1, eq2, and eq3.

```
(c6) eq1_lt:laplace(eq1, t, s);
(d6) s laplace(na(t), t, s) - n0 = - la laplace(na(t), t, s)
(c7) eq2_lt:laplace(eq2, t, s);
(d7) s laplace(nb(t), t, s) = la laplace(na(t), t, s) - lb laplace(nb(t), t, s)
(c8) eq3_lt:laplace(eq3, t, s);
(d8)
    s laplace(nc(t), t, s) = lb laplace(nb(t), t, s)
```

Solve for the transformed equations.

```
(c9) solve([eq1_lt, eq2_lt, eq3_lt],
    ['laplace(na(t), t, s),
        'laplace(nb(t), t, s),
        'laplace(nc(t), t, s)]);
```

(d9) $[[\operatorname{laplace}(\mathrm{na}(\mathrm{t}), \mathrm{t}, \mathrm{s})=-----$
s + la

2
$s+(l b+l a) s+l a l b$

(c10) ilt(%, s, t);
(c10) ilt(%, s, t);
- lat - lb t
- lat lan0 \%e lan0 \%e

lb - la lb - la
- lb t - la t
- lb t - la t
la n0 %e lb n0 %e
la n0 %e lb n0 %e
nc(t) = -------------- - --------------- + n0]]
nc(t) = -------------- - --------------- + n0]]
lb - la lb - la
lb - la lb - la

Another way to solve the problem above is with the odelinsys command. odelinsys([eqn n_{1}, \ldots, eqn $\left.n_{n}\right]$ $\left.\left[\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right]\right)$ solves the differential equations $e q n_{i}$ for the dependent variables $\operatorname{var}_{1}, \ldots$, var $_{n}$. You must explicitly indicate the functional relationships in both the equations and the variables.

```
(c11) odelinsys([eq1, eq2, eq3], [na(t), nb(t), nc(t)]);
                                    - la t - lb t
    - la t la n0 %e la n0 %e
(d11) [na(t) = n0 %e , nb (t) = -------------- ----------------
    lb - la lb - la
    - lb t - la t
    la n0 %e lb n0 %e
    nc(t) = -------------- - -------------- + n0]
        lb - la lb - la
```


6.8 Practice Problems

Using the commands that you have learned about in this chapter, solve the following problems. Answers appear on page 276 .

Problem 1. Define the Legendre polynomials using

- the Rodrigues formula

- the recurrence relation

Problem 2. Assuming that $x<1$, show that

$$
\begin{aligned}
& / \\
& {\left[\begin{array}{l}
\text { } \\
I----d x=-x-\log (1-x) \\
] \\
/
\end{array} \quad . \quad l\right.}
\end{aligned}
$$

Problem 3. Assuming that $a>0$, show that

Problem 4. Assuming that $m>0$ and $n>0$, show that

```
inf
/
[ cos(mx) - cos(n x)
I ------------------ dx = log(n) - log(m)
]
    x
/
0
```

Problem 5. Evaluate the following integral numerically:

```
8.0
/
[ cos(2.0 x) - cos(3.0 x)
I --------------------- dx
]
    x
/
0.01
```

Problem 6. Show that

$$
\begin{aligned}
& \text { x } \\
& \text { / } \\
& \text { [} \\
& y=I f(x-t) d t \\
& \text {] } \\
& \text { / } \\
& 0
\end{aligned}
$$

is a solution of

$$
\begin{aligned}
& d y \\
& --=f(x) \\
& d x
\end{aligned}
$$

(Hint: You might find it helpful to change the variable $x-t$ to u in the integral solution.)
Problem 7. Evaluate the limit of the following expression as x approaches $\pi / 2$.

$$
\begin{gathered}
\log (\cos (x)) \\
----------\quad \log (1-\sin))
\end{gathered}
$$

Problem 8. Evaluate the limit of the following expression as x approaches zero.

```
sin(x) - atan(x)
----------------
    2
    x log(x + 1)
```

Problem 9. Show that as e goes to zero

Hint: You might want to use the trunc command to convert your result into the format shown above. Problem 10. Show that the following

```
            2
            d (g - 1) x 2 g x
f = 4(--- (%e }\operatorname{sech}(x)))+(g-2) g %
            2
                dx
```

is a solution for
$0=-(24 \operatorname{sech}(x) \tanh (x)+a) f-4--(1-3 \operatorname{sech}(x))+---$
subject to the constraint

```
3
g - 4g-a=0
```

Problem 11. Solve

$$
(x y+x) \int_{d x}^{2}--+y+3 x y=0
$$

Problem 12. Solve
2 dy 3
$x(y-3 x)--+2 y-5 x y=0$
dx

Problem 13. Solve the following by

- the default method
- the series method

Problem 14. Solve the following differential equations:

```
            2
        d d
\(3(--(f(x)))-2(--(g(x)))=\sin (x)\)
            \(2 d x\)
        \(d x\)
            2
            d d
a \((---(g(x)))+--(f(x))=a \cos (x)\)
    dx
```

with the conditions
df
-- $=0 \quad$ at $\quad x=0$
dx
dg
-- $=1 \quad$ at $\quad x=0$
dx

Problem 15. Determine a first-order solution for small but finite u for the following differential equation (from [Na], pages 103-105).

Chapter 7

Matrices

A matrix is a two-dimensional, ordered set of elements. Macsyma provides you with a large group of commands for performing matrix operations, as well as many option variables you can set for more flexibility and control over matrix operations. A simple example using matrices appeared in Chapter 1.

The sections below cover such topics as creating, transposing, and inverting matrices, extracting parts from matrices, adding rows and columns, calculating determinants, finding characteristic polynomials, and producing the echelon form of matrices.
The scope of this document allows only a limited introduction to Macsyma's matrix manipulation capabilities. Macsyma has more advanced matrix algebra capabilities. It includes nearly all the numerical linear algebra in MATLAB. For more information, consult the Macsyma Reference Manual.

7.1 Creating a Matrix

Macsyma provides commands for creating many kinds of matrices, including identity matrices. This section presents the following commands:

- entermatrix creates a matrix element by element, prompting you for each of the values in the matrix.
- matrix creates a rectangular matrix with the indicated rows.
- ident produces an identity matrix.
- zeromatrix creates a rectangular matrix of zeros.
- diagmatrix and diag_matrix produce diagonal matrices whose elements you specify.
- coefmatrix returns the coefficient matrix for the given variables of a system of linear equations.
- augcoefmatrix returns the augmented coefficient matrix for the given variables of a system of linear equations.
- copymatrix creates a copy of the specified matrix.
- genmatrix generates a matrix from an array.

This section illustrates how to use the matrix creation commands to produce various types of matrices. Subsequent sections explain how you can manipulate these matrices in many ways.

The command entermatrix (m, n) allows you to create an m by n matrix interactively. Macsyma prompts you for the value to be stored in each of the $m \times n$ entries. The function entermatrix also prompts you for the type of matrix to be created. The choices are diagonal, symmetric, antisymmetric, or general. Macsyma uses its knowledge of the different types of matrices so, for instance, if you choose to create a diagonal matrix, entermatrix asks only about the nonzero elements.

Create an antisymmetric four by four matrix mat.

```
(c1) mat:entermatrix(4,4);
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
3;
Row 1 Column 2: 0;
Row 1 Column 3: 0;
Row 1 Column 4: %i*l;
Row 2 Column 3: 0;
Row 2 Column 4: %i*v;
Row 3 Column 4: %i*v;
Matrix entered.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{(d1)} & [ & 0 & 0 & 0 & \\
\hline & [ & & & & \\
\hline & [ & 0 & 0 & 0 & \\
\hline & [ & & & & \\
\hline & [ & 0 & 0 & 0 & \\
\hline & [ & & & & \\
\hline & \multicolumn{2}{|l|}{[ \% i ]} & & & 0 \\
\hline
\end{tabular}
```

You can also create a matrix, with the command matrix $\left(\right.$ row $_{1}, \ldots$, row $\left.w_{n}\right)$, where each row is a list of matrix elements. In the next example we create a three by three matrix.

A shorter syntax for the matrix command is simpler to use:
(c3) [a, b, c; d, e, f; g, h, i];
$\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]$
$\left[\begin{array}{ll}{[} &]\end{array}\right.$
$\left[\begin{array}{lll}\mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]$
[]
$\left[\begin{array}{lll}\mathrm{g} & \mathrm{h} & \mathrm{i}\end{array}\right]$

To produce an n by n identity matrix, where each of the diagonal elements is a " 1 "and each of the other elements is a " 0 ," use the command ident (n). You can also produce any diagonal matrix of size n by n, with all diagonal elements x and other elements zero, with the command diagmatrix (n, x). Notice that $\operatorname{diagmatrix}(n, 1)$ is the same as $\operatorname{ident}(n)$.
Define a three by three identity matrix.
(c4) ident(3);
$\left.\begin{array}{c}\text { (d4) }\end{array} \begin{array}{lll}{\left[\begin{array}{llr}1 & 0 & 0\end{array}\right]} \\ {[} & &] \\ 0 & 1 & 0\end{array}\right]$

Define a three by three diagonal matrix with diagonal element x.
(c5) dmat:diagmatrix $(3, x)$;
$\left[\begin{array}{lll}\mathrm{x} & 0 & 0\end{array}\right]$
$\left[\begin{array}{lll}{[} &]\end{array}\right.$
(d5)
$\left[\begin{array}{lll}0 & x & 0\end{array}\right]$
[\quad]
$\left[\begin{array}{lll}0 & 0 & x\end{array}\right]$

Use diag_matrix to create a three by three diagonal matrix with diagonal elements x, y, and z.
(c6) diag_matrix([x, y, z]);
$\left[\begin{array}{llll}\mathrm{x} & 0 & 0 &] \\ {[} & & &] \\ {\left[\begin{array}{llll}0 & y & 0\end{array}\right]} \\ {[} & & &] \\ {\left[\begin{array}{llll}0 & 0 & z\end{array}\right]}\end{array}\right]$

To produce an m by n matrix of zeros use the command zeromatrix (m, n).

```
(c7) zmat:zeromatrix(4, 2);
```

	$\left[\begin{array}{ll}0 & 0\end{array}\right]$
	[\quad]
	$\left[\begin{array}{ll}0 & 0\end{array}\right]$
(d7)	[$\left.{ }^{0}\right]$
	$\left[\begin{array}{ll}0 & 0\end{array}\right]$
	[$\left.{ }^{0}\right]$
	$\left[\begin{array}{ll}0 & 0\end{array}\right]$

The command coefmatrix $\left(\left[e q n_{1}, \ldots, e q n_{n}\right],\left[v a r_{1}, \ldots, v a r_{n}\right]\right)$ creates the coefficient matrix for the variables $v a r_{1}, \ldots$, var $_{n}$ of the system of linear equations $e q n_{1}, \ldots, e q n_{n}$. Similarly, the command
augcoefmatrix $\left(\left[e q n_{1}, \ldots, e q n_{n}\right]\right.$, $\left.\left[\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right]\right)$ creates the augmented coefficient matrix, which is the coefficient matrix with a column adjoined for the constant terms of each equation. (Constant terms are those that are not dependent on $v a r i_{i}$.)
Both coefmatrix and augcoefmatrix accept eqni as polynomials; they need not be equations.
Define a system of linear equations eqs.

```
(c8) eqs:[3*zz + b*yy + a*xx - 2,
    4*zz + 2*yy - a = 12,
    90*zz - 12*yy - 3*a = 45]$
```

Define coefm as the coefficient matrix for the variables $x x, y y, z z$ of eqs.

(d9)	[a	b	3
	[
	[0	2	4
	[
	[0	- 12	90

Define augm as the augmented coefficient matrix for the variables $x x, y y, z z$ of eqs; notice the last column contains the constant terms of each equation

The copymatrix (matrix) command produces a copy of the matrix matrix. This command is useful in conjunction with the setelmx, to make a new copy of a matrix when it is changed. Note: This is the only way to produce a new copy of a matrix aside from copying the matrix element by element. See the example on page 125 .

```
(c11) dmat1:copymatrix(dmat);
    [ x 0 0 ]
    [ ll
(d11) [ l 0
    [ ll
    [ 0 0 x ]
```

The command genmatrix (array, $i_{2}, j_{2}, i_{1}, j_{1}$) command generates a matrix from the specified array array, using $\operatorname{array}\left(i_{1}, j_{1}\right)$ for the upper left corner element in the matrix and $\operatorname{array}\left(i_{2}, j_{2}\right)$ for the lower right corner element in the matrix. If $i_{1}=j_{1}$, then you do not need to specify j_{1}. If $i_{1}=j_{1}=1$, then you do not need to specify either i_{1} or j_{1}.

Define an array h as shown below.

```
(c12) h[i, j] := 1/(i + j - 1)$
```

Use h to generate a four by four matrix with upper left corner $1 /(1+1-1)=1$, and lower corner $1 /(4+4-1)=1 / 7$
(c13) hilbert:genmatrix(h, 4, 4);
[$\left.\begin{array}{lllll} & 1 & 1 & 1 & \end{array}\right]$
$\left[\begin{array}{lll}1 & - & -\end{array}\right]$
$\left[\begin{array}{lllll}{[} & 2 & 3 & 4 &]\end{array}\right.$
$\left.\begin{array}{lll}{[} & \end{array}\right]$
$\left[\begin{array}{lllll}1 & 1 & 1 & 1 &]\end{array}\right.$
$\left[\begin{array}{lll}1 & - & -\end{array}\right]$
$\left[\begin{array}{lllll}2 & 3 & 4 & 5 & \end{array}\right]$
(d13) []
$\left[\begin{array}{lllll}1 & 1 & 1 & 1 &]\end{array}\right.$
$\left[\begin{array}{lll}- & - & -\end{array}\right.$
$\left[\begin{array}{lllll}3 & 4 & 5 & 6 & \end{array}\right]$
[]
$\left[\begin{array}{lllll}1 & 1 & 1 & 1 &]\end{array}\right.$
$\left[\begin{array}{lll}- & -\end{array}\right]$
$\left[\begin{array}{lllll}4 & 5 & 6 & 7 & \end{array}\right]$

Macsyma also has a built-in command hilbert which gererates Hilbert matrices. For more information, refer to the Macsyma Reference Manual.

7.2 Extracting From and Adding to a Matrix

This section describes how you can extract data from a matrix or add rows, columns, or single elements of data to a matrix for subsequent use.
The first subsection describes how you can extract rows, columns, or elements from a matrix, and the second subsection describes how you can add rows and columns to the matrix. The last subsection describes how you can change an element in the matrix. This is the only matrix operation that actually alters the input matrix.

It is important to note that none of the commands described in the first two subsections actually changes the input matrix. For example, you can extract a row of data in the matrix with the row command and perform some operation on it, but the original matrix still contains the extracted row. Similarly, the command addrow returns a new matrix with the specified additional row(s); it does not change the original matrix.
Starting with Macsyma 419 and Macsyma 2.0, Macsyma has compact ways to specify submatrices and to assign values to them. See the Release Notes for these versions for more information.

7.2.1 Extracting Rows, Columns, and Elements

You can extract entire rows or columns of a matrix for later use. This section presents the following commands:

- row returns a matrix consisting of a specified row in another matrix.
- col returns a matrix consisting of a specified column in another matrix.
- submatrix makes a new matrix composed of specified rows and columns from another matrix.
- minor returns the minor of the given matrix by removing the specified column and row.

The command row (matrix, i) returns a matrix of the $i^{\text {th }}$ row of the matrix matrix. Similarly, the command $\operatorname{col}($ matrix, $i)$ returns a matrix of the $i^{t h}$ column of the matrix matrix.
Define a matrix hilbert.

Extract row four from the matrix hilbert.
(c3) row(hilbert, 4);
$\left[\begin{array}{lllll}1 & 1 & 1 & 1 &]\end{array}\right]$
(d3)
$\left[\begin{array}{lll}- & -\end{array}\right]$
$\left[\begin{array}{lllll}4 & 5 & 6 & 7 & \end{array}\right]$

Here is a shorter syntax for extracting a row.
(c4) hilbert[4, ..];
$\left[\begin{array}{lllll}1 & 1 & 1 & 1 &]\end{array}\right.$
(d4) $\quad[-\quad-\quad-\quad]$
$\left[\begin{array}{lllll}4 & 5 & 6 & 7 &]\end{array}\right]$

Extract column three from the matrix hilbert.

```
(c5) col(hilbert, 3);
    [ 1 ]
    [ - ]
    [ 3 ]
    [ ]
    [ 1 ]
    [ - ]
    [4 ]
(d5) [ ]
    [ 1 ]
    [ - ]
    [ 5 ]
    [ ]
    [ 1 ]
    [ - ]
    [ 6 ]
```

Here is the shorter syntax for extracting a column.
(c6) hilbert[.., 3];

```
    [ 1 ]
    [-]
    [ 3 ]
    [ ]
    [ 1]
    [-]
    [4 ]
(d6) [ ]
    [1]
    [-]
    [5]
    [ ]
    [1]
    [ - ]
    [6 ]
```

To extract a submatrix, indicate the rows and columns you wish to extract using the sequence operator "..". Extract a submatrix from the matrix hilbert.

```
(c7) hilbert[2..4, 2..3];
```


To create a matrix from a part of an existing matrix matrix, use the command submatrix $\left(\right.$ row $_{1}, \ldots$, row $_{n}$, matrix, col $\left., \ldots, \operatorname{col}_{n}\right)$, where the new matrix contains all rows except each row ${ }_{i}$ and all columns except each $c o l_{i}$. Both row $_{1}, \ldots$, row $_{n}$ and $\operatorname{col}_{1}, \ldots, \operatorname{col}_{n}$ are optional; you can extract only rows or only columns if you wish.

Return a new matrix containing all but the third column of hilbert.
(c8) submatrix(hilbert, 3);

	[1	1
	[1	-	
	[2	
	[
	[1	1	
	[-	-	
	[2	3	5
(d8)	[
	[1	1	
	[-	-	
	[3	4	6
	[
	[1	1	
	[-	-	
	[4	5	

The command minor matrix, i, j) returns the minor of the given matrix by removing the specified row i and column j.
Create a minor of the matrix hilbert by removing the third row and second column.

To extract an element from a matrix, use the notation matrixname $[i, j]$, where matrixname is the name of the matrix, i is the row, and j is the column of the desired element.
Extract the element in row two, column three, of the matrix in (d6).

```
(c10) %[2, 3];
```

1
(d10)
-

7.2.2 Adding Rows and Columns to a Matrix

You can use the addrow and addcol commands to add rows or columns to a matrix, respectively. The command addrow (matrix, list-or-matrix,\ldots, list-or-matrix x_{n}) appends the rows specified in each list $_{i}$ or matrix $_{i}$ to the matrix matrix. Similarly, the command addcol(matrix, list-or-matrix ${ }_{1}$, ..., list-or-matrix ${ }_{n}$) appends the columns specified in each list $_{i}$ or matrix x_{i} to the matrix matrix.

Use zeromatrix to define the matrix empty.

```
(c1) empty:zeromatrix (3,3);
    [ 0 0 0 ]
    [ [ ]
    [ 0 0 0 ]
    [ [ ]
    [ 0 0 0 ]
```

Add two rows to the matrix empty, as specified in the lists below.
(c2) addrow(empty, [a41, a42, a43], [a51, a52, a53]);
$\left[\begin{array}{llll}{[} & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}{[} & & &] \\ {[} & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}{[}\end{array}\right]$
$\left[\begin{array}{llll}{[} & 0 & 0 &]\end{array}\right]$
$\left[\begin{array}{llll}\text { a41 } & \text { a42 } & \text { a43 }\end{array}\right]$
$\left[\begin{array}{llll}\text { a51 } & \text { a52 } & \text { a53 }\end{array}\right]$

Add a column to the matrix above.

	[0	0	0	b14]
	[]
	[0	0	0	b24]
	[]
(d3)	[0	0	0	b34]
	[]
	[a41	a42	a43	b44]
	[]
	[a51	a52	a53	b54]

7.2.3 Changing the Elements in a Matrix

This section describes how you can change the elements stored in a matrix with the setelmx command. $\operatorname{set} \operatorname{lmx}(x, i, j, m a t r i x)$ changes the i, j element of the matrix matrix to x. This command returns the altered matrix.

Alternatively, you can use the notation matrix $[i, j]: x$ to change the i, j element to x. In this case, Macsyma returns the value x rather than the altered matrix.
Create a two by two matrix

```
(c1) abcd:matrix([a, b], [c, d]);
    [ a b ]
(d1) [ ]
    [ c d ]
```

Change the element in the second row, second column, to z. The result is the changed matrix $a b c d$.

```
(c2) setelmx(z, 2, 2, abcd);
    [ a b ]
(d2)
    [ ]
    [ c z ]
```

Change the element in the first row, first column, to 0 . The result is the new value 0 .

```
(c3) abcd[1,1]:0;
(d3) 0
(c4) abcd;
            [ 0 b ]
(d4) [ ]
    [lll
```

You can create a copy of a matrix with copymatrix, or you can assign a matrix to one or more variables. For example:
(c5) abcd_copy:copymatrix(abcd);
[0 b]
(d5)
[\quad]
[$\left.\begin{array}{ll}\mathrm{c} & \mathrm{z}\end{array}\right]$
(c6) abcd_variable:abcd;
[0 b]
(d6)
[\quad]
[$\left.\begin{array}{ll}\mathrm{c} & \mathrm{z}\end{array}\right]$

You should be aware of an important difference between these two approaches.

- Two matrices created with copymatrix are two distinct matrices. When you change the elements in one with setelmx or ":", the elements of the other do not change.
- When you assign a matrix as a value to two or more variables, and then change the elements in this matrix, the values of all variables change. Internally, both variables point to the same matrix.

This distinction is illustrated in the following example. Notice the current contents of the matrix $a b c d$.

```
(c7) abcd;
    [ 0 b ]
(d7) [ ]
    [ l z z]
```

Reset the element in the second row, second column, of the matrix $a b c d$ to d.

```
(c8) setelmx(d, 2, 2, abcd);
    [ 0 b ]
(d8) [ ]
    [ c d ]
```

The copied matrix abcd_copy, created with copymatrix, does not reflect this change.

```
(c9) abcd_copy
    [ 0 b ]
(d9) [ ]
    [ l z ]
```

The variable $a b c d_{-}$variable, whose value is that of the matrix $a b c d$, does reflect the change.

```
(c10) abcd_variable;
    [0 b ]
(d10) [ ]
    [ c d ]
```


7.3 Arithmetic Operations on Matrices

You can use the operators "+", "-", "*", ".", and " "" on matrices. The operations work on the corresponding elements of each matrix. (These operators were introduced in Section 3.1.1, page 15.) You can use the "." operator to perform matrix multiplication. In addition, you can use the operator "~~" to raise a matrix to a power. The notation matrix ${ }^{\wedge-1}-1$ inverts a matrix, as does the command invert. m.m is equivalent to $\mathrm{m}^{\wedge}{ }^{-} 2$ for a matrix m.
Examples of arithmetic operations on matrices appear below.
Define two matrices.


```
(c2) mat_1234:matrix([1,2],[3,4]);
    [ 1 2 ]
(d2) [ ]
    [ 3 4 ]
```

Add together the elements of the matrices mat_ 1234 and mat_wxyz.

```
(c3) mat_1234 + mat_wxyz;
```

 \(\left[\begin{array}{ll}\mathrm{w}+1 & \mathrm{x}+2]\end{array}\right.\)
 (d3)
$\left[\begin{array}{ll}\mathrm{w}+1 & \mathrm{x}+2]\end{array}\right.$
[]
$\left[\begin{array}{ll}y+3 & z+4\end{array}\right]$

Subtract the elements of the matrices mat_ 1234 and mat_ wxyz.

```
(c4) mat_1234 - mat_wxyz;
    [1 - w 2 - x ]
(d4) [ ]
    [ 3-y 4-z ]
```

You will probably do matrix multiplication with the "." operator, since matrix multiplication is generally non-commutative.
(c5) mat_1234 * mat_wxyz;

(c6) mat_1234 . mat_wxyz;
(d6)

Raise the elements of the matrix mat_1234 to the third power.

```
(c7) mat_1234^3;
(d7)
    [ [ 8 ]
[ [ ]
    [ 27 64 ]
```

To invert a matrix m, you can use the notation $m^{\wedge}-1$. Another way to invert a matrix is with the command invert(matrix).
(c8) mat_wxyz^^-1;

To compute a matrix inverse while keeping the overall factor of the matrix determinant outside the matrix result, set the option variable detout to true. An example of detout appears on page 135.

To compute the trace of a square matrix Macsyma has a built-in command matrux_trace. For more information, refer to the Macsyma Reference Manual.

7.4 Producing the Echelon Form of a Matrix

Computing the echelon form of a matrix results in a matrix where the first nonzero element in each row is a 1, and all the column elements under the first 1 in each row are 0.
The command echelon (matrix) uses elementary row operations to produce the echelon form of the matrix matrix.

```
(c1) eqs: [3*zz + b*yy + a*xx - 2 ,
    \(4 * z z+2 * y y-a=12\),
    \(90 * z z-12 * y y-3 * a=45] \backslash \$\)
(c2) augm:augcoefmatrix(eqs, [xx, yy, zz]);
    \(\left[\begin{array}{lllll}\mathrm{a} & \mathrm{b} & 3 & -2 & ]\end{array}\right.\)
    [ ]
    \(\left[\begin{array}{lllll}0 & 2 & 4 & -a & -12\end{array}\right]\)
    [ ]
    \(\left[\begin{array}{c}0-1290-3 a-45]\end{array}\right.\)
```

(c3) echelon(augm);
(d3)

[b	3		2
[1	-	-		-
[a	a		a
[
[a 12
[0	1	2	-	-----
[2
[
[$a+39$
[0	0	1		-----
[38

7.5 Calculating Determinants

You can calculate the determinant of a matrix. This section presents the following commands:

- determinant computes the determinant of a given matrix by a method similar to Gaussian elimination.
- rank computes the order of the largest nonzero subdeterminant of the given matrix.

To calculate the determinant of the square matrix matrix, you can use the command determinant(matrix). This command uses a method similar to Gaussian elimination.

The command $\operatorname{rank}($ matrix $)$ computes the rank of the matrix matrix. The rank is the order of the largest nonzero subdeterminant of matrix.

(c3) determinant(t - lambda*ident(3));

7.6 Eigenanalysis of Matrices

You can find eigenvalues, characteristic polynomials, and eigenvectors of matrices. This section presents the following commands:

- charpoly computes the characteristic polynomial for a given matrix with respect to the specified variable.
- eigenvalues returns the eigenvalues of the specified matrix.
- eigenvectors returns the eigenvalues and the corresponding eigenvectors of the specified matrix.

The command charpoly (matrix, var); returns the characteristic polynomial of a matrix for the variable var. You can use the solve command to solve for the eigenvalues of a matrix.

```
(c1) t:matrix([(ex^2 - ey^2 - ez^2)/2, ex*ey, ex*ez],
    [ex*ey, (ey^2 - ex^2 - ez^2)/2, ey*ez],
    [ex*ez, ey*ez, (ez^2 - ex^2 - ey^2)/2]);
```


The command eigenvectors (matrix) returns a list containing several sublists. The first sublist contains the eigenvalues of the matrix matrix, and the remaining sublists contain the eigenvectors corresponding to each of the eigenvalues in the first sublist.

```
(c4) eig_info:eigenvectors(t);
\(\begin{gathered}2 \\ e z+e y+e x\end{gathered} e^{2}+z^{2}+e^{2}+e x \quad\) ey ez
(d4) [[[---------------, - ---------------], [1, 2]], [1, --, --],
    2 2 ex ex
        [1, 0, - --], [0, 1, - --]]
    ez ez
```

You can find eigenvalues and eigenvectors of general floating point matrices using eigens_by_schur. See the Macsyma Reference Manual for more information.

7.7 Transposing a Matrix

Use the command transpose (matrix) to produce the transpose of the matrix matrix. Note that transposing the transpose of a matrix returns the matrix itself.

The next matrix could be thought of as defining the stress in an electric field.
(c1) t:matrix $\left(\left[\left(e x^{\wedge} 2-e y^{\wedge} 2-e z^{\wedge} 2\right) / 2\right.\right.$, ex*ey, ex*ez], [ex*ey, (ey^2 - ex^2 - ez^2)/2, ey*ez], [ex*ez, ey*ez, (ez^2 - ex^2 - ey^2)/2]);

(c2) solve(charpoly(t, ei), ei);
$\mathrm{ez}^{2}+\mathrm{ey}^{2}+\mathrm{ex}^{2} \mathrm{ez}^{2}+\mathrm{ey}^{2}+\mathrm{ex}^{2}$
(d2)

$$
\begin{gathered}
{[e i ~=---------------, ~ e i ~=~-----------------]} \\
2
\end{gathered}
$$

(c3) multiplicities;
(d3)

$$
[1,2]
$$

(c4) eig_info:eigenvectors(t);

Pick out one eigenvector using the part command and transpose it using the transpose command.

	[ex]
	[--]
	[ey]
	[]
(d5)	$\left[\begin{array}{ll}1 & \end{array}\right.$
	[]
	[ez]
	[--]
	[ey]

Macsyma also uses the postfix operator ${ }^{\wedge}$ as a shorter way to indicate transpose.

```
(c6) part(eig_info, 1, 3, 1)``;
[ ex ]
    [ -- ]
    [ ey ]
    [ ]
(d6) [ 1 ]
    [ ]
    [ ez ]
    [ -- ]
    [ ey ]
```

Construct a matrix whose columns are eigenvectors.

```
(c7) aa:addcol(%,part(eig_info, 2, 3,1), part(eig_info, 2, 3, 2));
```

(d7)
$\left[\begin{array}{llll}{[\text { ex }} & & &] \\ {[--} & 1 & 0 &] \\ {[\text { ey }} & & &] \\ {[} & & &] \\ {[1} & 0 & 1 &] \\ {[} & & &] \\ {[\text { ez }} & \text { ex } & \text { ey }] \\ {[--} & -- & --- &] \\ {[\text { ey }} & \text { ez } & \text { ez }]\end{array}\right.$

(c9) aa_1: aa^^-1, detout;
(d9)

Show that the matrix of eigenvalues defines a similarity transformation which diagonalizes the matrix t.

Chapter 8

Plotting

This chapter provides a brief introduction to Macsyma's extensive plotting capabilities. Macsyma provides commands that allow you to produce two and three-dimensional plots of functions and expressions. You can produce hidden-line plots and contour plots, and by varying option variables, you can control the plot's scale, perspective, and coordinate system.

The plot illustrations in this chapter were produced using Macsyma 2.0.
Not all plotting features are available on all versions of Macsyma. Consult the Release Notes for information about what is available on your system.

Although the examples in this chapter introduce many commands and option variables, this document has only a limited introduction to Macsyma's plotting capabilities. Consult the Macsyma Reference Manual for more information.

8.1 Creating Two-Dimensional Plots

This section presents the following commands:

- plot plots an expression in the y direction which is a function of the independent variable, which is plotted in the x direction.
- paramplot plots one expression as the x coordinate against another expression as the y coordinate where both expressions are functions of an independent parameter.
- graph plots points specified by a list of abscissas and a list of ordinates.

See also contourplot, implicit_plot, and plot2_vect in the Macsyma Reference Manual .
This section also introduces the option variable plotnum.
You can use the command plot (exp, var, bound1, bound2) to produce a two-dimensional plot of the expression exp, where var is the variable to plot against, and bound1 and bound2 are the limits of the values of the independent variable. If you wish, you can provide a list of values to plot rather than specifying the range with bound1 and bound2.
The following example plots an expression for x between -3 and 3. The result is shown in Figure 8.1.

```
(c1) gauss_deriv(x):=-2*x*exp(-x^2);
```

```
    2
    - x
(d1) gauss_deriv(x) := - 2 x %e
(c2) plot(gauss_deriv(x), x, -3, 3);
```


Figure 8.1: Two-Dimensional Plot with plot
You can also provide a list of values to be plotted, rather than a range. The next example replots the expression gauss_deriv for a list of points. The result is shown in Figure 8.2.

```
(c3) plot(gauss_deriv, x, [-3, -2, -1, 0, 1, 2, 3])$
```


Figure 8.2: Two-Dimensional Plot from a List of Values

When you specify the plotting range with bound1 and bound2, var takes on the number of values specified by plotnum within the range. By default, the value of plotnum is 100 . You can reset this variable to control the number of points in the plot.
The next example plots 200 points in the expression gauss_deriv $\times \sin (10 x)$ for x between -3 and 3 . The result is shown in Figure 8.3.

```
(c4) plot(gauss_deriv(x)*sin(10*x), x, -3, 3), plotnum:200$
```


$$
\begin{aligned}
& -3.0<X<3.0 \\
& -0.84<Y<0.75
\end{aligned}
$$

Figure 8.3: Plot with plotnum Set Higher
The command paramplot(x-expr, y-expr, var, bound1, bound2) plots the expression or list of expressions x-expr as the x coordinate against the expression or list of expressions y-expr as the y coordinate. The arguments bound1 and bound2 give the range of the plot.
In the following example paramplot plots x_{-}expr against y_{-}expr. The result is shown in Figure 8.4.

```
(c5) x_expr:cos(x);
(d5) cos(x)
(c6) y_expr:sin(3*x);
(d6) }\operatorname{sin}(3\textrm{x}
(c7) paramplot(x_expr, y_expr, x, -5*%pi, 5*%pi)$
```

Plotting more points yields a more accurate representation. Compare the result of the next plot, shown in Figure 8.5, with the plot in Figure 8.4.
(c8) paramplot(x_expr, y_expr, x, $-5 * \%$ pi, $5 * \%$ pi), plotnum: $1000 \$$

The two-dimensional plotting commands recognize several types of coordinate systems. You can specify the coordinate system with an optional argument to the plotting command. An example using polar coordinates appears below. Other coordinate systems are described in the Macsyma Reference Manual.
You can redisplay the plot in Figure 8.5 in polar coordinates. The result is shown in Figure 8.6.

Figure 8.4: Two-Dimensional Plot with paramplot

Figure 8.5: Paramplot with More Points Plotted
(c9) paramplot(x_expr, y_expr, x, $-5 * \%$ pi, $5 * \%$ pi, polar), plotnum:1000\$

Figure 8.6: Plot with Polar Coordinates

The command $\operatorname{graph}(x$-list, y-list $)$ plots points specified by the list (or list of lists) x-list and y-list.
The example below uses graph to plot lists of points produced by the numerical solution of coupled differential equations. The result is shown in Figure 8.7.

```
(c10)eqns: ['diff( \(x, t)=-3.0 *(x-y), ’ \operatorname{diff}(y, t)=-x * z+30 . * x-y, \quad \operatorname{diff}(z, t)=x * y-z] ;\)
    dx dy dz
(d10) \(\quad[--=-3.0(x-y),--=-x z-y+30.0 x,--=x y-z]\)
    dt
                            dt
                            dt
(c11) ic: ['at \((x, t=0)=0 ., ' \operatorname{at}(\mathrm{y}, \mathrm{t}=0)=1\)., 'at \((\mathrm{z}, \mathrm{t}=0)=0\).\(] ;\)
(d11) \([\mathrm{x}|\quad=0.0, \mathrm{y}| \quad=1.0, \mathrm{z} \mid \quad=0.0]\)
    \(|t=0 \quad| t=0 \quad \mid t=0\)
(c12) sol_xyz: runge_kutta(eqns, \([x, y, z], t, i c, 0 ., 25.0,0.01) \$\)
(c13) graph(assoc('x,sol_xyz), assoc('y,sol_xyz))\$
```

You can use the command graph3d(x-list, y-list, z-list) to create a three-dimensional plot specified by the points in the lists x-list, y-list, and z-list. (These arguments can also be lists of lists.)
The function runge_kutta produces three lists of points to plot. The example below uses graph to plot the points from these three lists. The result is shown in Figure 8.8.

```
(c14)graph3d(assoc('x,sol_xyz), assoc('y,sol_xyz), assoc('z,sol_xyz))$
```


Figure 8.7: Two-Dimensional Plot with graph

$-11 .<X<13$.
$-20 .<Y<27$.
$0.00<Z<52$.

Figure 8.8: Three-Dimensional Plot with graph3d

8.2 Creating Three-Dimensional Plots

This section presents the following commands:

- plot3d plots an expression three-dimensionally with respect to the specified x and y variables.
- contourplot calculates the same plots as plot3d, but displays the points as a contour plot.
- graph3d produces a three-dimensional plot specified by lists of x, y, and z point.
- plotsurf plots parametric surfaces embedded in three-dimensional space.

See also contourplot3d, paramplot3d, in the Macsyma Reference Manual.
To produce three-dimensional plots, use plot3d(exp, xvar, xbound1, xbound2, yvar, ybound1, ybound2) where exp is the expression to be plotted, xvar and yvar are the variables to plot against, xbound1 and xbound2 are the limits of the plot's x values, and ybound1 and ybound2 are the limits of the plot's y values.

The following example plots an expression for x between 0 and 2 and for y between -2 and 2 . The result is shown in Figure 8.9.

```
(c1) p2_expr:y^2 + cos(4*x) + 2*x;
                    2
(d1)
    y + cos(4 x) + 2 x
(c2) plot3d(p2_expr, x, 0, 2, y, -2, 2)$
```


$$
\begin{aligned}
& 0.00<X<2.0 \\
& -2.0<Y<2.0 \\
& 0.46<Z<8.3
\end{aligned}
$$

Figure 8.9: Three-Dimensional Plot with plot3d
The variable equalscale, which is discussed in more detail in Section 8.3, indicates whether or not the scale of the plot should be the same in both directions. The previous plot looks different with equal scaling, as shown in Figure 8.10.

```
(c3) plot3d(p2_expr, x, 0, 2, y, -2, 2), equalscale:true$
```


Figure 8.10: Plot with equalscale set to true

The command contourplot(exp, xvar, xbound1, xbound2, yvar, ybound1, ybound2) calculates the same points as plot3d, but produces a contour plot of the expression exp instead.

The next example produces a contour plot of the expression in (c1). Compare Figure 8.10 with Figure 8.11.

```
(c4) contourplot(p2_expr, x, 0, 2, y, -2, 2)$
```

Contour plots can be drawn in three dimensions. The next example uses the command contourplot3d to produce a 3D plot of the same expression. The result is shown in Figure 8.12.

```
(c5) contourplot3d(p2_expr, x, 0, 2, y, -2, 2), contours:40$
```

You can use the command plotsurfplotsurf to plot two-dimensional surfaces embedded in three-dimensional space. Each surface is represented in parametric form as $[x(s, t), y(s, t), z(s, t)]$, where s and t are continuous real parameters, and $x(s, t), y(s, t)$ and $z(s, t)$ are real-valued continuous functions. plotsurf plots a grid of plotnum0 \times plotnum1 plot points, and interpolates quadrilaterals between the plot points. Although the function plotsurf has four distinct calling syntaxes, only one is illustrated here. To learn about the others, please refer to the Macsyma Reference Manual .
plotsurf([[x1,y1,z1],.., $[x n, y n, z n]], s, s l o, s h i, t, t l o, t h i)$, where

- The first argument represents n surfaces with n triples of expressions. Each expression evaluates to a floating-point number and may reference the variables s and t.
- s and t are the parameters used to specify the surface.
- slo and shi give the lower and upper limits of the parameter s.
- tlo and thi give the lower and upper limits of the parameter t.

Figure 8.11: A Contour Plot

Figure 8.12: A Contour Plot in Three Dimensions

```
(c6)block([equalscale:true,plotnum0:17,plotnum1:25, title:"A Torus"],
    plotsurf([[(3+\operatorname{sin}(\textrm{th}))*\operatorname{cos}(\textrm{ph}), (3+\operatorname{sin}(\textrm{th}))*\operatorname{sin}(\textrm{ph}), cos(th)]],
        th,0,2*%pi,ph,0,2*%pi,ph,0,2*%pi))$
```

A Torus
${ }_{x}^{2}$
$-4.0<X<4.0$
$-4.0<Y<4.0$
$-1.0<Z<1.0$

Figure 8.13: A Torus
Setting plot_tesselation:3 (the default is 4) causes plotsurf to triangulate each quadrilateral in the plotted surface. One important feature of triangular tesselation is that each element is a planar figure. This eliminates certain viewing anomalies which can occur when using nonplanar polygons.

```
(c7)block([equalscale:true,plotnum0:17,plotnum1:25, plot_tesselation:3
title:"A Torus Tesselated with Triangles"
    plotsurf([[(3+\operatorname{sin}(\textrm{th}))*\operatorname{cos}(\textrm{ph}), (3+\operatorname{sin}(\textrm{th}))*\operatorname{sin}(\textrm{ph}),\operatorname{cos}(\textrm{th})]],
            th,0,2*%pi,ph,0,2*%pi,ph,0,2*%pi))$
```


8.3 Changing the Appearance of a Plot

This section describes the commands you can use to change the appearance of a plot. These facilities include changing the scaling, projection, and axes of a plot.
Use the command replot(plotname) to replot the plot plotname. To replot the most recent plot, use the command replot(); Examples of this command appear in the subsections below.

8.3.1 Changing a Plot's Scale

Macsyma chooses the scale of plots automatically. In general, the scale is as large as possible, while still allowing everything to fit on your screen. This section introduces the following option variables, which allow you to override the default scale settings.

Figure 8.14: A Torus Tesselated with Triangles

- equalscale indicates whether or not the scale of the plot should be the same in both directions.
- xmin, ymin, and zmin, when set, override the calculated minimum of the plot's x, y, and z values to determine the minimum coordinate values plotted on the axes.
- xmax, ymax, and zmax, when set, override the calculated maximum of the plot's x, y, and z values to determine the maximum coordinate values plotted on the axes.
- plot_size adjusts the size of the plot.

By default, the option variable equalscale is false. When equalscale is false, Macsyma can rescale the plot to fill the display. When true, the scales of the plot are the same in both directions. Thus, if the display is rectangular, and equalscale is false, a circle appears as an ellipse; but if equalscale is true, it appears as a circle.

Examples using equalscale appeared in Section 8.2, page 143.
In choosing the scale for a plot, Macsyma looks at the minimum and maximum values it has calculated for x, y, and (for three-dimensional plots) z. By default, the option variables xmin, ymin, zmin, xmax, ymax, and zmax are unbound. If you set any of them to a numeric value, this value overrides the plot's corresponding calculated value.

The option variable plot_size (default: 75) controls the size of the plot on the screen.
The following example produces a polar plot of x from 0 to 200. The result is shown in Figure 8.15.

```
(c1) plot(x, x, 0, 200, polar), plotnum:800$
```

Figure 8.16 shows the change in appearance when the same plot is drawn with equalscale set to true.

```
(c2) plot(x, x, 0, 200, polar), plotnum:800, equalscale:true$
```


Figure 8.15: Polar Plot of a Spiral

Figure 8.16: Polar Plot of a Spiral with equalscale set to true

The next example shows how ymin and ymax can be used to clip a plot. The result is shown in Figure 8.17.

```
(c3) plot(tan(x), x, 0, 10 ), plotnum:800, ymin:-50, ymax:50$
```


$0.00<X<10.0$
$-50 .<Y<50$.

Figure 8.17: Plot with Specified Minimum and Maximum Values
In Macsyma 2.0 and successors, the Front End contains a Camera View dialog box which lets you adjust the scale of a plot and other viewing parameters. For more information, click on Graphic_Menu in the Front End Help. In Macsyma 419, this same feature is found in the Graphics Viewer. Click on [Help] in the Graphics Viewer for more information.

8.3.2 Changing the Viewpoint of a Three-Dimensional Plot

To change the viewpoint of a plot, set the option variable viewpt to a list of three numbers that define the coordinates of the viewpoint.

By default, viewpt is unbound. Macsyma determines the perspective view as follows. First, Macsyma determines the two points min: [xmin, ymin, zmin] and max: [xmax, ymax, zmax]. Then, Macsyma calculates viewpt as max $+3 *(\max -\min)$.
The example below replots the plot shown in Figure 8.9, page 143, with a new view point. The result is shown in Figure 8.18.

$$
\text { (c4) plot3d }\left(y^{\wedge} 2+\cos (4 * x)+2 * x, x, 0,2, y,-2,2\right) \text {, viewpt: }[100,100,-100] \$
$$

The option variable plot_roll (default: 0) enables you to rotate around the viewing direction.
In Macsyma 2.0 and Macsyma 419, the Camera View dialog box allows you to adjust the viewpoint, roll angle, plot size, and other viewing parameters, after a plot has been generated.

Figure 8.18: Three-Dimensional Plot with viewpt Changed

8.3.3 Changing Plot Titles and Axes Labels

This section describes the plotting option variables that you can use to change the titles and axes labels of your plot.
The option variable title accepts as an argument a string, which then appears as the title in a plot drawn by Macsyma.
You can label the x and y axes of a Macsyma plot by setting the option variables xlabel and ylabel. Each option variable accepts as a value a string, which will then appear as the label for the x -axis (the axis for the first variable) or the y-axis (the axis for the second variable) in a 2D or 3D plot drawn by Macsyma.

The line at the bottom of each plot is called the dataline. It displays the maximum and minimum of x and y (and z in 3D plots). Setting the option variable plotbounds to false suppresses display of the dataline.
The following example displays a plot with default axes. The result is shown in Figure 8.19

```
(c5) expr:40*(x^2*sin(1/x));
            1 2
(d5)
        40 sin(-) x
    x
(c6) plot(expr, x, 1.2e-3, 1.0e-2), plotnum:500$
```

Now replot the same plot with a title, labeled x and y axes, no plot bounds information. The result is shown in Figure 8.20.

```
(c7)plot(expr, x, 1.2e-3, 1.0e-2), plotnum:500, title:"A Plot with Modified Labels",
    xlabel:"The First Axis", ylabel:"The Second Axis", plotbounds:false$
```

You can control many aspects of plot axes, labels, grid lines, lighting, and other plot decorations from within the Macsyma Graphics Viewer in Macsyma 419 and from the Front End in Macsyma 2.0.

8.4 Saving Plots

Once you have created some plots, you will want to save them so that they can be displayed later. There are two schemes for saving plots: saving plots in notebooks and saving plots in plot files.

Figure 8.19: Plot with Default Axes

A Plot with Modified Labels

Figure 8.20: Plot With Title, Labeled Axes, and No Plot Bounds Box

8.4.1 Notebook Graphics in Macsyma 2.0 and Successors

If you are using Macsyma on a PC, you will be working in a notebook environment. In a Macsyma notebook, save a plot by saving the notebook in a file. Use the command [File] | [Save As]. To copy only the plot, copy it to an empty notebook using [Edit]|[Copy Section], and then save it.
To paste a plot into another Windows application (e.g. Microsoft Word for Windows), first set the value of Clipboard Force Metafile to On in the [File]|[Option Defaults] menu then use [Paste] in the [Edit] menu

To move a plot within a notebook, or to another notebook, use the mouse to select the graphics section; then use [Edit] | [Copy Section] followed by [Edit] | [Paste Section].
You can save a plots as a .pcx, .bmp, .gif, or .rle file by selecting the plot and clicking on the export button on the tool bar in the Macsyma Front End.

8.4.2 File Based Graphics in Macsyma 419 and Successors

When you create a plot on a system which uses file-based graphics, specifically, in UNIX versions 417 through 420 and successors, Macsyma stores all of the plot information in a file called macsyma.plt. If you wish to save the plot information for a given plot, use the function rename_plot_file to save it in a file with a different name. Each time you create a new plot, Macsyma stores it in the file macsyma.plt, overwriting the previous information in the file.
rename_plot_file(filename)
Function
Renames the current plot file to filename. This command allows you to store information about the most recent plot in a named file; otherwise, the next plot will overwrite the default plot file (macsyma.plot).
If you are using UNIX Macsyma 419, you can also save the plot from the Macsyma Graphics Viewer window, using the menu choice [File]|[Save As]. Later, when you wish to load the saved plot into the Macsyma Graphics Viewer window, use [File]| [Open].
Macsyma allows you to edit many plot attributes in the Macsyma Graphics Viewer window without regenerating the plot. Experiment with the menu items [Adjust View...], [Render Settings...], and [Other View Parameters].

Chapter 9

Macsyma File Manipulation

This chapter explains how to perform various Macsyma file-related operations.
Although the examples in this chapter introduce many commands and option variables, the scope of this document allows only a limited introduction to Macsyma's file manipulation facilities. To find out more, consult the Macsyma Reference Manual .

9.1 Specifying Pathnames

In Macsyma, certain commands require that you specify file pathnames. Operations that require a pathname include:

- Running demonstration files (Section 2.3)
- Saving, editing, and executing files of Macsyma commands (Section 9.3)
- Saving a transcript of your session in a file (Section 9.4.1)

When specifying file pathnames in the Macsyma environment, use the pathname syntax which is specific to your type of platform, enclosed in double quote marks. (DOS-Windows is an exception in that each backslash must be replaced by two backslashes.) For example, if Macsyma is stored on the directory named macgold, then the following commands load the Macsyma system file "functs" from the system directory, and the user file "myfile" from the user's home directory (named homedir) on subdirectory mysubdir:

```
platform command
DOS-Windows load("c:\\macgold\\share\\{functs.fas")$
    load("c:\\homedir\\mysubdir\\myfile.mac")$
UNIX load("c:/macgold/share/functs.o")$
    load("/homedir/mysubdir/myfile.macsyma")$
VMS load("c:[macgold.share]functs.fas")$
    load("c:[homedir.mysubdir]myfile.mac")$
Symbolics load("c:>macgold>share>functs.bin")$ (or .ibin)
    load("c:>homedir>mysubdir> myfile.macsyma")$
All Systems load("macsyma:share;functs.bin")$
    load("macsyma:share;functs")$
    load("functs")$
```

```
load('functs)$
load(functs)$
```

When specifying pathnames in a Macsyma command file, you can make the Macsyma code more portable to other systems by using the "logical pathname" scheme described below. When Macsyma encounters a pathname specified by a logical pathname, the pathname is automatically converted to the appropriate syntax for the indicated file system.

9.1.1 Logical Pathnames

The pathnames for "All Systems" in the table above are in Macsyma's logical pathname scheme, which works across all platforms. A logical pathname uses a file name convention that is independent of any particular physical host or file server. Logical pathnames make it easy to keep software on more than one file server or operating system. Each version of Macsyma has a translation table that takes the name of the logical path and returns the physical directory and name of the installation.
This scheme uses logical names for the name of the directory where Macsyma is installed, and for filename extensions. Note that the logical directory name "macsyma" translates to the name of the directory where the Macsyma software is located. The file type extension is the logical name ".bin", whose literal interpretation varies across platforms. (See below for more information)
The logical pathname scheme is supported only for directories specified by the option variable file_search. This option variable contains a list of those directories to be searched if a file name is incompletely specified. You may add additional directories to this list. The directories may be either logical or literal names. To see the current value of file e_{-}search, enter file_search; . The commands on the last three lines above use Macsyma's file_search facility. When you load a file by its name only, Macsyma checks for a file of that name in several directories. The directories currently on the file_search list are:

- your home directory (denoted by the symbol false)
- macsyma:library1;
- macsyma:library2;
- macsyma:matrix;
- macsyma:ode;
- macsyma:share;
- macsyma:tensor;

For example, if you wish to load a file found in your home directory, you can use either

```
load("myfile.bin")$
load("myfile")$
```

If you don't provide a file specification, Macsyma will search for "binary" first, then "lisp", then "macsyma." In DOS-Windows, these files would appear with suffexes .bin, .lsp, and .mac.

9.1.2 Filename Extensions

Macsyma's logical pathname scheme uses three logical pathname extensions: .macsyma .lisp, and .bin. These translate into literal pathname extensions as shown in Table 9.1.

Logical		Actual Extensions	-	
Extensions	DOS-Windows	UNIX	VMS	Symbolics
.macsyma	.MAC	.macsyma	.MAC	.macsyma
.lisp	.LSP	.lsp	.LSP	.lisp
.bin	.FAS	.o	.FAS	.bin .ibin

Table 9.1: Literal pathname extensions from logical pathnames

9.2 Customizing Your Macsyma Init File

The first time you enter Macsyma, the system automatically attempts to load your init file. If you do not have one, Macsyma displays the name of the file it was trying to locate.

A Macsyma init file is not required, but you might want to create one to contain definitions for functions, option variable settings, assignments to variables, loading share packages, and so on. Use your system's text editor to create an init file. You should use the name that Macsyma tried to load. The default name for the Macsyma init file is macsyma:user;mac-init.mac.
The following sample init file contains customized commands you might like to add to your Macsyma init file.

```
/* This is an empty Macsyma initialization file.
    Macsyma commands which you place in this fie will be executed
    each time you execute the command INITIALIZE_MACSYMA(); .
*/
/*
    The following command will add a directory to the front of the
    list of directories searched when incomplete pathnames are specified.
*/
file_search:cons("c:\\mydir\\develop\\",file_search)$
/*
    The following command will cause the symbol pi to represent as
    double float %pi.
*/
pi:dfloat(%pi)$
/*
    The next command causes Macsyma to display the computation time
    elapsed for each command entered.
*/
showtime:true$
/*
    The following command suppresses the warning message displayed
    each time a floating point number is converted into a bigfloat number.
*/
float2bf:true$
/*
    The following command suppresses the warning message displayed
    each time a floating point number is converted into a rational number.
```

```
*/
ratprint:false$
```

You can use this method to define default settings for your most frequently used option variables.
Macsyma loads your init file automatically when you first enter Macsyma or when you enter Macsyma after a complete initialization, accomplished with initialize_macsyma(); .

To load your init file at any other time, use the command load(filename), where filename specifies the location of your Macsyma init file. For example, you can load the init file "mac-init.mac" from your home directory as follows:
(c1) load("mac-init.mac")\$

9.3 Submitting Macsyma Batch Jobs

All versions of Macsyma support running Macsyma jobs in batch mode. To run any Macsyma batch job successfully, however, you must be able to predict exactly what input Macsyma will ask for in the course of running your job, and at what point in the job Macsyma will require that input. The following sections illustrate this point and explain how to run batch jobs in DOS-Windows, Unix, and VMS.
The following batch command can be used in all versions of Macsyma but only for files in the Macsyma hierarchy.

```
batch("macsyma:user;testing1.mac")$
```

For Unix, a typical batch command would be:

```
batch("c:/homedir/mysubdir/testing1.mac")$
```

A typical VMS batch command would be:

> batch("c:[homedir.mysubdir]testing1.mac")\$

A typical DOS-Windows command is:

9.3.1 Batch Jobs in Unix

This section presents two examples for running Macsyma batch jobs in Unix. Follow the steps below to run a Macsyma batch job.

Example 1

1. Create a Macsyma command file named testing1. com which contains the commands you want included in your batch job. For example,
```
assume(a>0)$
int:(sin(a*x)/x)^2;
integrate(int, x, 0, inf);
quit()$
```

The line assume $(a>0)$ above answers Macsyma's query about the sign of a when it executes the integrate command. This line is necessary since a batch file cannot ask questions.
Alternatively, you can insert assume_pos:true\$ as the first line of the command file above.
2. To execute your file testing1.com, create a Unix shell script, here called testing1.bat, containing the following line:

```
Macsyma < testing1.com > testing1.log
```

When your batch job is completed, the file testing1.log contains a transcript of the Macsyma session.
3. To make your shell script executable, use the following Unix command:

```
chmod +x testing1.bat
```

4. To execute your Macsyma batch job at 9 p.m., for example, use the Unix command at 21:00 testing1.bat. To submit a batch job to Unix more that 24 hours in advance, add the month and date. For example, at 21:00 feb 28 testing1.bat

The second example shows an alternative way of submitting a Macsyma batch job in Unix. This slightly more complicated approach allows you to include only Macsyma commands in your command file and to put responses to Macsyma queries in a separate file. You can use a demo or another Macsyma command file, without making any changes to it for the batch process.

Example 2

1. Create a Macsyma command file named testing2.mac which contains the commands you want included in your batch job. (This filename must be lower case). Assume that testing2.mac has the same contents as testing1.com in Example 1, above, except that the line assume $(a>0)$ is missing:
```
int:(sin}(\textrm{a}*\textrm{x})/\textrm{x})~2
integrate(int, x, 0, inf);
quit()$
```

2. Create a second file, testing2.bat, with the following Macsyma commands shown below. The first command executes the Macsyma command file; the second command answers the integrate command's query about the sign of a.
```
batch("testing2.mac");
pos;
```

3. To execute your file testing2.bat, create a third file called testing2.exe containing the following line:
```
Macsyma < testing1.com > testing2.log
```

When your batch job is completed, the file testing2.log contains a transcript of the Macsyma session.
4. To make the file testing2. exe executable, use the Unix command

```
chmod +x testing2.exe
```

5. To execute your Macsyma batch job at 9 p.m., for example, use the Unix command
```
at 21:00 testing2.exe
```

To submit a batch job to Unix more that 24 hours ahead of time, add the month and date to the above command after the time, as follows:

```
at 21:00 jan 31 testing2.exe
```


9.3.2 Batch Jobs in VMS

This section presents two examples for running Macsyma batch jobs in VMS. You can follow the steps below to run a Macsyma batch job.

Example 1

1. Create a Macsyma command file with the filename extension .COM, such as TESTING1.COM. The first line of the file must be Macsyma; the other lines can contain the commands to be executed in your batch job. For example,
```
Macsyma
assume(a>0)$
int:(sin(a*x)/x)^2;
integrate(int, x, 0, inf);
quit()$
```

The line assume $(a>0)$ above answers Macsyma's query about the sign of a when it executes the integrate command. Alternatively, you can insert assume_pos:true\$ as the first line of the command file.
2. To submit this job after 9 p.m., for example, use the VMS command

```
SUBMIT/AFTER=21:00 TESTING1.COM
```

When the job is completed, a file called testing1.log, created by the system, contains a transcript of the Macsyma session.

The second example shows an alternative way of submitting a Macsyma batch job in VMS. This slightly more complicated approach allows you to include only Macsyma commands in your command file and to put responses to Macsyma queries in a separate file. You can use a demo or another existing Macsyma command file, without making any changes to it for the batch process.

Example 2

1. Create a file with the filename extension . MAC to include the Macsyma commands in your batch job. Example: testing2.mac.
```
int:(sin(a*x)/x)^2;
integrate(int,x,0,inf);
quit()$
```

2. Create a second file with the filename extension .com, for example testing2.com, and include the following:
```
Macsyma
batch("testing2.mac");
pos;
```

The line pos; above answers Macsyma's query about the sign of a when it executes the integrate command. Note: The filename in the second line above must be in lower case.
3. To submit this job after 9 p.m., for example, use the VMS command

```
SUBMIT/AFTER=21:00 TESTING2.COM
```

When the job is completed, a file called testing2.log, created by the system, contains a transcript of the Macsyma session.

9.3.3 Batch Jobs in DOS-Windows

Create a Macsyma command file with the filename extension .mac, for example testing.mac.

```
assume(a>0)$
int:(sin(a*x)/x)^2;
integrate(int, x, 0, inf);
```

The line assume $(a>0)$ above answers Macsyma's query make about the sign of a when it executes the integrate command. Alternatively, you can insert assume_pos:true\$ as the first line of the command file.

To run the job type:
batch("testing.mac")

9.4 Saving Your Work

9.4.1 Saving an ASCII Transcript of Your Work

It is a good practice to begin a Macsyma session with the command writefile(filename) so that your entire Macsyma session will be recorded in the file filename. Use the command closefile to close a file that you have opened with the writefile command. For example:
Open a file to contain a transcript of this Macsyma session.

```
(c1) writefile("Macsyma1.out");
(d1)
    Macsyma1.out
```

The following c-LINEs and D-LINEs are recorded into the transcript file.

```
(c2) a:12$
(c3) b:15$
(c4) c:a*b;
(d4) 180
```

Close the transcript file, saving it to disk.
(c5) closefile();
(d5)
Macsyma1. out

As discussed in Section 9.1 above, you can specify filename as a pathname surrounded by double quotes ("), or by using the logical pathname scheme.
If you did not begin the Macsyma session with a writefile command, you can still make a record of the session. At any time during a Macsyma session you can issue the writefile command, then use the command playback () ; to redisplay all the input and output from the beginning of the session up to the current line. You can then continue your session, with subsequent commands transcripting into the file, or you can close the file with closefile. Try the following example.

Begin a Macsyma session without using writefile to enable transcripting.
(c1) $\mathrm{x}: 100 \$$
(c2) $\mathrm{y}: 200 \$$
(c3) $\mathrm{z}: \mathrm{x}+\mathrm{y}$;
(d3) 300

Open a file so that you can "play back" the current session into it.
(c4) writefile("Macsyma2.out");
(d4)
Macsyma2.out

Redisplay all C-LINEs and D-LINEs since the beginning of the session.

```
(c5) playback();
```

(c1) $\mathrm{x}: 100 \$$

```
(c2) y:200$
(c3) z:x + y;
(d3) 300
(c4) writefile("Macsyma2.out");
(d4) Macsyma2.out
(d5) done
```

Close the transcript file, saving it to disk.

```
(c6) closefile();
```

(d6) Macsyma2. out

9.4.2 Saving a Macsyma Notebook

Macsyma 2.0 and its successors create re-executable notebooks. After completing a Macsyma session, click on [File]|[Save As...] (or [File]|[Save] if the notebook was previously saved). To re-execute the notebook, click on [Edit]|[Select]|[Input], to select all input sections. Then click on [Edit]|[Reexecute].

Macsyma 419 and its successors create fancy scripts which are not re-executable. After completing a Macsyma session, click on [File]|[Save Output As...] (or [File]|[Save Output] if the notebook was previously saved).

9.4.3 Saving Your Computation Environment

To store variable settings, including the expressions associated with C-LABELs and D-LABELs, for use in a later Macsyma session, you can use the command save(filename, all). Execute several commands, noting that variables eqs, globalsolve, x, and y, as well as the C-LABELS and D-LABELs, are bound to new values during the session.

```
(c1) eqs:[3*x + 2*y - 2, 5*x -12*y + 14]$
(c2) globalsolve:true$
(c3) linsolve(eqs, [x, y]);
                                    2 26
(d3)
        [x : - --, y : --]
                            23 23
(c4) x;
(d4) - --
    23
(c5) c1;
(d5)
eqs : [2 y + 3 x - 2, - 12 y + 5 x + 14]
```

Save the variables settings in a file for use in another Macsyma session.

```
(c6) save("macsess.sav", all)$
```

The file is saved in the user's home directory unless you specify another directory. Both save and playback support specifications to indicate whether all or part of the session should be saved or played back. See the Macsyma Reference Manual for more information.
You can restore the information in the save file with the load(filename) command. Begin a new Macsyma session, noting that variables have default settings.

```
(c1) globalsolve;
(d1) false
(c2) x;
(d2)
    x
(c3) eqs;
(d3) eqs
(c4) c1;
(d4) globalsolve
```

Now load the file containing the variables settings you saved in a previous session.
(c5) load("macsess.sav")\$
macsess.sav being loaded.

Notice that now the variable values have changed.
(c6) globalsolve;
(d6) true
(c7) x;
2
(d7) - --
23
(c8) eqs;
(d8)
$[2 y+3 x-2,-12 y+5 x+14]$
(c9) c1;
(d9) eqs : $[2 \mathrm{y}+3 \mathrm{x}-2,-12 \mathrm{y}+5 \mathrm{x}+14]$

Chapter 10

Translating Macsyma Expressions to Other Languages

It is possible to translate Macsyma expressions to other languages. The primary facility for doing this is the gentran function. Gentran can be used to generate both FORTRAN and C code. For more information, see gentran in the Macsyma Reference Manual.

10.1 Translating Expressions to FORTRAN

You can convert Macsyma expressions to legal FORTRAN code using the special forms fortran and gentran and the option variables discussed below. For example, consider the following:

```
(c1) solve(x^2+3*y = 17, x);
(d1) [x = - sqrt(17-3 y), x = sqrt(17 - 3 y)]
```

To convert the first solution given above into FORTRAN code, type

```
(c2) fortran(first(%))$
    x = -sqrt(17-3*y)
```

You can also convert a matrix into a series of FORTRAN assignment statements. For example,

```
(c3) m:matrix([3, 5, 4], [1, 2, 7]);
    [\begin{array}{lll}{3}&{5}&{4}\end{array}]
(d3)
    [ [ ]
    [ 1 2 7 ]
(c4) fortran(m)$
    m(1, 1) = 3
    m(1, 2) = 5
    m(1, 3) = 4
    m(2, 1) = 1
    m(2, 2) = 2
    m(2,3) = 7
```

Two option variables, fortindent and fortspaces, determine the format of the FORTRAN output. The variable fortindent controls indentation. The default setting is 0 , producing a normal indentation of 6 spaces. Resetting it to a positive value increases indentation.
Add three spaces to the normal indentation of six; compare the result to the output of (c2) above

```
(c5) fortran(part(d1, 2)), fortindent:3$
    x = sqrt(17-3*y)
```

The variable fortspaces is initially set to false. Setting it to true causes fortran to fill out to 80 columns using spaces.

10.2 Translating Macsyma Expressions to C

See the Gentran package in the Macsyma Reference Manual for information on translating Macsyma packages to C.

10.3 Typesetting Macsyma Expressions with TEX

$\mathrm{T}_{\mathrm{E}} \mathrm{Xis}$ a text formatter for mathematical equations. Macsyma lets you convert Macsyma expressions automatically to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ format using the commands tex and write_tex_file.
The function tex accepts one or more Macsyma expressions and converts them into $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. If write_tex_file has been called, and there is an open $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file, then tex writes to that file. Otherwise the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ output is sent to the terminal. See the Macsyma Reference Manual for more information about converting Macsyma expression to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.
Consider the following integral:

```
(c1) 'integrate(% (% -(x^2), x) = integrate(% (%^-(x^2), x);
    / 2
    [ - x sqrt(%pi) erf(x)
    I %e dx = ---------------
    ]
    /
```

To convert this expression to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code, type

```
(c2) tex(%);
% 'integrate(% (e- -x^2,x) = sqrt(%pi)*erf(x)/2
$$ \int e ` {-{ x^{2} }}}{\,dx}= {{\sqrt{\pi}\,\left({\rm erf}x
    \right)}\over{2}}$$
(d2) done
```


Chapter 11

Using the Macsyma Programming Language

Macsyma is a full programming language as well as providing the mathematical capabilities that you have seen in previous chapters. Macsyma accommodates many classical programming structures, including conditional statements and loops. You can write procedures for a variety of purposes, such as numerical techniques and combinatorial search.

Writing procedures in Macsyma for numerical techniques differs somewhat from writing in a purely numerical language, such as FORTRAN, however. For example, Macsyma requires no type declarations, and floatingpoint numbers do not result from certain calculations, though they are contagious.

The examples in this chapter cover many aspects of using Macsyma as a programming language. If you wish to learn more about programming in Macsyma, see Chapter 12 and also consult the Macsyma Reference Manual .

11.1 Using Conditionals

To execute expressions conditionally, use the if statement:
if condition then expression1 else expression2

The if statement returns the value of expression 1 if the condition is true and the value of expression2 if the condition is false.

The arguments expression1 and expression2 can be any kind of Macsyma expression, including another nested if statement, or a group of expressions known as a compound statement (See compound statements, page 168).

The condition argument is a predicate expression whose relational and logical operators always evaluates to either true or false. Table 11.1 lists Macsyma's predefined logical operators.

```
(c1) pulse(x) := if x > 2 or x <= 0 then :0 else :1$
(c2) pulse(3/2);
(d2) 1
(c3) pulse(5);
(d3) 0
```

Omitting the else clause of an if statement is the same as specifying else false.

Logical Operator	Description
$>$	greater than
$=$	equal to
$\#$	not equal to
$<$	less than
$>=$	greater than or equal to
$<=$	less than or equal to
and	logical and
or	logical or
not	logical not

Table 11.1: Predefined Logical Operators

11.2 Using Iteration

Use the for statement to perform iteration. Macsyma provides several variations of the for statement which are similar to other programming languages. (For example, FORTRAN, Algol, and PL/1). The common variants shown below differ only in their terminating conditions:

> for variable:initial-value step increment thru limit do body
> for variable:initial-value step increment while condition do body
> for variable:initial-value step increment unless condition do body
> for variable in list while condition do body
> for variable in list unless condition do body

The initial-value, increment, limit, and body can be any expressions. To iterate over several statements, you can make the body a compound statement (See compound statements, page 168) or a block statement (See block statement, page 169). The condition, or predicate, is the same as that described on page 165 for the if statement. If increment is 1 , you can omit the step 1 from the statement. The statement executes until until the control variable exceeds the limit of the thru specification, or the condition of an unless clause is true or a while clause is false. For more details on the use of the for statement, see the Macsyma Reference Manual .

Every Macsyma command returns a value. The value normally returned by a for statement is done.
(c1) $\mathrm{s}: 0 \$$

(c2) for $\mathrm{i}: 1$ step 2 thru 7 do $\mathrm{s}: \mathrm{s}+\mathrm{i}$;
(d2)
(c3) $\mathrm{s} ;$ (d3)
:---
(d

The command ldisplay $\left(\exp _{1}, \ldots, \exp _{n}\right)$ is useful in for statements and blocks (see page 169) to display intermediate results. The ldisplay command displays equations whose left side is $\exp _{i}$ and whose right side is the value of the expression. Each equation has an intermediate label, which is added to the system variable labels, which is a list of all line labels which are currently bound to an expression.

```
(c4) s:0\$
(c5) for i:1 step 2 thru 7 do ldisplay(s:s + i);
(e5)
    \(\mathrm{s}=1\)
(e6)
    \(\mathrm{s}=4\)
(e7)
    \(\mathrm{s}=9\)
(e8)
(d8)
    -
```

Macsyma provides several commands similar to ldisplay. These include display, ldisp, and disp. Unlike display, ldisplay provides a means of accessing the results through the values of the intermediate line labels generated during the execution of the ldisplay command. Use ldisp to display values only, without the equation format provided by ldisplay. Use disp or display if the intermediate line labels are not needed.

Another useful display command, print, appears in the answer to this chapter's first practice problem on page (288).

Macsyma also allows you to nest for loops.

```
(c9) poly:0$
(c10) for i:1 thru 5 do
    for j:i step -1 thru 1 do
        poly:poly + i*x`j$
(c11) poly;
(d11) 5x + 9x+12x + 14x + 15x
```

The remaining examples in this section illustrate the for statement in conjunction with various keywords. Note particularly the last example, (c21) through (d25), which simulates the taylor command.

You can use the keyword in to iterate through a list.

(c12) for f in $[a, b]$ do ldisp(f);	
(e12)	a
$(e 13)$	b
$(d 13)$	done

Certain Macsyma commands, such as solve, return their results in a list. To check solutions, use the keyword in to look at every element in a list.

```
(c14) eq:a*x^2 + b*x + c;
(d14)
    a x + b x + c
```

(c15) quadraticsols:solve(eq, x);

```
    2 2
    sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(d15)
        [x = - -------------------, x = -----------------------
            2 a 2 a
(c16) for c in quadraticsols do ldisp(ev(eq, c, ratsimp));
(e16) 0 = 0
(e17) 0 = 0
(d17) done
```

The following example illustrates the use of the while keyword.

```
(c18) s:0$
(c19) for i:1 while i <= 10 do s:s + i;
(d19) done
(c20) s;
(d20)
    5 5
```

Notice that you can use a for statement with the unless keyword to simulate the taylor command.

```
(c21) taylor(exp(sin(x)), x, 0, 7);
\begin{tabular}{cccccc}
2 & 4 & 5 & 6 & 7 \\
x & x & x & x & x
\end{tabular}
(d21)/T/ 1 + x + -- - -- - -- - --- + -- + . . .
    2 8 15 240 90
(c22) series:1$
(c23) term:exp(sin(x))$
(c24) for p:1 unless p > 7 do
    series:series + subst(x = 0, term:diff(term, x)/p)*x^p;
(d24)
    done
(c25) trunc(series);
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2 & 4 & 5 & 6 & 7 \\
\hline x & x & x & x & x & x \\
\hline \multirow[t]{2}{*}{\(1+\mathrm{x}+\)} & - & -- & -- & --- & -- \\
\hline & & 8 & 15 & 240 & 90 \\
\hline
\end{tabular}
(d25)
```


11.3 Compound Statements

To execute a sequence of statements in a context where only a single statement is permitted (for example, in an if or for statement), group them into a compound statement by separating the statements with commas and enclosing the entire group in parentheses.

The value returned by a compound statement is the value of the last statement in the group.
The example below uses a compound statement to rewrite the commands shown in (c21) through (c25) of Section 11.2 to simulate the taylor command. Macsyma returns the series because it is the value of the last statement.

```
(c1) (series:1, term:exp(sin(x)),
    for p:1 unless p > 7 do
            (term:diff(term, x)/p,
        series:series + subst(x = 0, term)*x^p), trunc(series));
            2 4 5 6 7
            x x x x x
(d1)
        1 + x + -- - -- - -- - --- + -- + . . .
    2 8 15 240 90
```

You can use the system variable $\% \%$ in the $n^{t h}$ statement to refer to the value of the $(n-1)^{t h}$ statement.

```
(c2) diff_at(exp, var1, var2) := (diff(exp, var1), subst(var1 = var2, \%\%))\$
(c3) diff_at(sin(x), \(x, y+3)\);
(d3)
    \(\cos (y+3)\)
```


11.4 Making Program Blocks

Program blocks are similar to compound statements, but they also provide a way to tag statements within the block and to assign values to variables that are local to the block. Use the block statement:

$$
\operatorname{block}\left(\left[\operatorname{var}_{1}, \ldots, v a r_{n}\right], \text { statement }_{1}, \ldots, \text { statement }_{n}\right)
$$

to establish a program block. Each $v a r_{i}$ is a variable name with an optional assignment that is local to the block. Each statement can be any Macsyma expression. If you don't need any local variables, you can omit the variable list. For more information about the block statement, see the Macsyma Reference Manual.
Generally the value returned by block is the value of the last statement in the block. Alternatively, you can use the command return $($ exp $)$ to explicitly exit the block and return a value. An example of the return command appears on page 171.
As with compound statements, you can use the system variable \% \% in the $n^{t h}$ statement of the block to refer to the value of the $(n-1)^{t h}$ statement.

The following example rewrites the compound statement shown in (c1) of Section 11.3, which simulates the taylor command, as a function using a block statement. Notice that the $\left[v a r_{1}, \ldots, v a r_{n}\right.$] part of the block statement is not used here, and thus no local variable is declared. However, the first command in the block assigns a value to series, and so this variable remains bound after the block is exited.

```
(c1) mytaylor(expr, var, point, hipower) :=
    block(series:subst(point, var, expr),
    for i:1 thru hipower
    do (expr:diff(expr, var)/i,
            series : series
            + (var - point)^i*subst(point, var, expr)),
    trunc(series))$
```

Test the function on the following input.

```
(c2) mytaylor(exp(sin(x)), x, 0, 7);
```

		2	4	5	6	7
		x	x	x	x	x
(d2)	$1+\mathrm{x}+$		--	--	-	--
		2	8	15	240	90

The variable series was assigned a value in the (statement t_{1}, \ldots, statement ${ }_{n}$) part of the block statement, but is not declared, and so remains bound.
(c3) series;
(d3)

7	6	5	4	2	
x	x	x	x	x	
--	-	--	-	--	-
90	240	15	8	2	

The next example rewrites the function mytaylor again. This time series1 is declared as a local variable in the block. Notice that now the variable is unbound after the block is exited.

```
(c4) mytaylor1(expr, var, point, hipower) :=
    block([series1],
        series1:subst(point,var,expr),
        for i:1 thru hipower
        do (expr:diff(expr,var)/i,
            series1 : series1
            + (var - point)^i*subst(point, var, expr)),
        trunc(series1))$
```

Test the function on the following input
(c5) mytaylor1 $(\exp (\sin (x)), x, 0,7)$;

Since the variable series1 was declared in the block statement, it is local to the block and therefore not bound outside it
(c6) series1;
(d6)
series1

11.5 Tagging Statements

When you are writing complex procedures that involve many statements, you can tag the statements in order to transfer control among them. To do so, use the go statement. The command go(tag) transfers control to the statement of a block that is tagged with tag.

To tag a statement precede it by a symbol, as another statement in the block. This is illustrated in the following example.
Rewrite the mytaylor function defined in Section 11.4, this time using a go statement instead of a for statement to perform iteration; notice that the tag value is called loop

```
(c1) mytaylor2(expr, var, point, hipower) :=
    block([series2, i:0],
            series2:subst(point, var, expr),
            loop, if i >= hipower then return(trunc(series2)),
                i : i + 1,
            expr:diff(expr, var)/i,
            series2 : series2
                    + (var - point)^i*subst(point, var, expr),
            go(loop))$
```

Test the new function
(c2) mytaylor2(exp(sin(x)), $x, 0,7)$;

$\begin{array}{lllll}2 & 8 & 15 & 240 & 90\end{array}$

Note: You can use go only to transfer to a tag within the block containing that go statement.

11.6 Writing Recursive Functions

Like many other programming languages, Macsyma supports recursion. You have already seen an example of a recursively defined array compute factorials (Section 3.5, on page 29). The example below illustrates a recursive function that computes factorials.

```
(c1) myfactorial(n) := if n = 0 then 1
    else n*myfactorial(n - 1)$
```

The trace $\left(\right.$ functionn $_{1}, \ldots$, functionn n_{n}) command is useful for monitoring the execution of one or more functions. When Macsyma encounters a function function during a computation, it displays the function's name and arguments upon entry, the function's name and return value upon exit, and a count of the levels of recursion.

To stop tracing a function, use the command
untrace $\left(\right.$ functionn $_{1}, \ldots$, functionn $\left.n_{n}\right)$. The command untrace(); removes tracing from all functions.
The trace command can monitor the execution of myfactorial for $n=4$.

```
(c2) trace(myfactorial)$
(c3) myfactorial(4);
1 enter myfactorial [4]
2 enter myfactorial [3]
```

```
    3 enter myfactorial [2]
    4 enter myfactorial [1]
        5 enter myfactorial [0]
        5 exit myfactorial 1
        4 exit myfactorial 1
        3 exit myfactorial 2
2 exit myfactorial 6
1 exit myfactorial 24
(d3) 24
(c4) untrace(myfactorial)$
```

Another important use of functions is in the definition or extension of algorithms that manipulate formulas. Consider a symbolic differentiation algorithm whose four basic rules are

$$
\begin{aligned}
\frac{d x}{d x}=1 & \frac{d x}{d y}=0 \text { when } x \neq y \\
\frac{d(u+v)}{d x}=\frac{d u}{d x}+\frac{d v}{d x} & \frac{d(u v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}
\end{aligned}
$$

You can implement this algorithm using the recursive function given below. To implement the first two differentiation rules, you should first check to see if the expression is an atom. An atom is a simple data structure with no component parts, such as a number, a string, or a symbol. The command atom(exp) returns true if \exp is an atom, and false otherwise.

```
(c5) atom(dummyvar);
(d5) true
(c6) atom(dummyvar + 1);
(d6) false
```

In implementing the first two differentiation rules, we know that if atom returns false, the expression is a composite expression.

To implement the last two rules, use the part command (see Section 4.5, page 45) to determine whether the leading operator obtained by part (expr, 0) represents addition or multiplication. Based on this value, you can apply the appropriate rule. If the leading operator is neither + nor $*$, the procedure returns a differential form as a result.

```
(c7) newdiff(expr,var) :=
    if atom(expr)
        then if expr = var
        then 1
        else 0
    else if part(expr, 0) = "+"
            then newdiff(part(expr, 1), var) + newdiff(part(expr, 2), var)
            else if part(expr, 0)="*"
            then part(expr, 2)*newdiff(part(expr, 1), var)
                + part(expr, 1)*newdiff(part(expr, 2), var)
            else 'newdiff(expr, var)$
```

(c8) newdiff $((x+1) *(x+2)+g(x), x)$;
(d8) \quad newdiff $(g(x), x)+2 x+3$

11.7 Functional Arguments and Formal Parameters

To pass a function as an argument to another function you need only give its name in the argument list of the call. You can then use this function in the called function by following the name of the corresponding formal parameter with a parenthesized list of arguments.
To pass a subscripted function give the name followed by the subscripts in brackets.
To pass an array, give the name of the array in the argument list. You can then reference the arrays by subscripting the corresponding formal parameter.

When you know the name of the function, you should precede the name with a single quote to prevent evaluation. In this way, you can avoid potential confusion with any variables which might have the same name.

To assign a value to a formal parameter of a function so that the corresponding actual parameter gets changed, and remains changed, when the function is exited, you can use the operator "::" rather than the operator ":". Using "::" in this way is discouraged, however, because the assignment takes place in the environment of the program and not in the environment of the caller.
In this example, the variable a is initially unbound.

```
(c1) a;
```

```
(d1)
a
```

A first attempt to define a function f for binding the value 2 to its argument; using the ":" operator does not work.

```
(c2) f(x) := x:2$
(c3) f('a);
(d4) 2
(c4) a;
(d4) a
```

Using the "::" operator allows the function ff to bind the value 2 to its argument.
(c5) $f f(x):=x:: 2 \$$
(c6) $f f\left({ }^{\prime} a\right)$;
(d7) 2
(c7) a;
(d7)
2

For more details about functional arguments and formal parameters, see the Macsyma Reference Manual.

11.8 Practice Problems

Using the commands that you have learned about in this chapter, solve the following problems. Answers appear on page 288.

Solve the first six problems using Macsyma lists [a1, a2, a3] to represent the three-dimensional vectors

Problem 1. Define the functions $\operatorname{dot}(\mathrm{u}, \mathrm{v})$ and $\operatorname{cross}(\mathrm{u}, \mathrm{v})$ to return the dot (scalar) and cross (vector) product of two vectors u and v, respectively. (Macsyma has a dot operator ".", and a vector cross product operation in the vector calculus package vect.)

Problem 2. Use your definitions to prove that: $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})-\mathbf{b}(\mathbf{a} \cdot \mathbf{c})+\mathbf{c}(\mathbf{a} \cdot \mathbf{b})=0$ for arbitrary vectors a, b , and c .

Problem 3. Define the functions my_grad, my_div, and my_curl to return the gradient of a scalar function f, and the divergence and curl of a vector function v, respectively. (Macsyma has commands grad, div, and curl in the vector calculus package vect.)

Problem 4. Show that my_grad(f) at the point $(1,-2,-1)$ is $(-12,-9,-16)$ if $f=3 x^{2} y-y^{3} z^{2}$.

Problem 5. Show that my_div(a) at the point $(1,-1,1)$ is -3 if a is the vector

$$
\begin{array}{ccccc}
2 & & 3 & 2 \\
{\left[\begin{array}{lll}
\mathrm{x} & \mathrm{z} & -2 \mathrm{y} \\
\mathrm{z} & , \mathrm{x} y & \mathrm{z}
\end{array}\right]}
\end{array}
$$

Problem 6. Show that my_curl(a) at the point $(1,-1,1)$ is $(0,3,4)$ if a is the vector

$$
\begin{aligned}
& 3 \text { 2 } 4
\end{aligned}
$$

Problem 7. Write a function my_runge_kutta to solve the following differential equations

$$
\begin{aligned}
\frac{d x}{d t} & =-3(x-y) \\
\frac{d y}{d t} & =-x z-y+r x \\
\frac{d z}{d t} & =x y-z
\end{aligned}
$$

subject to the constraints: $x(0)=z(0)=0, y(0)=1$, and $r>26$. (The Macsyma commands runge_kutta and ode_numsol would normally be used to solve this problem.)

Chapter 12

Advanced Programming Topics

This chapter covers some of the more advanced aspects of Macsyma programming, including efficient use of subscripted functions, debugging functions, writing macros, translating and compiling functions, and hints for writing libraries. These topics are covered in greater depth in the Macsyma Reference Manual . Beginning Macsyma users or those with little programming experience can skip this chapter. This material is more appropriate for users with extensive programming experience in Macsyma.

12.1 Functional Evaluation Revisited

It is useful to briefly review the concept of a function in Macsyma. Loosely speaking, a Macsyma function is a procedure all of whose arguments are evaluated once prior to execution of the procedure. (This is contrasted with a special form, which can evaluate its arguments in a different manner.) Consider the following example:
(c1) $f(x, n):=x^{\wedge} n$;
(d1)
(c2) $f(y, 3)$;
(d2)
(c3) (g:f,w:v)\$
(c4) $\mathrm{g}(\mathrm{w}, 4)$;
(d4)

$$
f(x, n):=x
$$

(d2)
y

3
y

4
v

In (c1), a function of two arguments is defined. This function is called in (c2). In (c3), some variables are bound to show the kinds of evaluation which occur. In (c4), the call to an undefined function \mathbf{g} results in the following steps:

- The identity of \mathbf{g} is determined. Since there is no function definition associated with \mathbf{g}, it is evaluated, resulting in \mathbf{f}. The result is the intermediate form $\mathbf{f}(\mathbf{w}, \mathbf{4})$. (It is necessary to determine that \mathbf{f} is indeed a function, not a special form, before evaluation of the arguments can take place.)
- Since \mathbf{f} is a function, all of its arguments are evaluated; then the function definition for \mathbf{f} is applied to the evaluated arguments, yielding the expected result.

12.2 Lambda Forms

12.2.1 Evaluation of lambda Forms

A lambda form is a "temporary" or "unnamed" function. See the Macsyma Reference Manual for more information. This Section explains the evaluation of lambda forms and the substitution of lambda forms for specified operators. Consider the following example:

```
(c1) lambda([var1,var2],var1^var2)(y,3);
            3
(d1) y
(c2) f:lambda([var1,var2],var1^var2);
                                    var2
(d2) lambda([var1, var2], var1 )
(c3) f(y,3);
(d3)
```



```
(c4) (g:'f,w:v)$
(c5) g(w,4);
(d5)
```

This example is almost identical to the previous one. A "temporary" lambda form is defined, used, and discarded in (c1). In (c2), a lambda form is bound to the variable f, and is executed in (c3) and (c5) following the previously described evaluation procedures. The symbol \mathbf{g} is bound to ' \mathbf{f} in (c4) to show that the operator is evaluated, as well as the arguments.

12.2.2 Using opsubst and lambda Forms to Modify Expressions

You may want to modify an expression by manipulating some of the functional forms in place. For example, you might want to write a function which scans an expression and returns a list of all of the arguments of the sin function. You have several options, but a particularly efficient and elegant way is to use the opsubst command to scan the expression and a lambda form to obtain the arguments of the desired function. The following example illustrates this approach:

```
(c1) \(\mathrm{a} * \sin (3 * \mathrm{x})+\mathrm{b} *(4 * \sin (2 * \mathrm{t})-6 * \sin (\mathrm{x}))+\mathrm{c} *(\cos (2 * \mathrm{y}) * \sin (3 * \mathrm{w}) / \sin (6 * \mathrm{~s}))+5\);
    c \(\sin (3 \mathrm{w}) \cos (2 \mathrm{y})\)
(d1) ------------------ + \(a \sin (3 x)\)
        \(\sin (6 \mathrm{~s})\)
        + b (4 \(\sin (2 \mathrm{t})-6 \sin (\mathrm{x}))+5\)
(c2) (arguments: [], opsubst('sin=lambda([arg],if not(member(arg,arguments))
                    then push(arg,arguments),funmake('sin,[arg])), \%));
    c \(\sin (3 \mathrm{w}) \cos (2 \mathrm{y})\)
(d2) ------------------ + \(a \sin (3 x)\)
        \(\sin (6 \mathrm{~s})\)
            \(+\mathrm{b}(4 \sin (2 \mathrm{t})-6 \sin (\mathrm{x}))+5\)
(c3) arguments;
```

(d3)

$$
[3 \mathrm{w}, 6 \mathrm{~s}, 3 \mathrm{x}, \mathrm{x}, 2 \mathrm{t}]
$$

This example uses the push macro, which takes as arguments, an element and the name of a list, adds the element to the front of the list, and binds the resulting list to the indicated name. The test expression is defined in (c1).

The compound statement in (c2) binds an empty list to the symbol arguments, uses opsubst to scan the expression for \sin functions and substitutes a lambda form for the sin operator whenever it encounters one. (opsubst differs from subst in that it only performs the substitution when its target is used in the functional position of an expression.) The substitution works in the following way:

- opsubst scans the expression "top down" for a sin operator.
- When it finds one, it substitutes the lambda form for sin, thereby converting an expression of the form $\sin (\arg)$ into the intermediate form lambda(...) (arg).
- After the lambda form is evaluated, it checks to see if its argument is already in the list of arguments. If not, it adds the argument to the list. Finally, it reconstructs the sin form. (Note: Failure to reconstruct the \sin form at the end might result in either the generation of an illegal expression or in greatly increased execution time.)
- The procedure repeats until the entire expression has been scanned.

In (c3), we evaluate the variable arguments, whose value was modified as a side-effect of the opsubst lambda substitution.

12.3 Subscripted Functions

A subscripted function, e.g., $f[n](x)$, is a Macsyma form whose functional part $f[n]$ is a subscripted object. An example of a subscripted function is $\mathrm{f}[\mathrm{n}](\mathrm{x})$, where x is the argument and n is the index. In the following example, we define a subscripted function and explain how it works.

```
(c1) f[n](x):=expand((x+1)^n);
(d1) f (x) := expand((x+1))
    n
(c2) f[3](y);
(d2)
    3 2
    y + 3y+3y+1
(c3) f[3];
(d3)
    lambda([x], x + 3x + 3 x + 1)
(c4) f[4];
```

$\operatorname{lambda}\left([x], x^{4}+4 x+6 x^{2}+4 x+1\right)$
(c5) arrayinfo(f);
(d5) [hashed, 1, [3], [4]]
(c1) defines a subscripted function. (c2) calls the function with the specified index and functional argument. (c3) evaluates the array element created by the command (c2), and the result shows that a lambda form has been generated and assigned to this array slot. (c4) evaluates the fourth element of the array, which causes the displayed lambda form to be generated and assigned to that element. (c5) shows that the array f has been set up as a hashed array with values specified for the indices 3 and 4 . (The 1 in the list (d5) indicates the dimension of the array.)
This example steps used to define and are executed when a subscripted function is defined and then called:

- The function definition generates a "template" which describes the body of the function in terms of the array indices and functional parameters.
- When you first reference an specific array element, a lambda form is generated and is assigned to the array element, and is applied to any functional arguments.
- When you call a subscripted function whose corresponding array element is already assigned, the associated lambda form is invoked on the functional arguments.

Note that the call to expand in the function definition automatically appears when Macsyma constructs the lambda form. Subsequent calls to a subscripted function with previously-defined indices but new functional arguments execute swiftly because the expand has been done once and for all. A disadvantage of this method is that the partial evaluation of the function definition inhibits certain operations on the functional arguments. More will be said about this later on page 180.

12.3.1 Example: Incorporating A Definite Integral Into A Function Definition

This example further illustrates some other differences between regular and subscripted functions.
(c1) defines a function which computes a definite integral. The integral is recomputed every time the function you invoke g. This process is inefficient if you can compute the definite integral by evaluating a closed form result at its lower and upper limit.

```
(c1) g(n,x):=integrate(t^n,t,1,x);
            n
(d1)
    g(n, x) := integrate(t , t, 1, x)
(c2) g(3,y);
(d2)
    4
    y 1
    -- - -

The next definition avoids the aforementioned shortcoming by using the result of the integration in the body of the definition. However, in this case, the integrator needs to know the signs of certain quantities when
computing the integral for general n. However, this method is more efficient than the previous one since the integration does not need to be carried out each time the function is called.
```

(c3) gg(n,x):=''(integrate(t^n,t,1,x));
Is n positive, negative, or zero?
p;
Is x positive or negative?
p;
Is x - 1 positive, negative, or zero?
p;
n + 1
x 1
(d3)
gg(n, x) := ------ - -----
n + 1 n + 1
(c4) gg(3,y);
(d4)
4
y 1
-- - -
4
4

```

The next command does the same thing using the subscripted function mechanism. The integral is evaluated the first time you call the subscripted function on a new index. That value of the index is bound before the computation, and you can compute the resulting integral without requiring sign information. The result is bound as a lambda form to the array index, so that you need not recompute the antiderviative when you call with this index. In addition to avoiding most of the sign queries, this method provides the correct answer when \(\mathrm{n}=-1\).
```

(c5) g[n](x):=integrate(t^n,t,1,x);

```
n
(d5) \(\quad g(x):=\) integrate \((t, t, 1, x)\)

\section*{n}
(c6) \(\mathrm{g}[3](\mathrm{y})\);
(d6)
4
y \(\quad 1\)
-
44
(c7) \(\mathrm{g}[3]\);
(d7)


44
(c8) \(\mathrm{g}[-1]\);
is \(\mathrm{x}-1\) positive, negative, or zero?
p;
(d8) \(\quad \operatorname{lambda}([x], \log (x))\)

Be careful when you test the functional arguments. Consider the following example which recursively defines a family of functions, each of which contains a removable singularity at \(\mathrm{x}=0\). The straightforward subscripted function definition generates a "Division by 0 " error when evaluated at \(\mathrm{x}=0\).
```

(c1) f[n](x):=sin(x)/x+x*f[n-1](x);
sin(x)
(d1)
f (x) := ------ + x f (x)
n x n - 1
(c2) f[0](x):=1;
(d2)
f (x) := 1
O
(c3) f[1](x);
(d3)
sin(x)
------ + x
x
(c4) f[1](0);
Division by 0
Returned to Macsyma Toplevel.

```

We first try to fix this error by including a straightforward test for \(\mathrm{x}=0\) and returning the value 1 in this case. All other values are computed by recursion. This method also fails.
```

(c5) $f 1[n](x):=($ if $x=0$ then 1 else $\sin (x) / x+x * f 1[n-1](x))$;
$\sin (x)$
(d5)
f1 $(x):=$ if $x=0$ then 1 else ------ $+x$ f1 (x)
$\mathrm{n} \quad \mathrm{x} \quad \mathrm{n}-1$
(c6) $f 1[0](x):=1$;
(d6)
f1 (x) := 1
0
(c7) f1[1](x);
(d7)
$\sin (x)$
$-----+x$

```
        x
```

(c8) f1[1](0);
Division by 0
Returned to Macsyma Toplevel.
(c9) f1[1];
(d9)

```

x

Inspection of the lambda form bound to the referenced slot shows that it is not what was intended. The problem is that the if was evaluated before the lambda form was generated, when \(x\) was still unbound. The result of the if statement was used to generate the body of the function definition.
The next attempt tries to get around this problem by deferring evaluation of the if statement until the function is invoked.
```

(c10) f2[n](x):='(if x = 0 then 1 else sin(x)/x+x*f2[n-1](x));
(d10) f2 (x) := '(if x = 0 then 1
n
sin(x)
else ------ + x f2 (x))
x n - 1
(c11) f2[0](x):=1;
(d11) f2 (x) := 1
0
(c12) f2[1](0);
(d12)
1
(c13) f2[1];
(d13) lambda([x], if x = 0 then 1
sin(x)
else ------ + x f2 (x))
x n - 1
(c14) f2[1](x);
Error: The control stack overflowed.

```

This attempt at deferred evaluation handles the special case \(\mathrm{x}=0\) correctly, but no longer handles the general recursive case since \(n\) is not bound inside the body of the lambda form. The error occurs because Macsyma attempts to compute \(f 2[\mathrm{n}-1], \mathrm{f} 2[\mathrm{n}-2], \ldots\) and eventually overflows an internal storage area. The correct procedure, as documented in the Macsyma Reference Manual, is to defer evaluation, but to force an evaluation of the index via a subst command.
```

(c15) f3[n](x):=subst('nn=n,'(if x = 0 then 1 else sin(x)/x +
x*f3[nn-1](x)));
(d15) f3 (x) := subst('nn = n,
n
sin(x)
'(if x = 0 then 1 else ----- + x f3 (x)))
x nn - 1
(c16) f3[0](x):=1;
(d16) f3 (x) := 1
0
(c17) f3[1](x);
sin(x)
(d17) ------ + x
x
(c18) f3[1](0);
(d18)
1

```
(c19) f3[1];
    \(\sin (x)\)
(d19) lambda([x], if \(x=0\) then 1 else \(-----+x\) f ( \(x\) ))
    \(\mathrm{x} \quad 0\)
(c20) f3[2];
            \(\operatorname{lambda}([x]\), if \(x=0\) then 1 else \(-----+x\) fin \((x))\)
        x
        1

This implementation handles the special case \(\mathrm{x}=0\) and also the general case, but doesn't handle recursion efficiently since explicit calls to previously computed results are incorporated in the body of the lambda form rather than in the results. Subsequent calls to, say, f3[3] require f3[2], f3[1], and f3[0] to be recomputed. To implement an efficient recursion scheme, use two steps: First use subst and deferred evaluation to carry out the test for \(\mathrm{x}=0\); second, step call another subscripted function to carry out the recursive computations when you know that the special case has already been handled. This is done in the following example:
```

(c21) $\mathrm{g}[\mathrm{n}](\mathrm{x}):=\operatorname{subst}\left({ }^{\prime} \mathrm{nn}=\mathrm{n}\right.$, , (if $\mathrm{x}=0$ then 1 else $\left.\% \mathrm{~g}[\mathrm{nn}](\mathrm{x})\right)$);
(d21) $g(x):=\operatorname{subst}(' n n=n$,
n
' (if $x=0$ then 1 else $\% g(x))$)

```
(c22) \(\mathrm{g}[0](\mathrm{x}):=1\);
(d22)
g (x) := 1
    0
(c23) \(\% \mathrm{~g}[\mathrm{n}](\mathrm{x}):=\sin (\mathrm{x}) / \mathrm{x}+\mathrm{x} * \% \mathrm{~F}[\mathrm{n}-1](\mathrm{x})\);
                    \(\sin (x)\)
(d23)
\(\%(x):=-----+x \% g \quad(x)\)
\(n\)
(c24) \(\% \mathrm{~g}[0](\mathrm{x}):=1\);
(d24)
```

```
%g(x) := 1
```

%g(x) := 1
O

```
    O
```

You call the function \mathbf{g}, but $\mathbf{\%} \mathbf{g}$ actually implements the recursion. We test a few cases.

```
(c25) g[3](x);
(d25)
                            x (x (------ + x) + ------) + ------
                            x
                            x
(c26) g[3];
(d26)
lambda([x], if x = 0 then 1 else %g(x))
```

 3
 (c27) $\% \mathrm{~g}[3]$;
(d27)

x x x

Here we test the functional arguments efficiently and alo implement the recursive definition. If you want a simplified result, include expand with your definition of $\% \mathrm{~g}$.
This function handles the required tests on the functional argument and also implements the recursive definition efficiently. Should a simplified form be desired, the definition of $\%$ g could include a call to expand.

12.4 The Debugger

Complicated functions rarely work as expected the first time. The reason for the failure is not always obvious; it might be due to incorrect arguments, or to a bug within a function, or even to a bug inside a built-in Macsyma function. The traditional method of debugging a function is to insert print statements and see how far the program gets before something goes wrong. Macsyma provides a sophisticated debugger which lets you investigate the problems of functions without resorting to clumsy "trial-and-error" procedures. Although learning how to use the debugger requires some time and effort, it is well worth it for anyone who
programs in Macsyma. This section will discuss only a few of the debugger utilities. For a full description, see the Macsyma Reference Manual.
The debugger provides a simplified Macsyma environment (a break) which can be entered automatically, upon detection of an error, or manually, by executing a break command. The break lets you investigate the cause of an error in the environment in which the error occurs. The debugger also lets you monitor the values passed to and returned by functions via the trace command. In many cases it is possible to determine the cause of the error without ever inserting debugging statements into the source code.

12.4.1 The Trace Utility

The trace special form lets you monitor the execution procedures. When you use trace, the name of the function, its argument list, and the depth of recursion are displayed. The value returned by the function is displayed when the function is exited.
The syntax of the trace command is trace(function1, ..., functionN). Typing trace() or inspecting the system variable trace returns a list of functions currently traced. To untrace a function, type untrace(function1, ..., functionN) to untrace specific functions, or untrace() to untrace all traced functions.

Note: Functions that do not evaluate all of their arguments and functions that are implemented as simplifier functions (as opposed to evaluator functions) cannot be traced. See the Macsyma Reference Manual for more information on the former.

12.4.2 Tracing Simple Functions

In this example, we define functions fun1 and fun2 and trace them. trace displays the depth of recursion, the word ' Enter'', the name of the function, and the argument list when you enter each traced function. When the function is exited, the depth of recursion, the word 'Exit', the name of the function, and the value returned by the function are displayed. If space permits, the subordinate functions are indented.

```
(c1) fun1(x):=x/fun2(x+1);
                                    x
(d1)
        fun1(x) := -----------
                        fun2(x + 1)
(c2) fun2(x):=1+x;
(d2)
            fun2(x) := 1 + x
(c3) trace(fun1,fun2);
(d3)
        [fun1, fun2]
```

```
(c4) fun1(y);
1 enter fun1 [y]
    1 enter fun2 [y + 1]
    1 exit fun2 y + 2
            y
1 exit fun1 -----
    y + 2
```

(d4)
y

$\mathrm{y}+2$
(c5) untrace();
(d5)
[fun2, fun1]

12.4.3 Tracing a Recursive Function

This example traces a recursive function which computes the factorial of a non-negative integer. Note that the depth of recursion is indicated each time the function is executed.

```
(c1) fact(x):=if x = 0 then 1 else x*fact(x-1);
(d1) fact(x) := if x = 0 then 1 else x fact(x - 1)
(c2) trace(fact);
(d2)
    [fact]
(c3) fact(4);
1 enter fact [4]
    2 enter fact [3]
    3 enter fact [2]
        4 enter fact [1]
            5 enter fact [0]
        5 exit fact 1
    4 exit fact 1
    3 exit fact 2
    2 exit fact 6
1 exit fact 24
(d3)
    2 4
```

(c4) untrace();
(d4)

12.4.4 Using the break Facility

As shown in the previous section, the trace facility lets you monitor the executions of functions. However, it tells nothing about the environment in which the function is executed. The break facility lets you suspend execution at any desired point and inspect, or even modify, the environment, and then resume program execution. (Note: you cannot continue execution from an error break.) You can enter an error break automatically after detecting an error condition so the user can investigate the cause of the error. This behavior is determined by the setting of the option variable debugmode.
Regular and error breaks differ from Macsyma toplevel in that no input or output labels are generated automatically, and the system variables \% and \%th(n) are not rebound. However, the system variable \%\% is bound to the last result generated in the break. You can evaluate expressions and manually bind any variables they wishes. The following examples illustrate some of these points.

You can enter the break environment by using the command break(); . Once in the environment, you can check or change the values of variables and then either continue the computation or abort it.
In PC Macsyma 2.0, you may be prompted to type $: 1$ (Continue), :2 (Return) Top-Level Macsyma, etc. The response would be $: 1$ or :2. In other versions, you may be prompted to type CONTINUE; to continue or ABORT; to abort the calculation.

```
(c1) (a:10, break(), b:20);
Macsyma Break level 1
(Type CONTINUE; to continue the computation; type ABORT; to abort it.)
_ a
            10
_ b
            b
_ abort
(c2) a;
(d2) 10
(c3) b;
(d3) b
(c4 )ev(c1);
Macsyma Break level 1
(Type CONTINUE; to continue the computation; type ABORT; to abort it.)
_ continue
Exited from Macsyma Break level 1
(d4) 20
(c5) a;
(d5) 10
(c6) b;
(d6) 20
```

In the following example, the system option variables radexpand and algebraic are bound at toplevel. radexpand is used as a local variable in a block to demonstrate how you can inspect or modify the environment inside a break.

```
(c1) (algebraic:true,radexpand:true);
(d1)
    true
```

The following string demonstrates how $\%$ is not bound to results generated within a break. When you enter the break is entered from (c3), \% still evaluates to this result.

```
(c2) "This is the previous d-line.";
(d2)
    This is the previous d-line.
```

The following block statement locally binds radexpand to false, then enters a Macsyma break. The variable algebraic is rebound manually within the break. When you exit the break and continue execution, the current setting of radexpand (within the block) is displayed.

```
(c3) block([radexpand:false],break(),print("radexpand value:", radexpand));
Macsyma Break level 1
(Type CONTINUE; to continue the computation; type ABORT; to abort it.)
_ radexpand;
FALSE
```

Here, the Macsyma break has been entered. The default break prompt is an underscore character. The value of radexpand was changed when the block was entered and the local binding took effect.

The following commands show that the environment can be modified as desired (in this case, we change the settings of radexpand and algebraic). Note also the rebinding of \%\% but not \%.

```
_ radexpand:all;
all
_ %%;
all
_ %;
This is the previous D-line.
_ algebraic;
true
_ algebraic:false;
false
_ exit;
Exited from Macsyma Break level 1
radexpand value: all
(d3)
all
```

Finally, confirm that the change made to the block variable was indeed local, while the change to algebraic, which was not a block variable, persists:

```
(c4) radexpand;
(d4)
true
(c5) algebraic;
(d5)
false
```

Note that the exit command is used to return from the break and continue program execution. The abort command can be used to exit the break and return to toplevel.
Program execution cannot be continued from an error break. Either exit or abort will exit the error break and return to toplevel.

12.4.5 Entering the Debugger Automatically

Use of the error break is governed by the setting of the option variable debugmode (default:false), which can be set to false, true, all, or lisp. The results of the various settings when an error condition is detected are summarized below:

- false: (the default) execution aborts and the user returns to Macsyma toplevel.
- true: enters a Macsyma error break.
- all: enters a Macsyma error break and sets the system variable backtrace to a current list of the user-defined functions.
- lisp: a LISP error break is entered.

The lisp setting of debugmode is of limited use unless you are familiar with LISP and the capabilities of the LISP debugger depend on the version of LISP which comes with your Macsyma.

Consider the following pair of functions which generates an arithmetic error when called with $\mathrm{x}=0$.

```
(c1) fun1(x):=fun2(x);
(d1) fun1(x) := fun2(x)
(c2) fun2(x):=1/x;
    1
(d2) fun2(x) := -
    x
(c3) debugmode;
(d3) false
```

When debugmode is false, then executing the function causes an error message to be displayed, after which control returns to Macsyma toplevel.
(c4) fun1 (0);
Division by 0
debugmode set to true enters an error break. The backtrace variable is not set.

```
(c5) debugmode:true;
(d5) true
(c6) fun1(0);
Division by 0
Macsyma Error Break level 1
(Type CONTINUE; to continue the computation; type ABORT to abort it.)
_exit;
Exited from Macsyma Error Break level 1
```

With debugmode set to all, an error break is entered and the backtrace variable contains a list of the functions currently entered, in reverse order. (The arguments of the functions are not evaluated.) The settings of debugmode to true and all are identical in all other respects.

```
(c7) debugmode:all;
(d7) all
(c8) fun1(0);
Macsyma Error Break level 1
(Type CONTINUE; to continue the computation; type ABORT to abort it.)
_backtrace;
[fun2(x), fun1(0)]
_exit;
Exited from Macsyma Error Break level 1
```


12.5 Handling Errors

12.5.1 General Error Handling

Sometimes a programmer anticipates an operation might fail. Rather than write code to execute that operation only if it is guaranteed to succeed, the programmer would prefer to just try it and test afterwards to see if it succeeded. A problem arises when the operation fails with an error condition since this will halt program execution. In this case, it is necessary to somehow "trap" the error so it doesn't interrupt program execution. The errcatch facility provides this functionality in Macsyma.
The syntax for the errcatch function is errcatch(expression). If expression executes without error then a list containing the result of expression is returned. If an error occurs then an empty list is returned. The error message is displayed if the option variable errormsg [default:true] is true. The last error message is saved in the system variable error_string, and can be used to determine the type of error.
Note: if the error message includes a large Macsyma expression, it may not display if it is too large. (The maximum size of an expression which will be displayed is determined by the option variable error_size.) Instead, the error message will use one or more of the symbols $\operatorname{errexp} 1$, $\operatorname{errexp} 2$, and $\operatorname{errexp} 3$, which are bound to the offending expression(s).
The following examples show how the errcatch special form works.

12.5.2 Example: Catching errors

```
(c1) debugmode:false;
(d1) false
(c2) 1/0;
Division by 0
Returned to Macsyma Toplevel.
(c3) errcatch(1/0);
Division by 0
(d3)
(c4) debugmode:true;
```

```
(d4) true
(c5) 1/0;
Division by 0
Macsyma Error Break level 1
(Type CONTINUE; to continue the computation; type ABORT; to abort it.)
_ exit;
Exited from Macsyma Error Break level 1
Returned to Macsyma Toplevel.
(c6) errcatch(1/0);
Division by 0
(d6)
```


12.5.3 Example: Using errcatch

The next example uses the errcatch facility, along with the error_string and errormsg system variables, to trap errors occurring when zero is substituted into an expression. errcatch looks for two specific error conditions, namely, Division by zero and $\log (0)$. If it determines that either of these errors has occurred it returns a symbol identifying the error. If some other type of error occurs, a symbol indicating an error of unknown type has occurred appears. Examples which generate these two errors, as well as an illegal substitution into a diff form, are shown below.

```
(c1) debugmode:false$
(c2) subst(0,x,1/x);
Division by 0
Returned to Macsyma Toplevel.
(c3) subst(0,x,log(x));
LOG(0) has been generated.
Returned to Macsyma Toplevel.
(c4) subst(0,x,'diff(f,x));
Attempt to differentiate with respect to a number:
O
Returned to Macsyma Toplevel.
```

The function zero_eval, defined below, performs the indicated substitution. The subst form is protected by an errcatch to prevent program interruption. The option variable errormsg is initialized to false as a block variable. Be careful when when setting errormsg to false to avoid overlooking valuable debugging information.

```
(c5) zero_eval(expr,var):=block
([errormsg:false,result],
result:errcatch(subst(0,var,expr)),
if result = []
    then (if error_string = "Division by 0"
        then 'divide_by_zero_error
        else if error_string = "LOG(0) has been generated."
            then 'log0_error
```

```
    else 'unknown_error)
    else first(result))$
(c6) zero_eval(f(x),x);
(d6) f(0)
(c7) zero_eval(1/x,x);
(d7) divide_by_zero_error
(c8) zero_eval(log(x),x);
(d8) logO_error
(c9) zero_eval('diff(f,x),x);
(d9)
unknown_error
```


12.5.4 Catching Special Classes of Errors

The errcatch facility lets you trap all errors and you can trap mathematical errors selectively. (Mathematical errors, in this context, are errors arising from arithmetic operations or from elementary transcendental functions.) If a mathematical error occurs, then a string containing the error message is returned as the result.

This facility is enabled if the option variable catch_mathematical_error (default:false) is set to true. The operation in question must be protected with a catch form. The following example shows how this facility is used.

12.5.5 Example: Selectively Trapping Mathematical Errors

```
(c1) catch_mathematical_error:true$
(c2) debugmode:false$
(c3) 1/0;
Division by 0
Returned to Macsyma Toplevel.
(c4) errcatch(log(0));
LOG(0) has been generated.
(d4) []
(c5) catch(1/0);
(d5) Division by 0
(c6) log(0);
LOG(0) has been generated.
Returned to Macsyma Toplevel.
(c7) errcatch(log(0));
LOG(0) has been generated.
(d7) []
(c8) catch(log(0));
(d8) LOG(0) has been generated.
```

Certain errors resulting from taylor and integrate can be caught when the associated option variables are set. These option variables are catch_divergent, catch_taylor_essential_singularity, and catch_taylor_unfamiliar_singularity. See the Macsyma Reference Manual for further information.

12.6 Macros

In advanced Macsyma programming applications, you sometimes must delay or inhibit evaluation of function arguments. The Macsyma Reference Manual draws a distinction between a function (a procedure which evaluates all of its arguments in order from left to right) and a special form (a procedure which can delay or omit evaluation of one or more of its arguments). The $:=$ operator and the define command are used to define functions. The $::=$ operator defines a macro, a utility that generates Macsyma code. Since the macro facility gives you complete control over evaluation of a macro's arguments, you can use it to implement special forms. You can use a macro when a segment of code is used repeatedly but cannot be conveniently defined as a function. Implementing this segment of code as a macro improves modularity and reduces the amount of typing. This Guide will provide only an introduction to macros. For more information, consult the Macsyma Reference Manual .
Loosely speaking, a macro is a piece of code that generates code. A macro looks like a function but expands into code at either translation or runtime. Recursion is allowed within a macro.

The following commands are used in writing macros:

- buildq delimits the body of the macro. Code substitution takes place within the body of the buildq. Its syntax is similar to that of block.
- splice constructs the argument list of a function. splice is a keyword form for buildq that takes its argument (which must evaluate to a list), and returns a form whose arguments are the list entries when used as an argument to a form in the body of a buildq,
- macroexpand is a useful debugging tool. It expands a form repeatedly until it is no longer a macro call.

A few examples follow.

12.6.1 Writing Simple Macros

In the next example we write a macro which takes a single argument and returns an equation consisting of the unevaluated form on the left-hand side and the evaluated form on the right-hand side.

```
(c1) showme(arg)::=buildq([arg],'arg=arg);
(d1) showme(arg) ::= buildq([arg], 'arg = arg)
(c2) macroexpand(showme(argument));
(d2)
                            'argument = argument
(c3) argument:1;
(d3)
(c4) showme(argument);
(d4)
            argument = 1
(c5) argument:x+1;
(d5) x + 1
(c6) showme(argument);
(d6) argument = x + 1
```

In (c1), buildq is used to write the macro. In (c2), macroexpand is used to expand a macro call to showme to verify that the macro expands as expected. showme is tested in (c4) and (c6). Note that
this cannot be written as a regular Macsyma function because in that case the argument would be evaluated before it is passed to the function.
The splice keyword form is useful when writing recursive macros or macros which take an arbitrary number of arguments. The following commands show how to construct a call to a form fun. Note the difference in the argument lists of fun in lines (d8) and (d9).

```
(c7) listvar:'[a,b,c];
(d7) [a, b, c]
(c8) buildq([listvar],fun(listvar));
(d8) fun([a, b, c])
(c9) buildq([listvar],fun(splice(listvar)));
(d9)
    fun(a, b, c)
```


12.6.2 Writing a Macro to Implement a Boolean Operator

This example implements an or operator, which we call my_or to avoid confusion with the built-in or operator. The function my_or takes a list of expressions, evaluates them sequentially, and returns the first non-false result. (This is similar to the Macsyma construct is (pred1 or pred2 or ... or predn) except that my_or can return a non-boolean value.)
The function my_or cannot be implemented as a Macsyma function because all of the arguments to a function are evaluated before the function gets hold of them. Consider the expression (n : ' n , my_or ($\operatorname{symbolp}(n), n>0)$) that we want to return the value true. If my_or were a function then its arguments would be evaluated prior to the function invocation. The first would yield true, while the second would generate the error message '"Macsyma is unable to evaluate the predicate $\mathrm{N}>0$ '. Consequently, control would never be passed to my_or. What is needed is a way to evaluate only the first argument: if it is non-false then return that value; otherwise, evaluate the subsequent arguments sequentially. The macro facility provides the needed control over evaluation.
The macro definition of my_or is given below. The syntax of the command is my_or(pred1, pred2, ..., predn).

```
my_or([args])::=
    if args = []
    then false
    else buildq
        ([tmp:first(args),args:rest(args)],
            if tmp # false
                then tmp
            else my_or(splice(args)))$
```

Note that the macro takes an arbitrary number of arguments and is recursive. When invoked, the macro expansion continues until a non-false argument is found or else the argument list is empty. The variable tmp, which is set to the first element of the argument list, is evaluated in the body of the buildq. The remainder of the argument list is not evaluated.

Note also that the splice keyword form is used to provide the required syntax for the recursive call. splice is used to generate the call to my_or with the remaining arguments.
The following example tests my_or. In this example my_or evaluates each argument in turn and finds that the third one evaluates to a non-false value. Consequently, it returns this value.

```
(c1) my_or([args])::=
if args = []
    then false
    else buildq
            ([tmp:first(args),args:rest(args)],
            if tmp # false
            then tmp
            else my_or(splice(args)))$
(c2) (arg1:false,arg2:false,arg3: 'howdy,arg4:'doody);
(d2)
                                    doody
(c3) my_or(arg1,arg2,arg3,arg4);
(d3) howdy
```

We can use the macroexpand facility to expand the macro. (This is usually the only way to debug a macro, since it cannot be traced.) Note that macroexpand only expands the toplevel call. To fully expand a recursive macro, it is necessary to scanmap the macroexpand call:

```
(c4) macroexpand(my_or(arg1,arg2,arg3));
(d4) if arg1 # false then arg1 else my_or(arg2, arg3)
(c5) scanmap('macroexpand,'(my_or(arg1,arg2,arg3)));
(d5) if arg1 # false then arg1
else (if arg2 # false then arg2
else (if arg3 # false then arg3 else false))
```

The question of how you actually write a macro has not yet been addressed. (In case you're wondering, it won't be addressed in great detail here, either.) The procedure essentially involves writing down the fully expanded form for a suitably general case and working backwards. For example, writing my_or consisted of the following steps:

- Write down the full expansion of my_or when called with three arguments. This means writing down a nested if then else structure. For example, my_or (arg1, arg2, arg3) should expand into the structure

```
if arg1 # false
    then arg1
    else (if arg2 # false
        then arg2
        else (if arg3 # false
            then arg3
            else false))
```

- From the structure of the problem, it is clear that a recursive approach is the most efficient one. The recursive approach is particularly useful since the macro must take an arbitrary number of arguments. The result of writing the previous expansion in terms of a recursive call to my_or is

```
if arg1 # false
    then arg1
    else my_or(arg2,arg3)
```

- Since the macro will be recursive, the next step is to determine the grounding condition (here, the condition is that the argument list is empty), and what action to take when the condition is satisfied. This is implemented in clause

```
if args = []
    then false
    else buildq...
```

- Finally, implement the substitution and the recursive call with a buildq form. The required form is

```
buildq([tmp:first(args),args:rest(args)],
    if tmp # false
        then tmp
        else my_or(splice(args)))$
```

The local variables $t m p$ and args are set in the buildq variable list. Neither is evaluated at this time. The first argument to my_or, tmp, is evaluated in the body of the if statement. If the else clause of the if statement is executed my_or is called recursively on the remaining arguments. The splice keyword form is needed to generate an argument list from the list of arguments contained in the variable args. Note that since args is used by splice it must appear in the buildq variable list. Note also that redefining args to be rest(args) must be done in the variable list if it were done in the body of the buildq then it would be evaluated, and if it were done inside the splice form then splice would not be recognized as a keyword form to buildq.

- Having written the macro, the next step is to test it. Since it is impossible to write a macro which works without modification, you can debug it with the macroexpand and macroexpand1 facilities, along with judicious use of scanmap when necessary.

12.7 Localizing Information

Much of the power of Macsyma as an interactive or programming tool derives from the richness of the Macsyma environment. For example, the actions of some system functions (e.g., ratsimp) are controlled by the settings of system option variables (e.g., algebriac). Calling ratsimp on an expression can give different (but mathematically equivalent) results, depending on the setting of the option variable algebraic.
Unfortunately, this feature occasionally causes some difficulties for users. It is extremely frustrating to find that a program which previously worked suddenly fails to work because the global environment was unintentionally altered by an earlier operation. Good programming techniques can insulate a function from difficulties of this nature by guaranteeing that the function executes in the correct environment. Good programming techniques can also guarantee that the function runs "cleanly", that is, even though the function might require a special environment, the global environment after execution is essentially identical to the global environment prior to execution.

Macsyma provides two separate methods for localizing information. The block mechanism is used to localize properties and values via the block variable and local mechanisms. The context mechanism allows the user to group database information together (this grouping is referred to as a context) so that a given context can be made accessible or inaccessible to Macsyma.

12.7.1 Program Blocks Revisited

The block command was discussed briefly in Section 11.4. We discuss it in greater detail in this section.
As described in Section 11.4, a block variable is declared by naming it in the block variable list. An initialization value can be specified in the list if desired. If a block variable has the same name as a variable defined outside of the block then the value of the variable outside of the block is saved when the block is entered and is restored when the block is exited.

Note: making a variable a block variable protects its value, but no other properties. It does not, for example, protect the array property associated with a symbol. The following example illustrates this point.

```
(c1) array(a,3);
(d1) a
(c2) a[1];
(d2) a
    1
(c3) variable:1;
(d3) 1
(c4) block([a,variable],a[1]:'array,variable:'symbol);
(d4) symbol
(c5) a [1];
(d5) array
(c6) variable;
(d6) 1
```

Note that the value of the symbol variable is unchanged, but the global array a has been modified.

12.7.2 Localizing Other Information Inside Program Blocks

As shown in the example in the previous section, the block variable mechanism only protects the value associated with a symbol. All other localizable properties must be localized via the local mechanism. (Note: not all properties can be localized. For example, a complete array is an example of a global object which cannot be localized.) In the following example, local is used to localize array and dependency information.

```
(c1) array(a,3);
(d1)
a
(c2) a[1];
(d2) a
    1
(c3) dependencies;
(d3)
(c4) block
    ([x],
    local(a,y),
    a[1]:'array,depends(y,x),
    break());
Macsyma Break level 1
(Type CONTINUE; to continue the computation; type ABORT; to abort it.)
```

```
_a[1];
ARRAY
_dependencies;
[y(x)]
_exit;
Exited from Macsyma Break level 1
(d4)
    false
(c5) a[1];
(d5) a
    1
(c6) dependencies;
(d6)
```

In (c1) through (c3) a global array is created and the state of the Macsyma environment is displayed. (Note that the array a, generated in (c1), is a declared array rather than a complete array, and can therefore be localized.) The command (c4) executes a block form in which a and y are localized. An array slot in variablea is set, and dependency information is provided for y. A break is then entered and we verify that the expected properties are present inside the block. After the break and block are exited, we verify in (c5) and (c6) that the changes made inside the block were indeed local.

12.7.3 Program Contexts

The remaining localization mechanism available in Macsyma is the context mechanism. This mechanism allows the user to selectively activate and deactivate database information. We do not discuss this topic in this Guide except to note that the context mechanism is independent of the block mechanism. See the Macsyma Reference Manual for a description of context.

12.8 Translating Macsyma Functions

Like other interpreted languages, Macsyma supports a translator. The production of machine code from Macsyma source code is a two-step process. First, the Macsyma code is translated into LISP code; next the LISP code is compiled into machine code. The Macsyma translator produces LISP code which, in most cases, loads and executes faster than the equivalent Macsyma source code. Numerical routines often achieve a factor of three improvement in performance. Also, it is easy to make translated code "cleaner" code because of the translator warnings. The translator flags global variables that are not explicitly declared to be global (via the special declaration), brings them to the attention of the programmer and thus allows them to be localized, either by making them block variables, or via the local mechanism.

The primary reason that translation improves performance is that it allows assumptions to be made concerning the argument types for specified operations. In particular, it causes certain operations (such as data type checking) to be done only once, namely, at translate time. For example, the interpreted function $f(x, y):=x * y$ will accept either symbolic or numeric arguments. When the function is executed, the argument types must be determined before the indicated multiplication can be carried out. If it is known that the function will be called exclusively with floating-point arguments then the user can bypass this rather expensive checking step by declaring the data types of the arguments and then translating the function. When the declarations are in place, the translator will specify that the multiplication be carried out by a routine which handles floating-point numbers. Of course, if the resulting translated function is called with arguments of an inappropriate type then a run time error will occur.

Another benefit of translation (of files) is that a translated file loads much faster than a Macsyma source file since the translated file does not need to be parsed. This is also true for interpreted Macsyma functions which are subsequently saved.

12.8.1 Translating Files and Functions

The Macsyma translator permits the user to translate interpreted functions internally via the translate command, or to translate Macsyma source files and save the results in a file via the translate_file command. A third option, in which interpreted functions are translated and the results are saved in a specified file, is available via the compfile command. We mention the last one for completeness, since it is used infrequently in practice. (A user is much more likely to use a text editor to store a Macsyma function in a file than to enter the function interactively and save the translated result via compfile).
The following examples show how to use translate and translate_file.

12.8.1.1 Example: Translating a Function Definition

The following Macsyma commands define an interpreted function and then translate it (to core):

```
(c1) f(x):=x^2;
\begin{tabular}{lc} 
(d1) & \(f(x):=x^{2}\) \\
(c2) translate(f); & \\
(d2) & {\([f]\)} \\
(c3) properties(f); & \\
(d3) & [function, transfun]
\end{tabular}
```

Note that \mathbf{f} has both function and transfun properties, corresponding to both the interpreted and translated versions. The translated version of the function is executed by default.

12.8.1.2 Example: Translating a Macsyma File

In the following example, a file named ' f.macsyma' ', which defines a function identical to the one in the previous example, exists in the directory macsyma:user;f.macsyma. The following Macsyma commands translate the file, place the result in a file named ' f.lisp'', load the translated file into the Macsyma session, and look at the resulting properties of the function. (Note: the pathnames used in this example are the Macsyma logical pathnames.)

```
(c1) printfile("macsyma:user;f.macsyma");
f(x):=x^2;
(d1) C:\MACSYMA2\user\f.mac
(c2) translate_file("macsyma:user;f.macsyma")
Translating the file C:\MACSYMA2\user\f.mac
Translation done.
(d2) C:\MACSYMA2\user\f.lsp
(c3) load("f.lisp");
C:\MACSYMA2\user\f.lsp being loaded.
(d3)
C:\MACSYMA2\user\f.lsp
```

(c4) properties (f);
[function, transfun]

Some operating systems, use the extensions mac and lsp, while others use macsyma and lisp. Refer to pathname extensions in the Macsyma Reference Manual for information for your particular version of Macsyma.

12.8.2 Data Type Declarations

As mentioned in the previous section, the greatest performance advantage of translation is due to the fact that the data type declaration permits the translator to determine which machine-level operation to call on the data, bypassing the expensive checking step. In this section we introduce the Macsyma forms that are used to declare data types. The forms that we will discuss are

- mode_declare, which informs the translator of the data type of a variable;
- mode_identity, which can be used to inform the translator of the data type of a more complicated Macsyma structure;
- the special property, which is used in declaring a variable global (or one that will have an unusual side-effect).

12.8.2.1 Declaring Data Types With mode_declare

As mentioned earlier, mode_declare is used to specify the data type of a variable or function so that the translator can select the most efficient routine to carry out the specified operation. The mode_declare operator also allows the translator to specify an initial value for a variable, although it is good programming practice to initialize the variables manually. (If you do not initialize the variables manually then your code might run when translated but not interpreted.)
The following example uses the romberg command to compute an iterated integral via numerical integration. The first approach calls romberg on an interpreted argument. The second sets up functions which compute the iterated integrals using mode_declare and nested calls to romberg. Using translated functions in this manner results in a speedup by roughly a factor of two in this case.

```
(c1) (showtime:all,g(x,y,z):=sin( }\mp@subsup{\textrm{x}}{}{\wedge}2+\mp@subsup{\textrm{m}}{}{\wedge}2+2+\mp@subsup{z}{}{\wedge}2))
time= 0 msecs
(d1) g(x,y,z) := sin(x + y + z )
(c2) romberg(romberg(romberg(g(x,y,z),x,0.0,1.0),y,0.0,1.0),z,0.0,1.0);
time= 178983 msecs
(d2)
        0.7316832579251946
(c3) f(x):=block
    (mode_declare([function(f),x,y,z],float),
    declare([y,z],special),
    sin( }\mp@subsup{x}{}{\wedge}2+\mp@subsup{y}{}{\wedge}2+\mp@subsup{z}{}{\wedge}2))
(c4) f1(y):=block
    (mode_declare([function(f1,f),y],float),
    declare(f,special),
    romberg(f,0.0,1.0))$
```

```
(c5) f2(z):=block
    (mode_declare([function(f2,f1),z],float),
    declare(f1,special),
    romberg(f1,0.0,1.0))$
(c6) translate(f2,f1,f);
time= 266 msecs
(d6) [f2, f1, f]
(c7) romberg(f2,0.0,1.0);
time= 51800 msecs
(d7) 0.7316832579251946
```

It is necessary to define the functions $\mathbf{f}, \mathbf{f} 1$, and $\mathbf{f} \mathbf{2}$ to take single arguments because romberg requires that a translated or compiled function as its first argument take only one argument. Calling romberg on $\mathbf{f} \mathbf{2}$ in (c7) binds the argument of $\mathbf{f} \mathbf{2}, z$, and evaluates the function $\mathbf{f} \mathbf{2}$. When $\mathbf{f} \mathbf{2}$ is evaluated, it binds the argument of $\mathbf{f} 1, y$, and invokes romberg on $\mathbf{f} 1$. When $\mathbf{f} 1$ is evaluated, it binds the argument of \mathbf{f}, x, and evaluates f. At this point, x, y, and z evaluate to floating-point numbers, and \mathbf{f} consequently returns a floating-point result.

It is also possible to use mode_declare to improve the handling of translated arrays. See the Macsyma Reference Manual for more information on this topic.

12.8.2.2 Defining Complex Data Types With mode_identity

The mode_declare form can be used to inform the translator of the data type of a variable. However, it is often the case that the variable is a rather complicated object, for example, a list of floating-point numbers. mode_declare cannot be used to declare the entries to be floating-point numbers because it can only declare "top-level" structures. What is needed is a way to declare the types of the elements of the list, which can be done via mode_identity. We will say little else about mode_identity in this Guide; for more information, consult the Macsyma Reference Manual.

Note: The mode_identity scheme is rather awkward when dealing with, say, lists of arbitrary length. For example, it cannot be used to assist in the translation of a structure such as apply("+", list_ of numbers). Such operations are best implemented directly in LISP.

12.8.3 Defining Option Variables For Packages

When writing complicated programs, it is often desirable to have global option variables which control the program's behavior. These option variables can be defined using the define_variable form, which defines the name of the variable, its default binding, type checking, and an optional documentation string. As usual, we provide some examples and refer the reader to the Macsyma Reference Manual for more information.

The first example defines a boolean variable bool with initial value true.

(c1) bool;	
(d1)	bool
(c2) define_variable(bool, true,boolean);	
(d2)	true
(c3) bool;	
(d3)	true
(c4) bool:false;	

```
(d4) false
(c5) bool:1;
Error: BOOL was declared mode BOOLEAN, has value: 1
Returned to Macsyma Toplevel.
(c6)
```

Note that bool can be set to either true or false, but attempting to set it to a non-boolean value results in an error.

The next example shows how the user can specify the acceptable values for an option variable. In this example, the option variable opt will be allowed to take on any odd positive integer value. Note that opt is initialized to 1 .

```
(c1) define_variable(opt, 1, any_check, "This defines the variable OPT");
(d1) 1
(c2) put('opt,lambda([arg],if not(integerp(arg)) or arg <=0 or evenp(arg)
    then error("Illegal value for OPT: ",arg)),'value_check);
(d2) lambda([arg], if not integerp(arg) or arg <= 0
    or evenp(arg) then error(Illegal value for OPT: , arg))
(c3) opt;
(d3) 1
(c4) opt:3;
(d4) 3
(c5) opt:2;
Illegal value for OPT: 2
Returned to Macsyma Toplevel.
(c6) opt:'a;
Illegal value for OPT: A
Returned to Macsyma Toplevel.
(c7)
```

Note that the value check is implemented via a lambda form placed on the property list of the option variable with a value_check indicator.
It should be noted that define_ variable differs from a toplevel binding using ":" in two important ways. The first difference is the type checking feature. The second is that define_ variable will set the variable to its specified initial value only if the variable is unbound. This means that the user can set an option variable before loading in the package which defines it. The following example illustrates this last point.

```
(c1) bool:false;
(d1) false
(c2) define_variable(bool,true,boolean);
(d2) false
(c3) bool;
(d3) false
(c4) bool:1;
Error: BOOL was declared mode BOOLEAN, has value: 1
Returned to Macsyma Toplevel.
(c5)
```


12.8.3.1 The special Declaration

The Macsyma translator will complain when it finds a variable that is global with respect to the local block. If such a variable is indeed intended to be global then it should be declared special. The following example shows how special is used in this manner. In this example, the variable y is global with respect to the program block, and is explicitly declared to be special in the function definition of \mathbf{g} but not \mathbf{f}.

```
(c1) f(x):=block(x*y);
(d1) f(x) := block(x y)
(c2) translate(f);
Warning-> y is an undefined global variable.
(d2)
    [f]
(c3) g(x):=block(declare(y,special),x*y);
(d3) g(x) := block(declare(y, special), x y)
(c4) translate(g);
(d4) [g]
```

In the next example, we define a function that takes an expression and the name of an operator and uses a opsubst lambda construct to return a list of the arguments of the specified operator.

```
(c1) list_args(expr,op):=block([args:[]],
    opsubst(op=lambda([arg],if not(member(arg,args))
                            then push(arg,args),
                            funmake(op,[arg])),expr), args)$
(c2) translate(list_args);
This form:
LAMBDA([ARG],IF NOT MEMBER(ARG,ARGS) THEN PUSH(ARG,ARGS),
    FUNMAKE(OP, [ARG]))
has side effects on these variables:
[ARGS]
which cannot be supported in the translated code.
(at this time)
(d2) [list_args]
```

Translation of list_args fails because of the side-effects of the lambda form on the variable args. However, if args is declared special then the function translates.

```
(c3) list_args1(expr,op):=block([args:[]],
declare(args,special),
opsubst(op=lambda([arg],if not(member(arg,args))
                                    then push(arg,args),
                                    funmake(op,[arg])), expr), args)$
(c4) translate(list_args1);
(d4)
    [list_args1]
```


12.8.3.2 Customizing the Translation Environment

It is often the case that a program needs a special environment for translation. For example, if the program references a macro then the macro must be defined prior to translation. Macsyma provides a method whereby the user can execute Macsyma commands when a particular operation (batching, loading, or translating a file) is invoked. This is done via the eval_ when form.

The eval_when form takes two or more arguments. The first is a keyword which specifies the condition under which the remaining forms are evaluated. The acceptable keywords are batch, loadfile, and translate, corresponding to batching in a Macsyma source file, loading a LISP or binary file, and translating a file via translate_file.
For example, to automatically load the basic macro package prior to translation of a file, the toplevel form eval_ when(translate, load("basic")) $\$$ could be put at the beginning of the source file. When the file is translated using the translate_file command, the load form will be evaluated, thereby defining the needed macros.

12.8.3.3 Compilation vs. Translation

Up to this point we have discussed the Macsyma translator, which takes Macsyma functions and produces LISP code, either in memory (via the translate command), or in a file (via the translate_file or compile commands). We now discuss (briefly) the advantages which can be gained from compilation of the translator output.
Compilation of a LISP function results in machine object code. Such code frequently runs faster than either interpreted LISP or interpreted Macsyma code. This is usually achieved at the expense of run-time debugging information, which means that run-time errors in compiled code will often result in rather mysterious LISPlevel error messages.

Functions which are currently loaded into your environment can be compiled using the compile command, which essentially calls the compiler on the in-core result of the translate command. A LISP or Macsyma file can be compiled (or translated and compiled) via the compile_file command, which is called in the same way as the translate_file command. The resulting binary file usually occupies less disk space and loads faster than the translated file.
For more information on this topic, consult the Macsyma Reference Manual and the Release Notes for your version of Macsyma.

12.8.4 Additional Notes on Translation

This section mentions a few hints on the use of translation that might not be readily accessible elsewhere.

- As of 1994, the local command doesn't translate correctly. If you want to translate a function which contains local, you should do the following:
- Use the LISP function ?mlocal instead of local. (?mlocal takes the same arguments as local.)
- Call ?munlocal prior to all run-time exits in the block.

For example, following function puts database information on the variable y inside a program block and removes the information automatically when the block is exited:

```
local_1(x):=block
([y],
    local(y),
    assume(y>0),
```

```
if x = 1
    then true
    else false)$
```

The function should be written as follows to make it translate correctly:

```
local_2(x):=block
([y] ,
?mlocal(y),
assume(y>0),
if x = 1
    then (?munlocal(), true)
    else (?munlocal(), false))$
```

- A macro must be defined prior to use. (Otherwise, a macro is interpreted as a function call.) If the macro is defined in a file, an eval_when form can be used to load the file and thereby define the macro. Alternatively, the macro definition can be included in the source code prior to the time where it is first called.
- Special forms that have both the properties that some arguments are not evaluated, and also have optional arguments do not translate properly. If you want to write a special form at Macsyma level, use a macro instead.
- Subscripted functions don't translate efficiently. They should be run interpreted instead.

12.9 Hints for Efficient Programming

The typical Macsyma programmer eventually discovers that he or she uses certain procedures frequently enough to put them into a personal library. Good programming style can greatly increase the utility of such a library. The following hints can make this task easier:

- Don't assume anything about the global environment. If your function requires a special environment (i.e., a special option setting or a property) then set it up locally. It is important to make the relevant option variables initialized block variables to guarantee that they have the correct settings, even if the desired settings are the default values, because the option variables may be changed in the global environment.
- Localize variables and properties whenever possible. It can be frustrating to find that a function pollutes the global environment by leaving variable bindings or properties around after it is called. It is especially frustrating when a function changes the setting of a system option variable. Use the block and local mechanisms to avoid this.
- Never use go. Although this construction is supported in Macsyma, it is almost never necessary to use it. Programs which use go are hard to read.
- If your code contains floating point variables and floating point arithmatic, it will run much faster if the variables are declared float with mode_declare and the code is compiled.
- Translate functions when possible. Translated code often run faster than interpreted code. The translation process also warns the user of the presence of possibly unintended global variables.
- Don't use ev in programs. To force an extra evaluation, use the eval or apply functions. To force resimplification, use the resimplify function. To force evaluation of noun forms, use apply_nouns or an opsubst lambda construct to force evaluation of specified noun forms. To substitute values for variables, use subst.
- Avoid using "::". It is almost always the case that an apparent need to use "::" can be eliminated by restructuring the program.
- Use the part functions instead of subscript notation to reference list elements. The syntax $\operatorname{part}($ object, $n)$ is preferred over object $[n]$ because if a global array named object exists then the latter notation will refer to the array in what might appear to be a haphazard manner.

Chapter 13

Displaying Expressions

One of the complaints lodged against computer algebra systems is that it is often difficult to express results in a "natural" way. Even experienced Macsyma users complain that it can be as difficult to simplify the results as it is to derive them. This section discusses some techniques for simplifying Macsyma expressions. These techniques give the user considerable (but not complete) control over the display of expressions.

The techniques used to simplify expressions fall into two categories. The first category consists of commands that modify the structure of the expression, via selective simplification, substitution, or a change of internal representations. Examples of facilities that change the internal representation are the rat and ordergreat orderless commands and the mainvar declaration. Commands used for selective simplification include substpart, map, and multthru. The second category consists of commands that affect the display of an expression, in particular the ordering of terms. Facilities which fall into this category include the trunc command and display flags such as exptdispflag and powerdisp.

13.1 The Macsyma Display Package

The Macsyma simplifier uses a default ordering scheme to put expressions into a "standard form." (This standard representation makes it easier for the simplifier to recognize identical quantities for, say, purposes of cancellation.) The ordering of atoms in a simplified expression is:

$$
\text { mainvars }>\text { other variables }>\text { scalars }>\text { constants }>\text { numbers }
$$

with the ordering inside a category taken to be reverse-alphabetic. The display package generates the twodimensional display of an expression after simplification. A product displays with factors in increasing order, while a sum displays with terms in decreasing order of importance.
Note: the characters "," and "\%" are alphabetic characters. In the Macsyma alphabet, "\%" comes before "a" and "_" follows "z".

Macsyma defaults to two dimensional formatted display of mathemetics using drawn mathematical symbols and Greek letters. You can turn off the fancy display and get two dimensional character display by setting fancy_display:false (default: true).

13.2 Changing the Default Display

The easiest way to change the default display is to change a display option variable. These variables are documented in the chapter entitled Displaying and Ordering Functions in the Macsyma Reference

Manual. Changing the value of a display option variable doesn't affect the internal representation of an expression and can be done (or undone) at any time. However, a display option variable should be set at toplevel (rather than via a local binding) to guarantee that it is still set during the display phase. The following example illustrates the effect of the option variable powerdisp (default:false), which when set to true causes polynomials to display with terms of increasing order.

```
(c1) expr:1+x+x^2;
(d1)
(d2)
(c3) expr;
(d3)
1+x+x
(c4) reset(powerdisp);
(d4)
(c5) ev(expr,powerdisp:true);
(d5)
```

$$
2
$$

$$
x+x+1
$$

true

2
$1+x+x$
done

2
$\mathrm{x}+\mathrm{x}+1$

Note that the local binding of powerdisp in (c5) doesn't modify the display in (d5) because the local binding is undone prior to the generation of the display.

13.3 Rewriting Expressions

The first technique for rewriting expressions uses the rat command, which converts an expression into CRE (Canonical Rational Expression) form. The CRE form is a recursive representation that is suited for polynomials and rational functions. A multivariate polynomial is represented in CRE form by rewriting the polynomial as a polynomial in the main variable. The coefficients are then rewritten as polynomials in the next main variable. This procedure is repeated for all of the variables. The main variables can be specified as optional arguments to the rat command (with the right-most variable assumed to be the most important) or to the ratvars option variable.
To illustrate the main variable concept, consider the following representations of a multivariate polynomial. In this example, we express a given multivariate polynomial with respect to different main variables using the rat function.

```
(c1) poly:(x+y+z+x*y) - 2;
    2
(d1) (z+x y + y + x)
(c2) rat(poly,x);
\((d 2) / r /(y+2 y+1) x^{2}+\left((2 y+2) z^{2}+2 y+2 y\right) x+z+2 y z+y\)
(c3) rat(poly,z);
\((d 3) / r / z^{2}+((2 x+2) y+2 x) z+\left(x^{2}+2 x+1\right) y+(2 x+2 x) y+x^{2}\)
```

(c4) $\operatorname{rat}(\mathrm{poly}, \mathrm{y}, \mathrm{x}, \mathrm{z})$;

The commands (c4) and (c5), which are equivalent, specify that the polynomial should be rewritten using the ordering $z>x>y$.
The next example shows how selective simplification functions can be used in conjunction with rat to format expressions. In this example, we reconstruct the original form of an expression.
We first generate a test expression and then expand it.

```
(c1) \((\mathrm{a}+\mathrm{b} * \mathrm{x}) * \exp (\mathrm{x}) / \mathrm{c}+(\mathrm{x}+1)^{\wedge} 2+\mathrm{x} / \mathrm{y}\);
                                \(\mathrm{x} \quad(\mathrm{b} x+\mathrm{a}) \% \mathrm{e} \quad 2\)
(d1)
    - + ------------- + (x + 1)
        \(\mathrm{y} \quad \mathrm{c}\)
(c2) expr: expand(\%);
(d2)
```


The command listratvars displays the default variable ordering in the expression. To return the expression to its original form, using rat, make the exponential the main variable.

```
(c3) listratvars(expr); x (d3) [a, b, c, x, %e , y]
(c4) rat(expr,exp(x));
    (bx+a)y%e
(d4)/R/
    -------------------------------------------
```

c y

Now invoke some selective simplification functions to put the expression in the desired form. The multthru command in (c5) multiplies the denominator through the sum in the numerator. The substpart command in (c6) factors the third part of the expression in place.

```
(c5) multthru(%);
```


(c6) substpart(factor(piece), \%,3);

x

(d6)

```
x (b x + a) %e 2
- + ------------- + (x + 1)
y c
```

Note: this example could also have been produced without using rat by using two calls to substpart.
The next example in this section is a minor modification of the previous example. The only difference between the two is the replacement of $\exp (x)$ with $\exp (-x)$, but this turns out to be significant because the conversion to rational form puts $\exp (-x)$ in the denominator. In such cases, it is simpler to eliminate the expression $\exp (-x)$ through substitution, put the resulting expression in the desired form, and substitute back.

```
(c1) (a+b*x)*exp(-x)/c + (x+1)^2 + x/y;
    - x
    x (b x + a) %e 2
(d1)
    - + -------------- + (x + 1)
    y c
(c2) expand(%);

y
C
C

The first step is to substitute a token for \(\exp (-x)\).
(c3) expr: subst \((\exp (-x)=u, \%)\);


The next step is to rewrite the expression with \(u\) as the main variable.
(c4) listratvars(\%);
(d4)
\[
[\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{u}, \mathrm{x}, \mathrm{y}]
\]
(c5) rat(expr,u);
\[
(b x+a) y u+\left(c x^{2}+2 c x+c\right) y+c x
\]
\((d 5) / r /\)


Finally, we simplify the expression and substitute back for \(\exp (-x)\).
(c6) multthru(\%);
\[
\begin{equation*}
x \quad c x+2 c x+c \quad u(b x+a) \tag{d6}
\end{equation*}
\]
- + ---------------- + -------------
y
c
c
```

(c7) map('factor,%);
(d7)
x u(b x + a) 2
- + ----------- + (x + 1)
y c
(c8) subst(u=exp(-x),%);
- X
(d8)
x (b x + a) %e 2

- + --------------- + (x + 1)
y c

```

The final example in this section uses the fact that variables recognized by rat can be kernels (expressions such as \(\operatorname{sqrt}(x)\) or integrate \((f(x), x))\) rather than just symbols. In this example, we use rat to rewrite an expression, collecting coefficients of the integrals in the expression. The main variables are specified as optional arguments to the rat command.




Note: this technique is also useful for computation. Evaluating the integrals in (d3) (via \(\mathbf{e v}(d 3\), integrate) or apply_nouns \((d 3\), integrate \()\) ) requires only half as much work as for the mathematically equivalent expression (d1).

\subsection*{13.4 The mainvar Declaration}

The mainvar declaration is used to make a variable "more important" than normal variables. For example, by default \(x<y\), where \(<\) is the ordering predicate. However, if \(x\) is declared to be mainvar then in subsequent computations \(y<x\). (If \(y\) is also declared mainvar then \(x<y\) again, but \(x\) and \(y\) are more important than any other variables.)
The mainvar declaration affects the internal representation of expressions by changing the canonical ordering of variables in simplified expressions. For this reason the mainvar declaration makes expressions contextsensitive since mathematically identical expressions can have different internal simplified forms, depending on the mainvar declarations in force when the expressions are simplified.
The next example shows how mainvar declarations affect the representation of expressions. Note that a resimplification (accomplished here using the resimplify command) is required for the mainvar declaration to take effect.
```

(c1) expr:[x+y+z,x*y*z];
(d1)
[z+y+x, x y z]
(c2) declare(x,mainvar);
(d2)
done
(c3) resimplify(expr);
(d3)
[x+z+y, y z x]

```

With \(x\) declared mainvar, the ordering is \(x>z>y\). When \(y\) is also declared mainvar, the ordering changes to \(y>x>z\).
```

(c4) declare(y,mainvar);

```


Note: A few points concerning the mainvar declaration should be noted. First, if you save an expression containing a variable declared to be mainvar, then you should also save the variable itself. This guarantees that the mainvar property will be present when the expression is reloaded. Second, a mainvar declaration establishes a context which might require an explicit resimplification to obtain fully simplified results.
In the following example, identical expressions are evaluated and simplified both before and after a mainvar declaration. Note that the result must be explicitly resimplified to get zero.
```

(c1) expr1:x+y;
(d1) y + x
(c2) declare(x,mainvar);
(d2) done
(c3) expr2:x+y;
(d3) x + y
(c4) expr1-expr2;
(d4)
y - y

```
(c5) resimplify (\%) ;
(d5)

\subsection*{13.5 Inhibiting Simplification}

\subsection*{13.5.1 Using Invisible Boxes}

You will sometimes want to display results in an unsimplified form. For example, you might want to keep certain terms in a product from combining. Simplifications of this nature can be inhibited by the box command. The disadvantage of this method is that you must dissect the expression and explicitly protect subexpressions by wrapping them in boxes.

The next example shows how to use box to inhibit simplification. Note the effect of setting of the option variable boxchar [default: "*"] to a more esthetic space character.
(c1) \(s /(s+1)\);
\begin{tabular}{lc} 
(d1) & s \\
(c2) \(2 * \mathrm{box}(\mathrm{s} /(\mathrm{s}+1)) ;\) & \(\mathrm{s}+1\) \\
& \\
& \(* * * * * * *\) \\
(d2) & \(* \mathrm{~s} *\) \\
& \(2 *----*\) \\
& \(* \mathrm{~s}+1 *\) \\
& \(* * * * * *\)
\end{tabular}
```

(c3) boxchar:" "\$
(c4) %th(2);

```
(d4)
s
2 -----
s + 1

Note: the spacing between the 2 and the rational function in (d4) cannot be controlled. It is not possible to set boxchar to an empty string. If the display is ambiguous due to the lack of parentheses, reasonable results can be obtained by setting boxchar to an unobtrusive printing character such as ' '.' .

The final example in this section shows how box can be used to display a rational function as a constant times the ratio of two monic polynomials. The first step is to isolate the lead coefficients of the numerator and denominator and divide through to yield monic polynomials.
```

(c1) expr:(3*s+1)/(4*s^2+6*s-3);
3s+1
(d1)

2
4s + 6s - 3
(c2) (tmp1:ratcoef(num(%),s,hipow(num(%),s)),
tmp2:ratcoef(denom(%),s,hipow(denom(%),s)))\$
(c3) (num:multthru(num(expr)/tmp1),denom:multthru(denom(expr)/tmp2))\$

```
(c4) num;
(d4) 1
s + -
3
(c5) denom;
(d5)


Now that the various pieces have been isolated, we reconstruct the expression. Note what happens if no box forms are used:
(c6) tmp1/tmp2*num/denom;
\(3(s+-)\)
3
(d6)

24

After resetting boxchar to an invisible character, different representations of the expression can be generated by boxing different subexpressions.
```

(c7) boxchar:" "\$
(c8) tmp1/tmp2*box(num/denom);

```

1
s + -
3
3
\[
2 \quad 3 \mathrm{~s} \quad 3
\]
s + --- -
\(2 \quad 4\)
(d8) \(\qquad\)
4
(c9) box(tmp1/tmp2)*box(num/denom);
(d9)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{S +} \\
\hline \multirow[t]{2}{*}{3} & & \multicolumn{3}{|c|}{3} \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{4} & 2 & 3 & s & 3 \\
\hline & & & & \\
\hline
\end{tabular}

24
(c10) box (box(tmp1/tmp2)*num)/denom;


Note: expressions containing box forms are not suitable for computation. Any box forms should be removed prior to computation via the rembox command.

\subsection*{13.5.2 Using Null Functions}

Another way of prohibiting simplification is to use a null function as a placeholder. That is, the expression to be protected is given as the argument of a function named ' ' ' . Consider the following example:
```

(c1) (s/(s+1))*(s/(s-1));
2
s
(d1)
(s-1) (s + 1)
(c2) " "(s/(s+1))*" "(s/(s-1));
(d2)
(-----) (-----)
s - 1 s + 1

```

Note that, unlike the box technique, this method puts parentheses around the factors.
```

(c3) boxchar:" "\$
(c4) box(s/(s+1))*box(s/(s-1));

```
(d4)
\[
\begin{array}{cc}
s & s \\
---- & ----1 \\
s-1 & s+1
\end{array}
\]

Finally, note that the null function can be removed with an appropriate lambda substitution:
(c5) opsubst(" "=lambda([arg],arg),d2);
2
s
(d5)
\[
(s-1)(s+1)
\]

\subsection*{13.6 The ordergreat and orderless Commands}

Another facility which allows the user to control the ordering of symbols is the ordergreat/orderless facility. This facility, unlike the mainvar declaration, gives the user complete control over the ordering of symbols. (The ordering among symbols which have been declared to be mainvars is reverse-alphabetic. The user has no control over the ordering of mainvars.) However, because of the way in which the ordergreat/orderless mechanism is implemented, results generated using this scheme are even more context-sensitive than those generated using the mainvar scheme.

The syntax of ordergreat is ordergreat (var1, var2, . .., varN). This establishes the ordering var1 > var2 \(>\ldots>\operatorname{var} N>\) any other variables. The orderless function is called in the same way and establishes an ordering making its arguments less important than any other symbol. The ordering imposed by either of these commands is removed using the unorder command. A second call to ordergreat or orderless without first calling unorder results in an error.

The functions ordergreat and orderless work by establishing aliases between the specified symbols and special internal symbols which are named to be either the most important or the least important. Since aliases are handled only by the parser (for input) and the displayer (for output), an existing expression cannot be reformatted using this mechanism unless it is re-entered.
The next example demonstrates how ordergreat is used. The order \(x>z>y\) is established.
```

(c1) [x+y+z,x*y*z];
(d1) [z + y + x, x y z]
(c2) ordergreat(x,z,y);
(d2)
(c3) [x+y+z,x*y*z];
(d3)
[x + z + y, y z x]
(c4) unorder();
(d4)
[y, z, x]
(c5) [x+y+z,x*y*z];
(d5)
[z+y + x, x y z]

```

The next example demonstrates that the ordergreat and orderless commands make Macsyma expressions context-dependent. In this example, expr1 and expr2 contain variables with different internal names since the ordergreat command in (c2) establishes aliases for \(x\) and \(y\). The internal names generated by the ordergreat command are shown in (d7).
```

(c1) expr1:x+y;
(d1) y + x
(c2) ordergreat(x,y);
(d2) done
(c3) expr2:x+y;
(d3) x + y
(c4) expr1-expr2;
(d4) - x - y + y + x
(c5) unorder();
(d5) [y, x]
(c6) expr1;
(d6) y + x
(c7) expr2;

```
(d7)
_102X + _101y

As mentioned earlier, an existing expression must be re-parsed before any ordergreat or orderless orderings will be used. The only practical ways to re-parse an expression are via the stringout and batch commands or via medit, since neither re-evaluation nor resimplification invokes the parser. The next example shows how stringout and batch can be used.
```

(c1) expr:x+y+z;
(d1)
z + y + x
(c2) ordergreat(x,y);
(d2)
done

```

Re-evaluating the existing expression doesn't pick up the new ordering. The stringout command in (c4) writes the indicated expression to a file in Macsyma format, and the batch command in (c5) reads the expression back in. The ordering is picked up when the Macsyma expressions are parsed.
```

(c3) expr;
(d3)
z + y + x
(c4) stringout("expr.mac",expr)\$
(c5) batch("expr.mac");
(c6) Z+Y+X;
(d6)
(d7)
x + y + z
done

```

The final example shows how medit can be used to reparse an expression.
\begin{tabular}{lc} 
(c1) expr: \(\mathrm{x}+\mathrm{y}+\mathrm{z} ;\) & \\
(d1) & \(\mathrm{z}+\mathrm{y}+\mathrm{x}\) \\
(c2) ordergreat ( \(\mathrm{x}, \mathrm{y}) ;\) & \\
(d2) & done \\
(c3) expr; & \(\mathrm{z}+\mathrm{y}+\mathrm{x}\) \\
(d3) & \\
(c4) medit(expr); & \\
In editor: & \\
\(\$ \mathrm{Z}+\mathrm{Y}+\mathrm{X}\) & \\
\(-\$ \$\) & \(\mathrm{x}+\mathrm{y}+\mathrm{z}\)
\end{tabular}

Macsyma allows considerable control over the simplifying of expressions. The rat command, which converts an expression into CRE form, is useful when it is desired to collect coefficients of specified variables. (The "variables" used by rat need not be symbols. Non-atomic kernels, such as \(\exp (x)\) or integrate forms, can be also used.) The mainvar declaration allows the user to specify a subset of "important" variables, although he has no control over the ordering within this subset. The ordergreat/orderless facility allows the user to explicitly define the ordering of the main variables, but in a way that requires existing expressions to be re-parsed before they can be used consistently.

\section*{Chapter 14}

\section*{The Macsyma Pattern Matcher}

The Macsyma pattern matching facility provides a powerful and useful method of testing expressions to see if they contain expressions of a specified "form," and also to perform literal or semantic substitutions. The pattern matching facility also gives the user the ability to extend the Macsyma simplifier by defining substitution rules that are applied automatically during the Macsyma simplification phase. Finally, the ability to define recursive rules permits the user to implement recursive simplifications conveniently. This chapter introduces you to the Macsyma pattern matchers and discusses the circumstances under which the pattern matcher is most useful. Because of the complexity of the subject, this chapter is intended to introduce you to pattern matching. Refer to "Pattern Matching and Related Functions" in the Macsyma Reference Manual for full details.

\subsection*{14.1 Introduction to Pattern Matching Techniques}

The Macsyma pattern matchers can be thought of as powerful substitution mechanisms. The "substitution" is defined in terms of a rule, which defines a substitution for a given class of expressions. The method by which the rule is defined determines if the rule will be applied automatically or only when you request it, and also whether or not it is applied recursively.
Modifying an expression using pattern matching techniques is an alternative to the programmatic approach. In the following example, we show how to compute the factorial of a positive integer using both programming techniques and pattern matching. First, we implement the factorial function as a recursive function.
```

(c1) fact(int):=block
(if int = 0
then 1
else if not(integerp(int)) or int < 0
then 'fact(int)
else int * fact(int-1))\$
(c2) fact(-1);
(d2) fact(- 1)
(c3) fact(0.5);
(d3) fact(0.5)
(c4) fact(0);
(d4)
(c5) fact(5);

```

Next, we implement the factorial function with rules as an extension to the Macsyma simplifier.
```

(c1) posintp(n):=is(integerp(n) and n>0)\$
(c2) matchdeclare(int,posintp)\$
(c3) tellsimpafter(fact(0),1)\$
(c4) tellsimpafter(fact(int),int*fact(int-1))\$
(c5) fact(-1);
(d5)
(c6) fact(0.5);
(d6)
(c7) fact(0);
(d7) 1
(c8) fact(5);
(d8) 120
fact(- 1)
fact(0.5)

```

Although this process looks the same as the implementation using a recursive function definition, it is in fact quite different. The tellsimpafter approach teaches the Macsyma simplifier how to simplify fact forms. A major advantage of this approach is that additional simplifications on fact can be added simply by implementing additional tellsimpafter rules, without affecting the existing ones. Very powerful rule-based transformations can be "taught" to Macsyma by incrementally adding small components. This modularity makes it easy to add enhancements in stages, without making it necessary to modify existing (and previously debugged) code.
A major disadvantage of pattern matching is that it is a relatively slow mechanism. Adding rules that are tested automatically, as in this example, can cause a noticeable decrease in speed, affecting every Macsyma computation. The question of when to use pattern matching instead of a programmatic approach will be discussed in Section 14.8. A second disadvantage is that the user must learn how to use the pattern matcher, which is itself a nontrivial task.
Two distinct pattern matchers are implemented in Macsyma.
- The general Macsyma pattern matcher permits you to define rules that are applied only when explicitly requested (rules defined using the defmatch or deftaylor forms) or rules that are applied automatically by the simplifier (rules defined using the tellsimp or tellsimpafter forms).
- The let pattern matcher uses the rational functions package and is based on a pattern matching algorithm first implemented in the REDUCE computer algebra system. It is designed to make substitutions for products in rational expressions.

In the remainder of this chapter, we refer to the two pattern matchers as "the general pattern matcher" and "the rational function pattern matcher" or "the let pattern matcher," respectively. The choice of the appropriate pattern matcher depends on the class of expressions and the nature of the substitution.

\subsection*{14.2 An Overview of the Pattern Matcher Facilities}

As mentioned earlier, the pattern matcher is a mechanism that tests an expression to see if it contains a subexpression of a given form, and if so takes a specified action (i.e., perform a substitution, side-effect a variable, or construct a list of parts of the subexpression). This section introduces the different Macsyma
pattern matchers, provides examples of their use, and also discusses typical problems and issues encountered in pattern matching.
The Macsyma pattern matching components fall into three general classes:
- Predicates: A predicate is a boolean function, i.e., a function that returns true or false. For example, the predicate function integerp returns true if and only if its argument evaluates to an integer. (The -p suffix is commonly used to indicate that a function is a predicate. Not all Macsyma predicates follow this rule, however. For example, the predicate that tests to see if its argument is an atom is called atom, not atomp).
- Part Identification: This mechanism, implemented with the defmatch mechanism in the Macsyma general pattern matcher, tests an expression to see if it is of a specified form. If so, the operation returns a list of the pattern variables as they matched in that expression.
- Rewrite Rules: A rewrite rule is an operation that matches and substitutes subexpressions in a given expression. This mechanism is implemented using defrule, tellsimp, and tellsimpafter in the Macsyma general pattern matcher, and by let in the Macsyma rational function pattern matcher.

Semantic pattern variables are defined using the matchdeclare facility, which uses predicates to test expressions to see if they match a specified form. The ability to define semantic (as opposed to literal) matches greatly enhances the usefulness of the pattern matcher. More will be said about semantic pattern variables and matchdeclare in a later section.

The following simple examples show how the different pattern matchers are used.

\subsection*{14.2.1 Examples of Predicates}

The predicate integerp returns true if its argument evaluates to an integer, and false otherwise. The predicate atom returns true if its argument evaluates to an atom (a simple data structure with no component parts), and false otherwise. Predicates are the simplest pattern matchers, indicating whether or not an expression is of a specified form.
\begin{tabular}{lc} 
(c1) integerp(1); & \\
(d1) & true \\
(c2) integerp(1.0); & \\
(d2) & false \\
(c3) atom (x); & \\
(d3) & true \\
(c4) atom ( \(x+y\) ); & \\
\((d 4)\) & false
\end{tabular}

\subsection*{14.2.2 An Example of a Pattern Matching Rule}

The following example shows how to define and apply a rule which replaces one algebraic expression by another. We define two variations of the rule. The first version of the rule searches for the exact pattern of variables which it is told to find and replace, The second version can accept an arbitrary variable name where it expects to find the velocity variable \(v\).
We start with the expression for Newtonian kinetic energy. We then define the rule relativize1 which converts Newtonian kinetic energy to relativistic energy.
(c1) energy: \(1 / 2 * m * v^{\wedge} 2\);
2
(d1)

\section*{2}
(c2) defrule(relativize1,1/2*m*v^2,m*c^2/sqrt(1-v^2/c^2));
\begin{tabular}{cc}
2 & 2 \\
\(m\) v & c m
\end{tabular}
(d2)


This rule changes the nature of the expression energy. See apply1, page 234.


Now try the rule where the velocity is represented by the symbol \(u\) instead of the symbol \(v\). The rule does not work because it sees the letter \(u\) where it expects to see the letter \(v\).
```

(c4) energy: 1/2*m*u^2;

```
    2
                                    m u
(d4)
                                    ----
                            2
(c5) apply1(energy, relativize1);
    2
    m u
(d5)
    ----
    2

If we declare that, in pattern definitions, the variable \(v\) stands for any atomic symbol, we can then define the rule relativize 2 with this new interpretation of \(v\). The rule works because \(u\) is an atomic variable, which matches the symbol \(v\) in the definition of the rule relativize 2 .
```

(c6) matchdeclare(v,atom)\$
(c7) defrule(relativize2,1/2*m*v^2,m*c^2/sqrt(1-v^2/c^2));

```


\subsection*{14.2.3 An Example of a User-Defined Pattern-Testing Predicate}

In the following example, the defmatch mechanism, which is part of the Macsyma general pattern matcher, is used to define a function called quadratic that tests its first argument to see if it is a quadratic polynomial with respect to the second argument.
```

(c1) matchdeclare([a,b,c],freeof(x));
(d1) done
(d2)
quadratic
(c3) quadratic(a2*z^2+a1*z+aO,z);
(d3) [c = a0, a = a2, b = a1, x = z]
(c4) quadratic(a1*z+aO,z);
(d4)
[c = a0, a = 0, b = a1, x = z]
(c5) quadratic(a3*z^3+a2*z^2+a1*z+aO,z);
(d5)
false

```

The matchdeclare form in (c1) defines the pattern variables. In this case, the matchdeclare form tells the pattern matcher that the coefficients cannot contain the variable given as the last argument to quadratic. (This association comes from the fact that the symbol \(x\) is used in both the matchdeclare form in (c1) and also in the defmatch form in (c2).)
Note that this implementation of quadratic allows linear or constant polynomials to match the quadratic expression pattern by allowing the appropriate coefficient to be zero. In a subsequent section, we show how to write quadratic to prevent linear or constant polynomials from matching the pattern.

Note also that freeof takes more than one argument when used interactively, but is used with only one argument in (c1). The freeof form in (c1) is not evaluated directly, but is instead used as a template when the rule quadratic is defined using the defmatch form in (c2). This is discussed in greater detail in Section 14.4.

\subsection*{14.2.4 Examples of Rewrite Rules}

The first example uses defrule to define a rewrite rule called fsub to perform the substitution \(f(1) \rightarrow f 1\). The rule is applied manually using the apply1 form.
```

(c1) defrule(fsub,f(1),f1);
(d1) fsub : f(1) -> f1
(c2) f(1)+1/f(1)+f(2);
(d2)
f(2)+f(1)+----
f(1)
(c3) apply1(%,fsub);
(d3)
f1 + -- + f(2)
f1

```

The next example uses tellsimpafter to define a rewrite rule that performs the same substitution. However, this rule is applied automatically during the simplification phase.
```

(c1) tellsimpafter(f(1),f1);
(d1)
[frule1, false]
(c2) f(1)+1/f(1)+f(2);
1
(d2)
f1 + -- + f(2)
f1

```

The next example uses the rational function pattern matcher to perform the same substitution. The rewrite rule is defined using the let command, and is applied manually using the letsimp command.
```

(c1) let(f(1),f1);
(d1) f(1) --> f1
(c2) f(1)+1/f(1)+f(2);
1
f(2) + f(1) + ----
f(1)
(c3) letsimp(%);
(d3)
2
f1 + f(2) f1 + 1
+
f1

```

The final example shows how the direction in which the pattern matcher scans the expression can be controlled. The matchdeclare form in (c1) allows any expression in the position indicated by \(x\) in (d2) to match the pattern. The apply1 and applyb1 commands force the matcher to scan the expressions "top-down" and "bottom-up," respectively.
```

(c1) matchdeclare(x,true);
(d1)
done

```
```

(c2) defrule (fsub2,f(f(x)),g(x));
(d2)
fsub2 : $f(f(x)) \rightarrow g(x)$
$\operatorname{apply} 1(f(f(f(x))), f$ sub2 $) ;$
$g(f(x))$
applyb1 $(f(f(f(x))), f s u b 2) ;$
(d4)
$\mathrm{f}(\mathrm{g}(\mathrm{x}))$

```

Note that the result ( d 3 ) results from scanning the expression "top-down," while the result in ( d 4 ) results from scanning the expression "bottom-up."

\subsection*{14.2.5 General Pattern Matcher Issues}

Finally, we mention some of the difficulties and questions that frequently arise when using the pattern matcher facilities. These topics will be covered in greater detail in subsequent sections.
- Looping and recursive rules. Many rules are applied recursively "until the result stops changing". A rule that substitutes \(f(f(x))\) for \(f(x)\), and is applied recursively, will loop until the resulting expression exceeds an internal storage space. A rule that substitutes \(f(x)\) for \(f(x)\) might loop if the "new" expression is determined to be different from the "old" one after the transformation has occurred. Macsyma will sometimes warn the user that a circular definition is being attempted (for example, when the original and replacement expressions in a tellsimp/tellsimpafter rule are identical). This may complicate debugging.
- Specifying a semantic pattern. The power of the pattern matcher is greatly enhanced by permitting a semantic (as opposed to a literal) match. For example, if the pattern identifies a form such as \(f(x)\) with the understanding that \(f\) refers to the symbol \(f\), but that \(x\) is a "placeholder" and can refer to expressions other than the symbol \(x\) then we refer to it as a semantic pattern. If, however, the pattern requires only that the expression \(f(x)\) will match the pattern, then we refer to it as a literal pattern.
- In what direction does the matcher scan the expression? The transformation \(f(f(y)) \rightarrow\) \(g(y)\), where \(y\) can be anything (that is, \(y\) is a semantic pattern variable that can match an arbitrary expression), yields different results if the expression is scanned "top-down" instead of "bottom-up". For example, consider the expression \(f(f(f(x)))\). Applying the transformation "top-down" yields \(g(f(x))\), while applying it "bottom-up" yields \(f(g(x))\).
- How "smart" is the matcher? Can (or should) the pattern matcher match, say, \(\exp (x)\) in \(\cosh (x)\) ? Should it be able to find a leading factor of 1 (or -1 ) in a product?

\subsection*{14.3 Simple Pattern Testing: Predicates}

The simplest type of pattern is the predicate. A predicate is a function that returns either true or false. Macsyma provides a large number of built-in predicates, and the user can define compound predicates using the is form. Consult the Macsyma Reference Manual for a complete list of Macsyma predicates.
In the following example, we define a predicate that takes two arguments and returns true if and only if the first argument is a symbol and the second argument doesn't contain that symbol.
```

(c1) symbol_and_freeofp(var,expr):=is(symbolp(var1) and freeof(var,expr))\$
(c2) symbol_and_freeofp(x,1+x);
(d2)
false

```
```

(c3) symbol_and_freeofp(x+y,x+y);
(d3)
false
(c4) symbol_and_freeofp(x,y);
(d4)
true

```

The rest of this section is devoted to explaining how to write predicates for pattern matching purposes. We first discuss the techniques used to write compound predicates, that is, predicates that are logical combinations of simple predicates.

A useful form when writing predicates is the not, or logical negation, operator. For convenience, not is implemented both as a prefix operator and as a function.
\begin{tabular}{ll} 
(c1) not true; & \\
(d1) & false \\
(c2) not(true); & \\
(d2) & false
\end{tabular}

Although most simple predicates are functions, compound predicates are constructed using the is, and, and or special forms. These are implemented as special forms rather than functions because you must evaluate the individual predicates sequentially.

The is form performs the logical evaluation of predicates which do not contain the usual logical operators and, or, and not. That is, the is form forces the logical evaluation of expressions such as inequalities that are themselves legitimate Macsyma expressions. It is good programming practice to write compound predicates using is, even when it is not needed to force the logical evaluation. The next example shows how to use is.
\begin{tabular}{ll} 
(c1) 2>1; & \\
(d1) & \(2>1\) \\
(c2) is \((2>1) ;\) & \\
(d2) & true \\
(c3) true or false; & \\
(d3) & true \\
(c4) is(true or false); & \\
(d4) & true
\end{tabular}

Note that the is form is needed in (c2) to carry out the logical evaluation of the inequality. The command (c4) shows that is can be used, even if the logical evaluation occurs automatically.
In this example, we construct a predicate that returns true if its argument is a positive floating point number. Note what happens if the predicates are evaluated in the incorrect order.
```

(c1) floating_point_and_positivep(arg):=is(floatp(arg) and arg > 0)\$
(c2) positive_and_floating_pointp(arg):=is(arg > 0 and floatp(arg))\$
(c3) floating_point_and_positivep(1.0);
(d3)
true
(c4) positive_and_floating_pointp(1.0);
(d4) true
(c5) floating_point_and_positivep(1);
(d5)
false

```
```

(c6) positive_and_floating_pointp(1);
(d6) false
(c7) floating_point_and_positivep(a);
(d7) false
(c8) positive_and_floating_pointp(a);
Macsyma was unable to evaluate the predicate:
A>0
Returned to Macsyma Toplevel.

```

Note that the test that \(\arg >0\) must follow the floating point check or else a non-numeric input will generate a Macsyma error. The components of an and form are evaluated left-to-right until a component evaluates to false, in which case the remaining forms are not evaluated and false is returned. If all of the components evaluate to true then the value true is returned. An or form evaluates its components left-to-right until a component evaluates to true, in which case the remaining forms are not evaluated and true is returned. If none of the components evaluates to true then the value false is returned. The components of and and or must evaluate to either true or false. (Note that the construct false or 1, which is allowed in some languages, generates an error in Macsyma.)

As indicated earlier in this chapter, predicates are used to construct pattern variables for the Macsyma pattern matchers. The user defines a pattern variable using the matchdeclare form and associated predicates. The pattern matcher tests an expression to see if it fits the pattern by passing it to the indicated predicate. A predicate used in a matchdeclare form must have the expression to be tested appear at the end of the predicate argument list. Any parameters that are passed to the predicate must precede the expression being tested.

\subsection*{14.4 Literal vs. Semantic Matches: matchdeclare}

Pattern matching provides a convenient means of implementing mathematical relationships. However, relationships of this nature must frequently be interpreted as identities. For example, the simplification \(\sin (x)^{2}+\cos (x)^{2}=1\) should hold regardless of the expression in the locations indicated by the placeholder \(x\).

The effectiveness of a pattern matcher is greatly increased if the matcher can make semantic matches. The type of expression that can match a semantic pattern variable is determined by the matchdeclare property associated with a pattern variable. The matchdeclare property is generated by a matchdeclare form, which takes an even number of arguments. The first element in the pair of arguments to matchdeclare is a pattern variable (a variable that is used in a rule definition), and the second is a predicate that must evaluate to true for a test expression to match. If the first argument in a pair is a list of variables then each variable in the list acquires the same matchdeclare property. If no matchdeclare is specified then only a literal match can be made for that pattern variable.
In the previous section it was noted that the predicate used in a matchdeclare must be written so that the expression to be tested is the last argument in the predicate's argument list. When defining the pattern variable in a matchdeclare form, this last argument is omitted. For example, if a pattern variable named intvar should match integers, the predicate integerp should be used. Since integerp takes one argument, the matchdeclare form matchdeclare(intvar, integerp) \$ should be used.

It is important to note that the matchdeclare information is incorporated into the rule when the rule is defined. Simply redefining the matchdeclare property on a pattern variable will not affect existing rules that use the pattern variable. The rule must be redefined with the new matchdeclare in place before the new pattern variable will be used. However, a predicate that is specified in the matchdeclare form is used dynamically, so redefining a matchdeclare predicate will in fact change the behavior of rules using
the corresponding pattern variables. This information is provided not so much to encourage a programmer to redefine pattern match predicates after a rule has been generated (this will usually lead to inexplicable behavior on the part of the pattern matcher), but rather to provide further insight into the pattern matching mechanism and also to point out that tracing the predicates or rules (using the Macsyma trace facility) can help to debug pattern matching problems.

Note: the presence of matchdeclare information on a symbol can be determined by inspecting the property list of the symbol. If such information is present, a matchdeclare indicator will appear on the property list. The matchdeclare information on a symbol can be inspected using the printprops special form.


\subsection*{14.5 The General Pattern Matcher}

There are three interfaces to the Macsyma general pattern matcher:
- the defmatch facility, which generates functions that identify subexpressions and binds them to userspecified variables;
- the defrule facility, which generates rewrite rules that are invoked manually;
- the tellsimp/tellsimpafter facility, which generates rewrite rules that are invoked automatically by the Macsyma simplifier.

This section begins with an overview of the general pattern matcher, then discusses the three interfaces in detail. The section concludes with a discussion of issues that arise when using the general pattern matcher with translated or compiled files.

\subsection*{14.5.1 An Overview of the General Pattern Matcher}

The general pattern matcher is used extensively throughout Macsyma. The three interfaces all require that the same procedure be followed when using the general pattern matcher.
- To use the facility, the user first defines syntactic pattern variables using matchdeclare. Any predicates used in the matchdeclare calls should be defined prior to defining the rule.
- The next step is to define the rule using defmatch, defrule, tellsimp, or tellsimpafter.
- The procedure used to apply the rule depends on the method used to define it.

The process of defining a rule using the general pattern matcher generates a LISP function that, when invoked on a given expression, decides if the match can be made and, if so, takes the appropriate action. (The action may not transform the expression-a rule defined using defmatch identifies indicated subexpressions but
doesn't transform the expression; rules defined using deftaylor, tellsimp, or tellsimpafter are rewrite rules and do transform the expression.) The resulting LISP function can be compiled for increased efficiency.
The problem of matching a subexpression to a pattern is a difficult one. The Macsyma pattern matchers don't employ full backtracking in the sense that if they search a branch of an expression tree for a match and find they cannot make one, they will not back up and search another branch. The result from the user's point of view is that the pattern matcher fails to match when the user thinks it should. This deficiency can usually be alleviated by defining less ambitious rules. In general, rules defining substitutions for sums or products will not work. In particular, the substitition \(\sin (x)^{2}+\cos (x)^{2}=1\) cannot be implemented directly.

In the remainder of this section, the three interfaces to the general pattern matcher are discussed in detail.

\subsection*{14.5.2 Identifying Subexpressions: defmatch}

The defmatch facility identifies subexpressions and binds these subexpressions to user-specified variables. defmatch is faster than deftaylor, tellsimp, or tellsimpafter. It is commonly used to test an expression to see if it is of a specified form and, if so, identifies the components. For example, a quadratic polynomial equation solver can be implemented easily using defmatch.

The syntax of defmatch is defmatch(name, pattern, parm1, ..., parmN). defmatch generates a function called name that takes as its arguments an expression to be tested and the parameters parm1 through \(\operatorname{parm} N\). To apply the rule, the user calls the function explicitly. The test pattern, indicated by pattern, can contain variables with matchdeclare properties. If the match succeeds, a list of the form [patternvar1 \(=\) subexpr \(1, \ldots\), patternvarK \(=\) subexpr \(K]\) is returned where patternvar1, ..., patternvarK are pattern variables used in the definition of pattern. The pattern variables are also bound to the indicated expressions. The parameters are typically used to indicate, say, the independent variables in a polynomial, and are passed as arguments to the predicate(s) associated with the matchdeclare forms.

If the pattern contains no pattern variables or parameters then the function generated by defmatch returns true if the match succeeds. If the match fails, the function returns false. The function generated by defmatch is added to the system rules list, and can be removed using remove or kill.
A rule generated by defmatch can be inspected with the disprule command.
Note: The defmatch command is not recursive, since recursion does not make sense in this context. For this reason, defmatch is much faster than the other general pattern matcher facilities, and should be used whenever possible.

\subsection*{14.5.2.1 defmatch Summary}
- Defining defmatch rules: defmatch(name, pattern, parm1, ..., parmN) generates a function name that is called by name (expr, parm1, ..., parm \(N\) ). If the match succeeds, a list of the form \([\) patternvar1 \(=\) subexpr1,..., patternvarK \(=\) subexprK] is returned. The toplevel bindings patternvar1:subexpr1, ..., patternvarK:subexprK are also made. If the match fails, false is returned. Since defmatch is a special form it does not evaluate any of its arguments.
- Inspecting defmatch rules: disprule (name) displays the rule named name that is generated by defmatch. The names of rules generated by defmatch are placed on the rules list.
- Removing defmatch rules: remove(name, rule) removes the rule named name. kill(name) removes all information associated with name, including the rule definition.

\subsection*{14.5.2.2 Examples of defmatch}

The first example uses defmatch to identify a quadratic polynomial. The first step is to write a defmatch rule that identifies a quadratic polynomial (not an equation) and, if given such an expression, returns a list identifying the coefficients.
```

(c1) nonzero_and_freeof(x,expr):=is(expr\#0 and freeof(x,expr))\$
(c2) matchdeclare([b,c],freeof(x),a,nonzero_and_freeof(x))\$
(c3) defmatch(quadratic,a*x`2+b*x+c,x)\$
(c4) quadratic(3*x^2-5*x+6,x);
(d4) [c=6,a = 3,b = - 5, x = x]
(c5) [a,b,c];
(d5)
[3, - 5, 6]

```

In lines (c1) through (c3), a defmatch function called quadratic is defined that tests an expression to see if it is a quadratic polynomial. If quadratic finds a match then a list containing the pattern variables and their values is returned. The pattern variables are also bound to these values. If the expression fails to match, quadratic returns false. In (c5), it is verified that the pattern variables are also bound at toplevel. The next few commands show some examples for which quadratic fails to match. They also shows that quadratic can match expressions that are polynomials in non-atomic variables:
```

(c6) quadratic(a1*y+b1,y);
(d6) false
(c7) quadratic(a1*y^3+b1,y);
(d7) false
(c8) quadratic(aa*exp(2*t)+bb*exp(t)+cc,exp(t));
T
(d8)
[c=cc, a = aa, b = bb, x = %e]

```

The first argument in (c8) is a polynomial in the variable \(\exp (t)\).
Finally, we show why care must be taken when using defmatch-generated functions at toplevel. Consider the following example.
```

(c9) quadratic(3*x^2-5*x+6,x);
(d9) [c = 6, a = 3, b = - 5, x = x]
(c10) quadratic(3*a^2-5*a+6,a);
(d10) false

```

Why did (c10) fail to match? Since quadratic is a toplevel Macsyma function, we can trace it to see what arguments it receives.
```

(c11) trace(quadratic)\$
(c12) quadratic(3*a^2-5*a+6,a);
1 Enter quadratic [18, 3]
1 Exit quadratic false
(d12) false

```

The trace information shows that the arguments to quadratic evaluate to integers. This is because the call to quadratic in (c9) bound the pattern variables \(a, b\), and \(c\) to the values \(3,-5\), and 6 respectively, and these bindings were used in (c12) when the arguments to quadratic were evaluated. For this reason, defmatch rules are usually called inside a block with the pattern variables local to the block.

We can recover the expected behavior of quadratic by quoting the variables in the argument list.
```

(c13) quadratic(3*'a^2-5*'a+6,'a);
2
1 Enter quadratic [3 a - 5 a + 6, a]
1 Exit quadratic [c = 6, a = 3, b = - 5, x = a]
(d13) [c=6, a = 3, b = - 5, x = a]

```

The next example uses defmatch to find the homogeneous solution of a second-order constant-coefficient linear ordinary differential equation. The variables \(a 1\) and \(a 2\) represent the arbitrary constants of the solution. This example is adapted from the demo file macsyma:ode;odetrix.demo.
```

(c1) matchdeclare([b,c],freeof(u,x),f,freeof(u))\$
(c2) defmatch(solde,'diff(u,x,2) + b*'diff(u,x) + c*u = f,u,x)\$
(c3) solder(eqn,u,x):=block
([b,c,f,disc,r1,r2,alpha,beta],
if solde(eqn,u,x) = false
then return(false)
else (disc: b^2 - 4*c, alpha: -b/2,
if asksign(disc) = 'zero
then return(%e^(alpha*x) * (a1 + a2*x))
else (beta: sqrt(disc)/2,
if asksign(disc) = 'pos
then (r1: alpha + beta, r2: alpha - beta,
return(a1*%e^(r1*x) + a2*%e^(r2*x)))
else (beta: %i*beta,
return(%e^(alpha*x) * (a1*cos(beta*x)
+ a2*sin(beta*x)))))))\$

```

In (c1) and (c2), a defmatch function is generated that matches constant-coefficient second-order linear ordinary differential equations. The scope of the match is determined both by the matchdeclare form in (c1) and by the structure of the test expression in (c2). Note that the expression must be an equation to match the pattern (this differs from the syntax of most built-in Macsyma solvers, where an expression is assumed to be an equation with right-hand side equal to zero if it is not an equation) and that the lead coefficient must be 1 . These restrictions could be eliminated by modifying the defmatch form and adding another pattern variable to represent the coefficient of the second derivative term.
The function solder calls the defmatch-generated function solde to check to see if the expression is of the required form and, if so, identifies the various parts. If the expression is not of the required form then solde returns false. If the expression is of the required form, the solution of the characteristic polynomial is constructed and the appropriate form of the solution is generated. The asksign command is used to obtain the needed sign information.
Note also that the pattern variables in solder are local variables (either because they are block variables, or because they appear in the argument list). This is good programming practice since a defmatch-generated
function binds the pattern variables, and failure to localize them with the block mechanism would leave them bound at toplevel.
We proceed to test the function.
```

(c4) eq1:'diff(y,t,2)+a*'diff(y,t)+b*y=f(t);
2
d y dy
(d4)
--- + a -- + b y = f(t)
2 dt
dt
(c5) sol:solder(%,y,t);
2
is 4 b - a positive, negative, or zero?
p;
a t
- --- 2
2 sqrt(a - 4 b) t
(d5) %e (%i a2 sinh(------------------
2
2 2
+ a1 cosh(-----------------))
2
(c6) ev(eq1,y=sol,diff, ratsimp);
(d6) 0=f(t)

```

The result (d6) doesn't simplify to \(0=0\) because the solution (d5) is only the homogenous solution of the given differential equation.
The next few examples show that solder fails to match equations that don't match the pattern specified by the defmatch form.
```

(c7) eq3:'䙵f(y,t,2)+t*'\operatorname{diff}(y,t)+y=0;
2
d y dy
--- + t -- + y = 0
2 dt
dt
(c8) solder(%,y,t);
(d8)
false

```

The equation in (d7) fails to match because the coefficient of the first derivative is not a constant.
```

(c9) 'diff(y,t,2)+a*'diff(y,t)+y;
2
d y dy
(d9)
--- + a -- + y
2 dt
dt
(c10) solder(%,y,t);
(d10) false

```

The expression in (d9) fails to match because it is not an equation.


The expression in (d11) fails to match because it is a nonlinear equation.
```

(c13) expand(2*eq1);
2
d y dy
(d13) 2 --- + 2 a -- + 2 b y = 2 f(t)
2 dt
dT
(c14) solder(%,y,t);
(d14) false

```

The expression in (d13) fails because the lead coefficient is different from 1.

\subsection*{14.5.3 Transforming Expressions with Rewrite Rules: defrule}

The defrule interface to the general pattern matcher defines rewrite rules that modify expressions by recursive substitutions. Rules generated by defrule are applied manually, and the user determines how the expression is scanned and the order in which the rules are applied.

The syntax for defrule is defrule(name, pattern, replacement), where name is the name of the rule, pattern is an expression containing pattern variables, and replacement is an expression to be substituted in for an expression that matches pattern. As usual, if no pattern variables are specified by matchdeclare then only literal match will be made.

Once a rule has been implemented by defrule, it is applied manually by a call to apply1, applyb1, apply2, or applyb2. These special forms are called with the same syntax, but the manner in which they apply the rules is different. The syntax is apply \(\mathbf{X X}\) (expr, rule1, ..., ruleN) where expr is an expression to be simplified and rule1, .., rule \(N\) are the names of rules, and XX is \(1,2, \mathrm{~b} 1\) or b2.

A rule generated by defrule is added to the system rules infolist. The rule definition can be inspected by typing disprule (name), where name is the name of the rule. To remove a rule definition, type remove(name, rule) or kill(name). The former is preferred, since it removes only the rule associated with name, whereas the latter removes all information associated with name. To remove all rules generated using defrule, defmatch, or tellsimp/tellsimpafter, type remove(all, rule); Typing kill(rules); is an alternative method of removing all of the rules.

\subsection*{14.5.3.1 defrule Summary}
- Defining a Rule: defrule(name, expr, repl) generates a rule called name that replaces expr with repl. The scope of the match is determined by the matchdeclare properties present on the pattern variables when the defrule form is executed.
- Displaying a Rule: disprule(name1, name2, ..., nameN) displays the substitution rules of the named rules name1, name2, ..., nameN.
- Removing a Rule: remove(name, rule) deletes the rule name. To delete several rules use remove([name1, name2, ..., nameN], rule). The command kill(name) removes all information associated with name, including any rule definitions. The command kill(rules) deletes all rules named on the system rules infolist, which contains the names of rules defined using defrule, defmatch, tellsimp, and tellsimpafter.
- Applying a Rule: The forms apply1, apply2, applyb1, and applyb2 apply rules generated using defrule. The syntax is applyfn(expr,rule1, ..., ruleN) where applyfn is one of the four previously mentioned special forms, expr is the expression to simplify, and rule1, ..., ruleN are the names of rules defined using defrule. The manner in which the rules are applied is summarized below.

Applying defrule rules:
- apply1 (expr, name1, ..., nameN) repeatedly applies the rule specified by name1 to expr top-down until it fails, then applies the rule to all subexpressions of the resulting expression. The recursive application of the rule ends when the rule has been applied at the maximum allowable depth. The process is repeated on the resulting expression with the remaining rules.
- apply2 (expr, name1, ..., nameN) applies the rule specified by name1 to expr top-down until it fails. The remaining rules are applied sequentially at the same level until all have failed. The procedure then repeats on the subexpressions of the result.
- applyb1 (expr, name1, .., nameN) repeatedly applies the rule specified by name1 to expr bottomup until it fails, then applies the rule to all subexpressions of the resulting expression. The recursive application of the rule ends when the rule is applied to the maximum allowable height. The process is repeated on the resulting expression with the remaining rules.
- applyb2 (expr, name1, ..., nameN) applies the rule specified by name1 to expr bottom-up until it fails. The remaining rules are applied sequentially at the same level until all have failed. The procedure then repeats on the subexpressions of the result.

Note: the system option variables maxapplydepth (default:10000) and maxapplyheight (default:10000) control the maximum depth and height, respectively, to which the apply functions search.

\subsection*{14.5.3.2 Examples of defrule}

This example uses defrule to perform the syntactic substitution \(\cot x \rightarrow \frac{\cos x}{\sin x}\). This is a syntactic substitution since it is defined for any expression in the position indicated by \(x\).
```

(c1) matchdeclare(angle,true)\$
(c2) defrule(cotrule, cot(angle), cos(angle)/sin(angle));
\cos (angle)
(d2)
cotrule : cot(angle) -> ----------
$\sin ($ angle $)$
(c3) $[\cot (x), \exp (\cot (2 * y)), a * \cot (u+v+z) / b]$;
$\cot (2 \mathrm{y}) \quad \mathrm{a} \cot (\mathrm{z}+\mathrm{v}+\mathrm{u})$
(d3) $[\cot (x), \% e$, -------------------]
b
(c4) applyb1(\%,cotrule);
$\cos (2 \mathrm{y})$

$\cos (\mathrm{x}) \quad \sin (2 \mathrm{y}) \quad \mathrm{a} \cos (\mathrm{z}+\mathrm{v}+\mathrm{u})$
(d4)
[------, \%e , ----------------]
$\sin (x) \quad b \sin (z+v+u)$

```

The next example uses defrule to define a finite-differencing utility for ordinary differential equations. For simplicity, we assume that the differential equations use \(y\) and \(x\) as the dependent and independent variables respectively, and \(h\) is the step size. The following differencing schemes are implemented:
- forward: \(\frac{d y(x)}{d x} \rightarrow \frac{y(x+h)-y(x)}{h}\)
- centered: \(\frac{d y(x)}{d x} \rightarrow \frac{y(x+h)-y(x-h)}{2 h}\)
- backward: \(\frac{d y(x)}{d x} \rightarrow \frac{y(x)-y(x-h)}{2 h}\)

The finite differencing mechanism is implemented as follows:
- The differencing scheme to be used is determined by the setting of the option variable difference_type, which defaults to forward.
- The rule diftran substitutes the pseudo-operator delta[n] (which is really a just a placeholder) for \(n\) th-order derivatives of \(y\) with respect to \(x\).
- The rule deltatran_n recursively simplifies differences by first rewriting
\[
\operatorname{delta}[n](\exp r) \rightarrow \text { delta }[n-1](\text { delta }[1](\text { expr }))
\]
and then differencing the delta[1](expr) form.
- The rule deltatran_ 0 implements the simplification delta \([0](\) expr \() \rightarrow\) expr.

The function fin_dif takes an expression and applies the rules as necessary.
We begin by declaring the option variable difference_type and setting up the rules.
```

(c1) define_variable(difference_type, 'forward, any_check)\$
(c2) put('difference_type,
lambda([foo],if not(member(foo,'[forward,central,backward]))
then error("not a valid differencing method: ",foo)),'value_check)\$

```
```

(c3) posintp(n):=is(integerp(n) and n>0);
(d3) posintp(n) := is(integerp(n) and n > 0)
(c4) matchdeclare(n,posintp,t,true)\$
(c5) defrule(diftran,'diff(y(x),x,n),delta[n](y(x)));
n
d
diftran : --- (y(x)) -> delta (y(x))
n n
dx

```

The option variable difference_type contains the names of the differencing schemes. The rule diftran converts diff forms into expressions containing delta. Next, we implement the simplification rules for delta.
```

(c6) defrule(deltatran_0,delta[0](t),t);
(d6)
deltatran_0 : delta (t) -> t
0
(c7) defrule(deltatran_n,delta[n](t),
delta[n-1](apply('apply1,%5Bdelta%5B1%5D(t),difference_type%5D)));
(d7) deltatran_n : delta (t) ->
n
delta (apply('apply1, [delta (t), difference_type]))
n - 1
1

```

Note that the name of the rule implementing the differencing scheme is given in the variable difference_type, which is evaluated in the apply form.
Next, we implement the differencing schemes.
```

(c8) defrule(forward,delta[1](t), ratsimp((at(t,x=x+h)-t)/h));
at(t, x = x + h) - t
(d8) forward : delta (t) -> ratsimp(---------------------)
1 h
(c9) defrule(central,delta[1](t), ratsimp((at(t,x=x+h)-at(t,x=x-h))/(2*h)));
(d9) central : delta (t) ->
1
at(t, x = x + h) - at(t, x = x - h)
ratsimp(-------------------------------------
2 h
(c10) defrule(backward,delta[1](t), ratsimp((t-at(t,x=x-h))/h));
t - at(t, x = x - h)
(d10) backward : delta (t) -> ratsimp(----------------------)
1
h

```

Before we go any further, we test the rules.
```

(c11) diff:'diff(y(x),x,2);
2
d
(d11)
--- (y(x))
2
dx
(c12) del:apply1(diff,diftran);
(d12)
delta (y(x))
2
(c13) apply1(del,deltatran_n),difference_type:'forward;
y(x + 2 h) - 2 y(x + h) + y(x)
(d13)
delta (-------------------------------
0
h
(c14) apply1(del,deltatran_n),difference_type:'backward;
2 y(x - h) - y(x - 2 h) - y(x)
(d14) delta (- ------------------------------
0 2
h
(c15) apply1(del,deltatran_n),difference_type:'central;
y(x + 2h) + y(x - 2h) - 2 y(x)
(d15)
delta (-------------------------------)
0
2
4 h
(c16) apply1(%,deltatran_0);
y(x + 2h) + y(x - 2h) - 2 y(x)
(d16)

2
4 h

```

All of the rules work as expected. The next step is to define a function called fin_dif that applies the rules in the proper order. Note that we need to apply diftran only one time, so we invoke the rule in a separate apply1 form.
```

(c17) FIN_DIF(expr):=block
(expr:apply1(expr,diftran),
apply2(expr,deltatran_n,deltatran_0))\$

```

We now compile the rules for increased efficiency and test fin_dif.
```

(c18) compile_rule(all)\$
(c19) fin_dif(a*'diff($\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{b} * \mathrm{y}(\mathrm{x})=\mathrm{g}(\mathrm{x}))$;
a $(\mathrm{y}(\mathrm{x}+\mathrm{h})-\mathrm{y}(\mathrm{x}))$
(d19)
------------------- $+b y(x)=g(x)$

```
(c20) fin_dif('diff(y (x), \(x, 2)+\operatorname{diff}(y(x), x)+3 * y(x)=0)\);


\subsection*{14.5.4 Automatic Simplification of Expressions: tellsimp and tellsimpafter}

The tellsimp and tellsimpafter commands provide a means of extending the Macsyma simplifier. Rules defined using these two special forms are applied automatically and recursively during the simplification stage. As the names suggest, rules defined using tellsimp are applied prior to the Macsyma simplification stage, while rules defined by tellsimpafter are applied after the Macsyma simplification stage. For most applications, tellsimpafter should be used since this allows the Macsyma simplifier to cancel any subexpressions that would otherwise have to be scanned. tellsimp should be used only when it is necessary to override a built-in simplification.
Since the two forms are identical except for the point in the Macsyma simplification process in which they are applied, the subsequent discussion will mention tellsimpafter only. However, unless otherwise noted, the remarks also apply to tellsimp.

The syntax for tellsimpafter is tellsimpafter (pattern, repl, cond), where pattern is an expression to search for and repl is the replacement expression when a match is found. The variable cond is an optional argument that, if present, is a predicate depending on the pattern variables that must evalute to true for the rule to fire. (This feature permits tellsimpafter rules to be defined recursively.) The value returned by a tellsimpafter form is a list containing the name of the rule and the name of the internal simplification function that applies the rule.
As usual, the scope of the match is determined by the matchdeclare properties of the associated pattern variables. If no matchdeclare properties are present then only literal matches will be made. Since the matchdeclare information is used only when the tellsimpafter form is executed (thereby defining the rule), the old rule must be removed and the new rule defined if it is desired to change the matchdeclare properties of any of the pattern variables.

The rule name generated by tellsimpafter is based on the main operator in pattern. If the main operator is a symbol, the rule name will be a symbol; otherwise, the rule name is a string. (Note that if the rule name is a string then it is case sensitive.) The following example shows how to generate a few simple rules and review their definitions.
```

(c1) tellsimpafter(a+b,c);
(d1) [+rule1, simplus]
(c2) stringp(first(%));
(d2) true
(c3) tellsimpafter(f(x),g);
(d3) [frule1, false]
(c4) symbolp(first(%));
(d4) true
(c5) disprule(frule1);

```
```

(d5) frule1 : f(x) -> g
(c6) disprule("+rule1");
(d6) +rule1 : b + a -> c
(c7) disprule("+rule1");
"+rule1" is not a user rule.
Returned to Macsyma Toplevel.

```
tellsimpafter rules can be removed using the remrule form. The syntax for remrule is remrule(operator, rulename), where operator is the name of the operator to which a simplifier rule was attatched, and rulename is either the name of the rule to be deleted or the keyword all. If all is specified, all rules associated with the operator operator are deleted. If the operator is a symbol then both operator and rulename must be symbols. If the operator is not a symbol, operator and rulename must be specified as strings. Continuing the previous example, we remove the rules.
```

(c8) rules;
(d8) [+rule1, frule1]
(c9) remrule(f,frule1);
(d9) f
(c10) remrule("+","+rule1");
(d10) +
(c11) rules;
(d11)

```

The command remove(rulename, rule) can also be used to remove rule definitions.
Note: tellsimpafter rules can be compiled using the compile_rule form.

\subsection*{14.5.4.1 tellsimpafter Summary}

Note: all information in this section also applies to tellsimp.
- Defining rules: tellsimpafter (pattern, repl, cond) replaces pattern with repl when cond (if given) evaluates to true. The scope of the match depends on the matchdeclare properties of the pattern variables.
- Reviewing rules: disprule(rule) prints the definition of the rule given by rule, which is either an upper-case string or a symbol. The system infolist rules contains the names of all rules defined using defmatch, defrule, and tellsimpafter.
- Removing rules: remrule(operator, rule) removes the rule rule that is associated with the operator operator. Both rule and operator are either upper-case strings or symbols. remrule('operator, all) removes all tellsimpafter rules associated with the operator operator.
- Other methods of removing rules: remove(rule, rule) removes the rule named rule, which is either a symbol or an upper-case string. kill(rule) removes all information associated with rule, which can be either a string or a symbol. kill(rules) removes all of the rule definitions contained in the system infolist rules.

\subsection*{14.5.4.2 Differences between tellsimp and tellsimpafter}

As mentioned in the previous section, rules defined by tellsimp and tellsimpafter are invoked at different times in the simplification process. tellsimp rules are invoked prior to the Macsyma simplification stage, and should only be used to override default simplifications.

The Macsyma simplifier puts the argument lists of commutative operators into a canonical form. This is why, for example, \(x+y+z\) and \(x+z+y\) both display as \(z+y+x\) : the canonical representation of the expressions " + " \((x, y, z)\) and " + " \((x, z, y)\) is " + " \((z, y, x)\). The commutativity of "+" permits this kind of rearrangement. However, there is no guarantee that an unsimplified expression will be in canonical form, and as a consequence pattern matching will be more difficult. For this reason, a call to tellsimp that attempts to make a substitution for a sum or product generates a warning.
```

(c1) tellsimp(x+y,z);
Warning: Putting rules on "+" or "*" is inefficient, and may not work.
(d1) [+rule1, simplus]
(c2) tellsimp(x*y,z);
Warning: Putting rules on "+" or "*" is inefficient, and may not work.
(d2)
[*rule1, simptimes]

```

Since tellsimpafter rules are invoked on simplified expressions, this particular problem does not arise. However, since the general pattern matcher does not employ backtracking, tellsimpafter rules on "+" and "*" will not in general simplify subexpressions of sums or products. (Rules on "*" should be implemented with the let pattern matcher, which is discussed later in this chapter.) For example, some of the following expressions which contain \(x+y\) do not simplify.
```

(c1) tellsimpafter(x+y,z);

(d1)	[+rule1, simplus]
(c2) $x+y ;$	z
(d2)	
(c3) $a *(x+y) ;$	$a z$
(d3)	
(c4) $a * x+a * y ;$	$a y+a x$
(d4)	
(c5) $x+y+z ;$	$z+y+x$

```

\subsection*{14.5.4.3 Examples of tellsimp and tellsimpafter}

In the first example, we declare " \(\&\) " to be a postfix operator and define tellsimpafter rules on " \(\&\) " that implement the factorial function.
```

(c1) postfix("\&")\$
(c2) [0\&,1\&,2\&,3\&,4\&,n\&];
(d2)
[0 \&, 1 \&, 2 \&, 3 \&, 4 \&, N \&]
(c3) posintp(n):=is(integerp(n) and n>0)\$
(c4) matchdeclare(pint,posintp)\$
(c5) tellsimpafter(0\&,1)\$

```
```

(c6) tellsimpafter(pint\&,pint * (pint-1)\&)\$
(c7) [0\&,1\&,2\&,3\&,4\&,n\&];
(d7) [1, 1, 2, 6, 24, N \&]

```

Next, we implement a simplification rule that implements the identity \(x \&=\operatorname{gamma}(x+1)\) when \(x\) is not a positive integer.
```

(c8) not_posintp(n):=not(posintp(n))\$
(c9) matchdeclare(not_pint,not_posintp)\$
(c10) tellsimpafter(not_pint\&,gamma(not_pint+1))\$
(c11) n\&;
(d11) gamma(n + 1)
(c12) (-1)\&;
gamma(0) is undefined
Returned to Macsyma Toplevel.

```

Note that the last tellsimpafter rule generates an error when the resulting gamma expression contains an illegal argument. In order to prevent errors of this sort, we remove that rule and redefine it so that the rule does not fire when the argument is a non-positive integer. We do this by adding the condition that the rule fire only when the pattern variable is not an integer. The matchdeclare property on the pattern variable not_pint prevents it from matching positive integers, so this condition prevents the rule from firing when the pattern variable is a non-positive integer. (An alternative method to prevent this kind of error would be to redefine the predicate not_posintp.)
```

(c13) rules;
(d13) [\&rule1, \&rule2, \&rule3]
(c14) remrule("\&","\&rule3")\$
(c15) tellsimpafter(not_pint\&,gamma(not_pint+1),not(integerp(not_pint)))\$

```

We now test the new rule.
```

(c16) [(-1)\&,n\&];
(d16) [(- 1) \&, gamma(n + 1)]
(c17) rules;
(d17) [\&rule1, \&rule2, \&rule4]

```

In the next example, we use tellsimp to override the default simplification of \(0^{\wedge} 0\), which signals an error. We will install a rule which defines the replacement \(0^{\wedge} 0=1\). Note that the first attempt to define the rule fails since the simplifier signals an error before the rule overriding the simplification is installed. In order to define the rule, it is necessary to turn the simplifier off by (locally) binding the option variable simp to false. It is preferable to bind simp as a block variable rather than as an evflag as this method guarantees that the binding of \(\operatorname{simp}\) holds for the duration of the tellsimp command. The simp should never be bound to false at toplevel.
```

(c1) 0^0;
0^O has been generated
Returned to Macsyma Toplevel.
(c2) tellsimp(0^0,1);

```
```

0^0 has been generated
Returned to Macsyma Toplevel.
(c3) block([simp:false],tellsimp(0^0,1));
(d3) [`rule2, simpexpt]
(c4) 0^0;
(d4)
1

```

Note that the purpose of the block statement in (c3) is to localize the binding of simp to false. Rules generated by tellsimp, tellsimpafter, defmatch, and defrule cannot be localized.

The next example uses tellsimpafter to extend the integrator to handle a class of integrals related to the incomplete gamma function. Note that Macsyma can do the following improper integrals.


However, it cannot do the following definite integral, even though the integral can be deduced from the integrals in (c2) and (c3).


We will use tellsimpafter to set up a rule which computes integrals of the type (c4) as the difference of the integrals (c2) and (c3).

We first decide what level of generality is desired. It is not unreasonable to demand that there be a semantic match on the variable of integration. Furthermore, we insist that the upper limit of integration, \(a\), be positive. We will do limited testing on the integrand, leaving most of the work to integrate, and will instead make the substitution if the result is free of integrate noun forms.
```

(c5) positivep(limit):=is(asksign(limit)='pos)\$
(c6) integ(expr,var,limit):=integrate(expr,var,0,inf) -
integrate(expr,var,limit,inf)\$
(c7) matchdeclare(t, symbolp, [expt1, expt2], true, uvar, positivep)\$
(c8) block
([simp:false],
tellsimpafter('integrate(t^(expt1)*%e^(expt2),t,0,uvar),
result,
freeof(nounify('integrate), result:integ(t`expt1*exp(expt2),t,uvar))));

```
(d8)
[integraterule1, simpinteg]

The tellsimpafter rule binds the pattern variables and passes them to the function integ, which attempts to compute the modified definite integrals. The result returned by integ is bound to result, which is then checked to see if it is independent of integrate noun forms. If so, result is substituted for the original integral.

Note: It is necessary to bind simp to false to prevent the outative property of integrate from pulling the factor \(\% e^{\wedge}(e x p t 2)\) out of the integral.
Note: In this case, it is necessary to refer to the exponential function as \(\% e^{\wedge}\) (expt2) rather than exp(expt2) since the former is the simplified form of the latter, and will be the form seen by the rule when it is invoked on simplified Macsyma expressions.

Finally, we test the rule.
```

(c9) integrate(t~(b-1)*exp(-t),t,0,a);
(d9) (b - 1)! - gamma(b, a)
(c10) integrate(t^2*exp(-t),t,0,5);
- 5
(d10) 2-37%e

```

The efficiency of this scheme can be improved by writing integ differently. For example, integ could incorporate the results of the integrals in its function definition rather than compute the integrals each time the rule is invoked. However, this would involve substantially more effort since very little testing is done on the integrand in this implementation of the rule. Note: In this example, it would be sufficient to implement the integration rule directly with the following form:
```

block
([simp:false],
tellsimpafter('integrate(t`(expt1)*%e^(expt2),t,0,uvar),
integrate(t^(expt1)*%e^(expt2),t,0,inf) -
integrate(t^(expt1)*%e^(expt2),t,uvar,inf)));

```

This can be done this way because the integral is simple enough that the replacement rule will never contain an integrate noun form. However, if the class of integrals were enlarged and the replacement were to yield an integrate noun form then the tellsimpafter rule would also fire on that form, resulting in an infinite loop. In this example, the current method, namely, triggering the rule if and only if the integration succeeds, does- not result in an infinite loop.
The final example uses tellsimpafter to rewrite the log of a product as a sum of logs. That is, the goal is to implement the rule
\[
\log \left(\prod_{a 2=a 3}^{a 4} a 1\right) \rightarrow \sum_{a 2=a 3}^{a 4} \log a 1
\]

It is necessary to bind simp to false to prevent simplification of the prod and sum forms prior to the definition of the rule.
```

(c1) matchdeclare([a1,a2,a3,a4],true)\$
(c2) block([simp:false],
tellsimpafter('log('prod(a1,a2, a3, a4)),apply('sum,[log(a1),a2,a3,a4])))\$

```
```

(c3) $\log (\operatorname{product}(a[i], i, 1, i n f))$;
inf
====
1
> $\quad \log (\mathrm{a})$
/ i
====
i = 1

```

Note: It is necessary to apply the sum form in order to force the evaluation of the summation index prior to the handling of the sum form. Failure to apply the sum form results in an incorrect rule because the sum form will simplify to \(\log (a 1) *(a 4-a 3+1)\) before the pattern variable definitions are inserted by evaluation.

\subsection*{14.5.4.4 Additional Information on tellsimp and tellsimpafter}

Since tellsimp and tellsimpafter generate rules which are invoked automatically by the Macsyma simplifier, some additional information might be useful.
The simplifier is called on all Macsyma expressions, including the arguments of special forms. (Arguments are usually simplified before operators.) The quote operator, which prevents evaluation, does not prevent simplification. The Macsyma simplifier usually works "inside-out" or "bottom-up" when simplifying expressions. Furthermore, tellsimp and tellsimpafter rules are usually applied in the order in which they appear on the system rules infolist. The application mechanism for these rules is similar to the applyb1 mechanism for the application of defrule rules.

Finally, it should be noted that adding tellsimp or tellsimpafter rules can greatly increase overall execution time. Compiling the rules (using the compile_rule form) substantially improves performance. The user should take into consideration the disadvantages as well as the obvious conveniences afforded by this mechanism.

\subsection*{14.5.5 Defining Taylor Expansions of Unknown Functions}

The deftaylor facility permits the user to define the Taylor expansion of an unknown univariate function about 0 . It does not allow expansions about other points. In the following example, we first compute the expansion of an unknown function \(f(x)\), then define an expansion for \(f(x)\) and re-compute the expansion.

(d2)
[f]
(c3) taylor \((f(x), x, 0,3)\);
\((d 3) / t / \quad a \quad+a x_{0} x+a x_{2}^{2}+a x^{3}+\ldots \quad\).
(c4) taylor \((f(x), x, 0,5)\);


Note that the result (d1) is just the Taylor series of the unknown function \(f(x)\) about \(x=0\). The expansion for the unknown function \(f(x)\) (assumed to be about \(x=0\) ) is defined in (c2), and is used when taylor is invoked in (c3) and (c4).

Note that taylor never returns a noun form. When given an unknown function in (d1), taylor returns a general expansion rather than, say, 'taylor \((f(x), x, 0,2)\). This explains the need for deftaylor. A rule defining the Taylor expansion of an unknown function could not be installed by tellsimp or tellsimpafter since taylor never generates a noun form to trigger the rule.

\subsection*{14.5.6 Translating and Compiling Rules}

This section discusses the role of the LISP compiler when loading a translated or compiled file that contains rule definitions. When a file of this type is loaded, a message to the effect that rules are being compiled is displayed. We provide a brief discussion of why this happens, its advantages and disadvantages, and what options the user has in this situation.
A compiled rule generally runs much faster than a translated or interpreted rule. However, translating and compiling a rule is not straightforward (as far as Macsyma is concerned) since it requires that the matchdeclare properties be present when the rule is generated. As was discussed at the beginning of this section, when the general pattern matcher defines a rule, it generates a function based on the pattern, the pattern variables, and the replacement. Since the Macsyma translator does not evaluate Macsyma forms, existing matchdeclare forms are not evaluated at translate time and consequently rules cannot be defined at translate time. Therefore, the translator parses a rule definition but does not evaluate the form. Evaluation takes place as the file is loaded. The following sequence of events occurs at load time:
- LISP forms are evaluated when loaded into Macsyma. In particular, matchdeclare and rule-writing forms are evaluated.
- If a rule-writing form is evaluated, a LISP function is generated.
- If appropriate, the resulting LISP function is compiled automatically. (By default, such functions are compiled.)

Although some of the previous versions of Macsyma did not include LISP compilers, all of the current ones do. However, in some versions the compiler is quite slow. Compilation of rules can be skipped by setting the option variable compile_rules_in_tr_files (default:true) to false. This will reduce the time spent loading the file, but will increase execution time since the interpreted rules will run slower than the compiled rules.
Note: Interpreted rules can be compiled (in a manner analagous to compiling interpreted functions) using the compile_rule form. This speeds up rule execution significantly, especially for rules defined by tellsimp and tellsimpafter. See the Macsyma Reference Manual for more information.

\subsection*{14.6 The Rational Function Pattern Matcher}

As mentioned earlier, Macsyma contains two pattern matching mechanisms. The first mechanism, the general pattern matcher, was described in the previous section. This section describes the rational function pattern matcher. It is designed to make substitutions for products in rational expressions. This alternative pattern matcher is recursive and permits the user to define substitution rules and control their application conveniently.

In order to use the rational function pattern matcher, the user first defines pattern variables with matchdeclare (this step can be omitted if the user wants to consider literal matches only). Next, the substitution rules are defined using the let form. The rules are applied by the letsimp form in the order in which they were defined. Since letsimp is recursive, it performs the indicated substitutions until the result no longer changes.

\subsection*{14.6.1 Defining Substitution Rules: let}

The let form is used to define substitution rules. In its simplest form, let permits the user to define the pattern and its replacement. If desired, the user can also provide the name of a predicate and associated arguments that depend on any atoms or arguments of any kernels (that is, a functional expression of the form \(\cos (x)\) or \(n!\) ) as arguments to let. When called in this fashion, let first matches atoms and functional arguments, then evaluates the predicate arguments according to the pattern variable bindings, and finally evaluates the predicate with the specified arguments. The rule is applied if and only if the predicate evaluates to true. The syntax for let (as well as for associated operations) is summarized below.
Finally, it is possible to isolate let rules so that they can be applied selectively. This is done by associating the rule with a rule package. By default, a let rule goes into the package default_let_rule_package. The current let rule package is specified by the value of the system variable current_let_rule_package. All let commands (letrules, letsimp, let, and remlet) use the package specified by the value of current_let_rule_package unless the package name is specified as an argument to the command. However, the only way to create a new let rule package is to call let and specify the name of the new package. A rule can be installed in a different rule package by including as a final optional argument to let the name of the package. When specifying a package name this way, it is necessary to enclose all of the preceding let arguments in square brackets to tell let that the final argument is the name of a rule package rather than the name of a predicate or a predicate argument.
If needed, let rules can be removed with the remlet command. Either remlet() or remlet(all) will remove all let rules in the current let rule package. remlet (pred) will remove the substitution rule defined for the expression pred. The name of a let rule package can be supplied as a second argument to remlet, which will remove the specified let rule in the named let rule package. The command remlet(all,name) will remove all of the rules in the package specified by name and will also delete the specified let package.

The names of existing let rule packages are contained in the system variable let_rule_packages.
Finally, we mention that the rules contained in a let rule package can be displayed by the command letrules, which takes either zero or one arguments. If letrules is called with no arguments, it displays the contents of the default rule package (specified by the system variable current_let_rule_package). If called with the name of an existing let rule package as its argument, it displays the contents of that let rule package. Calling letrules with the name of a non-existent package results in an error.

\subsection*{14.6.1.1 let Syntax}

Defining let rules:
- let (prod, subst) defines a substitution rule, prod \(\rightarrow\) subst, in the rule package specified by current_let_rule_package.
- let \((\operatorname{prod}\), subst, \(p r e d, \arg 1, \ldots, \arg N)\) defines a substitution rule, prod \(\rightarrow\) subst, in the rule package specified by current_let_rule_package, which will be executed if and only if the form pred(arg1, \(\arg 2, \ldots, \operatorname{argn})\) evaluates to true, where the expressions \(\arg 1, \ldots, \operatorname{argn}\) contain the pattern variables used in prod.
- let \(([\) prod, subst \(]\), name \()\) defines a substitution rule, prod \(\rightarrow\) subst, in the rule package specified by name. If the specified rule package doesn't already exist, it is created.
- let \(([\) prod, subst, pred, arg1, .., argN], name) defines a substitution rule, prod \(\rightarrow\) subst, in the rule package specified by name, which will be executed if and only if the form \(\operatorname{pred}(\arg 1, \arg 2, \ldots, \arg N)\) evaluates to true.

Displaying let rules:
- letrules() displays the let rules in the rule package specified by current let \(_{-}\)rule_package.
- letrules(name) displays the let rules in the rule package specified by name. An error results if name is not the name of an existing let rule package.

Removing let rules:
- kill(name) removes all substitution rules in the rule package specified by name but doesn't delete the specified rule package.
- remlet (prod) removes the substitution rule for the expression prod in the rule package specified by current_let_rule_package.
- remlet(all) removes all substitution rules in the rule package specified by current_let_rule_package.
- remlet (prod,name) removes the substitution rule for the expression prod in the rule package specified by name.
- remlet(all, name) removes all substitution rules in the rule package specified by aname. Furthermore, the rule package specified by name is deleted.

Note: The package default_let_rule_package cannot be deleted.
For example, the following example installs a substitution rule in the default let rule package, which is called default_let_rule_package. The system variable let_rule_packages is evaluated to show that no new package is created by this call to let.
```

(c1) let_rule_packages;
(d1) [default_let_rule_package]
(c2) let(x*y^2,z);
(d2)
x y --> z
(c3) let_rule_packages;
(d3) [default_let_rule_package]

```

The next example installs a let substitution rule into a let rule package called new_let_rule_package.
```

(c4) let([x*y^3,z],new_let_rule_package);

```
```

 3
 (d4) x y --> z
(c5) let_rule_packages;
(d5) [default_let_rule_package, new_let_rule_package]
(c6) letrules();
2
x y --> z
(d6)
(c7) letrules(default_let_rule_package);
2
x y --> z
done
(d7)
(c8) letrules(new_let_rule_package);
3
x y --> z
done

```

Further examples of let are provided in the next section.
Note: let rules cannot be compiled.

\subsection*{14.6.2 Applying let Rules: letsimp}

Substitution rules defined by let are applied by letsimp. The letsimp form takes one required argument, which is the expression to "simplify" with the substitution rules, and any number of additional arguments, which are the names of let rule packages. Only the first argument to letsimp is evaluated.
If no optional arguments are provided, the package specified by current_let_rule_package is used. If multiple package names are provided, they are applied left to right. That is, letsimp(expr, name1, name2) is equivalent to letsimp(letsimp(expr, name1), name2).

When applying let rules to a quotient, letsimp by default simplifies the numerator and denominator independently and returns the result. Setting the system option variable letrat (default: false) to true causes letsimp to first simplify the numerator and denominator independently, then simplify the resulting (simplified) quotient.
The rules in the specified let rule package are applied repeatedly by letsimp until the expression is unchanged. Care should therefore be taken to write rules that will eventually terminate. Furthermore, it should be noted that the let rule that is defined last will be the first to be executed. In fact, if the user defines rules \(a, b\), and \(c\), in that order, then letsimps an expression using these rules, the result will be obtained by first applying \(c\) until the result stops changing, then \(b\), then \(a\), and then repeating the rule sequence \(c b a\) until no further changes are made. Take care to avoid defining circular let substitutions.

\subsection*{14.6.2.1 letsimp Summary}
- letsimp \((\) expr \()\) recursively applies the rules in the let rule package specified by the value of current_let_rule_package to expr.
- letsimp (expr, 'name1, \(\ldots\), 'nameN ) applies the rules in the let rule packages name1, ..., nameN to expr.

Calling letsimp with the name of a non-existent let rule package results in an error.

\subsection*{14.6.3 Examples of let Rules}

This section contains some examples which demonstrate how to use the let pattern matcher.

\subsection*{14.6.3.1 Example 1}

The first example shows how letsimp treats powers.
```

(c1) let(x^2,y);
(d1) }\mp@subsup{\textrm{x}}{}{2
(c2) [1/x^3, 1/x^2, 1/x, 1, x, x^2, x^3];
1 1 1 1 2 3
(d2
[--, --, -, 1, x, x , x]
3 x
x x
(c3) letsimp(%);
1 1 1 1
(d3)
[---, -, -, 1, x, y, x y]
x y y x

```

The substitution rule is defined in (c1). Since no matchdeclare property is associated with \(x\), this is a literal match. Some test expressions are generated in (c2), and letsimp is applied to these expressions in (c3). Some of the terms with negative exponents simplify since letsimp simplifies the numerator and denominator separately.


The call to letrules in (c4) displays the known substitution rules. The remlet call in (c5) removes the substitution defined for \(x^{\wedge} 2\), as verified by (c6).

\subsection*{14.6.3.2 Example 2}

This example shows how letrat controls the behavior of letsimp. We start by defining a rule to perform a rational substitution for \(1 / x^{\wedge} 2\).
```

(c1) let(x^-2,y);
(d1) -- --> y
2
x
(c2) expr:[1/x^3,1/\mp@subsup{x}{}{\wedge}2,1/x,1,x, x^2, x^3];
1 1 1 1 2 3
(d2)
[--, --, -, 1, x, x , x]
3 x
x x
(c3) letsimp(expr);
(d3)
1
[--, --, -, 1, x, x , x]
3 2 x
x x
(c4) letsimp(expr),letrat:true;
y 1 2 3
(d4) [-, y, -, 1, x, x , x]
x x

```

Since \(1 / x^{\wedge} 2\) does not occur in either the numerator or denominator of any of these expressions, letsimp will not find it unless it is permitted to look at the entire expression. This explains why the result (d3) is unchanged. In (c4), binding letrat to true enables letsimp to consider the quotients after it attempts to simplify the numerators and denominators, and consequently it simplifies some of the expressions.

\subsection*{14.6.3.3 Example 3}

This example demonstrates some of the limitations of letsimp in simplifying functions.
(c1) \(\operatorname{let}\left(x^{\wedge} 2, y\right)\);
(d1) \(x \quad-->y\)
(c2) \(\operatorname{letsimp}\left(\left[x^{\wedge} 2, f\left(x^{\wedge} 2\right)\right]\right)\);
(d2)
[y, \(f(x)]\)

Note that no substitution into the argument of \(f\) was made. The let pattern matcher is not designed to substitute into functional forms. Substitutions into functional forms should be done using the general pattern matcher.

The next example shows that rational substitutions of functional forms can be made, as long as they aren't made to functional arguments. (The exceptions, of course, are the functions "*" and "^", which the let pattern matcher is designed to handle.)
(c3) \(\operatorname{let}(f(x), g)\);
(d3) \(\quad f(x)-->g\)
(c4) \(\operatorname{letsimp}\left(\left[f(x)^{\wedge} 2, a * f(x), f(f(x))\right]\right) ;\)
2
(d4)
\([g, a g, f(f(x))]\)

\subsection*{14.6.3.4 Example 4}

This example demonstrates that the let pattern matcher, like the general pattern matcher, is unable to make general substitutions for sums.
```

(c1) $\operatorname{let}(x+y, z)$;
(d1) $\quad y+x-->z$
(c2) $\operatorname{letsimp}\left(\left[x+y,(x+y)^{\wedge} 2,(x+y) \wedge n, a * x+a * y\right]\right)$;
2 2 n
(d2) $\quad[y+x, y+2 x y+x,(y+x), a y+a x]$

```

Note that the substitution failed in each case. Furthermore, the second element in the list was expanded; this happened when letsimp converted its argument to CRE form.

\subsection*{14.6.3.5 Example 5}

This example illustrates the recursive nature of letsimp. The matchdeclare form is used to generate a semantic match, and a trivial predicate (truep) is used to trace the action of letsimp.
```

(c1) matchdeclare([x,y], symbolp)\$
(c2) truep(foo,bar):=(print(''truep args: '',[foo,bar]),true)\$
(c3) let(x*y^2,z,truep,x,y);
2
(d3) x y --> z where truep(x, y)
(c4) letsimp(u*v^2+a*b^2);
truep args: [u, v]
truep args: [a, b]
(d4) 2 z

```

The pattern variables are allowed to match any symbols using the matchdeclare form in (c1). A trivial predicate (trivial in that it always returns true) is defined in (c2). (The purpose of truep is to show the order in which letsimp performs the substitutions. Since it returns true for any pair of arguments, the substitution will be performed whenever the pattern variables \(x\) and \(y\) match.) Note that the arguments of truep depend on the pattern variables which are used in the first argument to the let form. In (c4), a sum is simplified. The information printed by truep shows that in this case the individual terms are simplified, giving the expected result.
```

(c5) letsimp(u*v^2*a*b^2);
truep args: [u, b]
truep args: [z, v]
(d5)

```
a \(z\)

In (c5), a complicated product is simplified. The first match is made on \(u\) and \(b\), and the indicated substitution is made. The next call to letsimp matches the substituted variable \(z\) and the original variable \(v\), yielding \(a * z\). (The reader might well wonder why the result \(z^{\wedge} 2\) was not obtained instead. This is due to the canonical re-ordering of the argument list of "*" prior to calls to letsimp.)

\subsection*{14.6.3.6 Example 6}

This example is similar to the previous example, except that we define the pattern variables to exclude the substituted variable \(z\) from matching the pattern variables.
```

(c1) not_z_p(symbol):=is(symbolp(symbol) and symbol \# 'z)\$
(c2) matchdeclare([x,y],not_z_p)\$
(c3) let(x*y^2,z)\$
(c4) letsimp(u*v^2*a*b^2);
(d4)
z

```

Note that by defining the pattern variables in such a way as to exclude matching the symbol \(z\), with the predicate not \(_{-} \mathbf{z}_{-} \mathbf{p}\), we obtain a different result.

\subsection*{14.6.3.7 Example 7}

This example is similar to the previous two, except that we define the pattern variables to match any symbols and exclude the substituted variable \(z\) from matching the pattern variables by means of optional arguments of the let form (the previous example excluded \(z\) from matching the pattern variable through the matchdeclare predicate). We use the Macsyma trace command to see how letsimp scans its argument:
```

(c1) matchdeclare([x,y],symbolp)\$
(c2) not_z_p(symbol1,symbol2):=is(symbol1 \# 'z and symbol2 \# 'z)\$
(c3) let(x*y^2,z,not_z_p,x,y)\$
(c4) trace(not_z_p)\$
(c5) letsimp(u*v^2*a*b^2);
1 Enter not_z_p [u, b]
1 Exit not_z_p true
Enter not_z_p [z, v]
Exit not_z_p false
Enter not_z_p [a, v]
1 Exit not_z_p true
(d5)
z

```

Note that letsimp matched one of the pattern variables to \(z\) the second time around, but the predicate \(\operatorname{not}_{-} \mathbf{z}_{-} \mathbf{p}\) prevented letsimp from performing the indicated substitution. letsimp then successfully matched the variables \(a\) and \(v\) and made a substitution, resulting in \(z^{\wedge} 2\).
It is more efficient to obtain this behavior with matchdeclare, as in example six, rather than as a side condition to let, as in this example.

\subsection*{14.6.3.8 Example 8}

This example uses the let pattern matcher to implement part of the trigonometric identity \(\sin ^{2} x+\cos ^{2} x=1\) for any \(x\). Since it was shown in example four of this section that the let pattern matcher cannot make substitutions for sums, we must decide to substitute either \(\sin (x)^{\wedge} 2=1-\cos (x)^{\wedge} 2\) or \(\cos (x)^{\wedge} 2=1-\sin (x)^{\wedge} 2\).
```

(c1) matchdeclare(arg,true)\$
(c2) let(sin(arg)^2,1-\operatorname{cos}(arg)^2);
2 2
sin (arg) --> 1 - cos (arg)
(c3) [a*cos(x)^2+b*sin(x)^2,\operatorname{sin}(1)^2,\operatorname{cos}(1)^2,\operatorname{sin}(f(x))^4];
2 2 2 2 < < < (1)
(d3) [b sin (x) + a cos (x), sin (1), cos (1), sin (f(x))]
(c4) letsimp(%);
2
$(d 4)[-b \cos (x)+a \cos (x)+b, 1-\cos (1), \cos (1)$,
4

```

Note that attempting to implement the two substitutions \(\sin (x)^{2}=1-\cos (x)^{2}\) and \(\cos (x)^{2}=1-\sin (x)^{2}\) can lead to circular substitutions. The Macsyma trigsimp function, which is not implemented with pattern matching techniques, actually tries both substitutions and uses the one that produces the "simplest" form.

\subsection*{14.6.3.9 Example 9}

This example uses the let pattern matcher to simplify derivative consequences of an equation. For example, given the relation 'diff(x,t,n)=f(x,t) for some \(n\), the higher-order derivatives of \(x\) can be expressed in terms of \(f(x, t)\) and its derivatives.

The following example implements the rule to simplify subsequent derivatives of \(x\) given that
\(' \operatorname{diff}(x, t, 2)=a * x * \sin (t)\).
```

(c1) derivabbrev:true\$
(c2) depends(x,t)\$
(c3) bigger_integerp(reference,test):=is(integerp(test) and test >= reference)\$
(c4) matchdeclare(n,bigger_integerp(2))\$
(c5) let('diff(x,t,n),\operatorname{diff(a*x*sin(t),t,n-2));}
n
d x
(d5)
--- --> diff(a sin(t) x, t, n - 2)
n
d t

```

The command (c5) defines a simplification rule for derivatives of degree greater than 1 . The matchdeclare property on \(n\) guarantees that the rule is applied to derivatives of degree 2 or greater. We proceed to test the rule.

```

 2
 (d6)
$[\mathrm{x}, \mathrm{x}, \mathrm{x} \quad,(\mathrm{x} \quad$) , $\mathrm{c} x \quad+\mathrm{bx} \quad$]
$t \mathrm{t}$ t t t $\mathrm{t} \mathrm{t} \mathrm{t} \quad \mathrm{t} \mathrm{t}$
(c7) letsimp (\%);
$\begin{array}{lll}2 & 2 & 2\end{array}$
(d7) $[x, x, a \sin (t) x, a \sin (t)(x)$
t t
$2 \quad 2 \quad 2 \quad 2$
$+2 a \cos (t) \sin (t) x x+a \cos (t) x$,
t
$a c \sin (t) x+a b \sin (t) x+a c \cos (t) x]$
t

```

A few comments are in order. First, we require literal matches for \(t\) and \(x\). (The requirement on \(x\) should be clear. The requirement on \(t\) is mainly for the sake of convenience: \(x\) must have a functional dependency on the variable of differentiation.) Second, the predicate bigger_integerp, strictly speaking, should test to guarantee that its first argument is a positive integer. However, since the predicate is called every time a match is attempted, this would slow the process down.

\subsection*{14.7 Debugging Pattern Matching Routines}

The information in this section is applicable to both Macsyma pattern matchers.
The following problems typically arise when using the Macsyma pattern matchers:
- A rule doesn't match an expression when the user thinks it should.
- A rule matches an expression when the user thinks it shouldn't.
- A recursive rule fails to exit, and either goes into an infinite loop or overflows one of the internal spaces.

\subsection*{14.7.1 Example: Failure to Match}

Probably the most common problem is that the pattern matcher fails to match a subexpression. This can occur for the following reasons:
- The pattern is a complicated expression which fails to match on the first attempt, and no further search is performed since the pattern matcher does not implement full backtracking. For example, the substitution \(\sin ^{2} x+\cos ^{2} x \rightarrow 1\) will often fail to match. The solution is usually to write less ambitious patterns, i.e., instead of the previously mentioned substitution, try \(\sin ^{2} x \rightarrow 1-\cos ^{2} x\).
- The matchdeclare forms or predicates incorrectly define the desired semantic pattern variables. In many cases, this can be diagnosed by tracing the predicates.
- The pattern contains a verb form that should instead be a noun form, or vice-versa. (It is usually correct to use the noun form.) The easiest way to debug a problem of this sort is to review the rule definition using disprule with the system option variable noundisp (default:false) set to true. The effect of noundisp is described in detail later in this chapter. (An alternative method of inspecting a rule to see what form is incorporated is to look at the LISP representation of the expression returned by disprule. We won't say much more about this technique since it is presumes a working knowledge of LISP.)

Since the first two cases have been discussed in detail in previous sections, we provide an example of the last one only. In this example, we define tellsimpafter rules to transform some derivatives.
```

(c1) tellsimpafter(diff(f(x),x),g(x));
(d1) [diffrule1, false]
(c2) diff(f(x),x);
d
(d2)
dx
(c3) disprule(diffrule1);
(d3) diffrule1 : diff(f(x), x) -> g(x)
(c4) tellsimpafter('diff(ff(x),x),gg(x));
(d4) [derivativerule1, simpderiv]
(c5) diff(ff(x),x);
(d5) gg(x)
(c6) disprule(derivativerule1);
d
(d6)
derivativerule1 : -- (ff(x)) -> gg(x)
dx

```

Note that the expression in (d2) did not transform to \(g(x)\), as one might have expected. Note also that the names of the rules are different-the rule generated in (c1) is called diffrule1, while the rule generated in (c2) is called derivativerule1. The reason for these differences is that the rule generated in (c1) is on the verb form of the derivative, while the rule generated in (c4) is on the noun form of the derivative. Since the rule diffrule1 is applied after the simplification of the diff form in (c2), which results in a noun form, the result (c2) does not simplify with the rule diffrule1. (diffrule1 will, however, simplify the result of, say, funmake('diff, \([f(x), x)]\).)

Even experienced users can be unsure of when it is appropriate to quote an operator or function in a rule definition. For some operators, it does not matter if it is quoted or not-these operators always simplify to a unique form, including the time when the rule is written. These operators are predefined and have both alias and noun properties (i.e., log, sin, cos), and always return noun forms (unless the user goes out of his way to create a verb form, in which case he deserves to lose). Any user-defined function or built-in function that has a noun property but no corresponding alias property (i.e., diff, limit, integrate, matrix) has both noun and verb forms, and care must be taken to see that the correct form is incorporated in the rule definition.

The option variable noundisp (default:false) controls the printing of noun forms. When noundisp is set to true, the display of an operator is changed if the operator appears in an "unusual" form. Consider the following example.
```

(c1) noundisp:true\$
(c2) [f(x),'f(x)];

```
(d2)
[f(x), 'f(x)]
(c3) \([\log (x), ' \log (x), f u n m a k e(v e r b i f y(' l o g),[x])]\);
(d3) \(\left[\log (x), \log (x),{ }^{\prime} \log (x)\right]\)
(c4) properties(log);
(d4) [database info, kind(log, increasing), alias, noun, gradef, built-in simplifications, user-defined simplifications, system function]
```

(c5) [diff(f(x),x),'diff(f(x),x),funmake('diff,[f(x),x])];
d d
(d5)
[-- (f(x)), -- (f(x)), diff(f(x), x)]
dx dx
(c6) properties(diff);
(d6) [system function, noun, built-in simplifications,
user-defined simplifications]

```

Both the noun and verb forms of \(\mathbf{f}\) can appear naturally, as demonstrated in (d2). The noun form is the "unusual" one in such cases. Since log has a noun property and a corresponding alias property, the noun form is the usual one. The first two forms in (d3) are noun forms, and the third one, which is a verb form generated by devious methods, displays with" to point out the fact that this operator is the "unusual" one. Since diff has a noun form but no corresponding alias property, both the noun and verb forms can appear naturally. In (d5), the noun form displays in two-dimensional format while the verb form displays in linear format.

If all else fails, the user can check which form of the operator is present by means of commands such as freeof(nounify ('diff), expr)).
In the next example, we define some rules containing unknown functions and built-in functions with the noun and alias properties and look to see which forms can incorporate noun forms and which forms cannot.
```

(c1) tellsimpafter ('f(x),g(x));
(d1) [frule1, false]
(c2) tellsimpafter (ff(x), gg(x));
(d2) [ffrule1, false]
(c3) tellsimpafter(' $\log (x), y)$;
(d3) [logrule1, simpln]
(c4) noundisp:true;
(d4) true
(c5) disprule(frule1);
(d5) frule1 : 'f(x) -> g(x)
(c6) disprule(ffrule1);
(d6) ffrule1 : ff(x) -> gg(x)
(c7) disprule(logrule1);
(d7) logrule1 : $\log (x)$-> y

```

Note that the rule frule1 contains the noun form of \(f\), while the rule ffrule 1 contains the verb form of \(f f\). The \(\log\) operator in ( d 7 ) is not quoted since it has simplified to the "usual" noun form.
```

(c8) properties(log);
(d8) [Database Info, kind(log, increasing), alias, noun,
gradef, Built-in Simplifications,
User-defined Simplifications, System Function]
(c9) properties(diff);
(d9) [System Function, noun, Built-in Simplifications,
User-defined Simplifications]

```

\subsection*{14.7.2 Example: Incorrect Matching}

A user occasionally finds that a rule successfully matches on an expression, but that the result is not what he had intended. This is usually caused by an incorrectly specified matchdeclare declaration, although it can also be caused by the inappropriate selection of a rule application mechanism (when using the defrule interface). The following example shows how such problems can be isolated.

In this example, we attempt to use defrule to isolate the constant term in the denominator of a rational function. (Note: it is better to use defmatch for jobs like this.) We begin by defining the scope of the pattern variable and the rule, and then test it on a few expressions.
```

(c1) matchdeclare(const1,freeof(s))\$
(c2) defrule(rat1,s/(s+const1),const1);
s
(d2)
rat1 : --------- -> const1
s + const1
(c3) apply1(s/(s+4), rat1);
(d3)
4
(c4) apply1(s/(s+1), rat1);
(d4)
O

```

When testing the rule, (d3) yields the expected answer, but (d4) yields the "wrong" answer. Recalling that defrule rules are applied recursively, we suspect that the problem is due in part to the recursive application of the rule. To investigate this, we redefine the rule to return a list rather than an atom, since the list structure might indicate that the recursive application is to blame.
```

(c5) remove(rat1, rule);
(d5) done
(c6) defrule(rat1,s/(s+const1),[const1]);
S
(d6) rat1 : ---------- -> [const1]
s + const1
(c7) apply1(s/(s+4), rat1);
(d7)
[4]
(c8) apply1(s/(s+1), rat1);
(d8)
[[0]]

```

Note that the result in (d8) contains a nested list, suggesting that the rule was applied twice. To determine what happens in this case, we trace the rule rat1.
```

(c9) trace(rat1);

```
```

(c10) apply1(s/(s+1), rat1);
s
1 Enter rat1 [-----]
s + 1
1 Exit rat1 [1]
1 Enter rat1 [[1]]
1 Exit rat1 false
Enter rat1 [1]
Exit rat1 [0]
1 Enter rat1 [[0]]
1 Exit rat1 false
1 Enter rat1 [0]
1 Exit rat1 false
(d10) [[0]]

```

The result of the first application of rat1 yields the expected answer, [1]. However, since apply1 applies the rule recursively over the result and then its subexpressions, it is first applied to [1] and, failing to match there, to the subexpression 1 . Since the pattern \(s /(s+\) const 1\()\) matches 1 if const \(1=0,1\) transforms to 0 , and consequently [1] transforms to [[0]].

The problem is therefore that the matchdeclare property on const1 allows const \(1=0\). Strengthening the matchdeclare declaration on const1 by excluding const \(1=0\) yields the expected behavior.
```

(c11) nonzeroandfreeof(var,exp):=is(exp\#O and freeof(var,exp))\$
(c12) matchdeclare(const1,nonzeroandfreeof(s))\$
(c13) defrule(rat1,s/(s+const1),const1);
s
(d13)
rat1 : ---------- -> const1
s + const1
(c14) apply1(s/(s+4), rat1);
(d14)
4
(c15) apply1(s/(s+1), rat1);
(d15)
1

```

Of course, the best fix is to use defmatch rather than defrule, since the recursive nature of defrule is inappropriate for this problem.

\subsection*{14.8 Patterns versus Functions}

This section gives a few guidelines describing when it is appropriate to use pattern matching and when it is appropriate to implement the transformation using a function. Such guidelines are necessarily vague, and may be based on assumptions which are invalid in the context of specific problems. The suggestions presented in this section should therefore be interpreted with this all-purpose disclaimer in mind.

The current implementations of the pattern matchers contain the following deficiencies:
- A functional form in a pattern must contain a fixed number of arguments. There is no mechanism equivalent to the "rest args" feature supported in the function mechanism.
- The pattern matcher is relatively slow. Furthermore, adding a large number of tellsimp or tellsimpafter rules can slow down almost all computations.
- It is not possible to incorporate mode_declare information into rules.

Even with these deficiencies, the pattern matchers are useful and powerful tools, and the time required to learn how to use the pattern matchers is well spent. Furthermore, the pattern matcher is often a valuable aid in designing and implementing new packages. Although a pattern matching implementation of a package might be prohibitively slow for the final version, it is often useful to construct a prototype of a new package using the pattern matcher because of the ease of implementation and the great flexibility inherent in this method. Once the prototype works and the developer has a good model in mind, he can implement the final version of the package (using programmatic techniques) in Macsyma or LISP to achieve increased speed.

\subsection*{14.9 Complex Example of Pattern Matching}

The final example uses defmatch and a tricky lambda substitution to extend Macsyma's inverse Laplace transform capability. In particular, we want to implement the inverse of the Laplace transform of \(t * f(t)\).
```

(c1) assume(s>0)\$
(c2) laplace(t*f(t),t,s);
d
(d2)
- -- (laplace(f(t), t, s))
ds
(c3) ilt(%,s,t);
d
(d3)
ilt(- -- (laplace(f(t), t, s)), s, t)
ds

```
(Aside: we assume \(s>0\) in (c1) to avoid sign questions in subsequent computations.)
Our goal is to implement an ilt simplifier that explicitly computes the inverse transform of expressions of the form (d3). (This type of substitution can be done more directly using defrule or tellsimpafter. However, we prefer the defmatch approach because the recursive application of rules generated by defrule or tellsimpafter is not needed for this problem. Furthermore, tellsimpafter rules affect the overall performance of Macsyma.)
We proceed as follows:
- Write a defmatch rule that identifies the ilt form in which we are interested, with sufficiently general semantic pattern variables to make it useful.
- Write a simplification function that assumes it is given an ilt form and uses the defmatch rule to decide if it is of the appropriate form for inversion. If so, construct the inverse transform; otherwise, return the original form.
- Write a function that applies the simplification function to ilt forms in an expression using an opsubst/lambda construct.
(c1) use_nilt:false\$
(c2) assume ( \(s>0, v>0) \$\)
```

(c3) laplace(t*f(t),t,s);
d
(d3)
- -- (laplace(f(t), t, s))
ds
(c4) expr:ilt(%,s,t);
d
(d4) ilt(- -- (laplace(f(t), t, s)), s, t)
ds
(c5) symbol_and_notequal(v1,v2):=is(symbolp(v2) and v2\#v1)\$
(c6) matchdeclare(t,symbolp,[f,s],symbol_and_notequal(t))\$
(c7) defmatch(ilt_diff_rule,'ilt('diff('laplace(f(t),t,s),s),s,t),t)\$

```

The command (c1), which sets use_nilt to false, disables the extended ilt code. (This just reduces the time needed for ilt to "noun out" the extended package can't invert this transform, either.) The command (c2) informs Macsyma that the transform variables are positive. In (c3) and (c4), we demonstrate that ilt is unable to invert this transform. In (c5) through (c7), we define the defmatch procedure that recognizes expressions of the form (c4) and identifies pertinent subexpressions.
We next declare ilt to be outative so that constants will factor out of the ilt forms (thereby simplifying the patterns that we have to write) and test the rule on a few examples.
```

(c8) declare(ilt,outative)\$
(c9) expr:ev(expr,ilt);
d
(d9) - ilt(-- (laplace(f(t), t, s)), s, t)
ds
(c10) ilt_diff_rule(expr,t);
(d10) false
(c11) ilt_diff_rule(-expr,t);
(d11) [s = s,f = f, t = t]
(c12) ilt(laplace(u*g(u),u,v),v,u);
d
(d12) - ilt(-- (laplace(g(u), u, v)), v, u)
dv
(c13) ilt_diff_rule(-%,u);
(d13)
[s = v, f = g, t = u]

```

Note that ilt_diff_rule matches in (c11) but not in (c10), due to the leading minus sign. This is not a problem since the rule will be applied only to ilt forms.

In the next phase, we define the function ilt_simp that takes an ilt form, calls ilt_diff_rule on it, and returns the inverse transform of the expression if it is of the right form; otherwise, it returns the original expression. We first remove any global bindings of \(f, t\), and \(s\).
```

(c14) remvalue(f,t,s);
(d14) [f, false, s]

```
```

(c15) expr:-ilt(laplace(t*f(t),t,s),s,t);
d
(d15) ilt(-- (laplace(f(t), t, s)), s, t)
ds
(c16) ilt_simp(expr):=block
([f,s,t,match],
if (match:ilt_diff_rule(expr,part(expr,1,1,2))) \# false
then subst(match,-t*f(t))
else expr)\$
(c17) ilt_simp(expr);
(d17)
t f(t)

```

The function ilt_simp, defined in (c16), inverts the transform, as is demonstrated in (c17). Finally, we write a function called my_ilt that invokes ilt_simp using an opsubst/lambda substitution. (This approach, when coupled with the outative simplification property that was added to ilt, greatly simplifies the steps needed to implement simplifications of this type.) The function my_ilt scans an expression for an ilt noun form, isolates its argument list, reconstructs the ilt noun form, and invokes ilt_ simp on the result. The result of ilt_simp is substituted for the original ilt form. (It is important that my_ilt return the original form if the ilt form cannot be inverted!)
```

(c18) my_ilt(expr):=
opsubst(nounify('ilt) = lambda([[foo]],apply(ilt_simp,[funmake(nounify('ilt),foo)])),expr)\$
(c19) a*t*f(t)-6*t*f(t);
(d19) a t f(t) - 6 t f(t)
(c20) laplace(%,t,s);
d
(d2O) 6 (-- (laplace(f(t), t, s)))
ds
d
- a (-- (laplace(f(t), t, s)))
ds
(c21) ilt(%,s,t);
d
(d21) 6 ilt(-- (laplace(f(t), t, s)), s, t)
ds
d
- a ilt(-- (laplace(f(t), t, s)), s, t)
ds
(c22) my_ilt(%);
(d22) a t f(t) - 6 t f(t)

```

\section*{Bibliography}
[Be] Bender, C. M. and Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill Book Company (1978).
[Ge] Gentleman, W. M. and Johnson, S. C., "The Evaluation of Determinants by Expansion by Minors and the General Problem of Substitution," in Mathematics of Computation (April 1974), vol. 28, no. 126.
[Go] Golnaraghi, M., Keith, W., and Moon, F. C., "Stability Analysis of a Robotic Mechanism Using Computer Algebra" in Applications of Computer Algebra, Pavelle, R., ed., Kluwer Academic Publishers, Boston (1985).
[Gr] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, Academic Press, Inc., New York (1980).
[Le] Lee, C. S. G., "Robot Arm Dynamics" in Tutorial on Robotics, Lee, C. S. G., Gonzalez, R. C., and Fu, K. S., ed., IEEE Computer Society Press (1983).
[Lh] Leu, M. C. and Hemati, N., "Automated Symbolic Derivation of Dynamic Equations of Motion for Robotic Manipulators," in Journal of Dynamic Systems, Measurement, and Control (Sept. 1986), vol. 108.
[Na] Nayfeh, A. H., Problems in Perturbation, John Wiley and Sons, New York (1985).
[Va] Vandergraft, J. S., Introduction to Numerical Computations, Academic Press, New York (1978).
[Wa] Wang, P. S., "Modern Symbolic Mathematical Computing Systems" in Applications of Computer Algebra, Pavelle, R., ed., Kluwer Academic Publishers, Boston (1985).

\section*{Appendix A}

\section*{Hints for New Users of Macsyma}

Often, new users of Macsyma have a number of unrealistic expectations about the nature of symbolic computing and what computer algebra systems can do. Sometimes these misconceptions can lead to poor experiences with the system. The following maxims may help you avoid "start up" problems with Macsyma.

\section*{- Learn how symbolic algebra differs from other computational methods.}

Algebraic manipulation is a new and different computational approach for which prior experience with computational methods is likely to be misleading. Attempt to learn the ways in which algebraic manipulation differs from other approaches. Some of these differences are covered in Chapter 1.
For example, consider the problem of inverting an \(n \times n\) matrix. In numerical analysis, you learn that the problem requires on the order of \(n^{3}\) operations. Some theoreticians will even point out that, for \(n\) sufficiently large, the number of multiplications can be reduced to \(n^{2.8}\).

This kind of analysis is not altogether helpful in dealing with matrices with symbolic entities. Consider the problem of estimating the number of terms in the symbolic calculation of a matrix inverse. Since the matrix is symbolic, there is no special structure to exploit, and the general inverse can be calculated as the matrix of cofactors divided by the determinant. The number of terms in the determinant of the general \(n \times n\) matrix whose elements are the symbols \(a_{i j}\) has, when fully expanded, \(n!\) terms. Each cofactor element is an \((n-1) \times(n-1)\) determinant. Thus, each of the \(n^{2}\) elements of the inverse has, in fully expanded form, \(n!+(n-1)\) ! terms. If you now subsitute numbers for the elements, the numerical inverse is of the order of \(n^{2} n\) ! operations. For \(n>5\), this is clearly nowhere near \(n^{3}\).

When poorly posed, some algebraic manipulation problems have a combinatorial or exponential character which makes them very different from problems of numerical analysis.
- Decide whether a numeric approach is more effective for your problem than a symbolic approach.
Sometimes, trying to solve the most general formulation of your problem is too hard. If you can identify one or two symbolic parameters to carry through the problem, you may find it easier to graph parametric solutions than to solve the general problem.
- Curb exponential growth of time and memory requirements and avoid generalizing problems.

A common tendency for a beginning user is to needlessly generalize a problem and thus cause inevitable exponential growth. Consider the problem of obtaining determinants of matrices whose entries are formulas that vary from problem to problem. New users often consider obtaining the determinant of a general matrix and substituting the entries into the result. This might work for matrices of order \(n<5\), but it is a poor plan for dealing with exponential growth inherent in the problem.

You should be aware of the types of calculations that have exponential growth in the general case. These include matrix calculation, repeated differentiation of products or quotients ("brute force" Taylor series calculations), and solutions of systems of polynomial equations.
- Anticipate a certain amount of trial-and-error in calculations.

A certain amount of trial-and-error is necessary in many calculations to determine a good sequence of operations for obtaining the solution. It pays, however, to consider carefully before trying a powerful method.

Consider, for example, the problem of obtaining a truncated Taylor series of an expression with several variables. If you truncate all variables, the number of terms in your result might be an exponential in the number of variables and the degree of the truncation. Thus, it is not surprising that the time it takes to compute the sixth order terms is much larger than that of the fifth order.
- Keep the number and degree of a problem's variables to a minimum.

Reduce the number and degree of variables in a problem as much as possible, since the exponential growth inherent in some computations is usually a function of the number and degree of variables in the expression. This rule is especially applicable to expressions represented as polynomials or rational functions or inputs to powerful polynomial-based algorithms (such as factorization, matrix operations, and equation solving).

\section*{- Convert from general to rational representation to avoid overhead.}

It is occasionally useful to convert all expressions to the internal rational function form when you expect to manipulate large formulas (greater than 50 terms). Use the rat command to avoid the overhead of general representation. The downside of this approach is that you can lose the structure of the formulas.
- Use pattern matching to customize your application.

Pattern matching is a very useful Macsyma facility which allows you to "tune" the system to your application. Although learning to use the pattern matching facilities effectively is no small task, users with complicated problems will benefit greatly from the effort. An introduction to pattern matching appears in Chapter 14.

\section*{- Recurse Carefully.}

Symbolic computing makes it easy to use an important technique: the ability to formulate calculations and algorithms recursively. Recursion is a powerful alternative to iteration. New users frequently abuse recursion by omitting proper end or beginning conditions. This often leads to unending recursions, and subsequent crashes or "out of memory" errors from stack overflow. Macsyma has many debugging and tracing tools to catch errors due to faulty recursions. Information on programming techniques for debugging functions in Macsyma appears in Chapter 12 and Section 11.6.

\section*{Appendix B}

\section*{Answers to Practice Problems}

This appendix presents solutions to the practice problems that have been given in the preceding chapters. Note that a solution generally represents only one of the many ways in which the problem could have been solved with Macsyma.

\section*{B. 1 Answers for Chapter 4}

This section presents the solutions to the problems given in Section 4.8, page 63.
Problem 1. See page 63.
```

(c1) f(expr, x) := ratsubst(1 - cos(x)^2, sin(x)^2, expr)\$

```
(c2) \(f(\sin (y) \wedge 3, y)\);
2
(d2)
\((1-\cos (y)) \sin (y)\)

Problem 2. See page 63.
```

(c1) f(expr, x) := subst((1-\operatorname{cos}(2*x))/2, sin(x)^2, expr)\$
(c2) f(sin(y)^2, y);
1- cos(2 y)
(d2)

2
(c3) f(sin(y)^3, y);
3
(d3)
sin(y)

```

Problem 3. See page 63.
```

(c1) expr:(sqrt(r^2 + a^2) + a)*(sqrt (r^2 + b^2) + b)/r^2
- (sqrt(r^2 + b^2) + sqrt(r^2 + a^2) + b + a)
/(sqrt(r^2 + b^2) + sqrt(r^2 + a^2) - b - a);

```
```

 2 2
 (sqrt(r + a) + a) (sqrt(r + b) + b)
 (d1)
2
r
sqrt(r + b) + sqrt(r + a) + b + a
- --------------------------------------
2 2 2 2
sqrt(r + b) + sqrt(r + a) - b - a
(c2) ratsimp(%);
(d2)
O
(c3) radcan(expr);
(d3)
O

```

Problem 4. See page 64.
```

(c1) (b + a)*(d + c) + (1/(y + x) ^4 - 3/(z + y)^3)^2;
1 3 2
(d1)
(-------- --------) + (b + a) (d + c)
4 3
(y + x) (z+y)
(c2) expand(%, 2, 0);
6 9 1
(d2)

```

```

$(y+x)^{4}(z+y)^{3}(z+y)^{6}(y+x)$

```

Problem 5. See page 64.
```

(c1) expr:(d+c)*((w+a)*x+b);
(d1) (d + c) ((w + a) x + b)

```

Answers to problems \(5 a\) through \(f\) :
```

(c2) expand(expr);
(d2) d w x + c w x + a d x + a c x + b d + b c
(c3) multthru(expr);
(d3)
(d + c) (w + a) x + b (d + c)
(c4) distrib(expr);
(d4) d (w + a) x + c (w + a) x + b d + b c
(c5) ratsimp(expr);
(d5) ((d + c) w + a d + a c) x + b d + b c
(c6) ratsimp(expr,c,d);
(d6)
d ((w + a) x + b) + c ((w + a) x + b)

```
(c7) ratsimp (expr,b,a);
(d7)
\((d+c) w x+a(d+c) x+b(d+c)\)

Problem 6. See page 64.
```

(c1) expr:d*(w + a)*x +c*(w + a)*x + b*d + b*c;
(d1) d (w + a) x + c (w + a) x + b d + b c
(c2) factor(expr);
(d2) (d + c) (w x + a x + b)
(c3) factorsum(expr);
(d3) (d + c) ((w + a) x + b)

```

Problem 7. See page 64.
```

(c1) expr: log((b + a)*d + (b + a)*c)*z + log((b + a)*d + (b + a)*c)*y
+ log((b+a)*d + (b+a)*c)*x + w;
(d1) }\operatorname{log}((b+a)d+(b+a)c)z+\operatorname{log}((b+a)d+(b + a)c)
+ log((b + a) d + (b + a) c) x + w
(c2) factorsum(expr);
(d2) log((b + a) (d + c)) (z + y + x) + w
(c3) ratsimp(expr, log((a + b)*(d + c)));
(d3) log((b + a) d + (b + a) c) (z+y + x) + w

```

Problem 8. See page 65.
(c1) expr:1/(log(x)^2-x^2);
(d1)
1


Answer to part \(a\) :
(c2) partfrac (expr, x);
\(1 \quad 1\)
(d2)


Answer to part \(b\) :
(c2) partfrac(expr, \(\log (x))\);
(d2)
\(1 \quad 1\)
\[
2 x(\log (x)-x) \quad 2 x(\log (x)+x)
\]

Problem 9. See page 65.
```

(c1) (x + 1)/(sqrt(x) - 1);
x + 1
(d1)

sqrt(x) - 1
(c2) ratsimp(%), algebraic:true;
sqrt(x) (x + 1) + x + 1
(d2)
x - 1

```

Problem 10. See page 65.
Solution Method 1:
```

(c1) (load(nusum1), trigsimp(imagpart(
closedform(sum(k*exp(\%i*k*x),k,1,n)
)));
(d1)
$((\mathrm{n}+1) * \cos (\mathrm{x})-\mathrm{n}) * \sin ((\mathrm{n}+1) * \mathrm{x})-(\mathrm{n}+1) * \sin (\mathrm{x}) * \cos ((\mathrm{n}+1) * \mathrm{x})$

- ---
$2 * \cos (x)-2$

```

Solution Method 2:


(c4) ev(demoivre(\%), ratsimp, trigreduce);
n

(c5) \(\operatorname{diff}(\%, x)\);
n
====

```

(c6) combine(%);
n
====
\
-(n + 1) sin(n x + x) + n sin(n x) + sin(x)
(d6) -
in(k x)
= ---
====
k = 1
2 sin(x) cos(n x + x) - 2 sin(x) cos(n x) - 2 cos(x) sin(x) + 2 sin(x)

+ --
2
(2 cos(x) - 2)

```

Problem 11. See page 66.
Solution Method 1:
```

(c1) (load(nusum1), closedform(sum(n^3*3^n,n,1,m)));
3 m
(d1) ---- + 3*(4m-6m +12m-11)3
3
2 8

```

Solution Method 2:
(c1) nusum (3^n*n^3, \(n, 1, m)\);


\section*{B. 2 Answers for Chapter 5}

This section presents the solutions to the problems given in Section 5.5, page 74.
Problem 1. See page 74.
```

(c1) x^4 - 7*x^3 + 18*x^2 - 20*x + 8;
4 3 2
(d1)
x - 7x + 18x - 20x + 8
(c2) solve(%, x);
(d2)
[x = 1, x = 2]
(c3) multiplicities;

```
(d3)
\([1,3]\)

Problem 2. See page 74.
```

(c1) eq:x^5 - x^2/980/3-3*1/10/980^2 = 0;
2
5 x 3
(d1) x - ---- - ------- = 0
2940 9604000

```

Find the number of real roots.
(c2) nroots(eq);
(d2) 1

Find all real roots.
(c3) ev(realroots(eq), numer:true);
(d3) \(\quad[\mathrm{x}=0.073550195]\)

Find all numerical roots.
```

(c4) allroots(eq);
(d4) [x = 0.03009181 %i + 0.0011866146, x = 0.0011866146 - 0.03009181 %i,
x = 0.056936793 %i - 0.03796171, x = - 0.056936793 %i - 0.03796171,
x = 0.07355019]

```

Problem 3. See page 74.
```

(c1) eq1: }\textrm{x}+\textrm{y}+\textrm{z}=3\mathrm{ ;
(d1) z + y + x = 3
(c2) eq2:y*z + x*z + x*y = -18;
(d2) y z + x z + x y = - 18
(c3) eq3:z^3 + y^3 + x^3 = 189;
3 3
(d3)
z + y + x = 189
(c4) solve([eq1, eq2, eq3], [x, y, z]);
(d4) [[x = 0, y = 6, z = - 3], [x = 0, y = - 3, z = 6],
[x = 6, y = 0, z = - 3], [x=6, y = - 3, z=0], [x = - 3, y = 0, z = 6],
[x = - 3, y = 6, z = 0]]

```

Problem 4. See page 74.
```

(c1) eqs:[x^2*y + y = 1, y - 2*x = 4];

```

2
(d1)
\[
[\mathrm{x} \quad \mathrm{y}+\mathrm{y}=1, \mathrm{y}-2 \mathrm{x}=4]
\]

The solutions are long, so suppress display of the D-LINE.
(c2) solve(eqs, \([x, y])\), algexact:true \(\$\)

Look at the third solution.


Problem 5. See page 74.
```

(c1) eq1:a*x + 12*y - z = 3*b;
(d1) - z + 12 y + a x = 3 b
(c2) eq2:x - 4*c*y - 5*z = 0;
(d2) - 5 z - 4 c y + x = 0
(c3) eq3:x + 4*y = c;
(d3) 4y + x = c

```

Answer to part \(a\) :
(c4) linsolve([eq1, eq2, eq3], [x, y, z]), globalsolve:false;
```

 2
 - c - 15 c + 15 b - 5 a c + c + 15 b
    ```
(d4) [ [x = ------------------, \(y=----------------\),
            \(-c+5\) a-16 \(-4 c+20\) a-64
                2
            \(-\mathrm{a} c+\mathrm{b}(3 \mathrm{c}+3)-3 \mathrm{c}\)
            z = ----------------------------]]
                \(-c+5\) a - 16
(c5) y ;
(d5)
    y

Answer to part \(b\) :
(c6) linsolve([eq1, eq2, eq3], [x, y, z]), globalsolve:true\$ (c7) y ;
\[
-5 a c+c+15 b
\]
(d7)

\(-4 c+20 a-64\)
(c8) remvalue \((x, y, z)\);
(d8) [x, y, z]

Problem 6. See page 75.
```

(c1) eq1: x^2 + y^2 = 1;
(d1)
y +x = 1
(c2) eq2:-4*x*z = 0;
(d2) - 4 x z = 0
(c3) solve([eq1, eq2], [x, y, z]);
2
(d3) [[x = %r9, y = - sqrt(1 - %r9), z = 0],
2
[x = %r10, y = sqrt(1 - %r10), z = 0], [x = 0, y = - 1, z = %r11],
[x = 0, y = 1, z = %r12]]

```

Problem 7. See page 75.
```

(c1) eq:e^2*x^6 - e*x^4 - x^3 + 2*x^2 + x - 2 = 0;
(d1)

| 2 | 6 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| | x | | | |

```

Answer to part \(a\). This returns the six general solutions. The k0 symbols in the solutions are the undetermined coefficients that satisfy the last equation in each list; for example, \(\mathrm{k} 0^{3}=1\).


Answer to part \(b\). Notice that (d3) returns the second half of the general solution above.
(c3) taylor_solve(eq, x, e, 0, [2]), taylor_solve_choose_order:true;
2
Possible choices for the order of a series solution are: [- , 0]
3
Please enter your choice:
```

-2/3;

```


Answer to part \(c\). This is but one of the many choices for coefficient that you could make.
```

(c4) taylor_solve(eq, x, e, 0, [2]),taylor_solve_choose_coef:true;
1
Possible choices for the coef. of ---- are:
2/3
e
sqrt(3) %i - 1 sqrt(3) %i + 1
[k0 = --------------, k0 = - ---------------- k0 = 1]
2
2
Please enter your choice:
kO = 1;
Possible choices for the coef. of 1 are: [k0 = 2, k0 = - 1, k0 = 1]
Please enter your choice:
kO = 2;
16 e 1 1
(d4)/T/
[[x = 2 - ---- + . . .], [x = ---- + ------ +
3 2/3 1/3

```

\section*{B. 3 Answers for Chapter 6}

This section presents the solutions to the problems given in Section 6.8, page 110.
Problem 1. See page 110.
Define the Legendre polynomials using the Rodrigues formula.
```

(c1) $p(1, x):=1 / 2^{\wedge} 1 / 1!* \operatorname{diff}\left(\left(x^{\wedge} 2-1\right)^{\wedge} 1, x, 1\right)$;
2 1
$\operatorname{diff}((x-1), x, 1)$

1
2
(d1)
$p(1, x):=--------------------$
$1!$

```

Define the Legendre polynomials using the recurrence relation.
```

(c2) p[0]:1\$
(c3) p[1]:x\$
(c4) p[n]:=ratsimp((2*n - 1)*x*p[n - 1]/n - (n - 1)*p[n - 2]/n)\$

```

Problem 2. See page 110.
```

(c1) assume(x < 1)\$
(c2) integrate(x/(1 - x), x), logabs:true;
(d2) - x - log(1 - x)
(c3) forget(x < 1)\$

```

Problem 3. See page 110.
```

(c1) assume(a > 0)\$
(c2) integrate(exp(-a*x)*(cos(x) + sin(x)), x, 0, inf), intanalysis:false;
a + 1
(d2)

2
a + 1

```

Or, alternatively:
```

(c3) ldefint(exp(-a*x)*(cos(x) + sin(x)), x, 0, inf);
a 1
(d3)
------ + ------
a + 1 a + 1

```
(c4) forget (a > 0)\$

Problem 4. See page 111.
```

(c1) assume(m > 0, n > 0)\$
(c2) integrate((cos(m*x) - cos(n*x))/x, x, 0, inf), intanalysis:false,
laplace_call:all;
(d2)
log(n) - log(m)
(c3) forget(m > 0, n > 0)\$

```

Problem 5. See page 111.
```

(c1) romberg((cos(2*x) - cos(3*x))/x, x, 0.01, 8.0);
(d1)
0.4294731

```

Problem 6. See page 111.
(c1) depends \((y, x)\);
(d1) \([y(x)]\)
(c2) \(y=\) 'integrate \((f(x-t), t, 0, x)\);
```

 x
 /
 [
 (d2)
y = I f(x - t) dt
]
/
O
(c3) changevar(%, x - t = u, u, t);
O
/
[
(d3)
y = - I f(u) du
]
/
x
(c4) diff(%, x);
dy
(d4) -- = f(x)

```

```

 dx
    ```

Problem 7. See page 111.
```

(c1) limit(log(cos(x))/log(1- sin(x)), x, %pi/2);
1
(d1)
-
2

```

Problem 8. See page 112.
```

(c1) expr:(sin(x) - atan(x))/\mp@subsup{x}{}{\wedge}2/log(x + 1);
sin(x) - atan(x)
(d1)

2
x log(x + 1)
(c2) tlimit(expr, x, 0);
1
(d2)
_
6

```

Problem 9. See page 112.
```

(c1) taylor(sin(e*t)/t, e, 0, 5);
2 3 4 5

```


Problem 10. See page 112.
(c1) depends \((f, x) \$\)
(c2) eq:diff(f, \(x, 3)-4 * \operatorname{diff}(f, x) *\left(1-3 * \operatorname{sech}(x){ }^{-} 2\right)\)
- \(\mathrm{f} *\left(24 * \operatorname{sech}(\mathrm{x})^{\wedge} 2 * \tanh (\mathrm{x})+\mathrm{a}\right) ;\)
```

2 df
2 d f
(d2) - f (24 sech (x) tanh(x) + a) - 4 -- (1 - 3 sech (x)) + ---
dx 3
(c3) sol:f = 4*'diff(exp((g - 1)*x)*sech(x), x, 2) + g*(g - 2)^2*exp(g*x);

```
```

 2
    ```
            2
                f=4 (--- (%e (g-1) x 
                f=4 (--- (%e (g-1) x 
(d3)
(d3)
            2
            2
                dx
                dx
(c4) constraint:g^3 - 4*g - a = 0$
(c4) constraint:g^3 - 4*g - a = 0$
(c5) exponentialize:true$
(c5) exponentialize:true$
(c6) ev(eq, ev(sol, diff), diff)$
(c6) ev(eq, ev(sol, diff), diff)$
(c7) factor(%)$
(c7) factor(%)$
(c8) scsimp(%, constraint);
(c8) scsimp(%, constraint);
(d8)
(d8)
O
O
(c9) remove(f, dependency)$
```

(c9) remove(f, dependency)\$

```
                            dx

Restore option variables to their default settings.
(c10) reset()\$

Problem 11. See page 112.
(c1) depends \((y, x)\);
(d1) \([y(x)]\)
(c2) \(\left(3 * x * y+y^{\wedge} 2\right)+\left(x^{\wedge} 2+x * y\right) * \prime \operatorname{diff}(y, x)=0 ;\)
2 dy 2
(d2)
\[
(x y+x)--+y+3 x y=0
\]
dx
(c3) ode \((\%, y, x)\);
\[
\begin{aligned}
& 223 \\
& \mathrm{x} \mathrm{y}+2 \mathrm{x} \mathrm{y}
\end{aligned}
\]
(d3)
-------------- = \%c

2
(c4) method;
\begin{tabular}{lc} 
(d4) & exact \\
(c5) intfactor; & \\
(d5) & \(x\)
\end{tabular}

Problem 12. See page 113.
(c1) depends (y, \(x\) );
(d1) [y(x)]
(c2) \(x *\left(y^{\wedge} 2-3 * x\right) * \operatorname{diff}(y, x)+2 * y \wedge 3-5 * x * y=0\);
(d2)
2 dy
dy \(\quad 3\)
\(x(y-3 x)--+2 y-5 x y=0\)
\(d x\)
(c3) ode (\%, y, x);

65
(d3) \(\quad \mathrm{x}=\% \mathrm{c} \% \mathrm{e}\)
(c4) method;
(d4) genhom
1
(d5)
- -
2

Problem 13. See page 113.
```

(c1) depends(y, x);
(d1)
[y(x)]
(c2) eq:diff(y, x, 2) + 1/x*diff(y, x) + y = 0;

```
dy
2 --
d y dx
(d2)
\[
---+--+y=0
\]

2 x
dx

Solve by the default method.
(c3) ode(eq, \(y, x)\);
(d3)
\[
\mathrm{y}=\% \mathrm{kz} \% \mathrm{y}(\mathrm{x})+\% \mathrm{k} 1 \% \mathrm{j}(\mathrm{x})
\]
(c4) method;
```

(d4) bessel

```

Solve by the series method.
```

(c5) ode(eq, y, x, odeseries);
DIAGNOSIS: TYPE: singular equal ROOTS: R1= 0 R2= 0
SINGULARITIES: [0, inf]

```


Problem 14. See page 113.
(c1) assume (a > 0) \$
(c2) eq1:3*'diff(f(x), \(x, 2)-2 * \cdot \operatorname{diff}(g(x), x)=\sin (x)\);
2
d d
(d2)
\(3(---(f(x)))-2(--(g(x)))=\sin (x)\)
\(2 d \mathrm{dx}\)
dx
(c3) eq2: a*'diff( \(\mathrm{g}(\mathrm{x}), \mathrm{x}, 2)+\mathrm{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})=\mathrm{a} \cos (\mathrm{x})\);
2
d d
(d3)
a (--- \((g(x)))+--(f(x))=a \cos (x)\)
\(2 d \mathrm{dx}\)
dx
(c4) atvalue \((g(x), x=0,1) \$\)
(c5) atvalue('diff \((f(x), x), x=0,0) \$\)
(c6) atvalue('diff \((\mathrm{g}(\mathrm{x}), \mathrm{x}), \mathrm{x}=0,1) \$\)
```

(c7) desolve([eq1, eq2], [f(x), g(x)]);
5/2 sqrt(6) x
27 a sin(---------)
3 sqrt(a) 2 sqrt(6) x
---------------------- - 3 a cos(----------)
sqrt(6) (3 a - 2) 3 sqrt(a) 3 a sin(x)
(d7) [f(x) =
-- - ------------- + a
3 sqrt(a)

```

3 a

```

sqrt(6) 6 a - 4
+f(0),g(x)=
3 a
(3a+1) cos(x) 1

- ---------------- + -]
3 a - 2
2

```

Problem 15. See page 114.
```

(c1) depends([u, v], xx)\$
(c2) eq:(1 + u^2/(1 - u^2))*diff(u, xx, 2) + u*diff(u, xx)^2/(1 - u^2)
+ wO^2*u + g/l*u/sqrt(1 - u^2);

```


Expand the equation above with taylor, keeping terms up to cubic terms
(c3) taylor (eq, u, 0, 3);

(c4) neq: expand(subst(w^2-g/l, w0^2, \%));
(d4)


Since \(u\) is small, scale it with \(e^{l l}\) (for \(l l\) greater than 0 ).
```

(c5) u = v*e^ll;
(d5)
ll
u = e v

```

Evaluate the equation above into the original neq, then differentiate.
(c6) ev(neq, \%, diff);


Choose \(l l=1 / 2\).
(c8) nneq:ev(\%, ll = 1/2);


Introduce the change of variable.
```

(c9) changeofv:x = (w + e*w1)*xx;
(d9) x = (e w1 + w) xx
(c10) depends([v0, v1], x)\$
(c11) gradef(x, xx, w + e*w1)\$
(c12) v = vO + e*v1;
(d12)
v = e v1 + v0

```

Introduce the change of variable changeofv into the differential equation nneq.
```

(c13) ev(nneq, %, diff);

```

```

 dx dx
    ```

```

 2
 3
 dv0 2 2 (ev1 + w) + (ev1 + v0) w + -----------------
 2
 2 1
 dx
    ```

Truncate the differential equation above, keeping only terms \(e^{2}\) or lower. (c14) nnneq:ratsubst(0, \(e^{\wedge} 2, \%\);
(d14) (4 e l ---- w w1 + (2 e l ---- + 2 e l v1 + (2 e l vo + 2 l) ----
22

                dv0 \(2 \quad 2 \quad 3\)
    +2 e l vo (---) + 2 l v0) \(\mathrm{w}+\mathrm{e} \mathrm{g} \mathrm{vO}) /(2 \mathrm{l})\)
                dx

Equate terms independent of \(e\).
```

(c15)e_0:ratcoef(nnneq, e, 0);
2
d vO 2
(d15)
(---- + vO) w
2
dx

```

Equate terms to the first order in \(e n\).
\begin{tabular}{|c|c|c|c|}
\hline 2 & 2 & 2 & \\
\hline d vo & d v1 & 2 d v0 & dv0 \\
\hline \multicolumn{4}{|l|}{(d16) (4 l ---- w w1 + (2 l ---- + 2 l v1 + 2 l v0 ---- + 2 l vo (---) )} \\
\hline 2 & 2 & 2 & dx \\
\hline \multirow[t]{3}{*}{dx} & dx & dx & \\
\hline & & 2 & 3 \\
\hline & \multicolumn{3}{|r|}{\(\mathrm{w}+\mathrm{g} \mathrm{vO}) /\left(\begin{array}{l}\text { l }\end{array}\right.\)} \\
\hline
\end{tabular}
(c17) ode(e_O, vO, x);
(d17) \(\quad \mathrm{v} 0=\% \mathrm{k} 1 \sin (\mathrm{x})+\% \mathrm{k} 2 \cos (\mathrm{x})\)

Re-express the solution to the differential equation.
```

(c18) sol_e_0:trigreduce(ic2(%, x = 0, v0 = a*cos(b),
'diff(v0, x) = -a*sin(b)));
(d18) v0 = a cos(x + b)

```

Put the solution of \(v 0\) into the differential equation \(e_{-} 1\) and carry out the derivative.
```

(c19) e_1:ev(e_1, %, diff, trigreduce, expand);
3 3
a w cos(3 x + 3 b) a g cos(3 x + 3 b)
(d19) - ------------------- + ------------------ - 2 a w w1 cos(x + b)
<ll}\begin{array}{lll}{2}
{2}\&{81}\&{3}
a w cos(x + b) 3 a g cos(x + b) d v1 2 2
- --------------- + ---------------- + ---- w + v1 w
2
l
2
dx

```
```

(c20) ode(%, v1, x);
3 2 3
(d20) v1 = - ((4 a l w - a g) cos(3 x + 3 b) - 64 a l w w1 x sin(x + b)
3 2
3
-16 a l w x sin(x + b) + 12 a g x sin(x + b)
3 3 2
+(-32 a l w w1 - 8 a l w + 6 a g) cos(x + b))/(64 l w) + %k1 sin(x)

+ %k2 cos(x)

```

The secular term:
```

(c21) ratcoef(%, x, 1);

```


16 l w

Choose the parameter for \(w 1\) to eliminate the secular term
(c22) eq_w1:solve(\%, w1);
\[
\begin{gathered}
2 \\
4 \mathrm{a} \text { l } \mathrm{w}-3 \mathrm{a} \mathrm{~g}
\end{gathered}
\]
(d22)


16 l w
(c23) ev(changeofv, eq_w1);
\(2 \quad 2 \quad 2\)
e (4alw-3ag)
(d23)

(c24) ev(sol_e_0, \%);
\begin{tabular}{lll}
2 & 2
\end{tabular}
e (4 a 1 w-3ag)
(d24)
\[
\mathrm{v} 0=\mathrm{a} \cos ((\mathrm{w}------------------1 \mathrm{xx}+\mathrm{b})
\] 16 L w

Since \(e\) was introduced for bookkeeping purposes
(c25) \(\mathrm{ev}(\%, \mathrm{e}=1)\);
(d25)
\[
\mathrm{v} 0=\mathrm{a} \cos \left(\left(\mathrm{w}-\mathrm{c} \begin{array}{c}
2 \\
4 \mathrm{a} 1 \mathrm{w}-3 \mathrm{a} \mathrm{~g} \\
16 \mathrm{l} \mathrm{w}
\end{array}\right.\right.
\]

\section*{B. 4 Answers for Chapter 11}

This section presents the solutions to the problems given in Section 11.8, page 173.
Problem 1. See page 174.
```

(c1) dot(a, b) := block(sum(a[i]*b[i], i, 1, 3))\$
(c2) cross(a, b) :=
block([temp1, temp2, temp3],
if listp(a) and listp(b)
then (temp1:a[2]*b[3] - a [3]*b[2],
temp2:a[3]*b[1] - a[1]*b[3],
temp3:a[1]*b[2] - a[2]*b[1],
return([temp1, temp2, temp3]))
else print('undefined_operations))\$

```

Problem 2. See page 174.
```

(c3) (aa:[a[1], a[2], a[3]],
bb:[b[1], b[2], b[3]],
cc:[c[1], c[2], c[3]])\$
(c4) expand(cross(aa, cross(bb, cc)) + cc*dot(aa, bb) - bb*dot(aa, cc));
(d4)
[0, 0, 0]

```

Problem 3.See page 174.
```

(c5) my_grad(a) :=
block(if listp(a)
then print('undefined_operations)
else return([diff(a, x), diff(a, y), diff(a, z)]))\$
(c6) my_div(a) :=
block([temp],
if listp(a)
then temp:ratsimp(diff(a[1], x) + diff(a[2], y) + diff(a[3], z))
else print('undefined_operations))\$
(c7) my_curl(a) :=
block([temp, temp1, temp2, temp3],
if listp(a)
then (temp1:diff(a[3], y) - diff(a[2], z),
temp2:diff(a[1], z) - diff(a[3], x),
temp3:diff(a[2], x) - diff(a[1], y),
temp:[ratsimp(temp1), ratsimp(temp2), ratsimp(temp3)],
return(temp))
else print('undefined_operations))\$

```

Problem 4. See page 174.
```

(c8) expr3*x^2*y - y^3*z^2\$
(c9) my_grad(expr);

```


Problem 5. See page 174.
```

(c11) a1:[x^2*z, -2*y^3*z^2, x*y^2*z]\$
(c12) my_div(a1);
2 2 2
(d12) - 6 y z + 2 x z + x y
(c13) ev(%, x = 1, y = -1, z = 1);
(d13)

- 3

```

Problem 6. See page 174.
```

(c14) my_curl([x*z^3, -2*x^2*y*z, 2*y*z^4]);
4 2 2
(d14) [2 z + 2 x y, 3 x z , - 4 x y z]
(c15) ev(%, x = 1, y = -1, z = 1);
(d15) [0, 3, 4]

```

Problem 7. See page 174.
```

(c1) r:26.5\$
(c2) ff(t, x, y, z):=-3.0*(x - y)\$
(c3) gg(t, x, y, z):=-x*z + r*x - y\$
(c4) hh(t, x, y, z):=x*y - z\$
(c5) my_runge_kutta(f, g, h, t0, tfinal, x00, y00, z00, size):=
block([x_list:[], y_list:[], z_list:[],
k1, k2, k3, k4, l1, l2, l3, l4, m1, m2, m3, m4, x0, y0, z0],
x0:x00, y0:y00, z0:z00,
for t:tO thru tfinal step size do
(x_list:endcons(x0, x_list),
y_list:endcons(y0, y_list),
z_list:endcons(zO, z_list),
k1:size*apply(f, [t, x0, y0, z0]),
l1:size*apply(g, [t, x0, y0, z0]),
m1:size*apply(h, [t, x0, y0, zO]),
k2:size*apply(f, [t + size/2, x0 + k1/2, y0 + l1/2, z0 + m1/2]),
12:size*apply(g, [t + size/2, x0 + k1/2, y0 + l1/2, z0 + m1/2]),
m2:size*apply(h, [t + size/2, x0 + k1/2, y0 + l1/2, z0 + m1/2]),

```
```

k3:size*apply(f, [t + size/2, x0 + k2/2, y0 + l2/2, z0 + m2/2]),
13:size*apply(g, [t + size/2, x0 + k2/2, y0 + l2/2, z0 + m2/2]),
m3:size*apply(h, [t + size/2, x0 + k2/2, y0 + l2/2, z0 + m2/2]),
k4:size*apply(f, [t + size, x0 + k3, y0 + l3, z0 + m3]),
14:size*apply(f, [t + size, x0 + k3, y0 + l3, z0 + m3]),
m4:size*apply(f, [t + size, x0 + k3, y0 + l3, z0 + m3]),
x0:x0 + (k1 + k4)/6 + (k2 + k3)/3,
y0:y0 + (11 + 14)/6 + (12 + 13)/3,
z0:z0 + (m1 + m4)/6 + (m2 + m3)/3),
[x_list, y_list, z_list])\$

```

\section*{Index}
! operator, 15
!! operator, 15
", 21
* operator, 15
+ operator, 15
- operator, 15
. operator, 15
/ operator, 15
/*...*/
comment delimiters, 11
/*
begin comment delimiter, 11
:, 20
:: (operator), 173
\(:=\) (operator), 25
; 10
\(=\) (operator) \(, 43,68\)
\(=\) operator, 24
?mlocal, function, 203
?munlocal, function, 203
@ \(n\) symbol, 107
\$, 10
\%, variable, 11
\(\% \%\), variable, 169
\%\%n variable, 100
\%c constant, 96
\%e constant, 23
\%emode, variable, 51, 52
\%i constant, 23
\%k1 constant, 98
\%k2 constant, 98
\%pi constant, 23
^operator, 15
^^operator, 15
all (keyword), 23, 239
do (keyword), 166
else (keyword), 165, 166, 171
in (keyword), 166
series keyword, 100
step (keyword), 166
then (keyword), 165, 171
thru (keyword), 166
unless (keyword), 166
while (keyword), 166
rename_plot_file (function), 152
abort, function, 188
addcol, function, 124, 133
addition operator, 15
addrow, function, 124
algebra, 31
algebraic, variable, 36, 270
algexact, variable, 67, 71, 273
allroots, function, 67, 72, 273
and, 166, 226
answers to practice problems, 267
apply, function, 205, 289
apply1, function, 224, 234
apply2, function, 234
apply_nouns, function, 205
applyb1, function, 234
applyb2, function, 234
approximations
finding, 73
array, 29
array, function, 29
assignment, 20, 21
local, 23
assignment operator, 20
assume, function, 83, 101, 277
assume_pos, function, 83
*/
end comment delimiter, 11
asymptotic Taylor series expansion, 93
at, 77
atom, 44
atom, function, 172, 221
atvalue, function, 107, 282
augcoefmatrix, function, 115, 118, 128
augmented coefficient matrix, 118
axes, changing a plot's, 150
backslash, x
backtrace, variable, 188
batch, function, 217
batch jobs, 156
submitting in all systems, 156
submitting in DOS-Windows, 159
submitting in VMS, 158
bc2, function, 95
bfloat, function, 2
bfprecision, variable, 18
bidirectional limit, 89
bigfloat, 17
binding
local, 23
binding power, 16
binding, local, 25
block, function, 169-171, 288
box, function, 213
boxchar, variable, 213
break, function, 184, 186
buildq, function, 192

\section*{C}
translating macsyma expressions to, 164
c-line, 10
calculus, 77
case-sensitivity, x
catch_divergent, variable, 191
catch_mathematical_error, variable, 191
catch_taylor_essential_singularity, variable, 191
catch_taylor_unfamiliar_singularity, variable, 191
cfactor, function, 40
changevar, function, 60, 84, 88, 278
changing a plot, 146
characteristic polynomials of matrices, 130
charpoly, function, 130, 131
closedform, function, 270, 272
closefile, function, 160
coeff, function, 49
coefficient matrix, 118
augmented, 118
coefmatrix, function, 115,118
col, function, 120, 121
columns, adding to a matrix, 124
combine, function, 36, 39, 272, 282
command lines
typing in, 10
commands
format of, x
comment delimiters
*/ (end comment), 11
/* (begin comment), 11
/*... */, 11
comparative simplification, sequential, 38
compilation or translation of rules, 245
compile, function, 203
compile_file, function, 203
compile_rule, function, 244,245
compile_rules_in_tr_files, variable, 245
complex number, 17, 19
composite functions, 26
compound statements, 21, 168
conditional statements, 165
constant, 23
contourplot, function, 143, 144
contourplot3d, function, 144
copymatrix, function, \(115,119,125\)
creating a matrix, 115
current_let_rule_package, variable, 246
d-line, 10
debugmode, variable, 188
declared arrays, 29
decomposition partial, 35
default_let_rule_package, variable, 246
default_rule_package, variable, 247
defining functions, 25
definite integration, 84
defmatch, function, 220, 223, 228, 229
defrule, function, 224, 228
deftaylor, function, 220, 244
defule, function, 233
demoivre, function, 52, 58, 271
dependencies, variable, 79
depends, 77
depends, function, 59, 79, 80, 96, 101, 277
depends, usage, 78
desolve, function, 282
determinant, function, 129, 130
determinants of matrices, 129
detout, function, 128
detout, variable, 135
detrminant, function, 129
dfloat, function, 2
diag_matrix, function, 115
diagmatrix, function, 115,117
diff, 77
diff, function, \(59,77-80,168,169,272,276,278\), 282, 288
diff, usage, 77
differentiating expressions, 77
predefined functions, 78
total differential, 78
disp, function, 167
display, function, 167
disprule, function, 229
distrib, function, 31, 35, 268
distrib, usage, 35
division operator, 15
do (keyword), 167, 168
dollar sign
ending command lines with, 10
dontfactor, variable, 40, 41

DOS-Windows
batch jobs, 156, 159
double factorial operator, 15
dpart, function, 46, 104
e-line, \(10,27,47\)
echelon, function, 128, 129
echelon forms of matrices, 128
eigens_by_,schur, function, 131
eigenvalues, function, 130
eigenvalues of matrices, 130
eigenvectors, function, 130, 131
endcons, function, 289
entering Macsyma, 9
entermatrix, function, 115
equal to, 166
equalscale, variable, 143, 147
equation, 24
equations
linear, 68
non-linear, 69
errcatch, function, 189, 191
error_string, variable, 190
errormsg, variable, 189, 190
ev, function, \(22,24,205\)
ev, usage, 42
eval, function, 205
eval_ when, function, 203, 204
exact vs. floating point arithmetic, 3
exit, function, 188
exiting Macsyma, 9
exp, function, 24
expand, function, \(7,31,32,35,41,62,94,268\), 283, 288
expand, usage, 32
expanding, 31
expressions containing radicals, 32
logarithms of products and powers, 32
partial fractions, 35
trigonometric expressions, 53
exponentialize, function, 52, 58, 270
exponentialize, variable, 51, 52
exponentiation operator, 15
exponentiation, non-commutative operator, 15
expressions, 15
differentiating, 77
expanding, 31
extracting parts of, 45
factoring, 40
integrating, 81
numbers in, 17
simplifying, 36
substituting in, 42
translating To C, 164
translating to FORTRAN, 163
trigonometric, 50
variables in, 20
expressions, constants in, 23
expressions, operators in, 15
extracting parts
of a list, 28
of a matrix, 120
of an expression, 45
factor, function, 40, 42, 130, 269
factor, usage, 40
factorial operator, 15
factoring, 40
factorsum, function, 40, 269
factorsum, usage, 41
file based graphics, 152
file manipulation, 153
file_search (option variable), 154
filename extensions, 154
filenames, 153
first, function, 48, 62
fixed-size arrays, 29
float, 17
floating point number, precision of a, 17
floating point vs. exact arithmetic, 3
floating-point errors, 4
for, 166
for, function, 166
for, 167,168
forget, function, 83, 86, 277
format of Macsyma commands, x
fortindent, variable, 164
FORTRAN
translating Macsyma expressions to, 163
FORTRAN, example, 3
fortspaces, variable, 164
fractional decomposition partial, 35
freeof, function, 223
function, ix
composite, 26
defining a, 25
removing definition, 27
function templates, 14
genmatrix, function, 115, 119
getting started, 9
globalsolve, variable, 67, 69, 104, 274
go, function, 170, 171
gradef, 77
gradef, function, 79, 80, 285
graph, function, 141
graph3d, function, 141, 143
greater than, 166
greater than or equal to, 166
halfangles, variable, 53, 54
hashed arrays, 29
help facilities
on-line, 12
herald
Macsyma 2.0 and Successors, 9
Macsyma 420 and its successors, 10
ic1, function, 95
ic2, function, 95
ident, function, 115, 117, 130
if, 165,171
if, function, 7, 288
if, 172
ilt, function, 107, 109
imagpart, function, 19, 52
in (keyword), 167, 168
indefinite integration, 81
inf constant, 23
init file
customizing, 155
initialization file, 155
intanalysis, variable, \(81,84,86,88,277\)
integer, 17
integerp, function, 221
integrate, function, 81-84, 86-88, 94, 277
integrate, usage, 81
integrating expressions, 81
definite, 84
indefinite, 81
numerical, 88
intfactor, variable, 95, 280
intosum, function, 55, 59
inverse Laplace transforms, 107
invert, function, 126, 128
inverting matrices, 127
is, 226
iterated statements, 166
k0, in taylor solve solutions, 73,275
kill, function, 229, 239, 247
Laplace
transforms inverse, 107
laplace, function, 107, 108
laplace_call, variable, \(84,87,88\)
laplace_call, variable, 277
last, function, 48, 49, 68
Laurent series, 91, 92
ldefint, function, 84, 86, 277, 278
ldisp, function, 167, 168
ldisplay, function, 166, 167
Legendre polynomials, 110
less than, 166
less than or equal to, 166
let, function, 220, 246
let_rule_packages, variable, 247
letrules, function, 246, 247
letsimp, function, 246
lhs, function, 48, 270
limit, function, 89, 90, 278
limits, 89
limits from above, 89
limits from below, 89
lindstedt, function, 101
linear equations, 68
linsolve, 69
linsolve, function, \(67,68,104,274\)
listp, function, 288
listratvars, function, 209
lists, 28 extracting elements from, 28 operations on, 28
load, function, 162
local, function, 203
local binding, 23, 25
log, function, 33, 38
logabs, variable, \(81,83,277\)
logexpand, variable, 32
logical
and, 166
not, 166
or, 166
logical operator, 165
logical pathnames, 154
macroexpand, function, 192
Macsyma code
writing, 165
Macsyma code, writing, 175
mainvar, function, 207, 212
map, function, 36, 207
map, usage, 39
matchdeclare, function, 6, 223, 228
MATLAB, 115
matrices, 115
adding rows and columns to, 124
arithmetic operations on, 126
augmented coefficient, 118
characteristic polynomials of, 130
coefficient, 118
creating, 115
determinants of, 129
echelon forms of, 128
eigenvalues of, 130
eigenvectors of, 130
extracting columns of, 121
extracting elements of, 123
extracting rows of, 120
inverting, 127
scalar multiplication of, 126
transposing, 131
matrix, function, \(6,7,115,116,125,126,129\)
matrix, usage, 116
matrix_,trace, function, 128
matrix_trace, function, 7
max, function, 7
medit, function, 217
method, variable, 95, 97, 280-282
minf constant, 23
minor, function, 120, 123
mode_declare, function, 199
mode_identity, function, 199
multiplication operator, 15
multiplication, non-commutative operator, 15
multiplicities, variable, \(67,131,273\)
multivariate Taylor series expansion, 92
multthru, function, 31, 34, 35, 207, 268, 284
multthru, usage, 34
naming plots, 150
negation operator, 15
negative numbers, 17
nonlinear equations, 69
not, 166
not, function, 226
not equal to, 166
notation conventions, x
noundisp, variable, 255
nroots, function, 67, 72, 273
number, 17
precision of a, 1
number, precision of a, 3
numer, variable, 51, 72
numeric vs. symbolic computation, 1,5
numerical integration, 88
numerical roots, 72
nusum, function, 55-57, 272
ode, function, \(62,95,96,98,100,103,280,281\), 286
ode, usage, 95
ode_numsol, function, 105
ode_stiffsys, function, 105
odeindex, variable, 95, 281
odelinsys, function, 107, 109
ODEs, 95
odetutor, variable, 95
operator, 15,16
logical, 165
and, 166
not, 166
or, 166
on matrices, 126
priority, 16
opsubst, function, 176, 177
option variable, ix
or, 166, 226
ordergreat, function, 207, 216
orderless, function, 207, 216
ordinary differential equations, 95
first order, 96
second order, 96, 98
series solution, 100
solving, 95
paramplot, function, 139
parentheses, 16
part, function, 45, 46, 60, 61, 133, 135, 172, 205
part, usage, 45
partfrac, function, 31, 35, 269
partfrac, usage, 35
partial fractional decomposition, 35
pathnames, 153
pattern matching, 219
percent sign, 11
perturbation techniques for solving ODEs, 101
pickapart, function, 47
piece, variable, 46, 47
playback, function, 160
plot, function, 137
plot3d, function, 143
plot_roll, variable, 149
plot_size, variable, 147
plotbounds, variable, 150
plotnum, variable, 137
plots, 137
changing the appearance of, 146
changing the axes of, 150
changing the scale of, 146
changing the viewpoint of, 149
naming, 150
polar coordinates, 139
saving, 150
three-dimensional, 143
two-dimensional, 137
plotsurf, function, 143
polar coordinate plots, 139
polarform, function, 19
power series method
for solving ODEs, 59
powerdisp, variable, 208
practice problems
algebra, 63
answers to, 267
calculus, 110
programming in Macsyma, 173
solving equations, 74
precision of a floating point number, 18
precision of a number, 17
predefined functions, differentiating, 78
preventing evaluation of
a function name, 173
a limit, 90
a sum, 56
an integral, 83
preventing evaluation of a derivative, 78
print, function, 167, 288
printprops, function, 228
priority of operators, 16
product rule, 53
program blocks, 169
programming in Macsyma, 165, 175
block statements, 169
compound statements, 168
conditional statements, 165
formal parameters, 173
functional arguments, 173
iterated statements, 166
logical operators, 165
practice problems, 173
recursive functions, 171
referring to previous results, 169
tagging statements, 170
push, function, 177
quadratr, function, 88
quanc8, function, 88
radcan, function, \(36,38,81,267\)
radcan, usage, 38
radexpand, variable, 32
radicals
simplifying expressions with, 38
rank, function, 129, 130
rat, function, 207, 208
ratcoef, function, 103, 104, 286, 287
ratfac, variable, 36
rational number, 17
rational simplification, 36
ratsimp, function, \(36,37,40,55,58,98,135\), 267-270
ratsimp, usage, 36
ratsimp, variable, 168
ratsubst, function, \(44,55,80,102,267,285\)
ratsubst, usage, 43
realpart, function, 19, 52
realroots, function, 67, 72, 273
rectform, function, 19
recursive functions, 171
remlet, function, 246, 247
remove, function, 79, 229, 280
removing
features from objects, 78
functional definitions, 27
values from variables, 20
remrule, function, 239
remvalue, function, \(21,22,69,275\)
replot, function, 146
reset, function, 280
resimplify, function, 205
rest, function, 49
return, function, 288
reveal, function, 48
rhs, function, 48, 270
rmeove, function, 239
rncombine, function, 36
romberg, function, 88, 277
roots
numerical, 72
roots, function, 67, 72, 73
rootsepsilon, variable, 67, 72
row, function, 120
rows, adding to a matrix, 124
runge_kutta, function, 105
save, function, 161
saving plots, 150
saving your work in a transcript, 160
scalar multiplication of matrices, 126
scale, changing a plot's, 146
scsimp, function, \(36,38,280\)
scsimp, usage, 38
semicolon
ending command lines with, 10
sequential comparative simplification, 38
series keyword, 100
setelmx, function, 124-126
sfloat, function, 2
showtime, variable, 84
simplifying, 36
half angles, 53
radicals, logarithms, and exponentials, 38
two "rational expressions", 36
simpson, function, 88
simpsum, variable, 56-58, 270
single quote
preventing evaluation of a derivative, 78
a function name, 173
a limit, 90
a sum, 56
an integral, 83
solutions to practice problems, 267
solve, function, \(61,67-71,108,131,167,273,275\), 287
solve, usage, 67
solveexplicit, 70
solveexplicit, variable, 67, 70
solveradcan, variable, 67, 70
solvetrigwarn, variable, 67,70
solving equations, 67
containing trigonometric functions, 70
linear, 68
nonlinear, 69
ordinary differential equations, 95
special, 202
special, variable, 199
special form, ix
splice, function, 192, 193
sqrt, function, 19, 33, 34, 38
stringout, function, 217
submatrix, function, 120, 122
subscripted variable, 28
subst, function, 43, 44, 55, 60, 169, 177, 267, 283
subst, usage, 43
substituting in expressions, 42
substpart, function, 47, 60, 207
subtraction operator, 15
sum, function, \(7,55-59,270,272,288\)
sum rule, 53
sumcontract, function, 55, 59
summations, 55
symbolic vs. numeric computation, 1,5
system variable, ix
tagging statements, 170
taking limits from above, 89
taking limits from below, 89
taylor, function, 91-94, 167, 168, 278
Taylor series, 91
asymptotic expansion, 93
multivariate expansion, 92
taylor_solve, function, 67, 73, 275
taylor_solve_choose_coef, variable, 276
taylor_solve_choose_order, variable, 275
taylorinfo, 91
taylorinfo, function, 91
tellsimp, function, \(6,220,228,238\)
tellsimpafter, function, 220, 228, 238
TEX, 164
tex, function, 164
three-dimensional plots, 143
thru (keyword), 167
title, variable, 150
tlimit, function, 89, 90, 278
tlimitswitch, function, 89
tlimswitch, variable, 90
total differential, 78
trace, function, 171, 184
transcript, saving your work in a, 160
transforms
Inverse Laplace, 107
translate, function, 203
translate_file, function, 203
translating Macsyma expressions to C, 164
translating Macsyma expressions to FORTRAN, 163
translating Macsyma expressions to other languages, 163
transpose, function, \(7,131,133,135\)
transposing matrices, 131
traprule, function, 88
trigexpand, function, 53
trigexpand, variable, 53, 54
trigexpandplus, variable, 53, 54
trigexpandtimes, variable, 53, 54
trigonometric function, 50
evaluating, 50
expanding, 53
solving equations, 70
table of predefined functions, 50
trigreduce, function, \(7,53-55,58,103,286\)
trigreduce, usage, 54
trigsimp, function, 53, 55
trunc, function, 62, 94, 168, 207, 279
two-dimensional plots, 137
typesetting
with \(\mathrm{TE}_{\mathrm{E}} \mathrm{X}, 164\)
undeclared arrays, 29
Unix
batch jobs, 156
unless (keyword), 168
untrace, function, 171, 184
values, 22
variable, 21
assigning a value to, 20
removing a value from, 20
view point, changing a 3D plot's, 149
viewpt, variable, 149
VMS
batch jobs, 156, 158
while (keyword), 168
Windows
batch jobs, 159
write_tex_file, function, 164
writefile, function, 160
writing Macsyma code, 165
xlabel, variable, 150
xmax, variable, 147
xmin, variable, 147
xthru, function, 36, 39
xthru, usage, 39
ylabel, variable, 150
ymax, variable, 147
ymin, variable, 147
yp, variable, 95
zeromatrix, function, \(7,115,117\)
zmax, variable, 147
zmin, variable, 147```


[^0]:    ${ }^{1}$ The examples in each section of this document are labeled consecutively, starting with (c1). If you are following along in Macsyma yourself, you might want to use the command kill (labels) \$ or better initialize_macsyma() $\$$ at the beginning of each section to reset your own c-label to (c1).
    ${ }^{2}$ In Macsyma 2.0 and its successors, the semicolon may be omitted, and the return key may be used to tell Macsyma to display the result.

[^1]:    ${ }^{1}$ Some implementations of Macsyma return 0.8414709848078965 .

