
Macsyma

User�s Guide

Second Edition

Macsyma User�s Guide

This document corresponds to Macsyma ���� Macsyma ��� and successors�

The software described in this document is furnished only under license� and may be used or copied only
in accordance with the terms of such license� Nothing contained in this document should be construed to
imply the granting of a license to make� use� or sell any of the software described herein� The information in
this document is subject to change without notice� and should not be construed to imply any representation
or commitment by Macsyma Inc�

Macsyma and Macsyma Newletter are registered trademarks of Macsyma Inc� PC Macsyma is a trademark
of Macsyma Inc� All other product names mentioned herein are trademarks of their respective owners�

This document may not be reproduced in whole or in part without the prior written consent of Macsyma
Inc�

Printed in the USA�

Copyright c����� Macsyma Inc�
All Rights Reserved

Macsyma� Inc�
telephone	
���macsyma
�����������

email	
infomacsyma�macsyma�com
service�macsyma�com

Internet	 URL http	��www�macsyma�com

Printed in the USA�

Printing year and number	 �� �

Contents

� Introduction to Macsyma �

��� Symbolic and Numerical Computation �

����� Exact and Floating Point Numbers �

����� Exact and Floating Point Arithmetic �

����� Exact and Floating Point Solutions of Algebraic Equations � � � � � � � � � � � � � � � �

����� Exact Solution of a Di�erential Equation �

��� Example Problem	 Modeling a Robot Arm �

� Getting Started �

��� Entering and Exiting Macsyma �

��� Typing in Command Lines ��

��� Getting Online Help ��

����� The Interactive Primer ��

����� The Mathematics Topic Browser ��

����� Hypertext Topic Descriptions ��

����� Executable Examples and Demonstrations ��

����� Function Templates ��

����� The apropos Command ��

����� Tips ��

� Creating Expressions ��

��� What is a Macsyma Expression� ��

����� Operators ��

����� Numbers ��

����� Variables ��

����� Constants ��

��� Creating Equations ��

��� De�ning Functions ��

��� Using Lists �

��� Using Arrays ��

i

� Algebra ��

��� Expanding Expressions ��

��� Simplifying Expressions ��

��� Factoring Expressions ��

��� Making Substitutions ��

��� Extracting Parts of an Expression ��

��� Using Trigonometric Functions ��

����� Evaluating Trigonometric Functions ��

����� Expanding and Simplifying Trigonometric Expressions � � � � � � � � � � � � � � � � � � ��

��� Evaluating Summations ��

��
 Practice Problems ��

� Solving Equations ��

��� Solving Linear Equations �

��� Solving NonLinear Equations ��

��� Finding Numerical Roots ��

��� Finding Approximate Symbolic Solutions ��

��� Practice Problems ��

� Calculus ��

��� Di�erentiating Expressions ��

��� Integrating Expressions �
�

����� Inde�nite Integration �
�

����� De�nite Integration �
�

����� Numerical Integration �

��� Taking Limits �
�

��� Computing Taylor and Laurent Series ��

��� Solving Ordinary Di�erential Equations �ODEs� ��

����� Symbolic Solutions of ODEs ��

����� Symbolic Approximate Solution of an ODE ���

��� Numerical Solutions of ODEs ���

��� Computing Laplace Transforms ���

��
 Practice Problems ���

� Matrices ���

��� Creating a Matrix ���

��� Extracting From and Adding to a Matrix ���

����� Extracting Rows� Columns� and Elements ���

����� Adding Rows and Columns to a Matrix ���

ii

����� Changing the Elements in a Matrix ���

��� Arithmetic Operations on Matrices ���

��� Producing the Echelon Form of a Matrix ��

��� Calculating Determinants ���

��� Eigenanalysis of Matrices ���

��� Transposing a Matrix ���

	 Plotting ���

�� Creating TwoDimensional Plots ���

�� Creating ThreeDimensional Plots ���

�� Changing the Appearance of a Plot ���

���� Changing a Plot�s Scale ���

���� Changing the Viewpoint of a ThreeDimensional Plot � � � � � � � � � � � � � � � � � � ���

���� Changing Plot Titles and Axes Labels ���

�� Saving Plots ���

���� Notebook Graphics in Macsyma ��� and Successors ���

���� File Based Graphics in Macsyma ��� and Successors ���

� Macsyma File Manipulation ���

��� Specifying Pathnames ���

����� Logical Pathnames ���

����� Filename Extensions ���

��� Customizing Your Macsyma Init File ���

��� Submitting Macsyma Batch Jobs ���

����� Batch Jobs in Unix ���

����� Batch Jobs in VMS ��

����� Batch Jobs in DOSWindows ���

��� Saving Your Work ���

����� Saving an ASCII Transcript of Your Work ���

����� Saving a Macsyma Notebook ���

����� Saving Your Computation Environment ���

�
 Translating Macsyma Expressions to Other Languages ���

���� Translating Expressions to FORTRAN ���

���� Translating Macsyma Expressions to C ���

���� Typesetting Macsyma Expressions with TEX ���

iii

�� Using the Macsyma Programming Language ���

���� Using Conditionals ���

���� Using Iteration ���

���� Compound Statements ��

���� Making Program Blocks ���

���� Tagging Statements ���

���� Writing Recursive Functions ���

���� Functional Arguments and Formal Parameters ���

���
 Practice Problems ���

�� Advanced Programming Topics ���

���� Functional Evaluation Revisited ���

���� Lambda Forms ���

������ Evaluation of lambda Forms ���

������ Using opsubst and lambda Forms to Modify Expressions � � � � � � � � � � � � � � � ���

���� Subscripted Functions ���

������ Example	 Incorporating A De�nite Integral Into A Function De�nition � � � � � � � � � ��

���� The Debugger �
�

������ The Trace Utility �
�

������ Tracing Simple Functions �
�

������ Tracing a Recursive Function �
�

������ Using the break Facility �
�

������ Entering the Debugger Automatically �

���� Handling Errors �
�

������ General Error Handling �
�

������ Example	 Catching errors �
�

������ Example	 Using errcatch ���

������ Catching Special Classes of Errors ���

������ Example	 Selectively Trapping Mathematical Errors ���

���� Macros ���

������ Writing Simple Macros ���

������ Writing a Macro to Implement a Boolean Operator ���

���� Localizing Information ���

������ Program Blocks Revisited ���

������ Localizing Other Information Inside Program Blocks ���

������ Program Contexts ���

���
 Translating Macsyma Functions ���

���
�� Translating Files and Functions ��

iv

���
���� Example	 Translating a Function De�nition ��

���
���� Example	 Translating a Macsyma File ��

���
�� Data Type Declarations ���

���
���� Declaring Data Types With mode declare � � � � � � � � � � � � � � � � � � ���

���
���� De�ning Complex Data Types With mode identity � � � � � � � � � � � � � ���

���
�� De�ning Option Variables For Packages ���

���
���� The special Declaration ���

���
���� Customizing the Translation Environment ���

���
���� Compilation vs� Translation ���

���
�� Additional Notes on Translation ���

���� Hints for E�cient Programming ���

�� Displaying Expressions �
�

���� The Macsyma Display Package ���

���� Changing the Default Display ���

���� Rewriting Expressions ��

���� The mainvar Declaration ���

���� Inhibiting Simpli�cation ���

������ Using Invisible Boxes ���

������ Using Null Functions ���

���� The ordergreat and orderless Commands ���

�� The Macsyma Pattern Matcher ���

���� Introduction to Pattern Matching Techniques ���

���� An Overview of the Pattern Matcher Facilities ���

������ Examples of Predicates ���

������ An Example of a Pattern Matching Rule ���

������ An Example of a UserDe�ned PatternTesting Predicate � � � � � � � � � � � � � � � � ���

������ Examples of Rewrite Rules ���

������ General Pattern Matcher Issues ���

���� Simple Pattern Testing	 Predicates ���

���� Literal vs� Semantic Matches	 matchdeclare ���

���� The General Pattern Matcher ��

������ An Overview of the General Pattern Matcher ��

������ Identifying Subexpressions	 defmatch ���

�������� defmatch Summary ���

�������� Examples of defmatch ���

������ Transforming Expressions with Rewrite Rules	 defrule � � � � � � � � � � � � � � � � � ���

�������� defrule Summary ���

v

�������� Examples of defrule ���

������ Automatic Simpli�cation of Expressions	 tellsimp and tellsimpafter � � � � � � � � � ��

�������� tellsimpafter Summary ���

�������� Di�erences between tellsimp and tellsimpafter � � � � � � � � � � � � � � � � ���

�������� Examples of tellsimp and tellsimpafter ���

�������� Additional Information on tellsimp and tellsimpafter � � � � � � � � � � � � ���

������ De�ning Taylor Expansions of Unknown Functions ���

������ Translating and Compiling Rules ���

���� The Rational Function Pattern Matcher ���

������ De�ning Substitution Rules	 let ���

�������� let Syntax ���

������ Applying let Rules	 letsimp ��

�������� letsimp Summary ��

������ Examples of let Rules ���

�������� Example ���

�������� Example ���

�������� Example ���

�������� Example ���

�������� Example ���

�������� Example ���

�������� Example ���

�������
 Example
 ���

�������� Example ���

���� Debugging Pattern Matching Routines ���

������ Example	 Failure to Match ���

������ Example	 Incorrect Matching ��

���
 Patterns versus Functions ���

���� Complex Example of Pattern Matching ���

A Hints for New Users of Macsyma ���

B Answers to Practice Problems ���

B�� Answers for Chapter ���

B�� Answers for Chapter ���

B�� Answers for Chapter ���

B�� Answers for Chapter �� �

vi

List of Tables

� Notation conventions used in this book � x

��� Mathematical Operators ��

��� Some Prede�ned Macsyma Constants ��

��� A Comparison of distrib� multthru and expand ��

��� Using the part Command ��

��� Trigonometric Functions and their Inverses ��

��� Summary of the intanalysis Option Variable �
�

��� Literal pathname extensions from logical pathnames ���

���� Prede�ned Logical Operators ���

vii

viii

Preface

Macsyma is a general purpose symbolicnumericalgraphical mathematics software product� You can use it to
solve simple problems speci�ed by oneline commands �such as �nding the inde�nite integral of a function��
or to perform very complicated computations by means of a large Macsyma program� This document
provides explanations and examples of tools for doing algebra� trigonometry� calculus� numerical analysis�
and graphics� In addition to introductory information about these topics� this guide provides extended
examples showing you how to use Macsyma to solve more complex problems�

If you have never used Macsyma before� you might want to start by reading Your First Session With

Macsyma� a brief tutorial which introduces you to Macsyma�s user interface and online help facilities�
The online help system� includes a mathematical topic browser� hypertext topic descriptions� command
templates� an interactive primer� and executable examples and demonstrations� You will also see how to
enter commands to Macsyma� and how to produce a document which combines mathematical expressions
and formatted text� You can run an online tutorial for Macsyma using the primer command �see page ����
Users who are new to Macsyma should read the �rst four chapters of this User�s Guide carefully before going
on to other chapters of interest�

Even if you have prior experience with Macsyma� you might look over the material presented in the �rst
four chapters before continuing to other chapters that interest you� Both new and experienced users might
�nd it helpful to look over Chapter �� which discusses symbolic and numeric computation and how they
complement each other� Starting with Chapter �� each chapter builds on the concepts presented in the
earlier chapters�

This document assumes you are already familiar with basic mathematical terminology and notation� Some
additional notation conventions and terminology appear in this document to make it easier to read and
understand� The notation conventions followed in this User�s Guide are summarized in Table ��

Although this document introduces many commands and option variables� its scope allows only a limited
introduction to Macsyma�s capabilities� To �nd out more� consult Macsyma�s Mathematics and System

Reference Manual� where you will �nd a comprehensive description of the mathematical functionality of
Macsyma� including algebraic and calculus operations� matrix and vector algebra� vector and tensor analysis�
plotting� and graphics� In addition� the Graphics and User Interface Reference Manual contains a complete
description of the nonmathematical aspects of Macsyma� including the user interface� programming in
Macsyma� �le management� and interfacing to other languages�

In general� you should know that Macsyma commands are either functions or special forms� Both accept
zero or more arguments� perform some computation� and return a result� For example� the function sqrt

with an argument of � returns the result �� The arguments to a function are each evaluated in order from
left to right� A special form is similar to a function� except that the evaluation of some of the arguments to
a special form may be delayed or may not occur at all�

By resetting option variables to new values� a user can change the environment in which Macsyma evaluates
command lines� For example� the function plot�d can display di�erent projections of the same three
dimensional plot� depending on the value of the option variable viewpt�

ix

Example Meaning

ratsimp� integrate Commands and other Macsyma objects as they appear in

the text�

RETURN� SPACE� c�F Keyboard keys�

fib���� Characters entered on the command line� or Macsyma
code in a �le� Macsyma is not casesensitive unless you

precede an input character with a backslash ����

di��exp� var� n� Description of the format for the di� command� where

exp� var � and n describe the expected arguments�

Division by �� A system message or error�

	

�x
 ��

Results returned on the display line� Current releases of
Macsyma display output in lower case by default� users

can alter the display case�

testing�com A �le or directory name�

�� comment �� Explanatory comments in Macsyma examples� �In
versions of Macsyma running under VMS� double quotes
delimit interactive comments and �� �� delimit batch

comments��

Table �	 Notation conventions used in this book

x

Chapter �

Introduction to Macsyma

Macsyma is an interactive symbolicnumericalgraphical mathematics software system that helps you solve
complex mathematical problems� Macsyma can also help you visualize scienti�c data or prepare highquality
technical reports� This User�s Guide provides explanations and examples of the basic methods for solving
many kinds of problems in algebra� trigonometry� calculus� numerical analysis� and graphics�

Macsyma o�ers a wide range of capabilities� including di�erentiating and integrating expressions� factoring
polynomials� plotting expressions� solving equations� manipulating matrices� and computing Taylor series�
Macsyma also provides a programming environment in which you can de�ne mathematical procedures tai
lored to your own needs�

Section ��� contrasts the symbolicnumerical approach to computation provided by Macsyma with the strictly
numeric approach provided by computer languages such as FORTRAN� Read this section to learn about the
advantages of combining symbolic and numerical computation�

Section ��� presents an extended example that shows how Macsyma can perform calculations that would be
tedious and timeconsuming when done by hand� For example� Macsyma can expand� factor� and simplify
long expressions� and manipulate large matrices� allowing you to eliminate much of errorprone manual
calculation�

��� Symbolic and Numerical Computation

Computers have traditionally been used to solve scienti�c problems that could be expressed in terms of
numbers� FORTRAN� for example� assists scientists and mathematicians in dealing with numeric problems�
When a problem can easily be expressed in terms of calculations with numbers� this approach to problem
solving works well� On the other hand� some problems can be expressed best in symbolic terms or perhaps
can only be expressed that way�

Macsyma can work with numbers� symbols� polynomial expressions� matrics and equations� Macsyma can
return results in either numeric or symbolic form�

Unlike Macsyma� numerical systems must operate using �oatingpoint approximations� whose precision is
limited by the computer hardware� By carrying out computations in symbolic form� Macsyma can work
with exact quantities rather than approximations� When you choose to convert a symbolic result to a
�oatingpoint number� you can set the precision yourself�

�

� CHAPTER �� INTRODUCTION TO MACSYMA

����� Exact and Floating Point Numbers

In scienti�c computation� numbers are frequently represented approximately as �oating point numbers� For
some purposes� it is necessary to use exact representations of numbers� or to use symbolic variables to stand
for a class of possible numerical values� For example	

�c�� �������

�d�� �������

�c	� 	
��

	

�d	� �

�

�c�� ��������

�d�� 	�����

�c�� �	
����

�d�� 	

In many computations� radicals need to be represented exactly�

�c�� ������

�d�� �����

�c�� sqrt�	��

�d��
p
�

�c�� ������	�

�d�� ������

�c�� sqrt�	��	�

�d�� 	

Trigonometric identities often require that numbers be represented exactly�

�c�� �pi�

�d�� �

�c��� sfloat��pi��

�d��� �������

�c��� dfloat��pi��

�d��� �������	��������d�

�c�	� bfloat��pi�� bfprecision����

�d�	� �������	���������	����	������	����	������b�

�c��� sin�sfloat��pi���

�d��� ��	����e��

�c��� sin��pi��

�d��� �

���� SYMBOLIC AND NUMERICAL COMPUTATION �

����� Exact and Floating Point Arithmetic

The following example illustrates how numeric and symbolic computation di�er in a simple arithmetic
problem�

Addition and subtraction are associative operations� To compute a � b
 c you can group the expression
either as �a � b�
 c or as a
 ��b
 c�� For some �oatingpoint numbers� however� the associative
property will not hold� Consider this example of FORTRAN code	

program main

a � �	��������

b � �	��������

c � �	��
���

temp� � �a � b� � c

temp	 � a � ��b � c�

print � temp�� temp	

end

Clearly� both temp� and temp� should be ���� but on most systems FORTRAN returns unequal results for
temp� and temp�� Typical results are ��� for temp� and ��� for temp�� showing that associativity does not
hold for all �oatingpoint calculations�

In Macsyma you can preserve precision by expressing numbers as ratios of integers� Even if you are not yet
familiar with Macsyma notation� you can see that Macsyma returns the correct answer to this problem� Set
a� b� and c to the same values as in the FORTRAN example� Note that in Macsyma� �� is the assignment
operator�

�c�� a��	�������

�d�� �	������

�c	� b��	�������

�d	� �	������

Notice that Macsyma stores the value of c as a ratio of integers�

�c�� c��	
��

�	

�d�� ��

�

The result for temp� is a ratio of integers�

�c�� temp���a � b� � c�

�

�d�� �

�

The result for temp� is the same as temp� � Associativity is preserved�

�c�� temp	�a � ��b � c��

� CHAPTER �� INTRODUCTION TO MACSYMA

�

�d�� �

�

You can convert either result to a �oatingpoint number� The �d�� below refers to the result returned on
line �d���

�c�� sfloat�d���

�d�� ���

To avoid introducing �oatingpoint errors into your calculations� Macsyma generally does not return a
�oatingpoint result unless you speci�cally request it� Experienced Macsyma users learn to work with this
feature to achieve exact results in their calculations� Consider the following Macsyma example working with
square roots�

Macsyma simpli�es square roots of integers without converting them to �oatingpoint�

�c�� sqrt��	��

�d�� � sqrt�	�

�c�� sqrt�	��

�d�� sqrt�	�

Since �c�� simpli�es to sqrt�	��� � sqrt����� an exact integer result can be returned�

�c�� sqrt��	�sqrt�	��

�d�� �

Computing the square root of a �oatingpoint number results in an approximation�

�c��� sqrt��	����

�d��� ��������

�c��� sqrt�	����

�d��� �����	���

Macsyma does not return � here because ���������������	� is not the same as the square root of ���

�c�	� sqrt�	���sqrt��	����

�d�	� ���������

The square root of a rational number is maintained as an exact quantity�

�c��� sqrt�	����
����

� sqrt�	����

�d��� ������������

	 sqrt����

���� SYMBOLIC AND NUMERICAL COMPUTATION �

����� Exact and Floating Point Solutions of Algebraic Equations

Symbolic mathematics combines the exactness of exact arithmetic with the generality obtained by repre
senting an entire class of possible numbers by a symbolic variable� It also helps you to form insights through
inspection of symbolic solutions� which are harder to gain from numerical solutions� The most elementary
use of symbolic mathematics employs a symbolic variable to stand for an arbitrary real number �or a class
of possible real numbers�� For example� the symbolic case of a linear equation generalizes any particular
numerical case� in the example below�

�c�� eqf� ��x�������

�d�� ���x � ��� � ���

�c	� linsolve�eqf�x�� keepfloat�true�

�d	� �x � ��������

�c�� eqi� �x�����

�d�� �x � � � �

�c�� linsolve�eqi�x��

	

�d�� �x � � �

�

�c�� eqs� ax�b � c�

�d�� ax � b � c

�c�� linsolve�eqs�x��

c � b

�d�� �x � ����� �

a

����� Exact Solution of a Di�erential Equation

Symbolic computation can make computations involving the constant � more accurate� Consider this dif
ferential equation� taken from an example in �Va 	

y��x� � �����xy�y � x��� � � x � ��

y��� � y�

In a numerical solution� if y� � �� the solution tends to zero as x � �� and if y� � �� the solution goes
to in�nity� If the input data speci�ed the value of � for y�� then recalling that � � ������� � � � you can see
that the �vedigit rounded approximation ������ leads to a solution that goes to in�nity� while a �vedigit
truncated approximation ������ gives a solution that goes to zero� In Chapter �� ��� Macsyma obtains the
following exact solution to this problem	

�pi y�

y � � ������������������������

	 	

x x

��e � �� y� � �pi �e

This is the exact result returned by Macsyma in its twodimensional format� The �pi denotes the constant
�� and �e is the base of the natural logarithms�

� CHAPTER �� INTRODUCTION TO MACSYMA

��� Example Problem� Modeling a Robot Arm

The best way to see Macsyma solving some simple application problems is to run some of the demonstrations
which come with Macsyma� After starting Macsyma type	

demo�begin�� a short collection of simple computations

demo�general�� a longer collection of simple computations

demo�ballistics�� a solution for the trajectory of a cannon ball

demo�oscillator�� a solution for the motion of a harmonic oscillator

Macsyma is an excellent tool for verifying published computational results� The rest of this section consists
of a Macsyma session which veri�es published results concerning the dynamic behavior of a robot arm�

To describe the dynamic behavior of a robot arm� �Le derives a set of di�erential equations of motion for
a manipulator with n degrees of freedom� The derivation of a dynamic model based on the Euler�Lagrange
method is simple and systematic� For n � �� however� the Euler�Lagrange formulation involves about ����
multiplications and ���� additions� making the calculations both timeconsuming and errorprone when done
manually�

An experienced Macsyma user can reproduce the results published in �Le for n � � in a single afternoon�
The session below illustrates how Macsyma can reproduce these calculations� The numbered equations in
the session correspond to those in �Le �

The �rst two commands de�ne a general rule to convert all occurrences of sin� x to �� cos� x�

�c�� matchdeclare�any�true��

�c	� tellsimp�sin�any��	� � � cos�any��	��

Equation �� De�ne a � � � homogeneous transformation matrix tra mat to give the spatial relationship
between adjacent links�

�c�� tra�mat�j����j��j � ��

matrix��cos�th�j���� �cos�al�j���sin�th�j����

sin�al�j���sin�th�j���� aa�j��cos�th�j�����

�sin�th�j���� cos�al�j���cos�th�j����

�sin�al�j���cos�th�j���� aa�j��sin�th�j�����

��� sin�al�j���� cos�al�j���� d�j����

��� �� �� �����

�c�� a�j� i���if j � i then tra�mat�j��a�j � �� i� else ident����

Equation ��� De�ne matrix U to describe the rate of change of all the points ri on link i relative to the base
coordinate frame as qj �the generalized coordinate� changes�

�c�� q�matrix������� �� ���

��� �� �� ���

��� �� �� ���

��� �� �� ����

�c�� u�i� j���if j �� i then a��� j � ���q�a�j � �� i� else �ident����

���� EXAMPLE PROBLEM� MODELING A ROBOT ARM �

De�ne the inertia tensor matrix�

�c�� inertia�j���matrix��mass�j�aa�j��	
�� �� �� �mass�j�aa�j�
	��

��� �� �� ���

��� �� �� ���

��mass�j�aa�j�
	� �� �� mass�j����

Equation ��� De�ne matrix DU to describe the interaction e�ects between joints j and k �

�c�� du�i� j� k���if i �� k and k �� j

then a��� j � ���q�a�j � �� k � ���q�a�k � �� i�

else �if i �� j and j �� k

then a��� k � ���q�a�k � �� j � ���q�a�j � �� i�

else zeromatrix��� ����

The next set of commands de�nes three matrices to describe the gravityrelated terms� the coriolis and
centrifugal terms� and the accelerationrelated terms for the robot arm respectively�

Equation ��� De�ne the gravityrelated terms in matrix G �

�c�� g�i���trigreduce�sum�mass�j�matrix�����gr������

�u�j�i��matrix���aa�j�
	���������������j�i�n���

Equation ��� De�ne the coriolis and centrifugal terms in matrix H �

�c��� hh�i�k�m���sum�matrix�trace�du�j�k�m��inertia�j��transpose�u�j�i����j�max�i�k�m��n��

�c��� h�i����sum�sum�hh�i�k�m�thdot�k�thdot�m��m���n��k���n��expand������

Equation ��� De�ne the accelerationrelated terms in matrix D �

�c�	� d�i�k� �� expand�sum�matrix�trace�u�j�k��inertia�j��transpose�u�j�i����j�max�i�k��n���

Now that the matrices have been de�ned� the following commands calculate the results for the motion of a
robot arm with � degrees of freedom�

�c��� �n�	�al����al�	��d����d�	����aa����aa�	��l��

�c��� matrix��d������ d���	��� �d�	���� d�	�	����

� 	 	 �

� � mass l mass l �

� 	 	 � �

� mass cos�th � l � ���������� � �������� �

� 	 	 � � �

�d��� col � � � �

� 	 	 �

� mass cos�th � l mass l �

� 	 	 	 �

� ����������������� � �������� �

� 	 � �

 CHAPTER �� INTRODUCTION TO MACSYMA

� 	 	 �

� mass cos�th � l mass l �

� 	 	 	 �

� ����������������� � �������� �

� 	 � �

col 	 � � �

� 	 �

� mass l �

� 	 �

� �������� �

� � �

�c��� matrix��h����� �h�	����

� 	 	 �

� mass thdot sin�th � l �

� 	 	 	 	 �

� � ������������������������ � thdot mass thdot sin�th � l �

� 	 � 	 	 	 �

�d��� � �

� 	 	 �

� thdot mass sin�th � l �

� � 	 	 �

� ������������������������ �

� 	 �

�c��� matrix�g���� g�	���

mass cos�th � th � gr l

	 	 �

�d��� matrix��� ������������������������� � mass cos�th � gr l

	 	 �

mass cos�th � gr l mass cos�th � th � gr l

� � 	 	 �

� ��������������������� �� ���������������������������

	 	

The commands used in this example are explained more fully in subsequent chapters� Look in the index to
locate information about speci�c commands or in the Macsyma Reference Manual �

The references cited in this chapter appear on page ���� Consult �Ru or �Wa for more information about
symbolic algebra� �Va for examples of pitfalls in numerical computation� and �Go for using Macsyma to
analyze robotic mechanisms� For an historic perspective of applications using Macsyma up until ��
��
contact Macsyma Inc� for a copy of the Bibliography of Publications Referencing Macsyma� With so many
applications written in Macsyma� the company no longer publishes comprehensive listings since that time�

Chapter �

Getting Started

This chapter describes Macsyma�s user interface and explains how to communicate with Macsyma� It
describes the basic things you need to know to get started	 how to enter and exit Macsyma	 how to type
in command lines� how to refer to the results Macsyma returns in subsequent calculations� how to get help�
and how to correct errors� If you have read Chapter �� you have already seen some sample interactions with
Macsyma� Since the user interface di�ers slightly in di�erent versions of Macsyma� the best information for
getting started in Macsyma is found in the document called Your First Session With Macsyma� written for
your particular Macsyma release�

��� Entering and Exiting Macsyma

If you have a PC window system and you have installed a Macsyma icon� enter Macsyma by clicking on the
icon with your mouse� Otherwise� enter Macsyma by typing macsyma at the command processor or your
operating system� exec� or monitor level� Depending on which version of Macsyma you have� there are other
ways of entering Macsyma� Refer to the Release Notes for your version for more information�

Upon entering Macsyma� the system either prints a message telling you that Macsyma is loaded� or it prints
a herald that displays the Macsyma version number and other information pertaining to your site� For
example� in PC Macsyma ��� and its successors� the message appears something like Figure ����

C	nMACSYMA�nsystemninit�lsp being loaded�
Batching the �le C	nMACSYMA�nusernmacinit�mac

Batchload done�

�c��

Figure ���	 The Initial Macsyma ��� Message

Figure ��� shows a typical herald displayed by Macsyma ��� and its successors�

The number ����� in Figure ��� identi�es the Macsyma version� This number changes for each new release�
The input prompt� �c��� marks the �rst command line or c�line� Typing commands on the c�line is
explained in more detail in Section ���� page ���

To exit Macsyma� use the quit command� or� in a windows environment� select another window�

�

�� CHAPTER �� GETTING STARTED

This is Macsyma ����� for RS���� �AIX ����X� computers�

Copyright �c� 	
�� � 	

� Macsyma Inc� All rights reserved�

Portions copyright �c� 	
�� Massachusetts Institute of Technology�

All rights reserved�

Type DESCRIBE�TRADE SECRET���� to see important legal notices�

Type HELP����� for more information�

�tmp mnt�net�hamilton�devo�rs�����mac����system�init�lsp being loaded

�c	�

Figure ���� An Initial Macsyma ��� Herald

The quit command allows you to leave Macsyma� terminating the Macsyma session� You should use this
command only when you do not intend to continue this session� If you plan to return� you should simply
select another window� To use this command type quit���� Refer to quit in theMacsyma Reference Manual
for more information�

You can save a transcript of what goes on during your Macsyma session� For complete instructions see
Section ������ page �	��

��� Typing in Command Lines

As shown in the two Figures� a c�line prompt appears when you invoke Macsyma� When you type a
command or expression on the c�line� Macsyma generally answers by displaying a result on a corresponding
display line� called the d�line� Intermediate steps in large calculations are shown on e�lines� For an
example� see page �
�

In Macsyma� c�lines are labeled consecutively in the form �ci�� where i is the number of the current
command line� Similarly� d�lines are labeled �di� where i is the number of the corresponding c�line�
These labels provide an easy way of referring to previously typed commands and output expressions without
retyping them�

Consider the following expression��

�c�� �x � �����

�

�d�� �x � ��

The c�line above ends with a semicolon ���� Ending the line with a semicolon tells Macsyma to display

the result of the command on the screen�� In this example� the expression �x ��� is associated with the
label �d��� Macsyma then prints a new c�line prompt� �c�� in this example� for your next command�

You terminate all c�lines by typing either a semicolon or a dollar sign ���� then pressing RETURN� Ending
the command line with a dollar sign tells Macsyma not to display the result of the command� Semicolons
usually end the command lines in the examples shown here� so that you can see exactly what is going on
during a calculation� In practice� you will often use the dollar sign to �nish lines where you do not need to
see Macsyma�s result �for example� when assigning values to variables��

�The examples in each section of this document are labeled consecutively� starting with �c��� If you are following along in
Macsyma yourself� you might want to use the command kill�labels�� or better initialize macsyma��� at the beginning of
each section to reset your own c�label to �c���

�In Macsyma ��� and its successors� the semicolon may be omitted� and the return key may be used to tell Macsyma to
display the result�

���� TYPING IN COMMAND LINES ��

After entering an expression on a c�line� you can manipulate it with a variety of commands� The percent
sign ��� is a system variable whose value is the result of the most recent d�line� More generally� you can
use �th�i� to refer to the ith previous computation� Thus� �th�	� is equivalent to ��

To add � to the most recent result� the expression shown in �d���

�c�� 	 �
�

�

�d�� �x � �� �

Multiply the result shown on �d�� by z �

�c�� 	th��� � z�

�

�d�� �x � �� z

You can also refer to any d�line or c�line explicitly� as shown below�

Multiply the expression on line �d�� by �x �� �

�c�� d� � �x � ���

�

�d�� �x � ��

Even if you suppress the display of the d�line by ending the command line with a dollar sign� you can
reference it either explicitly or with ��

�c
� y � d��

�c�� z � 	�

�

�d�� z y � �x � �� �

The previous examples show that� stands for the most recent d�line� and that you can use an explicit label
to stand for any other command or display line� These facilities are useful to you only as long as you can see
the desired expression on the screen or remember its associated label� Macsyma also provides a way for you
to name an expression for later use by assigning it to a variable� For more information� see Section ������
page ���

The system provides many commands to edit the command line if you make a mistake while typing it� Refer
to your Release Notes and Your First Session with Macsyma for the editing techniques for your version of
Macsyma�

Information intended for human readers of Macsyma code or output is contained in comments� Such infor�
mation will not be evaluated by Macsyma� Comments can be included in your Macsyma session by enclosing
them in �� and ��� A comment can be of any length�

�� This is a comment� ��

�c�� x �� this is a comment too inside an

expression �� � y �� �� � ��

�d�� y � �

�c�� z� x�� �� and this �� is a nested �� comment ���

�

�d�� x

�� CHAPTER �� GETTING STARTED

��� Getting On�line Help

This section describes the facilities you can use to get on�line help during a Macsyma session� The Macsyma
on�line help system is designed so that the user can obtain nearly all help on�line� rarely referring to the
hardcopy documentation� On�line help is available through keyboard commands and� in versions of Macsyma
with modern window interfaces� through menus�

The Macsyma command help summarizes the main facilities for obtaining on�line help� To use this command
type help��� or select the �Help�menu item�

The main on�line help facilities are�

� The Interactive Primer

� The Mathematics Topic Browser

� Hypertext topic descriptions

� Executable examples and demonstrations

� Function templates

� The apropos command

� Tips

����� The Interactive Primer

The Macsyma primer presents an interactive tutorial on the fundamentals of Macsyma� including an in�
troduction to syntax� assignment� de�ning functions� and the simpli�cation commands� Type primer��� or
select the menu item �Help���Primer�to run the primer�

The primer function accepts an optional argument of scriptname� which allows the user to indicate
the topic in which they are interested� For example� primer�simplification�� enters directly at the
simplification section of the script� The possible values for scriptname are� intro� simplification�
scratchpad� syntax� and assignment�

Users who are familiar with some mathematics software may want to skip the Interactive Primer� and start
with the Mathematics Topic Browser�

����� The Mathematics Topic Browser

Sometimes you know what mathematical operation you wish to perform� but you do not know the name of the
appropriate command� or whether Macsyma has the capability which you seek� In this case you can explore
the available commands in your area of interest by using the Mathematics Topic Browser� In some versions
of Macsyma� the top level topics appear along the top of the Macsyma Front End Window� In Macsyma ���
and its successors� the top level math topics are found in the �MathHelp�� menu� Each mathematics topic
menu has a submenu of more narrowly de�ned topics to choose from� After you select a submenu� a dialog
box shows you a list of the most common commands available in this topic area� You can then choose to
�Describe� the command� to run an executable �Example�� or to open a function �Template��

In most of the topics in the Mathematics Topic Browser� the last choice is �Packages�� which provides a list
of the external packages in Macsyma in the given topical area� When you select �Packages�� the buttons
in the resulting window o�er a di�erent set of choices for help information� �Describe�� �Usage� �a more
in�depth description�� �Demo�� and �Load��

���� GETTING ON�LINE HELP ��

If you do not have a windowed version of Macsyma� type options��� to display a hierarchical menu of
topics� When you choose the topic you want to �nd out more about� a new menu appears� listing subtopics
as menu items� Choose a subtopic to further re�ne your choice�

����� Hypertext Topic Descriptions

After choosing a command in the topic browser� click on the �Describe� button to enter the database of
hypertext topic descriptions� Alternatively� if you know the name of the command or topic you need to
explore� but you are unsure of the calling syntax of the command� or exactly how it is used� you can look up
the command name by using the menu choice �Help���Index� or the Macsyma command describe�topic��

Recent releases of Macsyma contain nearly ���� topic descriptions with hypertext cross references� If you
click your mouse on one of the active words in the text� you will see a description of the topic named by that
word�

The basic description of any topic can be found by using the describe command� and more in�depth
information can be accessed by using the usage command� The describe command takes a single argument
�the name of a topic� and displays a description of the topic� which can be a command� an option� or a
concept�

If describe fails to �nd information about a feature that you think should be present� try selecting usage
to �nd a function located in an external library� Also� try using apropos �see Section ����	� to generate
other candidates that describe might know about�

The usage command prints useful information about its single argument �the name of a topic�� particularly
if the topic is an external library �le� For example� type usage�fourier�� to �nd out about the fourier
function�

����� Executable Examples and Demonstrations

We use the terms example and demo for executable sample programs which illustrate two slightly di�erent
types of topics in Macsyma�

� An example is a short program illustrating the basic use of one Macsyma command�

� A demo is a longer program illustrating either an application of Macsyma or the use of some external
package or major facility in Macsyma�

Recent releases of Macsyma include about 	�� examples and ��� demonstrations� In windowed versions
of Macsyma� all of these programs are accessible through the menu system� To see a list of demos in
your Macsyma� click your mouse on the menu item �Help� � �Demos� or �Help� � �Demo a Feature�

�depending on the version of Macsyma you are using�� You can start a Demonstration in several ways�

� Click on the name of a Demonstration in the �Help���Demos� or �Help���Demo�a�Feature� list�

� Click on the name of a Demonstration when it appears in the hypertext description of some topic�

� Type demo�topic�� �

The demo command initiates an executable demonstration� The demonstration pauses after each command
line until you press the RETURN key or the SPACE bar� To interrupt the demo� press any other key� An
interrupted demo can be continued by typing batcon���� When the demo is �nished� it prints done�

�� CHAPTER �� GETTING STARTED

The example command takes the name of a command as an argument and presents an example of that
command in a manner similar to demo� pausing after each command line until you press the RETURN key
or the SPACE bar� For example� type example�linsolve�� to display an example of the linsolve function�

You can create your own examples by placing a �le called topic�example in the example directory in your
Macsyma�

����� Function Templates

A Function Template is a dialog box which speci�es the arguments to a Macsyma command� indicating which
ones are optional� It provides blank spaces for you to �ll in the arguments to de�ne your own command�
You can obtain a Function�Template for nearly all of the functions and special forms� �but not option
variables� which appear in the Mathematics Topic Browser by pressing the button labeled �Template� in
the Mathematics Topic Browser� Recent releases of Macsyma contain function templates for ��� Macsyma
commands�

����� The apropos Command

Sometimes you know part of the name of the command you want to use� The apropos command may then
be of assistance� The apropos command takes a symbol or a string as its argument and looks through
all the Macsyma symbols with describe entries for ones containing that symbol or string� For example�
apropos�exp�� returns a long list of all the �ags and functions that have exp as part of their names� such as
exp� expand� ratexpand� trigexpand� and exponentialize� If you can only remember part of the name
of a command� you can use apropos to �nd the complete name�

For Unix�based systems only� Macsyma provides an online �manual� page for Macsyma through the shell
command man� To see it� type man Macsyma at the Unix prompt�

����� Tips

The on�line help system includes Tips � a quick and simple guide to Macsyma commands and examples of
their behavior� The Tips interface consists of a topics browser allowing you to choose the area of interest�
Tips o�ers a one�line description of a sample computation� Tips adds an example that consists of a problem
statement� code to apply� and the output of applying that code� You can browse through a number of
di�erent problems until you see a Tip similiar to your problem� Then you try the code to produce the e�ect
you want�

Since the user interface di�ers slightly in di�erent versions� you can �nd the most up�to�date information for
Tips in Macsyma in the documents for your particular Macsyma release�

Chapter �

Creating Expressions

You can perform calculations in Macsyma by acting on expressions� This chapter describes the components
of a Macsyma expression� which can include numbers� variables� operators� and constants� Using expressions
as building blocks� you will learn how to assign values to variables� create equations� and de�ne your own
functions�

Starting with the next chapter� you will learn about the many ways that you can manipulate expressions�
including expanding� simplifying� and factoring�

��� What is a Macsyma Expression�

The basic unit of information in Macsyma is the expression� An expression is made up of a combination
of operators� numbers� variables� and constants� Sections ����� through ����� describe how to use these
components to form expressions�

����� Operators

Macsyma uses familiar symbols to perform operations� Table ��� summarizes these operators in order of
priority� from lowest to highest�

Operator Description
 addition
� subtraction
� multiplication
� division
� negation

� exponentiation
� non�commutative multiplication

�� non�commutative exponentiation
� factorial
�� double factorial

Table ���� Mathematical Operators

��

�	 CHAPTER �� CREATING EXPRESSIONS

Macsyma also provides some other operators that are not discussed in this section� The ��� operator
�page ��� assigns values to variables� the ��� operator �page ��� creates equations� and the ���� operator
�page ��� de�nes functions�

Macsyma performs operations of equal priority from left to right� You can use parentheses to change the
order of evaluation� Note that� as illustrated in the examples below� the application of a function has the
highest priority�

Binding power is a measure of the amount of precedence an operator has over the operator tokens near
it� For example� the binding power of the ��� operator is greater than that of the ��� operator� so a�b�c

means a��b�c� rather than �a�b��c�

The application �in the case of the next example� sin� has a higher priority than ���

�c�� sin�a�x�y�z�����

y

� a x

�d�� sin ��

z�

To square the argument of a function� you need an extra pair of parentheses�

�c�� sin��a�x�y�z������

� � y

a x

�d�� sin��

�

z�

Notice that ��� is commutative but ��� is not�

�c�� a�b b�a � c�d d�c�

�d�� c � d d � c

The ��� operator distributes over the multiplication operator ��� �

�c�� b�� � b���

�d�� b

The ���� operator distributes over the non�commutative multiplication operator ��� �

�c
� b��� � b����

�
�

�d
� b

Notice that ��� does not distribute over ��� and that ���� does not distribute over ��� �

���� WHAT IS A MACSYMA EXPRESSION� �

�c�� b�� � b���

� �

�d�� b � b

�c�� b��� � b����

��� ���

�d�� b b

The factorial operator ��� is de�ned as n� � n�n� ���n� �� � � � � �

�c�� ���

�d�� �����

The double factorial operator ���� is de�ned as n�� � n�n � ���n � �� � � � � or n�� � n�n � ���n � �� � � � �
depending on whether n is odd or even�

�c�� ����

�d�� ���

����� Numbers

Macsyma knows about several kinds of numbers�

� Integers consist of a string of digits not containing a decimal point� For example� 	�
��� Integers
can grow very large� since their size is bounded only by the total virtual address space accessible to
Macsyma�

� Rational numbers are represented as an exact ratio of two integers� For example� ���� Macsyma
can represent any rational number� subject only to the memory limitations of your machine�

� Floats and big�oats are �oating�point numbers� They consist of a string of digits containing a
decimal point� and are optionally followed by an e� a d� or a b and an integer exponent� Examples of
�oats are ��
��� �����
�e�� and �
���d�� Examples of big�oats are �����
�b� and �
�����b	��

The size and precision of a �oating point number is limited by each machine�s hardware� so calculations
involving them can be compromised by round�o� errors� Big�oats can have any number of digits you
specify� but because of the performance penalty in using them you should use big�oats only when
necessary�

� Complex numbers are written with the imaginary unit i � which in Macsyma is written as �i� For
example� �i is written as ���i� Information about prede�ned constants� including �i� appears in
Section ������ page ��� Information about using complex numbers appears on page ��� See also �i

and constant�

� Negative numbers are any kind of number beginning with a minus sign� For example� ��� �	����
��
�����b	��

Macsyma does not limit the number of digits in an integer or rational number� but the range of nonzero
�oating�point numbers depends on your computer� For example� on Intel PCs a �oating point number
must have an absolute value between 	��e��� and ���e�� and is limited to approximately eight�digit pre�
cision� To determine the range of �oating point numbers on your machine do least positive float� and
most positive float��

�� CHAPTER �� CREATING EXPRESSIONS

When you type a number� Macsyma simply returns it�

�c�� �
�

�d�� �

�c�� ������

�d�� �����

Macsyma preserves ratios as exact numbers rather than converting them automatically to a �oating�point
approximation�

�c�� ����

�

�d��

�

At any time� however� you can use the s�oat or d�oat commands to request a �oat approximation or the
b�oat command to request a big�oat approximation�

�c�� sfloat�	��

�d�� ��

Here is a very large integer� called a bignum� the ��� in the result is Macsyma�s way of showing that the
number continues on the next line�

�c
� ���
�� ����
� ��

�d
� ��

��

��

��

��

��

��

The default precision for �oats is governed by each computer�s hardware� In this example the precision
shown is �� but in some implementations the precision is �	�

�c�� sfloat��������

�d�� �����������

You can govern the default precision of big�oats using the system variable bfprecision� whose default value
is ���

�c�� bfloat��������

�d�� ���������������

����b�

To change the default precision of big�oats� reset bfprecision�

���� WHAT IS A MACSYMA EXPRESSION� ��

�c�� bfprecision���
�

�c�� bfloat��������

�d�� ���������������

��������������������

��������������������

��������������

�������

��������������������

���������������������b�

Generally an operation with an integer and a �oating�point number results in a �oating�point number�

�c��� � � ����

�d��� ����

The following commands allow you to manipulate expressions containing complex numbers�

� realpart and imagpart return the real and imaginary parts of an expression� respectively�

� rectform returns an expression in the form a�b��i� where a and b are purely real�

� polarform returns an expression in the form r��e���i�theta� where r and theta are purely real�
and �e is the base of the natural logarithms �See page ����

Consider the following examples�

The trigonometric functions that appear below� such as sin and cos� are described more fully in Section ��	�
page ��� and the exponential command exp is covered on page ���

�c��� sin�exp�	i�y�x���

	i y � x

�d��� sin�	e �

�c��� realpart�	��

x x

�d��� sin�	e cos�y�� cosh�	e sin�y��

�c��� imagpart�d����

x x

�d��� cos�	e cos�y�� sinh�	e sin�y��

�c��� rectform�d����

x x

�d��� 	i cos�	e cos�y�� sinh�	e sin�y��

x x

� sin�	e cos�y�� cosh�	e sin�y��

The trigonometric command atan�� in �d���� returns the arctangent of y�x in the interval ���� ���

�c�
� polarform�d����

�d�
� sqrt�cos �	e cos�y�� sinh �	e sin�y��

� x � x

� sin �	e cos�y�� cosh �	e sin�y���

x x x x

	i atan��cos�	e cos�y�� sinh�	e sin�y��� sin�	e cos�y�� cosh�	e sin�y���

	e

�� CHAPTER �� CREATING EXPRESSIONS

����� Variables

Variables are named quantities� You can either bind a value to a variable� or you can leave the variable
unbound and treat it formally� Binding a value to a variable is called assignment� This section shows you
how you can use both bound and unbound variables in expressions�

To assign a value to a variable� type the name of the variable� followed by the ��� operator� followed by
the value� Don�t confuse the ��� operator� which creates equations� with the assignment operator� The
equation operator� discussed on page ��� does not assign values to variables�

When you type the name of an unbound variable� Macsyma simply returns that variable�

�c�� a�

�d�� a

Assign the value ���� to the variable a�

�c�� a������

�d�� ����

When you type the name of a bound variable� Macsyma returns its value�

�c�� a�

�d�� ����

Once bound� a stands for ���� in subsequent expressions�

�c�� a � a�

�d�� ����

You can add bound and unbound variables�

�c
� a � b�

�d
� b � ����

A single quote before a bound variable supresses evaluation�

�c�� �a�

�d�� a

Using the variable a in expressions does not change its original value�

�c�� a�

�d�� ����

Confusing results often occur when you use a variable that you do not realize you have previously assigned�
To remove a value from a variable use the remvalue command�

�c�� remvalue�a��

�d�� �a�

���� WHAT IS A MACSYMA EXPRESSION� ��

�c�� a�

�d�� a

�c��� a � b�

�d��� b � a

You can also create compound assignment statements by enclosing the assignments� separated by commas�
in parentheses� Note that Macsyma returns the value of the last statement�

�c��� �a�
� b��
��e���

�d��� �
��
��

Check the values of a and b�

�c��� a�

�d���

�c��� b�

�d��� �
��
��

Use the ev command to re�evaluate �c���� it results in the sum of the values of a and b� Note that the sum
of a �oating point number and an integer is a �oating point number�

�c��� ev�c����

�d��� �
��
��

An alternative way of entering ev�c	��� as shown below� is ��c	��

�c�
� ��c���

�d�
� b � a

You can also use remvalue to remove the values of more than one variable�

�c��� remvalue�a�b��

�d��� �a� b�

Now both a and b are unbound�

�c��� ev�c����

�d��� b � a

Section ��� showed how you can use either the system variable � or a d�label to refer to a previous
expression� Another way to refer to an expression is by name� after assigning it to a variable�

�c��� expr��num � x � y�

�d��� y � x � num

�c��� num�
��

�d���
�

Notice that the value of expr� does not change when num is assigned the value of ���

�� CHAPTER �� CREATING EXPRESSIONS

�c��� expr��

�d��� y � x � num

However� when you use ev to evaluate the expression� �� appears in place of num� The commands ev�expr	�
and ev�d	�� are equivalent�

�c��� ev�expr���

�d��� y � x �
�

Assign the result shown in �d��� to a variable named expr� �

�c��� expr��	�

�d��� y � x �
�

Check its value� noting that it is di�erent from �d����

�c��� expr��

�d��� y � x �
�

Remove the value from the variable num�

�c��� remvalue�num�

�d��� �num�

Re�evaluate expr� � noting that the result is di�erent from �d���� The command ��expr	 will give the same
result as ev�expr	��

�c�
� ev�expr���

�d�
� y � x � num

The value of expr� remains the same� even though num is unbound�

�c��� expr��

�d��� y � x �
�

These variables can be manipulated just as if they were expressions�

�c��� expr� � ��

�d��� y � x �
�

�c��� expr� � ��

�d��� � �y � x � num�

The system variable values is a list all variables that have assigned values�

�c��� values�

�d��� �expr�� expr��

���� WHAT IS A MACSYMA EXPRESSION� ��

Use the keyword all to remove values from all de�ned variables�

�c��� remvalue�all��

�d��� �expr�� expr��

You can assign a value to a variable locally� so that it is bound only for the duration of the current command�
To do so� include the variable assignment�s� after the command to be executed� separated by a comma from
the command�

In this example the variables u and v are initially unbound�

�c��� expr�u � v�

�d��� v � u

Locally bind v to �� This command is equivalent to ev�expr� v����

�c��� expr� v�
�

�d��� u �

After the command on �c��� executes� v reverts to being unbound�

�c��� v�

�d��� v

You can locally bind more than one variable at a time�

�c��� expr� v�a� u���

�d��� a � �

Macsyma provides other methods for removing values and properties from variables� Refer to remvalue

and kill in the Macsyma Reference Manual for more information�

����� Constants

Table ��� summarizes some commonly�used prede�ned constants�

Constant Description
�e Base of the natural logarithms �e�
�i The square root of �� �i�
�pi The transcendental constant pi ���
inf Real positive in�nity ���
minf Real negative in�nity ����

Table ���� Some Prede�ned Macsyma Constants

Each term in the following sum simpli�es to 	�

�c�� log�	e� � sin�	pi����

�� CHAPTER �� CREATING EXPRESSIONS

�d�� �

You can use the base of natural logarithms explicitly�

�c�� u � sqrt��� � v�

�d�� 	i v � u

�c�� 	e�	�

	i v � u

�d�� 	e

Alternatively� de�ne �e using the exponential function� �exp�

�c�� exp�u � 	i � v��

	i v � u

�d�� 	e

Re�evaluate the expression in �d�� with ev� locally binding u to � and v to �pi�

�c
� ev�	� u��� v�	pi��

�d
� �

The following notation is equivalent to the command in �c���

�c�� d�� u��� v�	pi�

�d�� �

See Section ��	� page ��� �Using Trigonometric Functions�� for examples of complex numbers� See Section 	���
page ��� �Taking Limits�� for examples using the constants inf and minf�

��� Creating Equations

You can combine expressions with the ��� operator to describe equations�

�c�� eq�m�c�� � e���r cl�

�

� e

�d�� c m �

r cl

You can manipulate equations like any other mathematical quantities�

�c�� 	�r cl�

� �

�d�� c m r cl � e

Here we solve for the r classical � Macsyma also has a powerful solve command� Refer to solve in the
Macsyma Reference Manual for more information�

���� DEFINING FUNCTIONS ��

�c�� 	�m�c���

�

e

�d�� r cl �

�

c m

The operator ��� generally does not assign a value to a variable� it merely creates an equation� To assign
a value to a variable you can use the ��� operator� described on page ���

The variable r cl is not bound by the equation operator�

�c�� r cl�

�d�� r cl

�c
� ev�eq� m����� c����

�

� e

�d
� �

� r cl

In the second and subsequent arguments to the ev command� you can use the ��� operator to locally bind
a value to a variable� In this case� ��� works like the ��� operator�

For more information about solving equations� see Chapter ��

��� De�ning Functions

To de�ne a function� use the syntax

function�arg�� arg�� � � � � argn� �� body

where function is the name of the function� argi are the formal arguments in parentheses� ���� is the function
operator� and body is any Macsyma expression involving the variables arg� through argn�

De�ne the function f

�c�� f�p� q� �� ��p�� q�� � ��q���

� � �

�d�� f�p� q� �� � p q � � q

Find the value of f at p � ��� �	� and q � ��� ��
� Because Macsyma is not limited to integers of a �xed
size� it can return the correct answer�

�c�� f��������������

�d�� �

Evaluating f at p � ��� �	��� and q � ��� ��
�� returns the wrong answer since the default precision for
�oating�point numbers is not high enough�

�	 CHAPTER �� CREATING EXPRESSIONS

�c�� f������������������

�d�� ���

The function l de�nes a line�

�c�� l�x� �� m�x � b�

�d�� l�x� �� m x � b

The following �x� y� coordinates are three points on a line�

�c
� �x��
������� y��������

x��
������� y���������

x��
������� y����������

For optimal curve �tting with respect to least square approximation� use the following formulas for the
variables m and b above� �See the LSQ package for �nding best least square �ts��

�c�� m� �x��y� � x��y� � x��y� �������x� � x� � x����y� � y� � y��� �

�x��� � x��� � x��� �������x� � x� � x������

�c�� b� �������y� � y� � y�� �m�����x� � x� � x���

Calculate the value for l����������

�c�� l�
��������

�d�� ������

Macsyma also allows you to deal with composite functions�

�c�� f�x� �� x�� � ��

�

�d�� f�x� �� x � �

�c��� g�x� �� ��x � ��

�

�d��� g�x� �� � �

x

�c��� f�g�x���

� �

�d��� � � �� � �

x

�c��� g�f�x���

�

�d��� � �

�

x � �

���� DEFINING FUNCTIONS �

�c��� f�g�����

�

�d���

�

�c��� g�f�����

�

�d���

�

You can change the de�nition of a function by rede�ning it� or remove a function de�nition using remfunc�

tion� You can also �nd out about the functions that are currently de�ned� The system variable functions
holds a list of all de�ned functions� The command dispfun displays the de�nitions of the functions you
specify�

Rede�ne g to remove its previous de�nition�

�c�
� g�x� �� x a�

�d�
� g�x� �� x a

Check which functions are currently de�ned�

�c��� functions�

�d��� �l�x�� f�x�� g�x��

Check the de�nitions for both of these functions�

�c��� dispfun�f�g��

�

�e��� f�x� �� x � �

�e��� g�x� �� x a

�d��� done

Remove the function de�nitions from f and g �

�c��� remfunction�f� g��

�d��� �f� g�

If the function you call is unde�ned� Macsyma simply returns what you typed�

�c��� f�����

�d��� f����

�� CHAPTER �� CREATING EXPRESSIONS

��� Using Lists

A list in Macsyma is an ordered set of elements� separated by commas and enclosed in square brackets� An
element of a list can be any Macsyma expression� You can assign a list as the value of a variable� and then
refer to its individual elements as subscripted variables�

Lists can be used as arguments to some commands� such as solve �Chapter �� and matrix �Chapter
��
Other commands return results in a list� including remvalue� remfunction� and solve�

�c�� list���aa�bb�cc��

�d�� �aa� bb� cc�

�c�� list���dd�ee�ff��

�d�� �dd� ee� ff�

Add the elements of the two lists together�

�c�� list��list��

�d�� �dd � aa� ee � bb� ff � cc�

Multiply the elements of the two lists together� assigning the results to list� �

�c�� list��list��list��

�d�� �aa dd� bb ee� cc ff�

Find the inner product of the two lists� notice that the result is not a list�

�c
� list��list��

�d
� cc ff � bb ee � aa dd

You can use the commands �rst� last� part� and rest to access the elements of a list� These commands
work for any expression� but are particularly useful for referring to parts of a list� In addition� the length
command returns the length of the speci�ed list� This command is useful in �nding out the number of
solutions in a list returned by solve �see Chapter ���

The �rst command returns the �rst element in the list�

�c�� first�list���

�d�� aa dd

The rest command returns a list consisting of all the elements in the list except the �rst element�

�c�� rest�list���

�d�� �ee� ff�

The last command returns the last element in the speci�ed list�

�c�� last�list���

�d�� cc

Here is how to subtract the second item in list� from the �rst item in list� �

���� USING ARRAYS ��

�c�� first�list�� first�rest�list����

�d�� aa dd bb

Here the rest command returns all but the �rst two elements�

�c��� rest�list�� ���

�d��� �ff�

The length function returns the number of the elements in the speci�ed list�

�c��� length�list�� � length�list���

�d��� �

�c��� length�list� � list���

�d��� �

You can also extract parts of a list with the part command� described in Section ���� page ��� This section
also shows you how the �rst� last� and rest commands work on other kinds of expressions�

��	 Using Arrays

In Macsyma an array is an n�dimensional data structure� Arrays enable you to refer to a collection of
elements using a single name� An element of an array is indexed by a subscripted variable� which is a
name followed by a list of subscripts enclosed in square brackets�

Macsyma supports two array types� declared and undeclared� Declared arrays have a �xed size allocation
and are indexed by non�negative integers� Undeclared arrays� called �hashed� arrays� are of arbitrary size
and indexing� If you assign a value to a subscripted variable without declaring the corresponding array� the
system sets up an undeclared array� Declared arrays are similar to the �xed�size arrays that you can declare
in other programming languages� such as FORTRAN�

To declare an array� use the command

�arrayname� �dimension�� ����dimensionn��

to declare the number of dimensions and indicate the maximum value of each subscript� The system then
allocates space for the entire array�

If you know the size of the array you will need� it is generally best to declare it� since this is more e�cient�
Undeclared arrays are less e�cient� but can grow to any size�

In the next example� Macsyma does not know about the array foo�

�c�� foo�
��

�d�� foo

Set up an undeclared array by assigning the value � to the �rst ��th�Macsyma arrays are � based� element�

�c�� my factorial������

�d�� �

�� CHAPTER �� CREATING EXPRESSIONS

De�ne the other elements of the undeclared array recursively�

�c�� my factorial�n� �� n � my factorial�n ���

�d�� my factorial �� n my factorial

n n �

Now� asking for the element in slot � returns the factorial of ��

�c�� my factorial����

�d�� �����

Declare a one�dimensional array whose maximum subscript value is ��

�c
� array�your factorial� ���

De�ne the elements of the array as factorials� similar to my factorial above�

�c�� your factorial������

�c�� your factorial�n� �� n � your factorial�n ���

Like my factorial� the array your factorial holds the factorial of ��

�c�� your factorial����

�d�� �����

Unlike the undeclared array� however� your factorial cannot handle subscripts larger than ��

�c�� my factorial����

�d�� ������

�c��� your factorial����

Array YOUR FACTORIAL has dimensions ���� but was called with ���

�d��� ��

Another example of recursion appears in Section ���	� �Writing Recursive Functions��

The system variable arrays is a list of all existing arrays� declared and undeclared�

�c��� arrays�

�d��� �my factorial� your factorial�

For hashed �undeclared� arrays� the command arrayinfo�� returns the word �hashed�� the number of
dimensions� and the subscripts of every element that has a value� For declared arrays� the command returns
the word �declared�� the number of dimensions� and the maximum value of each dimension�s subscript�

�c��� arrayinfo�my factorial��

�d��� �hashed� �� ���� ���� ���� ���� ���� �
�� ���� ���� ���� ����

�c��� arrayinfo�your factorial��

�d��� �declared� �� ����

Section
��� page ��� describes how you can use arrays to create matrices� Refer to arrays in the Macsyma
Reference Manual for more information�

Chapter �

Algebra

You can manipulate algebraic expressions in many ways� Macsyma provides facilities for expanding� simpli�
fying� and factoring expressions� making substitutions in expressions� extracting parts of an expression for
subsequent use in other commands� and using trigonometric functions�

Sections ��� through ��	 cover these topics and provide many examples using the algebraic manipulation
commands� Section ���� �Practice Problems�� presents several problems exercising these capabilities for you
to try on your own� Solutions appear in Appendix B�

Although the examples in this chapter introduce many commands and option variables� the scope of this
document allows only a limited introduction to Macsyma�s algebraic manipulation capabilities� To learn
more� consult the Macsyma Reference Manual�

��� Expanding Expressions

Macsyma provides several expansion�related commands� each of which expands its argument in a di�erent
way� The expand command� for example� multiplies out product sums and exponentiated sums� recursing
through all levels of the expression� The distrib command also distributes sums over products� but works
only at the top level of the expression�

This section presents the following commands�

� expand expands the given expression by multiplying out products of sums and exponentiated sums
at all levels of the expression�expand

� multthru multiplies a term or terms through a sum or equation�

� distrib expands the given expression by distributing sums over products�

� partfrac does a complete partial fraction decomposition� expanding an expression in partial fractions
with respect to a given main variable�

For a summary of the di�erences between expand� multthru� and distrib� see Table ���� on page ���

Macsyma also provides several option variables that you can set to modify the way the expansion commands
work� Two option variables� logexpand and radexpand� are discussed in this section�

The command expand�exp� multiplies out products of sums and exponentiated sums� splits numerators
of rational expressions that are sums into their respective terms� and distributes both commutative and
non�commutative multiplication over addition at all levels of the expression exp� Use expand�exp� p� n�� to

��

�� CHAPTER �� ALGEBRA

multiply out only terms with exponents e� such that n � e � p� Refer to expand in the Macsyma Reference
Manual for more information�

�c�� expr������a � b��� � x��a b�������

x � �

�d�� � � �

� �

�a b� �b � a�

Expand expr� � assigning the result to expr� �

�c�� expr��expand�expr���

�

x

�d��

�
 � � � � � �
 �

b � a b � �
 a b �� a b � �
 a b � a b � a

� x

�

 � � � � � �

 b � a b � � a b � a b a b � a

�

�

� � � � � �

b � � a b � � a b � � a b � a

With additional arguments� expand multiplies out speci�c terms only� �c�� expands certain terms of expr�
with positive exponents�

�c�� expr��expand�expr�� �� ���

�

x � x �

�d�� � �

� � � �

�a b� �a b� �b � a� �b � a�

Expand certain terms of expr� with negative exponents�

�c�� expand�expr�� �� ���

x � �

�d�� � � �

� � �

�a b� b � � a b � a

You can set option variables to control how much and what kind of expansions are to take place� The option
variable logexpand controls the expansion of logarithms of products and powers� and radexpand controls
the expansion of expressions containing radicals�

���� EXPANDING EXPRESSIONS ��

The log command gives the natural log of its argument in base e�

�c
� log�	e�

�d
� �

When logexpand is true� Macsyma does not simplify the logarithms of products and quotients�

�c�� logexpand�

�d�� true

�c�� log�a�b��

�d�� log�a b�

�c�� log�a�b��

a

�d�� log��

b

Resetting logexpand to all tells Macsyma to simplify these logarithms� Refer to logexpand in theMacsyma
Reference Manual for more information�

�c�� logexpand�all�

�d�� all

�c��� log�a�b��

�d��� log�b� � log�a�

�c��� log�a�b��

�d��� log�a� log�b�

When radexpand is true� Macsyma does not simplify radicals containing products� quotients� and powers

�c��� radexpand�

�d��� true

�c��� sqrt�x�y��

y

�d��� sqrt�x �

�c��� sqrt�x�y��

�d��� sqrt�x y�

�c�
� sqrt�x�y��

x

�d�
� sqrt��

y

Resetting radexpand to all tells Macsyma to simplify these radicals

�c��� radexpand�all�

�d��� all

�� CHAPTER �� ALGEBRA

�c��� sqrt�x�y��

y��

�d��� x

�c��� sqrt�x�y��

�d��� sqrt�x� sqrt�y�

�c��� sqrt�x�y��

sqrt�x�

�d���

sqrt�y�

For more information on the kinds of option variables that a�ect expansion� type apropos�expand�� or
consult the Macsyma Reference Manual�

The command multthru�exp�� exp�� multiplies each term in the expression exp�� which should be a sum
or an equation� by the expression exp�� Alternatively� the command multthru�exp� multiplies one of the
expression exp�s factors� which should be a sum� by the other factors of exp� That is� for an expression

f� � f� � ���� fn

where at least one factor fi is a sum of terms� the command multthru�f� � f� � ���� fn� multiplies
each term in the sum fi by all the other factors in the product�

Multiply each term in the sum expr� by �a� b���

�c��� multthru��a b���� expr���

� �

x � �a b� x �a b�

�d��� � �

� � �

�a b� �b � a� �b � a�

Using multthru� multiply each term in the equation by �a� b��

�c��� a � ���x�� � y�� y����a b��

�

y � �

�d��� a � � y � �� x

a b

�c��� multthru�ab� 	��

� � �

�d��� a �a b� � y � �a b� y � �� �a b� x

�c��� expr����b � a������s t��� � ��a�b��s t� � a���b����s t��

�a�b��s t����

�� � � �

�b � a� �s t� � a b �s t� � � a b �s t�

�d���

�

a b �s t�

���� EXPANDING EXPRESSIONS ��

Decompose expr� into a sum of terms� each of which is factored into lowest terms�

�c��� expr
�multthru�expr���

��

�b � a� a b �

�d��� � �

� � �

a b �s t� �s t� �s t�

The command distrib�exp� distributes sums over products in the expression exp� Unlike the expand

command� distrib works only at the top level of an expression and expands all the sums at that level�

�c�
� �x � �����u � v��� � a��w � z�����

� �

�d�
� �x � �� �a �z � w� � �v � u� �

Compare the result returned by multthru� which expands at all levels of the expression� with the results
returned by distrib and expand

�c��� multthru�	��

� �

�d��� a �x � �� �z � w� � �v � u� �x � ��

�c��� distrib�d�
��

� � � �

�d��� a x �z � w� � a �z � w� � �v � u� x � �v � u�

�c��� expand�d�
��

� � � � �

�d��� a x z � a z � � a w x z � � a w z � a w x � v x � � u v x � u x

� � �

� a w � v � � u v � u

Table ��� summarizes the di�erences between distrib� multthru� and expand�

exp distrib�exp� multthru�exp� expand�exp�

�a� b��c� d� bd� ad� bc� ac �b� a�d� �b� a�c bd� ad� bc� ac

�

�a� b��c� d�

�

�b� a��d� c�

�

�b� a��d� c�

�

bd� ad� bc� ac

�b�d� c�����f �a� b�d�c�f�f�ab�d�c��a �b�d�c����f�a�b�d�c���� bdf�bcf�f�abd�abc�a

Table ���� A Comparison of distrib� multthru and expand

The partfrac�exp� var� command performs a complete partial fraction decomposition� expanding the ex�
pression exp in partial fractions with respect to the main variable var �

�	 CHAPTER �� ALGEBRA

�c��� ����a � b��� � x��a b�������

x � �

�d��� � � �

� �

�a b� �b � a�

�c��� partfrac�	� a��

�

x � x x x x

�d��� �

� � � � � � � �

�a b� � b �b � a� � b �b � a� � �a b� b � �a b� b

� x �

� �

� �

� �a b� b �b � a�

��� Simplifying Expressions

Macsyma provides many commands that simplify expressions� The following simpli�cation commands are
described in this section�

� ratsimp simpli�es an expression by combining the rational functions in the expression� then canceling
out the greatest common divisor in the numerator and denominator�

� radcan simpli�es expressions containing radicals� logarithms� and exponentials�

� scsimp implements the sequential comparative simpli�er� which applies given identities to an expres�
sion in an e�ort to obtain a smaller expression�

� combine and rncombine group the terms in a sum that have the same denominator into a single
term�

� xthru combines the terms of a sum over a common denominator without expanding them �rst�

� map can apply a given function� such as a simpli�cation command� to each term of a very large
expression� This can be useful when applying the function to the entire expression would be ine�cient�

This section also introduces the option variables algebraic and ratfac�

The command ratsimp�exp� simpli�es the expression exp and all of its subexpressions� including the argu�
ments to nonrational functions� With additional arguments� ratsimp �exp� var�� var�� � � � � varn� speci�es
the ordering of each variable var i as well�

ratsimp �rst combines the sum of rational functions �quotients of polynomials� into one rational function�
then cancels out the greatest common divisor of this rational function�s numerator and denominator�

�c�� �x�
 x���x �� � x � x�� � x�� � x�� � �a � b � c����

���� SIMPLIFYING EXPRESSIONS �

x x � � � �

�d�� � x � x � x � x � �c � b � a�

x �

Simplify the expression in �d�� with the ratsimp command�

�c�� ratsimp�	��

� � � � � � � �

�d�� c � �� b � � a� c � �� b � � a b � � a � c � b � � a b � � a b � a

Simplify the following expression with Macsyma�s normal ordering of variables�

�c�� d��w � a��x � c��w � a��x � b�d � b�c � c�d�

�d�� d �w � a� x � c �w � a� x � cd � b d � b c

�c�� ratsimp�	��

�d�� ��d � c� w � a d � a c� x ��c � b� d � b c

Resimplify �d��� ordering d �rst and c second�

�c
� ratsimp�d�� c� d��

�d
� d ��w � a� x � c � b� � c ��w � a� x � b�

In �c�� and �d�� Macsyma simpli�ed the terms containing the variable x to zero� but it returned the expanded
result of �a b c��� which is the canonical form of the polynomial� With some practice� you will learn to
use the various simpli�cation commands to transform an expression into the form you want�

You can set the option variable ratfac to true to invoke a partially factored form for canonical rational
expressions�

Bind ratfac to true for the duration of this command� and simplify the expression in �d���

�c�� ratsimp�d�� c� d�� ratfac�true�

�d�� �d � c� ��w � a� x � b�

By setting the option variable algebraic to true� you can indicate that algebraic integers are to be simpli�ed�
By default� this variable is false�

�c�� ���sqrt�x� ���

�

�d��

sqrt�x� �

�c�� ratsimp�	��

�

�d��

sqrt�x� �

Locally bind algebraic is true� then use ratsimp to rationally simplify the expression in �d���

�� CHAPTER �� ALGEBRA

�c�� ratsimp�	�� algebraic�true�

sqrt�x� � �

�d��

x �

The simpli�cation command radcan�exp� handles expressions containing radicals� logarithms� and exponen�
tials�

Here we simplify an expression using radcan�

�c��� �log�x�� � x� log�x���a�log�x � ����a���

� �	e�x ����	e��x��� � ��

� sqrt�x�� y����sqrt�x y��

� � � a x

sqrt�x y � �log�x � x� log�x�� 	e �

�d��� � �

sqrt�x y� a�� x��

log�x � �� 	e � �

�c��� radcan�	��

a�� x��

�d��� sqrt�y � x� � log�x � �� � 	e �

The command scsimp�exp� rule� � � � � � rulen� applies each identity rulei to the expression exp� If the
expression that results from the application of these identities is smaller� the scsimp repeats the process� If
the resulting expression is not smaller after all the identities are applied� the command returns the original
expression exp�

Use scsimp to simplify expr� � subjected to the constraints eq� and eq� as simpli�cation rules

�c��� expr���k��k� k��k� k��k���k����

k� k� k� k� k� k�

�d���

�

k�

�c��� eq��k��k� k��k� � ��

�d��� k� k� k� k� � �

�c��� eq��k��k� � k��k� � ��

�d��� k� k� � k� k� � �

�c�
� scsimp�expr�� eq�� eq���

k�

�d�
�

k�

The command combine�exp� groups terms with the same denominator into a single term�

Using multthru� write this expression as a sum of fractions�

�c��� ��b � a������s t��� � ��a�b��s t� � a���b����s t�� �a�b��s t����

���� SIMPLIFYING EXPRESSIONS ��

�� � � �

�b � a� �s t� � a b �s t� � � a b �s t�

�d���

�

a b �s t�

�c��� m expr�multthru�	��

��

�b � a� a b �

�d��� � �

� � �

a b �s t� �s t� �s t�

The command xthru�exp� combines all terms of the expression exp� which should be a sum� over a common
denominator� without expanding products and exponentiated sums the way multthru does�

Combine the terms of the expression m expr over a common denominator�

�c��� xthru�m expr��

��

�b � a� �s t� � a b �a b � ��

�d���

�

a b �s t�

Combine all terms with the same denominator into a single term�

�c��� cd expr�x�a � y�a � z��� � a��

z y x

�d��� � �

� a a a

�c��� combine�cd expr��

z y � x

�d��� �

� a a

�c��� rncombine�cd expr��

z � �y � � x

�d���

� a

The command map�function� exp� applies a function� such as a simpli�cation command� to each term of
an expression exp� The map command is useful when applying a function to a large expression would be
ine�cient� Refer to map in the Macsyma Reference Manual for more information�

�c��� map�f� cd expr��

z y x

�d��� f�� � f�� � f��

� a a a

�� CHAPTER �� ALGEBRA

��� Factoring Expressions

Macsyma provides a number of commands and option variables to factor expressions� This section presents
the following commands�

� factor factors an expression into factors irreducible over the integers�

� cfactor factors an expression with respect to one variable� using complex numbers� including radicals�

� factorsum tries to separate the terms in a sum into groups that can have common factors� then factors
them�

The section also presents examples of the option variable dontfactor�

To factor irreducibly� you can use the command factor�exp�� where exp is an expression containing any
number of variables or functions�

Factor an expression irreducibly over the integers� Macsyma does not necessarily return a simpli�ed result�

�c�� x��� � ��

��

�d�� x � �

�c�� factor�	��

� �� �� �� �� � �

�d�� �x � �� �x x � x x � x x � ��

This command does not return x��� as might be expected�

�c�� 	 ��

� �� �� �� �� � �

�d�� �x � �� �x x � x x � x x � �� �

You can resimplify the result before applying it to other commands�

�c�� ratsimp�	��

��

�d�� x

Macsyma �nds only those factors whose coe�cients are polynomials in the coe�cients of the input polyno�
mial�

�c
� a�x�� ��a�

�

�d
� a x � a

�c�� factor�	��

�d�� a �x �� �x � ��

The factor command does not perform algebraic extensions during the factoring process� x��� is irreducible
over the integers�

�c�� a�x�� ��a�

�

�d�� a x � a

���� FACTORING EXPRESSIONS ��

�c�� factor�	��

�

�d�� a �x ��

The cfactor command factors with complex numbers and radicals�

�c�� cfactor��a�x�� ��a�� x��

�d�� a�x sqrt���� �x � sqrt����

When you solve a polynomial using the function solve �discussed in Chapter ��� Macsyma calls the function
factor to factor it� if necessary� If the factors are of degree � or less� Macsyma applies standard formulas to
generate the solution�

The command factorsum�exp� tries to separate the terms of exp� which should be a sum� into groups that
can have common factors� then factors them�

Here we enter an expression to be factored�

�c��� �x � �����u � v��� � a��w � z�����

� �

�d��� �x � �� �a �z � w� � �v � u� �

Then we expand the expression� assigning the result to the variable expr� �

�c��� expr��expand�	��

� � � � �

�d��� a x z � a z � � a w x z � � a w z � a w x � v x � � u v x � u x

� � �

� a w � v � � u v � u

Notice that the factor command does not return the expression shown in �d����

�c��� factor�expr���

� � � �

�d��� �x � �� �a z � � a w z � a w � v � � u v � u �

The command factorsum can convert the expression back into the original factored form�

�c��� factorsum�expr���

� �

�d��� �x � �� �a �z � w� � �v � u� �

You can set dontfactor to a list of variables for which factoring is disabled in subsequent commands�

�� CHAPTER �� ALGEBRA

�c��� expr���x���y�� ���x�y�� � y�� x�� ��x �������y�� � ��y � ���

� � � � �

x y � � x y � y x � x �

�d���

�

�� �y � � y � ��

Set dontfactor to a list containing the variable x � which is to be left unfactored�

�c�
� dontfactor��x��

�d�
� �x�

�c��� factor�expr���

�

�x � � x � �� �y ��

�d���

�� �y � ��

Reset dontfactor to an empty list� so that the factoring of x is enabled again� Note the di�erence between
�d��� and �d�	��

�c��� dontfactor����

�c��� factor�expr���

�

�x � �� �y ��

�d���

�� �y � ��

��� Making Substitutions

Macsyma allows you to perform many kinds of substitution� such as substituting one expression for another
in a third� This section presents the following commands�

� ev evaluates a given expression in the speci�ed environment�

� subst makes replacements by substitution� with some restrictions on the expression being replaced�

� ratsubst is similar to subst� but without the restrictions on the expression being replaced�

The ev�exp� arg�� � � � � argn� command allows you to re�evaluate an expression� specifying a replacement for
some variable in that expression� Refer to ev in the Macsyma Reference Manual for more information�

�c�� expr���z�	e�z�

z

�d�� z 	e

Here ev replaces every occurrence of z with x� in expr�� by temporarily binding z to x�� then re�evaluating
expr�� �

���� MAKING SUBSTITUTIONS ��

�c�� ev�expr���z�x����

�

� x

�d�� x 	e

In the next example� �c�� shows an equivalent notation for performing this replacement

�c�� expr��� z�x���

�

� x

�d�� x 	e

The variable expr�� itself does not change�

�c�� expr���

z

�d�� z 	e

To make replacements by substitution� you can use the command subst	a� b� c
� where a is the expression
you want to substitute for expression b in expression c� The argument b must be an atom �i�e� a number�
a string� or a symbol� or a complete subexpression of c� When b does not have these characteristics� use
ratsubst	a� b� c
 instead�

Substitute x � for z in expr�� � the actual value of expr�� does not change�

�c
� subst�x��� z� expr����

�

� x

�d
� x 	e

A form which is equivalent to the one above uses the ��� operator�

�c�� subst�z � x��� expr����

�

� x

�d�� x 	e

To change the value of expr�� � reassign it�

�c�� expr���subst�a���b��� z� expr����

� �

� � a b

�d�� a b 	e

�� CHAPTER �� ALGEBRA

�c�� expr���

� �

� � a b

�d�� a b 	e

We set expr�� to an expression which contains four atoms� a� b� c� and d � and two complete subexpressions�
d and c b a�

�c�� expr����a � b � c��d�

c � b � a

�d��

d

The subst command cannot replace a b because it is not a complete subexpression of expr�� �

�c��� subst�d� a � b� expr����

c � b � a

�d���

d

Use ratsubst to perform the replacement�

�c��� ratsubst�d� a � b� expr����

d � c

�d���

d

The subst command makes only syntactic substitutions�

�c��� expr���expand��� � sin�x������

� � �

�d��� sin �x� � � sin �x� � � sin �x� � � sin�x� � �

�c��� subst�� cos�x���� sin�x���� expr����

� � �

�d��� sin �x� � � sin �x� � � sin�x� � � �� cos �x�� � �

�c��� ratsubst�� cos�x���� sin�x���� expr����

� � �

�d��� �� � cos �x�� sin�x� � cos �x� � cos �x� � �

You can specify the subexpression to replace explicitly� as shown above� Macsyma also provides commands
for indicating the parts of an expression by their position� These commands appear in the next section�

���� EXTRACTING PARTS OF AN EXPRESSION ��

��� Extracting Parts of an Expression

You have many commands available for extracting parts of Macsyma expressions for use in other contexts�
This section presents the following commands�

� part returns the subexpression you specify� according to its position in the expression� Table ����
page ��� summarizes how to use this command�

� dpart is similar to part except that it returns the entire expression� with the selected subexpression
displayed inside a box�

� substpart substitutes the characters you specify for the indicated subexpression� then returns the new
value of the expression�

� pickapart assigns intermediate display lines �e�lines	 to all subexpressions of an expression� down to
a speci
ed depth�

� reveal displays an expression to the speci
ed integer depth� indicating the length of each part�

� lhs and rhs return the left and right sides of the given equation� respectively�

� �rst and last return the
rst and last part of the speci
ed expression� respectively�

� rest returns the expression with one or more of its leading elements removed�

� coe� and ratcoef return the coe�cient of a given variable in the speci
ed expression�

In addition� the system variable piece holds the last expression selected with one of the part extraction
commands� The variable piece is set during the execution of the part extraction command and thus can be
used within the command itself�

To extract part of an expression you can use part�exp� n	� where exp refers to an equation or expression�
and n is an integer that represents the part you want� Table ��� summarizes the rules for using the part

command�

Here part is used to extract the second part of eq� �

�c�� eq��x�� � �	x � �
 y�� � �

� �

�d�� x � � x � �
 y � �

�c�� part��� ��

�

�d�� y � �

Now we can extract the
rst part of the result shown in �d�	�

�c�� part��� ��

�

�d�� y

Notice in Table ��� that part � is always the operator and the arguments are the successive parts� The
equation a�b is interpreted by the part command as if it were in the functional notation ���a�b�� similar
to f�x�y�z��

�� CHAPTER �� ALGEBRA

Command exp�f�x� y� z�� exp�a�b�

part�exp� �� f �

part�exp� �� x a

part�exp� 	� y b

part�exp�
� z

Table ���� Using the part Command

With additional arguments� part�exp� num�� � � � � numn	 allows you to obtain the part of the expression exp
speci
ed by part num�� then
nd the num� part of the resulting expressions� and so on�

This command is equivalent to �c�	 and �c�	 above�

�c�� part�eq������

�

�d�� y

The command dpart�exp� num�� � � � � numn	 is similar to part� except that instead of simply returning
the speci
ed subexpression� this command returns the entire expression with the selected subexpression
displayed inside a box�

In addition� the system variable piece holds the last expression selected with one of the part selection
commands� such as part� dpart� and substpart �below	�

Select a part of the expression big expr� to be highlighted with a box in the output

�c�� big�expr���x�� � �	x�� � �	x � ����d��x�� � �	x�� � �	x � �� � n�

� �

x � � x � � x � �

�d�� �������������������������

� �

x � � x � � x � �

n � d

�c�� dpart�big�expr�� �� �� ��

� �

x � � x � � x � �

�d�� ������������������������������

																								

	 � � 	

	 x � � x � � x � � 	

																								

n � d

Return the value of piece� whose value is the subexpression selected by dpart above�

�c�� piece

� �

�d�� x � � x � � x � �

���� EXTRACTING PARTS OF AN EXPRESSION ��

The command substpart�x � exp� num�� � � � � numn	 substitutes x for a subexpression then returns the new
value of the expression exp� You can indicate the subexpression for substpart just as you do for part� by
specifying the arguments exp� num�� � � � � numn�

Note that x can be some operator to be substituted for an operator of exp� In some cases� you might need
to enclose x in double quotes� for example� the command substpart����� ab� ��� returns b � a�

Here we factor the part of big expr� selected by dpart� then substitute back into the expression�

�c�� substpart�factor�piece�� big�expr�� �� �� ��

� �

x � � x � � x � �

�d�� �������������������

�

�x � ��

n � d

The command pickapart�exp� depth	 assigns e�labels to all subexpressions of the expression exp down to
the speci
ed integer depth� You will
nd this command useful for dealing with large expressions� and in
order to assign parts of expressions to variables without having to use the part command�

Display subexpressions of big expr� down to the second level� assigning each subexpression to an e�label�

�c�� big�expr��log�a	x�� � b	x � c���

� ���� � ��y�������

� exp���i	cos���	a � b � c��

� a�	sin�a	x�� � b���

� x	y

� � � � �

�d�� � x y � ����������� � log �a x � b x � c� � a� sin �a x � b�

�

sqrt�� � ��

y

� �i cos�c � b � �� a�

� �e

�c��� pickapart�big�expr�� ��

�e��� x y

�

�e��� �����������

�

sqrt�� � ��

y

�

�e��� log�a x � b x � c�

� �

�e��� sin �a x � b�

�e��� � �i cos�c � b � �� a�

e�� �

�d��� �e � a� e�� � e�� � e�� � e��

�� CHAPTER �� ALGEBRA

The command reveal�exp� depth	 displays the expression exp to the speci
ed integer depth� indicating the
length of each part�

Use reveal to break down the expression big expr� to a depth of ��

�c��� reveal�big�expr�� ��

Note that reveal displays sums as Sum�n�� products as Product�n�� quotients as Quotient� and exponentials
as Expt�

� �

�d��� � x y � ������������������ � log �a Expt � b x � c�

sqrt�Quotient � ��

� � �i cos�Sum����

� a� sin �Product��� � b� � �e

The command lhs extracts the left hand side of an equation� and the command rhs extracts the right�

Use rhs to extract the right side of the equation below�

�c��� eq��eq� � �

� �

�d��� x � � x � �
 y

�c��� rhs���

�

�d��� y

Use lhs to extract the left side of eq� �

�c��� lhs�eq��

�

�d��� x � � x � �

If the expression is not an equation� lhs returns the entire expression and rhs returns ��

�c��� lhs���

�

�d��� x � � x � �

�c��� rhs���

�d��� �

The command �rst�exp	 returns the
rst part of the expression exp� and the command last�exp	 returns
the last part of the expression exp� The command rest rest�exp	 returns the expression with its leading
element removed� With an additional argument� rest�exp� num	 returns the expression exp with the
rst
num terms removed�

Display the
rst term in the expression big expr� �

�c��� first�big�expr��

�d��� � x y

���� EXTRACTING PARTS OF AN EXPRESSION ��

Display the last term in the expression big expr� �

�c��� last�big�expr��

� �i cos�c � b � �� a�

�d��� �e

Display all the terms in the expression big expr� except the
rst�

�c��� rest�big�expr��

� � � � �

�d��� � ����������� � log �a x � b x � c� � a� sin �a x � b�

�

sqrt�� � ��

y

� �i cos�c � b � �� a�

� �e

Display all the terms in the expression big expr� except the
rst two�

�c��� rest�big�expr�� ��

� � � � � �i cos�c � b � �� a�

�d��� log �a x � b x � c� � a� sin �a x � b� � �e

The commands �rst� last� and rest are also useful for dealing with lists� as shown on page ��� The com�
mands realpart and imagpart return the real and imaginary parts of the speci
ed expression� respectively�
Examples of these commands appear on page ���

The commands coe� and ratcoefratcoef �also known as ratcoe�	 take as arguments an expression� a
variable in the expression for which you want the coe�cient� and optionally� a power to which the variable
is raised� Both functions return the coe�cient�

�c��� c�expr�a	x���b	x�c

�

�d��� a x � b x � c

�c��� coeff�c�expr� x�

�d��� b

�c��� coeff�c�expr� x� ��

�d��� a

�c��� ratcoef�c�expr� x�

�d��� b

�c��� ratcoef�c�expr� x� ��

�d��� a

The function ratcoef expands and rationally simpli
es the expression before
nding the coe�cient� and thus
can produce answers di�erent from coe�� which is purely syntactic�

�c��� rc�expr��a	x�b���

�� CHAPTER �� ALGEBRA

�

�d��� �a x � b�

�c��� coeff�rc�expr� x�

�d��� �

�c��� ratcoef�rc�expr� x�

�d��� � a b

The function coe� is acting on the expression �ax � b	� where �ax � b	 is seen as a single entity� On the
other hand� ratcoef
rst expands the expression �as in �d��		 and then looks for coe�cients of x in the
expanded expression�

�c��� expand�rc�expr�

� � �

�d��� a x � � a b x � b

��� Using Trigonometric Functions

This section outlines macsyma�s trigonometric functions� Table ��� summarizes the names of the circular
and hyperbolic trigonometric functions and their inverses� The derivatives of all these functions are also
provided�

Circular functions Inverse circular functions Hyperbolic functions Inverse hyperbolic functions
sin asin sinh asinh
cos acos cosh acosh
tan atan tanh atanh
cot acot coth acoth
sec asec sech asech
csc acsc csch acsch

Table ���� Trigonometric Functions and their Inverses

����� Evaluating Trigonometric Functions

Macsyma always numerically evaluates trigonometric functions �such as sin and cos	 that have �oating�
point arguments� To avoid introducing approximations prematurely� it does not do so automatically for
trigonometric functions that have integer arguments� In cases where Macsyma can return an exact value�
however� a number can result�

This section presents the following commands�

� exponentialize converts the given expression containing trigonometric functions to an exponential
with complex variables�

� demoivre converts the given exponential with complex variables to a trigonometric function�

���� USING TRIGONOMETRIC FUNCTIONS ��

Several option variables control the evaluation of trigonometric functions� numer� exponentialize� and
�emode are introduced in this section�

You can evaluate trigonometric functions with integer arguments numerically by setting the option variable
numer to true�

Macsyma does not return a �oating�point approximation for �c�	�

�c�� sin���

�d�� sin���

But since �c�	 simpli
es to �� a number results�

�c�� sin���

�d�� �

Use numer to obtain the numeric value for sin�����

�c�� sin���� numer�true

�d�� ��������

The system is aware of special values of trigonometric functions at points n��m� where m � �� �� �� �� �� ��
and n is an integer�

De
ne a function f in terms of the trigonometric function sin�

�c�� f�z��
 sin�z��� � �

�

�d�� f�z� �
 sin �z� � �

Evaluate f at z � x � ��

�c�� f�x � ��

�

�d�� sin �x � �� � �

Similarly� you can evaluate the following expression at the point x � ����

�c�� cos�x��� � sin�x���

� �

�d�� cos �x� � sin �x�

�c�� �� x
�pi��

�

�d�� � �

�

You need not convert these expressions to �oating point immediately� Macsyma can perform many symbolic
operations on expressions involving trigonometric functions� For example� you can di�erentiate and integrate
them �see Chapter � for details	�

�Some implementations of Macsyma return �����������������	�

�� CHAPTER �� ALGEBRA

When you set the option variable exponentialize to true� subsequent computations convert trigonometric
functions to exponentials with complex variables� You can also use the command exponentialize�exp	�
which performs the same transformation on a given expression�

�c�� exponentialize�true

�d�� true

�c�� sin�x�

�i x � �i x

�i ��e � �e �

�d�� � ����������������������

�

�c��� exponentialize�false

�d��� false

�c��� tan�x���i	cos�y��sin�z�

�d��� � sin�z� � �i cos�y� � tan�x�

Find the real and imaginary parts of the expression t expr �

�c��� t�expr�exponentialize���

�i z � �i z �i y � �i y

�i ��e � �e � �i ��e � �e �

�d��� ���������������������� � ����������������������

� �

�i x � �i x

�i ��e � �e �

� ����������������������

�i x � �i x

�e � �e

�c��� imagpart�t�expr�

�d��� cos�y�

�c��� realpart�t�expr�

sin�x�

�d��� ������ � sin�z�

cos�x�

To convert back to exponentials with complex variables back to trigonometric functions� use the command
demoivre�exp	�

�c��� demoivre�t�expr�

sin�x�

�d��� � sin�z� � �i cos�y� � ������

cos�x�

Exponentials with complex arguments of the form n��m� where m � �� �� �� �� �� �� and n is an integer� are
transformed into algebraic numbers if the option variable �emode is set to true �the default	�

�c��� �emode

���� USING TRIGONOMETRIC FUNCTIONS ��

�d��� true

�c��� t�expr� x
 �pi

�i z � �i z �i y � �i y

�i ��e � �e � �i ��e � �e �

�d��� ���������������������� � ����������������������

� �

����� Expanding and Simplifying Trigonometric Expressions

You can expand expressions involving trigonometric functions� This section presents the following commands�

� trigexpand expands expressions that contain trigonometric and hyperbolic functions of sums of angles
and of multiple angles�

� trigreduce combines products and powers of the trigonometric and hyperbolic functions for a speci
ed
variable and tries to eliminate these functions when they occur in the denominator�

� trigsimp converts expressions containing functions such as tan and sec to contain sin� cos� sinh�
and cosh instead� so that trigreduce can further simplify the expressions�

The option variables trigexpand� trigexpandplus� trigexpandtimes� and halfangles are also described
in this section�

The command trigexpand�exp	 converts trigonometric functions with arguments of the form nx �where n
is an integer	 to the form x in the expression exp� Setting the option variable trigexpand to true causes
full expansion of all expressions containing sines and cosines�

Expand an expression involving trigonometric functions

�c�� t�expr��sin��	x � y� � cos��	a�

�d�� sin�y � � x� � cos�� a�

�c�� trigexpand�t�expr��

� �

�d�� cos�� x� sin�y� � sin�� x� cos�y� � sin �a� � cos �a�

Setting the option variable trigexpand to true causes the full expansion of sines and cosines in t expr�

�c�� trigexpand�t�expr��� trigexpand�true

� � �

�d�� �cos �x� � sin �x�� sin�y� � � cos�x� sin�x� cos�y� � sin �a�

�

� cos �a�

The option variable trigexpandplus controls the sum rule for trigexpand� By default� trigexpandplus
is true� so Macsyma expands sums like sin�x�y�� Similarly� the option variable trigexpandtimes controls
the product rule for trigexpand� By default� trigexpandtimes is true� so that Macsyma expands products
like sin�	y��

To simplify half angles in trigonometric expressions� set the option variable halfangles to true�

�c�� t�expr��sin��	x� � cosh�y�z� � tan�yz���

�� CHAPTER �� ALGEBRA

yz

�d�� cosh�z � y� � tan���� � sin�� x�

�

�c�� trigexpand�t�expr��

yz

�d�� � sinh�y� sinh�z� � cosh�y� cosh�z� � tan���� � � cos�x� sin�x�

�

Locally bind trigexpandtimes to false to inhibit the expansion of products in t expr� �

�c�� trigexpand�t�expr��� trigexpandtimes�false

yz

�d�� � sinh�y� sinh�z� � cosh�y� cosh�z� � tan���� � sin�� x�

�

Locally bind trigexpandplus to false to inhibit the expansion of sums in t expr� �

�c�� trigexpand�t�expr��� trigexpandplus�false

yz

�d�� cosh�z � y� � tan���� � � cos�x� sin�x�

�

Expand the expression� inhibiting expansion of sums and products� and simplifying half angles�

�c�� trigexpand�t�expr���

trigexpandtimes�false�

trigexpandplus�false�

halfangles�true

� � cos�yz�

�d�� cosh�z � y� � ����������� � sin�� x�

sin�yz�

Using the command trigreduce�exp� var	� you can perform the inverse operation of trigexpand by con�
verting products and powers of trigonometric functions into functions with multiple angles� If you do not
specify a variable var � trigreduce uses all the variables in the expression�

�c�� t�expr��trigexpand�sin��	z� � sin��	y��

�d�� � cos�z� sin�z� � � cos�y� sin�y�

�c��� trigreduce�t�expr��

�d��� sin�� z� � sin�� y�

�c��� trigreduce�t�expr�� z�

�d��� sin�� z� � � cos�y� sin�y�

�c��� trigreduce�t�expr�� y�

�d��� � cos�z� sin�z� � sin�� y�

The command trigsimp�exp	 uses the identity rules

���� EVALUATING SUMMATIONS ��

sin� x � cos� x � � and cosh� x� sinh� x � �

to convert expressions containing functions such as tan and sec to contain sin� cos� sinh� and cosh instead�
so that trigreduce can further simplify the expressions�

Consider the expression below�

�c��� t�expr�����sin�x��	�sec�x� � tan�x��

�cos�x� � �cosh�x��� � sinh�x������ � �

� � �

�d��� �� � sin�x�� �tan�x� � sec�x�� � �cosh �x� � sinh �x�� � cos�x� � �

You can use either of two methods to simplify this expression�

Method �

�c��� trigsimp�t�expr��

�d��� �

Method �

�c��� ratsubst�cosh�x��� � �� sinh�x���� t�expr��

�d��� �� � sin�x�� tan�x� � sec�x� sin�x� � sec�x� � cos�x�

�c��� subst�sin�x��cos�x�� tan�x�� ��

�� � sin�x�� sin�x�

�d��� ������������������� � sec�x� sin�x� � sec�x� � cos�x�

cos�x�

�c��� trigreduce�ratsimp����

�d��� �

Alternatively� you can reduce t expr� as follows�

�c��� t�expr�� exponentialize� ratsimp

�d��� �

��� Evaluating Summations

This section explains how you can perform summations using the following commands�

� sum performs a summation of the given values as an index ranges over speci
ed values from low to
high�

� nusum performs the inde
nite summation of an expression with respect to a speci
ed variable�

� sumcontract combines all sums of an addition that have upper and lower bounds that di�er by
constants�

� intosum takes all factors by which a summation is multiplied� then puts them inside the summation�

�� CHAPTER �� ALGEBRA

This section also provides examples of the option variables simpsum� To obtain a sum� you can use the
command sum sum�exp� index � low � high	 where exp is any Macsyma expression� index is the index of
summation� and low and high are the lower and upper limits of the sum� respectively�

Obtain the sum of i � for i � �� 	� ���� �

�c�� sum�i��� i� �� ��

�d�� ��

You can obtain the same result using the for statement �see page ���	�

�c�� for i thru � do �s�s � i���

�d�� done

�c�� s

�d�� s � ��

You can evaluate the unbound variable s at s � � as follows�

�c�� ev���s
 ��

�d�� ��

Alternatively� you can re�evaluate �d�	� Macsyma evaluates all the variables in it and re�executes all function
calls�

�c�� ev�d��

�d�� s � ���

If you set simpsum to true� and the lower and upper limits of the sum do not di�er by an integer� sum
simpli
es its result� Sometimes this can produce a closed form�

To obtain an inde
nite summation of a Macsyma expression use the command nusum�exp� var � low � high	�
This command performs inde
nite summation of the expression exp with respect to the variable var � where
low and high are the lower and upper limits of the sum� respectively�

Macsyma also lets you de
ne expressions containing sums that are not evaluated or summable in closed form�
Do this by placing a single quote before sum or by supplying an unde
ned function as the exp argument to
sum�

Prevent evaluation of the sum using the single quote�

�c�� y
�sum�a�i�	x�i� i� �� ��

�

� i

�d�� � a x

� i

i
 �

�c�� fro�ev��� sum�

���� EVALUATING SUMMATIONS ��

� � � � �

�d�� y
 a x � a x � a x � a x � a x � a x � a

� � � � � � �

�c�� sum��x�i � y�i�	�x�i � y�i�� i� �� n�

n

� i i i i

�d�� � �x � y � �y � x �

�

i
 �

Macsyma can perform the summation with simpsum set to true�

�c�� ev��� sum� simpsum�true�

� �n � �� � � �n � �� �

abs�x� � x abs�y� � y

�d�� �������������������� � ��������������������

� �

x � � y � �

Consider the following expression�

�c��� expr�i���	i�� � ����

i

�d��� �����������

� �

�� i � ��

Even with simpsum set to true� Macsyma cannot perform this summation�

�c��� sum�expr� i� �� n�� simpsum�true

n

� i

�d��� � �����������

� � �

 �� i � ��

i
 �

Use the nusum command to successfully sum the expression expr �

�c��� nusum�expr� i� �� n�

�� CHAPTER �� ALGEBRA

n �n � ��

�d��� ������������

�

� �� n � ��

You can also use sum in conjunction with other Macsyma commands�

�c��� tobesum��sum�cos�k	x�	k� k� �� n�

n

�

�d��� � k cos�k x�

�

k
 �

The following sequence of commands yields the desired result�

�c��� exponentialize�sum�sin�k	x�� k� �� n��

n

 �i k x � �i k x

� �i ��e � �e �

�d��� � �� ���������������������������

� �

k
 �

�c��� ev��� sum� simpsum�true�

� �i �n � �� x � �i x �i �n � �� x �i x

�i ��e � �e � �i ��e � �e �

�d��� �������������������������������� � ����������������������������

� �i x �i x

� ��e � �� � ��e � ��

�c��� ev�demoivre���� ratsimp� trigreduce�

sin�n x � x� sin�n x� sin�x�

�d��� ������������ � ������������ � ������������

� cos�x� � � � cos�x� � � � cos�x� � �

�c��� tobesum
 diff��� x�

���� EVALUATING SUMMATIONS ��

n

� � sin�x� sin�n x � x� �n � �� cos�n x � x�

�d��� � k cos�k x�
 ��������������������� � ��������������������

� � � cos�x� � �

 �� cos�x� � ��

k
 �

�

� sin�x� sin�n x� n cos�n x� � sin �x� cos�x�

� ����������������� � ������������ � ��������������� � ������������

� � cos�x� � � � � cos�x� � �

�� cos�x� � �� �� cos�x� � ��

The command sumcontract�expr	 combines all sums of an addition expression expr that have upper and
lower bounds that di�er by constants� This results in an expression that contains one summation for each
set of such summations� and also includes all appropriate extra terms that had to be extracted to form this
sum� sumcontract combines all compatible sums and uses one of the indices from one of the sums if it can�
then tries to form a reasonable index if it cannot use any of those supplied�

The command intosum�expr	 take all factors by which a summation is multiplied� then puts them inside
the summation� If the index is used in the outside expression� intosum tries to
nd a reasonable index� as
it does for sumcontract�

The following example uses the power series method to solve a di�erential equation� illustrating some of the
applications of the summation commands�

�c��� depends�y� x��

�c��� eq�diff�y� x� �� � diff�y� x� � �	x	y

�

d y dy

�d��� ��� � �� � � x y

� dx

dx

The origin is a regular point� so the solution can be expressed as a convergent series of this form�

�c��� pseries�y
 �sum�a�n�	x�n� n� �� inf�

inf

� n

�d��� � a x

� n

n
 �

Substitute the equation above into the original di�erential equation and carry out the derivative�

�c��� ev�eq� pseries� diff�

�� CHAPTER �� ALGEBRA

inf inf inf

� n � n � � � n � �

�d��� � �x � a x � � n a x � � �n � �� n a x

� n � n � n

n
 � n
 � n
 �

You can re�express the previous line as follows�

�c��� subst��� n� part��� �� ��� � substpart��� �� �� ��

inf inf inf

� n � n � � � n � �

�d��� � �x � a x � � n a x � � �n � �� n a x

� n � n � n

n
 � n
 � n
 �

� a

�

�c��� subst��� n� part��� �� ��� � substpart��� �� �� ��

inf inf inf

� n � n � � � n � �

�d��� � �x � a x � � n a x � � �n � �� n a x

� n � n � n

n
 � n
 � n
 �

� � a � a

� �

Let n � � � m in the second summation� n � � � m in the third summation above�

�c��� part��� ��� �� ���

� changevar�part��� ��� n
 � � m� m� n�

� changevar�part��� ��� n
 � � m� m� n�

���� EVALUATING SUMMATIONS ��

inf inf

� n � � m � �

�d��� � �x � a x � � �m � � m � �� a x

� n � m � �

n
 � m
 �

inf

� m � �

� � �m � �� a x � � a � a

� m � � � �

m
 �

�c��� sol�sumcontract�intosum����

inf

� � n � � n � �

�d��� � ��n � � n � �� a x � �n � �� a x

� n � � n � �

n
 �

n � �

� � a x � � � a � a

n � �

Equate the coe�cient of each power of x to zero�

�c��� a��solve�part��� ��� ���� a����

a

�

�d��� �a
 � ���

� �

�c��� part�sol� �� ��

� n � � n � � n � �

�d��� �n � � n � �� a x � �n � �� a x � � a x

n � � n � � n

�c��� solve��� a�n � ���

�n � �� a � � a

n � � n

�d��� �a
 � ����������������������

n � � �

n � � n � �

�c��� first���

�� CHAPTER �� ALGEBRA

�n � �� a � � a

n � � n

�d��� a
 � ���������������������

n � � �

n � � n � �

The
rst
ve coe�cients are�

�c��� �ev��� n
 ���

ev��� n
 ���

ev��� n
 ���

ev��� n
 ���

first�a���

� a � � a � a � � a � a � � a

� � � � � �

�d��� �a
 � ������������ a
 � ������������ a
 � ������������

� �� � �� � ��

� a � � a a

� � �

a
 � ������������ a
 � ���

� � � �

So the solution is�

�c��� trunc�ev�fro� �� expand��

� � � � � �

a x a x a x a x a x a x

� � � � � �

�d��� y
 a � a x � ����� � ����� � ����� � ����� � ����� � �����

� � � � � �� � ��

� � �

� a x � a x �� a x

� � �

� ������� � ������� � �������� � � � �

�� ��� ���

Recall that this problem could also have been done with the ode command�

���� PRACTICE PROBLEMS ��

�c��� ode�eq� y� x� odeseries�

MANYTERM RELATION

� � � � � �

a x a x a x a x a x a x

� � � � � �

�d��� �y
 a � a x � ����� � ����� � ����� � ����� � ����� � �����

� � � � � �� � ��

�

� a x

�

� ������� � � � ��

��

��� Practice Problems

Using the commands that you have learned about in this chapter� solve the following problems� Answers
appear on page ����

Problem � � Write a function that performs the following substitution�

� �

sin �x�
 � � cos �x�

Your function should work for all x � Test the function on the expression sin�y��
�

Problem � � Write a function that performs the following substitution�

� � � cos�� x�

sin �x�
 ������������

�

Your function should work for all x � but it should not work for high terms� Test the function on the
expressions sin�y��	 and sin�y��
�

Problem � � Show that the expression below reduces to zero�

� � � � � � � �

�sqrt�r � a � � a� �sqrt�r � b � � b� sqrt�r � b � � sqrt�r � a � � b � a

��������������������������������������� � �������������������������������������

� � � � �

r sqrt�r � b � � sqrt�r � a � � b � a

�� CHAPTER �� ALGEBRA

Problem � � Express

� � �

��������� � ��������� � �b � a� �d � c�

� �

�y � x� �z � y�

as

� � �

� ����������������� � �������� � �������� � b d � a d � b c � a c

� � � �

�y � x� �z � y� �z � y� �y � x�

Problem � � Consider the expression

�d � c� ��w � a� x � b�

Show that this expression can be expressed as each of the following�

a� d w x � c w x � a d x � a c x � b d � b c

b� �d � c� �w � a� x � b �d � c�

c� d �w � a� x � c �w � a� x � b d � b c

d� ��d � c� w � a d � a c� x � b d � b c

e� d ��w � a� x � b� � c ��w � a� x � b�

f� �d � c� w x � a �d � c� x � b �d � c�

Problem � � Consider the expression

d �w � a� x � c �w � a� x � b d � b c

Show that this expression can be expressed as each of the following�

a� �d � c� �w x � a x � b�

b� �d � c� ��w � a� x � b�

Problem 	 � Consider the expression

log��b � a� d � �b � a� c� z � log��b � a� d � �b � a� c� y

� log��b � a� d � �b � a� c� x � w

Show that this expression can be expressed as each of the following�

a� log��b � a� �d � c�� �z � y � x� � w

b� log��b � a� d � �b � a� c� �z � y � x� � w

���� PRACTICE PROBLEMS ��

Problem � � Express

�

������������

� �

log �x� � x

as

a�

� �

��������������������� � ���������������������

� log�x� �log�x� � x� � �x � log�x�� log�x�

b�

� �

���������������� � ����������������

� x �log�x� � x� � x �log�x� � x�

Problem � � Express

x � �

�����������

sqrt�x� � �

as

sqrt�x� �x � �� � x � �

�����������������������

x � �

Problem � � Evaluate

n

�

� k sin�k x�

�

k
 �

�� CHAPTER �� ALGEBRA

Problem �� � Evaluate

m

� � n

� n �

�

n
 �

Chapter �

Solving Equations

Macsyma has powerful capabilities for solving and obtaining roots of equations� This chapter presents the
following commands�

� solve solves a system of simultaneous linear or nonlinear polynomial equations for the speci
ed variable
and returns a list of the solutions�

� linsolve solves a system of simultaneous linear equations for the speci
ed variables and returns a list
of the solutions�

� taylor solve computes a series solution to a univariate system of equations�

� nroots
nds the number of real roots in the speci
ed real univariate polynomial in a given interval�

� allroots
nds all the real and complex roots of a speci
ed real polynomial� which must be univariate
and can be an equation�

� realroots
nds all of the real roots of a univariate polynomial within a speci
ed tolerance�

� roots
nds all of the roots of a univariate polynomial with real or complex coe�cients and can be an
equation�

This section also discusses the system variable multiplicities and the option variables globalsolve� sol�
vetrigwarn� algexact� solveexplicit� solveradcan� and rootsepsilon�

Although the examples in this chapter introduce many commands and option variables� the scope of this doc�
ument allows only a limited introduction to Macsyma�s equation solving capabilities� For more information�
consult the Macsyma Reference Manual�

The command solve�exp� var	 solves the expression exp for a single variable var � You can use the form
solve�exp	 if exp is univariate� If exp is not an equation� Macsyma sets the expression equal to zero in order
to solve it�

When you solve a polynomial with solve� Macsyma uses the factor command to factor it� if necessary� If
the factors are of degree � or less� Macsyma applies standard formulas to generate the solution�

The system variable multiplicities contains a list of the multiplicities of the individual solutions returned
by solve�

�c�� neq�x�� � �	x�� � �	x � �
 �

� �

�d�� x � � x � � x � �
 �

��

�� CHAPTER �� SOLVING EQUATIONS

�c�� ans�solve�neq� x�

�d�� �x
 �� x
 ��

Macsyma returns only two answers� but there should be three� the system variable multiplicities indicates
that two of the solutions are x � ��

�c�� multiplicities

�d�� ��� ��

Verify the second solution in �d�	 by re�evaluating the equation neq with x � ��

�c�� ev�neq� last�ans��

�d�� �
 �

Since e is not an equation� Macsyma sets it equal to zero to solve it�

�c�� e���x��� � �	x��� � x� � �

� �

�d�� � x� � � x� � x� � �

You need not specify the variable to solve for� since e is univariate�

�c�� sol���x��solve�e��

�d�� �x�
 �� x�
 � �� x�
 ��

��� Solving Linear Equations

To solve a system of simultaneous linear equations� you can use the command linsolve��eqn�� � � � � eqnn��
�var�� � � � � varn�	� where the
rst list gives the equations to be solved and the second list gives the unknowns
to solve for� Note that linsolve does not check to make sure the equations are linear�

Consider this system of linear equations�

�c�� list�of�eqs��eq���	zz � b	yy � a	xx � �� eq���	zz � �	yy � a
 ���

eq����	zz � ��	yy � �	a
 ����

�c�� list�of�vars��xx� yy� zz��

Solve these equations for the variables xx � yy � and zz�

�c�� linsolve�list�of�eqs� list�of�vars�

��� a � ���� b � � a � �� �� a � ��� � a � ��

�d�� �xx
 � �������������������������� yy
 ����������� zz
 ���������

�� a �� ��

In general the �� operator does not assign a value to a variable� so xx � for example� is unbound�

�c�� xx

���� SOLVING NON�LINEAR EQUATIONS ��

�d�� xx

If you set the option variable globalsolve to true� Macsyma can bind the variables being solved for to their
corresponding solutions� If a variable has multiple solutions� however� setting globalsolve to true has no
e�ect�

To bind xx � yy � and zz to the solutions that linsolve returns� set globalsolve to true�

�c�� linsolve�list�of�eqs� list�of�vars�� globalsolve�true

��� a � ���� b � � a � �� �� a � ��� � a � ��

�d�� �xx � � �������������������������� yy � ����������� zz � ���������

�� a �� ��

�c�� xx

��� a � ���� b � � a � ��

�d�� � �������������������������

�� a

��� Solving Non	Linear Equations

To solve a system of simultaneous �non	linear polynomial equations� use the command solve ��eq�� � � � � eqn��
�varn� � � � � varn�	� where the
rst list gives the equations to be solved and the second list gives the variables
for which to solve� In the next example we set the variable eqs to a system of three nonlinear equations�

�c�� eqs��x	y	z
 ���

�z � y � x
 ���

��	z � �	y � �	x
 �a�

�d�� �x y z
 ��� � z � y � x
 � �� � � z � � y � � x
 � a�

Solve these nonlinear equations for the variables x � y � and z �

�c�� solve�eqs� �x� y� z��

� � � �

sqrt�a � �� a � ��� a � ��� a � ���� � a � �� a � ��

�d�� ��x
 ���

� a � ��

� � �

sqrt�a � �� sqrt�a � �� a � �� a � ��� � a � �� a � ��

y
 a � �� z
 ���

� a � ��

� � � �

sqrt�a � �� a � ��� a � ��� a � ���� � a � �� a � ��

�x
 � ���

� a � ��

�� CHAPTER �� SOLVING EQUATIONS

� � �

sqrt�a � �� sqrt�a � �� a � �� a � ��� � a � �� a � ��

y
 a � ��z
� ���

� a � ��

When you use solve on an equation containing trigonometric functions� Macsyma prints out a warning that
some solutions might be lost� To inhibit this warning message� set the option variable solvetrigwarn to
false�

Solve the trigonometric equation below for x � notice that Macsyma displays a warning message�

�c�� eq�asin�cos��	x��	�x � ��

�d�� �x � �� asin�cos�� x��

�c�� solve�eq� x�

SOLVE is using arc�trig functions to get a solution�

Some solutions may be lost�

�pi

�d�� �x
 ���� x
 ��

�

Solve the equation again� this time inhibiting the warning message�

�c�� solve�eq� x�� solvetrigwarn�false

�pi

�d�� �x
 ���� x
 ��

�

You can set the option variable solveexplicit to true to inhibit solve from returning implicit solutions
�that is� solutions of the form f �x 	 � �	�

Setting the option variable solveradcan to true makes the solve command slower� but allows it to solve
certain problems containing exponentials and logs�

�c�� eq�����x � �� � ��x � �

x � � x

�d�� � � � � � �

The solve command returns an implicit solution�

�c�� solve�eq� x�

x x � �

�d�� ��
 � � ��

Inhibit the implicit result by binding solveexplicit to true�

�c�� solve�eq� x�� solveexplicit�true

�d�� ��

The solve command can return an explicit result to this problem if you set solveradcan to true�

���� SOLVING NON�LINEAR EQUATIONS ��

�c�� solve�eq� x�� solveradcan�true

log�� � �i� log��i � ��

�d�� �x
 ������������ x
 ������������

log��� log���

By setting the option variable algexact to true� you can request Macsyma to make every attempt to return
exact solutions� Although this option does not guarantee that an exact solution will be found� Macsyma will
return an approximate solution only when all else fails�

Solve the equations for x and y �

�c��� equations���	x�� � y��
 ��� x	y � x
 ��

� �

�d��� �� x � y
 ��� x y � x
 ��

The
rst solution� x � � and y � �� is exact� but the other solutions are �oating�point approximations

�c��� solutionsn�solve�equations� �x� y��

�d��� ��x
 �� y
 ��� �x
 ���������� �i � �����������

y
 ����������� � ��������� �i�� �x
 � ���������� �i � �����������

y
 ��������� �i � ������������� �x
 � ���������� y
 � �����������

You can iteratively check the solutions that solve found �see the description of for on page ���	

�c��� for sol in solutionsn do print�ev�equations� sol� ratsimp� keepfloat�true��

����� � �����������������e��� �i
 ��� ���
 ��

������������������e��� �i � ����
 ��� ���
 ��

������������������
 ��� �����������������
 ��

���
 ��� �
 ��

�d��� done

Locally bind algexact to true� telling Macsyma to try harder to
nd exact solutions� since the results are
long� suppress the display of the d�line�

�c��� solutionse�solve�equations� �x� y��� algexact�true�

You can iteratively check the solutions that solve found� Note that the result of solutionse given here is
exact� while the result of solutionsn is only approximate�

�c��� for sol in solutionse do disp�ev�equations�sol�radcan��

���
 ��� �
 ��

���
 ��� �
 ��

���
 ��� �
 ��

���
 ��� �
 ��

�d��� done

�� CHAPTER �� SOLVING EQUATIONS

��
 Finding Numerical Roots

Macsyma can
nd the numerical roots of a univariate polynomial� The allroots�poly	 command
nds all
the real and complex roots of the real polynomial poly � which must be univariate and can be an equation�

The roots�poly	 command
nds all the real and complex numerical roots of the real polynomial poly � which
must be univariate and can be an equation� roots also accepts polynomials whose coe�cients can have
real or complex coe�cients as well as constants such as �e or �pi� In many practical situations� roots is
preferred over allroots�

The realroots�poly � bound	 command
nds all of the real roots of univariate polynomial poly within a
tolerance of bound � You can specify bound as small as you like to achieve any desired accuracy� �If you do
not specify bound � Macsyma uses the value of the option variable rootsepsilon� whose default is ���e���	

The nroots�poly � high� low	 command
nds the number of real roots in the real univariate polynomial poly
in the half open interval from low to high� If you do not specify low and high� nroots assumes that low is
minf and high is inf�

The following example uses nroots� realroots� allroots and roots to
nd the numerical roots of an equa�
tion�

Macsyma has a routine for
nding the roots of a univariate polynomial�

�c�� eq����x������ � �	x � �

�

x

�d�� ��� � � x � �

���

Find the roots of eq��	 in the interval inf to minf�

�c�� nroots�eq����

�d�� �

Find the real roots of eq��	 �

�c�� realroots�eq����� numer�true

�d�� �x
 � ��������� x
 ���������� x
 ���������

For more accuracy� specify a smaller tolerance�

�c�� realroots�eq���� ���e���� numer�true

�d�� �x
 � ���������� x
 ���������� x
 ����������

Find all the real and complex roots of the real polynomial�

�c�� e�����allroots�eq����

�d�� �x
 ���������� x
 � ��������� x
 �������� �i � �����������

x
 � �������� �i � ����������� x
 ���������

���� FINDING APPROXIMATE SYMBOLIC SOLUTIONS ��

Find all the real and complex roots of the real polynomial using roots�

�c�� roots�eq����

�d�� �x
 ���������������d� 	 �i � ����������������d��

x
 � ���������������d� 	 �i � ����������������d��

x
 � ����������������d�� x
 ����������������d��

x
 ����������������d��

To
nd numerical roots of equal expressions� see newton in the Macsyma Reference Manual�

��� Finding Approximate Symbolic Solutions

The example in Section ��� found the numerical roots of the polynomial eq��	 � Sometimes� however� a
symbolic solution can provide more insight into a problem� You can solve this problem symbolically using
the command

taylor solve �eq � dep var � ind var � point � truncation	

This command attempts to compute a series solution y�dep var �dependent variable	 to e�y�x��eq � The
solution y will be a series at p�point in v�ind var �independent variable	 truncated to order t�truncation�

Note� The taylor solve command does not currently handle di�erential equations and multivariate systems
of equations�

Using solve doesn�t work�

�c�� solve�eq�x��	e��	x���x�

�

�d�� ��
 e x � � x � ��

You can obtain an approximate solution by using taylor solve� The k� symbols in one of the solutions are
the undetermined coe�cients that satisfy the last equation� k�� � ��

�c�� sol�taylor�solve�eq�x�e�������

� e k� � �

�d���T� ��x
 � � ��� � � � ��� �x
 ���� � �� � � � �� k�
 ���

� ��� ��� ��

e

The next command re�expresses the solutions in a clearer form by substituting the undetermined coe�cients
back into the solution returned by taylor solve� See Chapter �� for a description of the for statement�

�c�� �temp��first�sol��temp��last�sol��undcoef�solve�last�last�sol���k���

for c in undcoef do temp��endcons�ev�first�temp���c��temp���trunc�expand�temp����

��� ���

� e � � �i � �

�d�� �x
 � � ��� � � � �� x
 � �� � ������� � � � �� x
 � �� � ���� � � � ��

� ��� �� ��� �� ���

e e

�� CHAPTER �� SOLVING EQUATIONS

��� ���

� � �i � �

x
 � �� � ������� � � � �� x
 � �� � ���� � � � ��

�� ��� �� ���

e e

Macsyma also provides two option variables that you can use in conjunction with the taylor solve command
to control order selection and coe�cient selection� These are introduced in practice problem �� on page ���

For more information on Macsyma�s Taylor series facilities� see Section ����

��� Practice Problems

Using the commands that you have learned about in this chapter� solve the following problems� Answers
appear on page ����

Problem � � Find the four roots of the equation below�

� � �

x � � x � �� x � �� x � �
 �

Problem � � Consider the following equation�

�

� x �

x � ���� � �������
 �

���� �������

a� Find the number of real roots�

b� Find all real roots�

c� Find all numerical roots�

Problem � � Solve the three equations below for �x � y � z 	�

z � y � x
 �

y z � x z � x y
 � ��

� � �

z � y � x
 ���

Problem � � Solve the two equations below for �x� y	�

�

x y � y
 �

y � � x
 �

Problem � � Solve the three equations below for �x � y � z 	

� z � �� y � a x
 � b

���� PRACTICE PROBLEMS ��

� � z � � c y � x
 �

� y � x
 c

a� with globalsolve set to false�

b� with globalsolve set to true� then remove the values bound to x � y � z �

Problem � � Solve the equations below for �x � y � z 	�

� �

y � x
 �

� � x z
 �

Problem 	 � Macsyma provides two methods for selecting only certain solutions returned by taylor solve�
When set to true� the option variable taylor solve choose iorder allows you you to supply the order of
the particular solution you want interactively� Similarly� when the option variable
taylor solve choose coef is set to true� you can choose which of the multiple solutions for a coe�cient
equation you want�

Consider the following equation�

� � � � �

e x � e x � x � � x � x � �
 �

For small e�

a� Determine the two�term expansions for the equation above�

b� Solve the equation with taylor solve choose order set to true�

c� Solve the equation with taylor solve choose coef set to true�

�� CHAPTER �� SOLVING EQUATIONS

Chapter �

Calculus

This chapter explains how to perform calculus operations using Macsyma� including di�erentiating and
integrating expressions� taking limits� computing Taylor and Laurent series� solving ordinary di�erential
equations� performing summations� and taking Laplace transforms�

Although the examples in this chapter introduce many commands and option variables� the scope of this
document allows only a limited introduction to Macsyma�s calculus capabilities� To learn more� consult the
Macsyma Reference Manual�

��� Di�erentiating Expressions

Macsyma provides a facility for di�erentiating expressions� This section presents the following commands�

� di� di�erentiates an expression with respect to the given variables�

� gradef de
nes the gradients for each derivative of a function with respect to the function�s arguments�

� depends declares functional dependencies for variables to be used by di��

� at evaluates an expression with the variables assuming the values as speci
ed for them in an equation
or list of equations�

In addition� the option variable derivabbrev controls the display of derivatives as subscripts�

Use the command di��exp� var � num	 to di�erentiate the expression exp num times with respect to the
variable var � Alternatively� you can use the command di��exp� var�� num�� � � � � varn� numn	 to di�erentiate
the expression exp with respect to each variable vari numi times�

�c�� expr�cosh�x	y�

�d�� cosh�x y�

The command di��exp� var	 di�erentiates an expression exp once with respect to a variable var �

�c�� diff�expr� x�

�d�� y sinh�x y�

Di�erentiate the expression expr twice with respect to x �

��

�� CHAPTER �� CALCULUS

�c�� diff�expr� x� ��

�

�d�� y cosh�x y�

Di�erentiate the expression expr twice with respect x and once with respect to y �

�c�� diff�expr� x� �� y� ��

�

�d�� x y sinh�x y� � � y cosh�x y�

To inhibit evaluation� precede the command with a single quote� Macsyma returns the �noun form�

�c�� �diff�expr� x� ��

�

d

�d�� ��� �cosh�x y��

�

dx

To evaluate the derivative� use ev�

�c�� ev��� diff�

�

�d�� y sinh�x y�

You can di�erentiate prede
ned functions� such as f � as shown below�

�c�� f�y� z� �
 y�z

z

�d�� f�y� z� �
 y

�c�� diff�f�y� z�� y� �� z� ��

z � � z � � z � �

�d�� y log�y� �z � �� z � y z � y �z � ��

The command di��exp	 returns the total di�erential of the expression exp� The total di�erential is the
sum of the derivatives of exp with respect to each of its variables times the function del of the variable�
Macsyma does not o�er any further simpli
cation of del�

�c�� diff�expr�

�d�� x sinh�x y� del�y� � y sinh�x y� del�x�

To declare functional dependencies for variables to be used by di�� use the command depends�funlist��
varlist�� � � � � funlistn� varlistn	 where each list of functions funlisti depends on the corresponding list of
variables varlisti�

The system variable dependencies is a list of all the dependencies declared with depends� Use the
command remove�object � feature	 to remove a feature� such as dependency� from an object �

�c��� diff�u	v� x� �� y� ��

��	� DIFFERENTIATING EXPRESSIONS ��

�d��� �

The functions u and v depend on the variables x and y �

�c��� depends��u� v�� �x� y��

�d��� �u�x� y�� v�x� y��

�c��� diff�u	v� x� �� y� ��

� � � � � �

du d v d u dv d v du d v d u dv d u

�d��� �� ��� � � ����� �� � u ������ � � �� ����� � ��� �� � ������ v

dx � dx dy dy � dy dx dy � dx �

dy dx dy dy dx dy

Alternatively� you can state the dependencies explicitly as follows�

�c��� diff�w�x�� x�

d

�d��� �� �w�x��

dx

Check to see the dependencies that are currently in e�ect�

�c��� dependencies

�d��� �u�x� y�� v�x� y��

The command remove can eliminate a previously declared dependency�

�c��� remove��u� v�� dependency�

�d��� done

When you know only the
rst derivative of a function and you want to obtain derivatives of higher order�
you can de
ne gradients� The command gradef�f�x�� � � � � xn	� g�� � � � � gn	 de
nes the gradients g�� � � � � gn for
each derivative of the function f with respect to the function�s arguments x� � � � � � xn�

De
ne the gradients for each derivative of the function h with respect to its arguments� n and x �

�c��� gradef�h�n� x�� �diff�h�n� x�� n�� �	n	h�n � �� x��

�d��� h�n� x�

�c��� diff�h�n� x�� n� ��

�

d

�d��� ��� �h�n� x��

�

dn

�� CHAPTER �� CALCULUS

�c��� diff�h�n� x�� x� ��

�d��� � �n � �� �n � �� n h�n � �� x�

The following example converts the Laplacian from Cartesian coordinates to cylindrical coordinates�

Set up dependencies for the function u�

�c��� depends�u� �r� t� z��

�d��� �u�r� t� z��

Another acceptable format for de
ning gradients with gradef is shown below�

�c��� gradef�r� x� x�r�

�d��� r

�c��� diff�r� x�

x

�d��� �

r

�c��� �gradef�r� y� y�r�� gradef�t� x� �y�r���� gradef�t� y� x�r�����

�c��� diff�u� x� �� � diff�u� y� �� � diff�u� z� ���

�c��� ratsubst�r�� � x��� y��� ��

� � �

� d u d u � d u du

r ��� � ��� � r ��� � r ��

� � � dr

dz dt dr

�d��� ����������������������������

�

r

�c��� laplacian�cyl�multthru���

�

d u

��� du

� � � ��

d u dt d u dr

�d��� ��� � ��� � ��� � ��

� � � r

dz r dr

You can set the variable derivabbrev to true to display derivatives as subscripts�

�c��� derivabbrev�true�

���� INTEGRATING EXPRESSIONS ��

�c��� laplacian�cyl

u u

t t r

�d��� u � ���� � u � ��

z z � r r r

r

��� Integrating Expressions

This section describes how you can integrate Macsyma expressions� Section ����� explains how you can
perform inde
nite integration� and Section ����� explains how you can perform de
nite integration�

����� Inde�nite Integration

This subsection presents the following command�

� integrate
nds the inde
nite �or de
nite	 integral of an expression with respect to a variable�

This section also introduces the option variables logabs� intanalysis� and laplace call� which allow you
to control some aspects of integration� See Section ���� page ��� for a detailed summary of the intanalysis
option variable�

Use the command integrate�exp� var	 to
nd the inde
nite integral of the expression exp with respect to
the variable var �

This section also introduces the option variable logabs which controls the use of absolute values in some
integrals containing log�

�c�� i�expr����y��������y � ��

�

�d�� ������������

���

�y � �� y

Find the inde
nite integral of the expression i expr� with respect to y �

�c�� integrate�i�expr�� y�

��� ��� ���

�d�� � log�y � �� � � atan�y � � log�y � ��

Macsyma uses di�erent algorithms for integrate and di�� so you can check the result of integration with
di��

�c�� radcan�diff��� y��

�� CHAPTER �� CALCULUS

�

�d�� �����������

��� ���

y � y

Macsyma can integrate expressions involving trigonometric functions and other prede
ned functions �includ�
ing user�de
ned functions	�

�c�� sin�x���	cos�x���

� �

�d�� cos �x� sin �x�

�c�� integrate��� x�

� �

� sin �x� � � sin �x�

�d�� � ���������������������

��

�c�� integrate��th���� x�� exponentialize�true

� �i x � �i x

�i �e �i �e �i x � �i x

�d�� � �� ����������� � ����������� � � �i �e � � �i �e

� �

� � �i x � � �i x

�i �e �i �e

� ������������� � �����������������

� �

De
ne a function f � then integrate it�

�c�� f�x� �
 ��sqrt�a	x�� � b�

�

�d�� f�x� �
 ��������������

�

sqrt�a x � b�

Macsyma sometimes asks you about the sign of a quantity during integration� suitable responses are p�

�positive	� n� �negative	� and z� �zero	�

�c�� integrate�f�x�� x�

Is a positive or negative�

p

Is b positive or negative�

p

���� INTEGRATING EXPRESSIONS ��

sqrt�a� x

asinh�����������

sqrt�b�

�d�� ����������������

sqrt�a�

You can use the assume or assume pos command to answer Macsyma�s queries in advance�

�c�� assume�a � �� b � ��

�d�� �a � �� b � ��

�c��� integrate�f�x�� x�

sqrt�a� x

asinh�����������

sqrt�b�

�d��� ����������������

sqrt�a�

You can remove assumptions set up with the assume command using forget�

�c��� forget�a � �� b � ��

�d��� �a � �� b � ��

Note that integrate knows only about explicit dependencies� it is not a�ected by dependencies set up with
the depends command�

To inhibit evaluation� precede the command with a single quote� Macsyma returns the �noun form�

�c��� i�expr���integrate�x��a � x�� x�

�

� x

�d��� I ����� dx

� a � x

�

To evaluate the integral� use ev�

�c��� assume�a � x�

�d��� �a � x�

�c��� ev�i�expr�� integrate�

�d��� � a log�x � a� � x

The option variable logabs is false by default� When logs are generated during the integration of certain
expressions� such as integrate���x� x��� this setting causes Macsyma to return the answers in terms of
log������ Setting logabs to true causes Macsyma to return these answers in terms of log�abs�������
where abs is the absolute value command�

�c��� ev�i�expr�� integrate� logabs�true�

�d��� � x � a log�a � x�

�� CHAPTER �� CALCULUS

When Macsyma cannot integrate an expression� it returns the unintegrated expression as a noun form�

�c��� integrate�sin�sin�x��� x�

�

�

�d��� I sin�sin�x�� dx

�

�

����� De�nite Integration

This section discusses exact symbolic and numerical de
nite integration� For �oating point numerical inte�
gration� see Section ������ This subsection presents the commands

� integrate
nds the inde
nite �or de
nite	 integral of an expression with respect to a variable�

� lde�nt returns the de
nite integral of the speci
ed expression by using the command limit �see
page ��	 to evaluate the inde
nite integral of the expression�

� changevar makes the speci
ed change of variable in all integrals occurring in the given expression�

This section also introduces the option variables intanalysis and laplace call� which allow you to control
some aspects of integration�

You can use the command integrate�exp� var � high� low	 to
nd the de
nite integral of the expression exp
with respect to the variable var from low to high�

�c�� integrate�log���x���� � x���� x� �� ��

�d�� log���

You can use the option variable intanalysis to customize Macsyma�s de
nite integrator� When intanalysis

is true� Macsyma tries to determine whether an integral is absolutely convergent before performing the
integration by checking for poles in the interval of integration� When false� intanalysis turns o� this
time�consuming check� assuming that absolute convergence is assumed until proven otherwise� Since this
procedure can lead to wrong answers if poles exist� you should use the false setting with caution�

Table ��� summarizes the di�erences between setting intanalysis to true or false�

In the following example� the option variable showtime is set to true so that you can compare the relative
speeds of the calculations� depending on the setting of intanalysis�

�c�� showtime�true�

Time
 � msec

The
rst command below uses intanalysis set to true� the second uses it set to false� Notice that in this
case both settings return the same answer� but a setting of true takes more time because the function de�nt
checks for poles in the interval of integration� A setting of false bypasses this time consuming check� but
can lead to incorrect results if there are poles� Use the false setting with caution�

�c�� integrate����x�� � a�� x� �� inf�� intanalysis�true

Is a positive� negative� or zero�

���� INTEGRATING EXPRESSIONS ��

Setting of

intanalysis

Pros Cons

true You can have greater con
dence in the

result of integration�

The calculation of the integral takes

longer with the convergence check�

The information returned by convergence

testing might be of interest�

Macsyma might make several queries
during integration about the signs of

quantities�

The range of parameters for which the

result is valid can be returned�

An expression that can be integrated
might be returned as a noun form
instead� if Macsyma cannot determine its

convergence�

The algorithm for determination of

convergence might not work in all cases�

false Integration is faster� Results must be used with care� since

they could be wrong�

Macsyma makes fewer queries about the

signs of quantities�

All convergence information is lost�

All integratable expressions are

integrated�

Often the result returned is purely
symbolic� giving no indication of the

range of its validity�

Table ���� Summary of the intanalysis Option Variable

�� CHAPTER �� CALCULUS

p

Principal Value

Time
 ����� msecs

�d�� �

�c�� integrate����x�� � a�� x� �� inf�� intanalysis�false

Is a positive or negative�

p

Time
 ����� msecs

�d�� �

When Macsyma cannot determine if there are poles in the interval of integration� it prints a message and
continues with the integration as though intanalysis were false�

�c�� integrate�exp���i	a � b�	x�� x� �� inf�� intanalysis�true

INTEGRATE could not determine whether there are poles in the

interval of integration�

Continuing���

Is a positive� negative� or zero�

p

Time
 ����� msecs

b �i a

�d�� ������� � �������

� � � �

b � a b � a

�c�� integrate�exp���i	a � b�	x�� x� �� inf�� intanalysis�false

Is a positive� negative� or zero�

p

Time
 ����� msecs

b �i a

�d�� ������� � �������

� � � �

b � a b � a

�c�� showtime�false�

If you are convinced that a function is best integrated through inde
nite integration� then take limits at the
end points using the command lde�nt�exp� var � low � high	� The function lde�nt integrates the expression
exp inde
nitely with respect to the variable var and takes limits at the endpoints low and high� See page ���

�c�� ldefint�exp���i	a � b�	x�� x� �� inf�

�

�d�� ��������

b � �i a

�c�� forget�b � ��

�d�� �b � ��

You can set the option variable laplace call to control the extent to which the integrator attempts to use
Laplace transform techniques to solve problems� By default� laplace call is true�

���� INTEGRATING EXPRESSIONS ��

� When laplace call is false� Macsyma does not use Laplace transform techniques�

� When laplace call is true� Macsyma applies Laplace transform techniques only to actual Laplace
transforms� that is� problems of the form integrate�exp��sx�f�x��x���inf��

� When laplace call is all� even problems that are not in Laplace transform format are forced into it�
and the Laplace transform techniques are applied� The transformation

integrate�f�x�� x� �� inf�

limit�integrate�exp��s	x�	f�x�� x� �� inf�� s� �� plus�

is applied whenever both sides are de
ned�

For more information about Laplace transforms� see Section ���� page ���� For information about the limit

command� see Section ���� page ���

Consider the following examples� which illustrate the use of the various settings of laplace call� In the next
two commands� notice that Macsyma cannot solve the problem with laplace call set to false�

�c��� integrate�t	exp��t���t � ��� t� �� inf�� laplace�call�false

inf

� � t

� t �e

�d��� I ������� dt

� t � �

�

�

�c��� integrate�t	exp��t���t � ��� t� �� inf�� laplace�call�true

�d��� � � �e gamma��� ��

In the next three commands� notice the settings of the option variables intanalysis and laplace call

required to solve the problem�

�c��� integrate��cos�t	x� � cos�x���x� x� �� inf�

Is t positive� negative� or zero�

p

Integral is not absolutely convergent� Maybe you

want to try the computation with INTANALYSIS�FALSE�

�d��� ��

�c��� integrate��cos�t	x� � cos�x���x� x� �� inf�� intanalysis�false

inf

�

� cos�t x� � cos�x�

�d��� I ����������������� dx

� x

�

�

�c��� integrate��cos�t	x� � cos�x���x� x� �� inf�� laplace�call�all�

intanalysis�false

�� CHAPTER �� CALCULUS

�d��� � log�t�

The command changevar�exp� f
x� y�� y � x 	 makes the change of variable given by f
x� y� � � in all integrals
occurring in the expression exp with integration with respect to x � The variable y is the new variable�

�c��� �integrate�f�tau�	g�t � tau�� tau� �� t�

t

�

�

�d��� I g�t � tau� f�tau� dtau

�

�

�

�c��� changevar��� u
 t � tau� u� tau�

�

�

�

�d��� � I f�t � u� g�u� du

�

�

t

Some Macsyma implementations support a more e�cient way of doing numerical integration with romberg�
Refer to romberg in the Macsyma Reference Manual for more information�

����� Numerical Integration

Macsyma has three commands for �oating point numerical integration�

� quadratr extrapolated Gaussian quadrature�

� romberg Romberg integration�

� quanc� Newton�Cotes quadrature�

Two other functions� simpson and traprule implement Simpson�s rule and the trapezoidal rule� and are
useful mainly for instructional purposes�

The quadratr command is the most robust integrator� It can handle integrands which become singular or
are ill�behaved� It tends to be slower on most problems�

The romberg command is best for well�behaved integrands�

The quanc� command is often useful for highly oscillatory integrands�

For more information on these functions� refer to the Macsyma Reference Manual �

Here are some examples� Note that quadratr gives the best answer in all cases�

�c�� integrate�log�x�� x� �� ��

�d�� ��

�c�� quadratr�log�x�� x� �� ��

��
� TAKING LIMITS ��

�d�� � ����������������d�

�c�� errcatch�romberg�log�x�� x� �� ���

LOG��� has been generated�

�d�� � �

�c�� quadratr�sin���x�� x� ������� ��

�d�� ����������������d�

�c�� quanc��sin���x�� x� ������� ��

�d�� ������

�c�� errcatch�romberg�sin���x�� x� ������� ���

ROMBERG failed to converge�

�d�� � �

��
 Taking Limits

This section presents the following commands�

� limit
nds the limit of an expression as a given real variable approaches some value� such as in
nity�

� tlimit is similar to limit� except that it uses Taylor series �see page ��	 when possible�

This section also includes an example using the option variable tlimswitch� In addition� the command
lde�nt� which integrates an expression inde
nitely with respect to a variable and takes limits at the end�
points� was introduced in Section ������ page ���

The command limit�exp� var � value� direction	
nds the limit of the expression exp as the real variable
var approaches the given value from some direction� If you do not specify direction� limit computes a
bidirectional limit� However� you can specify a direction with plus to indicate a limit from above� or minus

to indicate a limit from below�

If the limit is unde
ned� limit returns und� If the limit is inde
nite� but bounded� limit returns ind� Both
und and ind are special symbols�

Take the bidirectional limit of the expression as x goes to in
nity�

�c�� limit��x � exp�x� � exp��	x������x�� x� inf�

�

�d�� �e

�c�� expr����exp���x� � ��

�

�d�� ���������

��x

�e � �

Take the limit of the expression expr as x goes to zero from above�

�c�� limit�expr� x� �� plus�

�d�� �

Take the limit of the expression expr as x goes to zero from below�

�� CHAPTER �� CALCULUS

�c�� limit�expr� x� �� minus�

�d�� �

The bidirectional limit of the expression expr as x goes to zero is unde
ned�

�c�� limit�expr� x� ��

�d�� und

The bidirectional limit of the expression sin���x� as x goes to zero is inde
nite� but bounded�

�c�� limit�sin���x�� x� ��

�d�� ind

To inhibit evaluation� precede the command with a single quote� Macsyma returns the �noun form�

�c�� �limit�tan�x��cos�x��x��pi���

cos�x�

�d�� limit tan�x�

�pi

x �� ���

�

To evaluate the limit� use ev�

�c�� ev���limit�

�d�� �

You can also take a limit using the command tlimit�exp� var � value� direction	� which instructs Macsyma
to use the taylor command when possible �see page ��	� Alternatively� you can set the option variable
tlimswitch to true to indicate that the limit command should try to use taylor�

�c�� tlimit��sin�tan�x�� � tan�sin�x����x��� x� ��

�

�d�� � ��

��

�c��� limit��sin�tan�x�� � tan�sin�x����x��� x� ��� tlimswitch�true

�

�d��� � ��

��

���� COMPUTING TAYLOR AND LAURENT SERIES ��

��� Computing Taylor and Laurent Series

Macsyma has a very powerful package for computing Taylor series� or more generally� Laurent series� This
section presents the following commands�

� taylor computes a Taylor series by expanding an expression in a given variable around a speci
ed
point�

� taylorinfo returns information about the Taylor expansion of the speci
ed expression�

Other Taylor�related commands include taylor solve� introduced in Section ���� and tlimit in Section ����

At the end of this section� examples of multivariate Taylor series expansion and asymptotic Taylor series
expansion are also presented�

To compute a Taylor series� use the command taylor�exp� var� point� power	� where exp is the expression
you want to expand in the variable var around the point point � Macsyma generates the terms through �var
� point	power� Display lines containing Taylor series representations are labeled with �T��

You can manipulate the truncated Taylor series� Macsyma recalculates automatically�

�c�� taylor�sin�x��x� x� �� ��

� �

x x

�d���T� � � �� � ��� � � � �

� ���

�c�� ���

� �

x � x

�d���T� � � �� � ���� � � � �

� ��

The answer in �d�	 above gives an indirect value of � for the limit of sin�x��x at �� You can also use
limit�sin�x��x� x� ��� to obtain the same value�

The taylorinfo�exp	 command returns information about the Taylor expansion of the expression exp� if exp
is a Taylor series� otherwise� taylorinfo returns false�

This command indicates that the last expression is a Taylor series expansion� is in x � is about �� and is up
to the fourth order�

�c�� taylorinfo���

�d�� ��x� �� ���

The next example computes the Taylor series of an expression with respect to x about b to the second order�

�c�� taylor�exp���sin�a	x��� x� b� ��

�� CHAPTER �� CALCULUS

�

� ��������

�������� sin�a b�

sin�a b� ��e cos�a b� a� �x � b�

�d���T� �e � �������������������������������

�

sin �a b�

� �

�������� ��������

sin�a b� � sin�a b� �

� ���e sin �a b� � � �e cos �a b� sin�a b�

�

��������

sin�a b� � � � �

� �e cos �a b�� a � �x � b� ��� sin �a b�� � � � �

Macsyma also has capabilities for
nite Laurent series expansion�

�c�� taylor�cot��pi	z����	z�� � ����� z� ���� ��

� �

�pi � �pi �pi � �� �pi � �pi � ��� �pi

�d���T� � ������������� � ������������� � ������������� � ����������������

� � � � � � �

���� �z � �� ���� �z � �� ���� �z � �� ���� �z � ��

� � � �

� � �

� � �� �pi � �� �pi � ��� �pi� �z � ��

� �pi � �� �pi � ���� �pi �

� ��������������������������� � ������������������������������������

����� ����

� � � � �

��� �pi � ��� �pi � ���� �pi � ����� �pi� �z � ��

�

� ��� � � � �

������

Macsyma also allows you to perform multivariate Taylor series expansion� as shown below�

�c�� expr�sin�a	x � b	y����

�

�d�� ��������������

sin�b y � a x�

�c�� taylor�expr� x� �� �� y� �� ��

���� COMPUTING TAYLOR AND LAURENT SERIES ��

� � � �

� �cos�b� b� �y � �� ��� cos �b� � sin �b�� b � �y � ��

�d���T� ������ � ������������������ � �����������������������������������

sin�b� � �

sin �b� � sin �b�

� � � �

��� cos �b� � � cos�b� sin �b�� b a� �y � ��

� � � � � �� ��

�

� sin �b�

� �

��� cos �b� � sin �b�� b a� �y � �� cos�b� a

� ����������������������������������� � �������� � � � �� x � � � �

� �

sin �b� sin �b�

As shown in the examples below� Macsyma supports two alternative syntaxes for specifying the terms
�var � point	power�

�c�� taylor�expr� x� �� �� y� �� ��

�

� b y a a a �

�d���T� ��� � ��� � � � � � �� � ����� � � � �� x � ������ � � � �� x

b y � � � � � �

b y b y

�

a �

� �� ����� � � � �� x � � � �

� �

b y

�c�� taylor�expr� �x� y�� �� ��

� a x � b y

�d���T� ��������� � ���������

a x � b y �

� � � � � � � �

� a x � �� b a y x � �� b a y x � � b y

� ��� � � � �

���

Macsyma also allows you to perform asymptotic Taylor series expansion� as shown below�

�� CHAPTER �� CALCULUS

�c��� exp����� � ��x�

�

�d��� �����

�

� � �

x

�c��� taylor�exp� �x� �� �� �asymp��

� � � � �

�d����T� � � � � �� � �� � �� � �� � � � �

x � � � �

x x x x

�c��� subst�e� ��x� exp�

�

�d��� �����

� � e

�c��� taylor��� e� �� ��

� � � �

�d����T� � � e � e � e � e � e � � � �

�c��� subst���x� e� ��

� � � � �

�d��� � � �� � �� � �� � �� � �

x � � � �

x x x x

To
nd the leading behavior of the integral

x

� � t

� �e

I ������� dt

� sqrt�t�

�

�

as x� ��� you can use the taylor command�

�c��� taylor�exp��t��sqrt�t�� t� �� ��

��� ��� ���

� t t t

�d����T� ������� � sqrt�t� � ���� � ���� � ���� � � � �

sqrt�t� � � ��

The command trunc�exp	 displays an expression as if its sums were truncated Taylor series�

���� SOLVING ORDINARY DIFFERENTIAL EQUATIONS �ODES� ��

�c��� trunc�expand�integrate��� t� �� x���

Is x positive� negative� or zero�

p

��� ��� ��� ���

� x x x x

�d��� � sqrt�x� � ������ � ���� � ���� � ���� � � � �

� � �� ���

��� Solving Ordinary Di�erential Equations �ODEs

����� Symbolic Solutions of ODEs

Macsyma has a symbolic di�erential equation solver� This section presents the following commands�

� ode solves
rst and second order ordinary di�erential equations�

� ic� sets an initial condition for
rst order initial value problems�

� ic	 sets an initial condition for second order initial value problems�

� bc	 sets a boundary condition for second order boundary value problems�

In addition� this section discusses the system variables method� intfactor� odeindex� and yp� and the
option variable odetutor� See odelinsys� Section ��� for solving linear systems of ODEs�

The command ode�equation� depvar � indvar	 solves
rst and second order ordinary di�erential equations�
equation with dependent variable�s	 depvar and independent variable�s	 indvar � The ode command knows
about several methods for solving ODEs� It attempts another method if a previous method fails to return a
solution� When successful� ode returns either an explicit or implicit solution for the dependent variable�

If you set the option variable odetutor to true� ode prints out the name of each method as it attempts
to solve an ODE� For more information about the ode command� and the methods it employs for solving
ODEs� consult the Macsyma Reference Manual�

When solving an ODE� Macsyma sets several system variables that you can use to retrieve information about
the solution�

� method denotes the method of solution used� See page �� for an example of this variable�

� intfactor denotes any integrating factor used� See page �� for an example of this variable�

� odeindex denotes the index for Bernouilli�s method� or for the generalized homogeneous method� See
page �� for an example of this variable�

� yp denotes the particular solution for the variation of parameters technique� See page �� for an example
of this variable�

Macsyma provides commands to help you solve initial value problems and boundary value problems�

� The command ic��solution� xvalue� yvalue	 sets the initial condition for
rst order initial value prob�
lems� The argument solution is a general solution to a
rst order di�erential equation� xvalue is an

�� CHAPTER �� CALCULUS

equation for the independent variable� in the form x � x� � and yvalue is an equation for the dependent
variable� in the form y � y� �

The ic� command returns an equation obtained by restricting the general solution solution according
to the initial condition speci
ed by xvalue and yvalue� See page �� for an example of this command�

� The command ic	�solution� xvalue� yvalue� derivativevalue	 sets the initial condition for second order
initial value problems� The argument solution is a general solution to a second order di�erential
equation� xvalue is an equation for the independent variable� in the form x � x� � and yvalue is
an equation for the dependent variable� in the form y � y� � derivativevalue is an equation for the
derivative of the dependent variable with respect to the independent variable evaluated at the point
xvalue�

The ic	 command returns an equation obtained by restricting the general solution solution according
to the initial conditions speci
ed by xvalue� yvalue� and derivativevalue� See page �� for an example
of this command�

� The command bc	�solution� xvalue� � yvalue� � xvalue� � yvalue� 	 sets the boundary condition for
second order boundary value problems� The argument solution is a general solution to a second order
di�erential equation� xvalue� is an equation for the independent variable� in the form x � x� � and
yvalue� is an equation for the dependent variable� in the form y � y� � xvalue� and yvalue� are
equations for these variables at another point�

The bc	 command returns an equation obtained by restricting the general solution solution according
to the conditions speci
ed by xvalue� � yvalue� � xvalue� � and yvalue� together� See page �� for an
example of this command�

�c�� depends�y� x��

Set odetutor to true to keep track of what is happening�

�c�� odetutor�true�

Macsyma can solve odes with symbolic coe�cients�

�c�� eq�x	diff�y� x� � a	x	y�� � �	y � b	x
 �

dy �

�d�� x �� � a x y � � y � b x
 �

dx

The �c symbol in the result represents an arbitrary constant for
rst order solutions�

�c�� sol�ode��� y� x�

Trying ode�

Trying nonlin

Trying riccati

Trying schmidt

b � � b

FOUND �sqrt�� �� � ���� � ��� � sqrt�� ���

a a x a x a

�d�� y

���� SOLVING ORDINARY DIFFERENTIAL EQUATIONS �ODES� ��

b � a sqrt�� b�a� x b

�� �c b x � � �c sqrt�� ��� �e � a sqrt�� �� x � �

a a

� ���

b � a sqrt�� b�a� x

� �c a sqrt�� �� x �e � a x

a

As always� after you
nd a solution the variable method is set to the name of the method that succeeded�

�c�� method

�d�� riccati

It is a good idea to check the solution�

�c�� ev�eq� sol� diff� radcan�

�d�� �
 �

�c�� diff�y� x�
 ���pi	x	y	�y � �pi�

dy � x y �y � �pi�

�d�� ��
 ���������������

dx �pi

�c�� sol�ode��� y� x�

Trying ode�

�

log�y � �pi� � log�y� x

�d�� ���������������������
 �� � �c

� �

�c�� method

�d�� separable

Use ic� for the initial value problem of a
rst order ODE�

�c��� ic��sol� x
 �� y
 y��

�

log�y � �pi� � log�y� log�y� � �pi� � log�y�� � x

�d��� ���������������������
 ����������������������������

� �

�c��� solve�logcontract����y�

�pi y�

�d��� �y
 � �������������������������

� �

x x

��e � �� y� � �pi �e

Macsyma assumes the right side of the equation is zero if you do not specify it�

�� CHAPTER �� CALCULUS

�c��� diff�y� x� �� � y	diff�y� x���

�

d y dy �

�d��� ��� � y ����

� dx

dx

The �k� and �k	 symbols in the result represent arbitrary constants for second order solutions�

�c��� sol�ode��� y� x�

Trying ode�

�

y � � �k� y

�d��� ������������
 x � �k�

�

�c��� method

�d��� freeofx

Use ic	 to set the initial conditions for a second order ODE�

�c��� ratsimp�ic��sol� x
 �� y
 �� �diff�y�x�
 ���

�

� y � � y

�d��� � ����������
 x

�

Use bc	 to set the boundary conditions for a second order ODE�

�c��� bc��sol� x
 �� y
 �� x
 �� y
 ��

�

y � �� y �

�d��� ���������
 x � �

� �

�c��� y � ��	x	y � �e����	y��	�diff�y�x�
 �

� � y dy

�d��� �� x y � �e � �� � y
 �

dx

�c��� ode���y�x�

Trying ode�

� y

�d��� x �e � log�y�
 �c

�c��� method

�d��� exact

When you solve an equation by means of an integrating factor� the variable intfactor is set to the integrating
factor�

���� SOLVING ORDINARY DIFFERENTIAL EQUATIONS �ODES� ��

�c��� intfactor

�

�d��� �

y

�c��� x��	diff�y�x� � �	x	y � y��
 �

� dy �

�d��� x �� � y � � x y
 �

dx

�c��� ode��� y� x�

Trying ode�

�

�d��� y
 ������������������

� �

sqrt����� � �c� x

�

� x

�c��� method

�d��� bernoulli

When you
nd a solution for Bernoulli�s equation or for a generalized homogeneous equation� the variable
odeindex is set to the index of the equation�

�c��� odeindex

�d��� �

After
nding the solution to the homogeneous equation� the method of variation of parameters allows you
to
nd the nonhomogeneous solution to the equation�

�c��� diff�y� x� �� � �	diff�y� x� � �	y
 �	exp�x�

�

d y dy x

�d��� ��� � � �� � � y
 � �e

� dx

dx

�c��� ode��� y� x�

Trying ode�

� x � x x

�d��� y
 �k� �e � �k� �e � �e

�c��� method

�d��� variationofparameters

The variable yp denotes the particular solution for the technique of variation of parameters�

�c��� yp

x

�d��� �e

��� CHAPTER �� CALCULUS

The following example illustrates the use of ode�s optional series keyword to obtain a series solution�

�c��� eq�diff�y� x� ��	�	x	�� � x� � �� � x�	diff�y� x� � �	y

�

d y dy

�d��� � �� � x� x ��� � �� � x� �� � � y

� dx

dx

�c��� ode�eq� y� x�

log�x� log�x�

log�x� ������ ������

������ � �

� � log��e � �� � log��e � ��

�d��� y
 �k� �x � �� �e �������������������� � �������������������

� �

log�x�

������

��� x � �� �

� �������������������������� � �k� �x � �� �e

� log�x� log�x�

�������� ������

� �

� �e � � �e

The keyword series indicates that you want a series solution� ��n is a dummy variable to sum over�

�c��� ode�eq� y� x� odeseries�

inf

 ��n

� x

��k� � �������������������

� � �

 ���n � �� ���n � ��

��n
 � � �

�d��� �y
 ��������������������������������� � �k� �� � x� sqrt�x��

�

�c��� ode�eq� y� x� odeseries� ode��

���� SOLVING ORDINARY DIFFERENTIAL EQUATIONS �ODES� ���

inf

 ��n

� x

��k� � �������������������

� � �

 ���n � �� ���n � ��

��n
 � � �

�d��� �y
 ��������������������������������� � �k� �� � x� sqrt�x��

�

log�x� log�x�

log�x� ������ ������

������ � �

� � log��e � �� � log��e � ��

y
 � �k� �x � �� �e �������������������� � �������������������

� �

log�x�

������

� x � � �

� �������������������������� � �k� �x � �� �e �

� log�x� log�x�

�������� ������

� �

� �e � � �e

����� Symbolic Approximate Solution of an ODE

Using a perturbation calculation� the following computation
nds an approximate solution for a nonlinear
oscillator equation �Du�ng�s equation	�

�

d y � �

��� � e y � w� y
 �� where e �

�

dx

This problem can be solved directly with the lindstedt command� which is one of the perturbation methods
available in Macsyma� We will work out a solution without the lindstadt command as an illustration of
how to combine Macsyma commands to solve more complicated problems� By assumption� e �� �� Thus�
the solution must be close to that of a simple harmonic oscillator� The solution obtained will be correct to

rst order in e� higher approximations are left as a practice problem�

�c��� assume�w � ���

�c��� depends�y� x��

��� CHAPTER �� CALCULUS

Find an approximate solution to the following equation by perturbation methods� where e �� ��

�c��� duffing�eq�diff�y� x� �� � w���	y � e	y��

�

d y � �

�d��� ��� � e y � w� y

�

dx

Assuming y� is the solution to the di�erential equation when e � �� since e �� �� the solution can be written
as follows �to second order in e	�

�c��� try�y�y
 y��� � e	y��� � e��	y���

�

�d��� y
 y e � y e � y

� � �

Expand w � as follows� where a� and a� are chosen to eliminate the secular term�

�c��� try�w��w���
 w�� � a���	e � a���	e��

� � �

�d��� w�
 w � a e � a e

� �

Substituting try y and try w into the di�erential equation du�ng eq then di�erentiate�

�c��� ev�duffing�eq� try�y� try�w�� diff�

� � � � �

�d��� �y e � y e � y � �w � a e � a e� � e �y e � y e � y �

� � � � � � � �

� � �

d � d d

� ���� �y �� e � ���� �y �� e � ��� �y �

� � � � � �

dx dx dx

Since e �� �� you can neglect terms in e� or higher�

���� SOLVING ORDINARY DIFFERENTIAL EQUATIONS �ODES� ���

�c��� duffing�eq�pert�ratsubst��� e��� ��

�

� � d � �

�d��� �y e � y e � y � w � ���� �y � � y a � �a � � y � y � e

� � � � � � � � � �

dx

� �

d � d

� ���� �y � � y a � y � e � ��� �y �

� � � � � � �

dx dx

Equate coe�cients of like powers of e�

�c��� duffing�e����ratcoef�duffing�eq�pert� e� ��

�

� d

�d��� y w � ��� �y �

� � �

dx

�c��� duffing�e����ratcoef�duffing�eq�pert� e� ��

�

� d �

�d��� y w � ��� �y � � y a � y

� � � � � �

dx

�c��� duffing�e����ratcoef�duffing�eq�pert� e� ��

�

� d �

�d��� y w � ��� �y � � y a � �a � � y � y

� � � � � � � �

dx

Solve y�
rst� then use the result to solve for y�� then use previous result to solve for y��

�c��� sol����ode�duffing�e���� y���� x�

Trying ode�

�d��� y
 �k� sin�w x� � �k� cos�w x�

�

�c��� sol����trigreduce�ic��sol���� x
 �� y���
 a	sin�b��

�diff�y���� x�
 a	w	cos�b���

�d��� y
 a sin�w x � b�

�

Substitute y� into the equation du�ng e����

�c��� duffing�e����ev�duffing�e���� sol���� trigreduce�

��� CHAPTER �� CALCULUS

� �

a sin�� w x � � b� � a sin�w x � b� �

�d��� ������������������� � ����������������� � a a sin�w x � b� � y w

� � � �

�

d

� ��� �y �

� �

dx

The terms enclosed in boxes give rise to the secular terms� as shown below�

�c��� dpart��� ��� ���

!!!!!!!!!!!!!!!!!!!!!

� ! � !

a sin�� w x � � b� ! � a sin�w x � b�! !!!!!!!!!!!!!!!!!!!

�d��� ������������������� � !� �����������������! � !a a sin�w x � b�!

� ! � ! ! � !

!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!

�

� d

� y w � ��� �y �

� � �

dx

�c��� ode�duffing�e���� y���� x�

Trying ode�

� �

�d��� y
 � �� a sin�� w x � � b� � �� a a � � a � sin�w x � b�

� �

� �

� w x ��� a cos�w x � b� � �� a a cos�w x � b������� w � � �k� sin�w x� � �k� cos�w x�

�

Extract the secular terms�

�c��� ratcoef��� x�

�

�� a � � a a� cos�w x � b�

�

�d��� �
 � ����������������������������

� w

Choose a to eliminate the secular terms�

���� NUMERICAL SOLUTIONS OF ODES ���

�c��� linsolve��� a����� globalsolve�true

�

� a

�d��� �a � �����

� �

Recall that yp yields the particular solution�

�c��� sol����y���
 ev�yp�

�

a sin�� w x � � b�

�d��� y
 �������������������

� �

�� w

This is correct to
rst order in e�

�c��� ev�try�y� sol���� sol���� y���
 ��

�

a e sin�� w x � � b�

�d��� y
 ��������������������� � a sin�w x � b�

�

�� w

�c��� w��
 w��� � a���	e

�

� � � a e

�d��� w
 w� � ������

�

��� Numerical Solutions of ODEs

This section introduces several commands for
nding numerical solutions of ODEs�

� runge kutta uses �th order Runge�Kutta method�

� ode numsolve uses �th order and adaptive �th order Runge�Kutta methods�

� ode sti�sys for sti� systems of ODEs�

Here are some examples�

�c�� eq � �diff�y�t�
 erf�y���

dy �

�d�� ��
 erf�y �

dt

��� CHAPTER �� CALCULUS

�c�� ic � �at�y�t
 ��
 �

"

�d�� y"
 �

"t
 �

�c�� runge�kutta�eq��y��t�ic���������

�d�� �t
 ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� �����

y
 ����� �������� �������� �������� �������� �������� ��������

������� �������� �������� ���������

dy

��
 �������� ������� �������� �������� �������� �������� ��������

dt

�������� �������� ���� �����

We can plot the result�

�c�� graph�assoc��t�����assoc��y����assoc��diff��y��t�������������

X

Y

0.25 1.000.00 0.50 0.75

1.00

2.00

0.00 < X < 1.00
0.84 < Y < 2.0

Figure ���� Plot of the Numerical Solution to the ODE

�c�� ode�numsol�eq��y��t�ic���������

dy dy

�d�� ���y�
 �y�� ����
 ������ �t
 ����� ���� ���� ���� ���� ����

dt dt

���� ���� ���� ���� ����� y
 ����� �������� �������� ��������

�������� �������� �������� ������� �������� �������� ���������

dy

��
 �������� ������� �������� �������� �������� �������� ��������

dt

�������� �������� ���� ������

Again� we can plot the result�

���� COMPUTING LAPLACE TRANSFORMS ���

�c�� graph�assoc��t�odns�result���assoc��y�odns�result��

assoc��diff��y��t��odns�result����������

This second graph command generates exactly the same plot as shown in Figure ���

��� Computing Laplace Transforms

This section covers the commands available for computing Laplace transforms and inverse Laplace transforms�
The section presents the following commands�

� laplace takes the Laplace transform of an expression�

� atvalue assigns a boundary value to a function or a derivative�

� ilt takes the inverse Laplace transform of an expression�

� odelinsys solves di�erential equations for the speci
ed dependent variables� where the functional
relationships are explicitly indicated in both the equations and the variables�

In addition� the variable laplace call� which controls the extent to which the integrator attempts to use
Laplace transform techniques to solve problems� was introduced in Section ������ page ���

The command laplace�exp� ovar � lvar	 takes the Laplace transform of the expression exp with respect to
the variable ovar and transform parameter lvar � Note that the expression exp can involve only the functions
exp� log� sin� cos� sinh� cosh� and erf �the error function	� The expression exp can also be a linear constant
coe�cient di�erential equation� in which case the atvalue of the dependent variable is used�

To assign a boundary value to a function or a derivative� use the command atvalue�form� equation�� � � � �
equationn� value	� which assigns the value value to form at the points speci
ed by the equations equation�
though equationn� The argument form can be a function of the form

f �var�� � � � � var	

or a derivative of the form

di��f�var�� � � � � varn	� vari�ni� varj �nj � � � �	

in which the functional arguments appear� Symbols of the form ��� �	� � � � represent the functional variables
var��

You can also apply the inverse Laplace transform to obtain the solutions of the di�erential equations eq�
and eq� � The command ilt�exp� ovar � lvar	 takes the inverse Laplace transform of the expression exp with
respect to the variable ovar and transform parameter lvar � The expression exp must be a ratio of polynomials
whose denominator has only linear and quadratic factors�

By using the laplace and ilt commands with solve� you can solve a single di�erential or convolution integral
equation� or a set of them�

Consider the following example� Let na�t	� nb�t	� and nc�t	 represent the number of nuclei of three radioactive
substances� which decay according to the scheme

a� �a� b� �b� c

��� CHAPTER �� CALCULUS

The functions na�t	� nb�t	� and nc�t	 are known to obey the system of di�erential equations as given below�

�c�� eq��diff�na�t��t�
 �la	na�t�

d

�d�� �� �na�t��
 � la na�t�

dt

�c�� eq��diff�nb�t�� t�
 �lb	nb�t� � la	na�t�

d

�d�� �� �nb�t��
 la na�t� � lb nb�t�

dt

�c�� eq��diff�nc�t�� t�
 lb	nb�t�

d

�d�� �� �nc�t��
 lb nb�t�

dt

Assuming that Na��	 � N� and Nb��	 � Nc��	 � � solve the problem by Laplace transform methods�

Set the initial conditions with atvalue�

�c�� �atvalue�na�t�� t
 �� n���

atvalue�nb�t�� t
 �� ���

atvalue�nc�t�� t
 �� ����

�c�� assume�s � ���

Apply the laplace transform to the di�erential equations eq� � eq� � and eq� �

�c�� eq��lt�laplace�eq�� t� s�

�d�� s laplace�na�t�� t� s� � n�
 � la laplace�na�t�� t� s�

�c�� eq��lt�laplace�eq�� t� s�

�d�� s laplace�nb�t�� t� s�
 la laplace�na�t�� t� s� � lb laplace�nb�t�� t� s�

�c�� eq��lt�laplace�eq�� t� s�

�d�� s laplace�nc�t�� t� s�
 lb laplace�nb�t�� t� s�

Solve for the transformed equations�

�c�� solve��eq��lt� eq��lt� eq��lt��

��laplace�na�t�� t� s��

�laplace�nb�t�� t� s��

�laplace�nc�t�� t� s���

n�

�d�� ��laplace�na�t�� t� s�
 �������

s � la

la n�

laplace�nb�t�� t� s�
 �������������������������

�

s � �lb � la� s � la lb

���� COMPUTING LAPLACE TRANSFORMS ���

la lb n�

laplace�nc�t�� t� s�
 �����������������������������

� �

s � �lb � la� s � la lb s

�c��� ilt��� s� t�

� la t � lb t

� la t la n� �e la n� �e

�d��� ��na�t�
 n� �e � nb�t�
 �������������� � ���������������

lb � la lb � la

� lb t � la t

la n� �e lb n� �e

nc�t�
 �������������� � �������������� � n���

lb � la lb � la

Another way to solve the problem above is with the odelinsys command� odelinsys��eqn�� � � � � eqnn�
�var�� � � � � varn�	 solves the di�erential equations eqni for the dependent variables var�� � � � � varn� You must
explicitly indicate the functional relationships in both the equations and the variables�

�c��� odelinsys��eq�� eq�� eq��� �na�t�� nb�t�� nc�t���

� la t � lb t

� la t la n� �e la n� �e

�d��� �na�t�
 n� �e � nb�t�
 �������������� � ���������������

lb � la lb � la

� lb t � la t

la n� �e lb n� �e

nc�t�
 �������������� � �������������� � n��

lb � la lb � la

��� CHAPTER �� CALCULUS

��� Practice Problems

Using the commands that you have learned about in this chapter� solve the following problems� Answers
appear on page ����

Problem � � De
ne the Legendre polynomials using

� the Rodrigues formula

l

d � l

��� ��x � �� �

l

dx

p�l� x�
 ���������������

l

� l#

� the recurrence relation

p
 �

�

p
 x

�

�� n � �� p x �n � �� p

n � � n � �

p
 ������������������ � ��������������

n n n

Problem � � Assuming that x � �� show that

�

� x

I ����� dx
 � x � log�� � x�

� � � x

�

Problem � � Assuming that a � �� show that

inf

�

� � a x a �

I �e �sin�x� � cos�x�� dx
 ������ � ������

� � �

� a � � a � �

�

���� PRACTICE PROBLEMS ���

Problem � � Assuming that m � � and n � �� show that

inf

�

� cos�m x� � cos�n x�

I ������������������� dx
 log�n� � log�m�

� x

�

�

Problem � � Evaluate the following integral numerically�

���

�

� cos���� x� � cos���� x�

I ����������������������� dx

� x

�

����

Problem � � Show that

x

�

�

y
 I f�x � t� dt

�

�

�

is a solution of

dy

��
 f�x�

dx

�Hint� You might
nd it helpful to change the variable x� t to u in the integral solution�	

Problem 	 � Evaluate the limit of the following expression as x approaches ����

log�cos�x��

���������������

log�� � sin�x��

��� CHAPTER �� CALCULUS

Problem � � Evaluate the limit of the following expression as x approaches zero�

sin�x� � atan�x�

����������������

�

x log�x � ��

Problem � � Show that as e goes to zero

�

� � �

� sin�e t� e e

I �������� dt
 e � �� � ��� � � � �

� t �� ���

�

�

Hint� You might want to use the trunc command to convert your result into the format shown above�

Problem � � Show that the following

�

d �g � �� x � g x

f
 � ���� ��e sech�x��� � �g � �� g �e

�

dx

is a solution for

�

� df � d f

�
 � ��� sech �x� tanh�x� � a� f � � �� �� � � sech �x�� � ���

dx �

dx

subject to the constraint

�

g � � g � a
 �

Problem �� � Solve

� dy �

�x y � x � �� � y � � x y
 �

dx

���� PRACTICE PROBLEMS ���

Problem �� � Solve

� dy �

x �y � � x� �� � � y � � x y
 �

dx

Problem �� � Solve the following by

� the default method

� the series method

dy

� ��

d y dx

��� � �� � y
 �

� x

dx

Problem �� � Solve the following di�erential equations�

�

d d

� ���� �f�x��� � � ��� �g�x���
 sin�x�

� dx

dx

�

d d

a ���� �g�x��� � �� �f�x��
 a cos�x�

� dx

dx

with the conditions

df

��
 � at x
 �

dx

dg

��
 � at x
 �

dx

��� CHAPTER �� CALCULUS

Problem �� � Determine a
rst�order solution for small but
nite u for the following di�erential equation
�from �Na�� pages �������	�

du �

� � u �����

� u d u dxx g u

u w� � ������� � �� ���� � �������� � ��������������

� � � �

� � u dxx � � u l sqrt�� � u �

Chapter �

Matrices

A matrix is a two�dimensional� ordered set of elements� Macsyma provides you with a large group of
commands for performing matrix operations� as well as many option variables you can set for more �exibility
and control over matrix operations� A simple example using matrices appeared in Chapter ��

The sections below cover such topics as creating� transposing� and inverting matrices� extracting parts
from matrices� adding rows and columns� calculating determinants�
nding characteristic polynomials� and
producing the echelon form of matrices�

The scope of this document allows only a limited introduction to Macsyma�s matrix manipulation capabilities�
Macsyma has more advanced matrix algebra capabilities� It includes nearly all the numerical linear algebra
in MATLAB� For more information� consult the Macsyma Reference Manual�

��� Creating a Matrix

Macsyma provides commands for creating many kinds of matrices� including identity matrices� This section
presents the following commands�

� entermatrix creates a matrix element by element� prompting you for each of the values in the matrix�

� matrix creates a rectangular matrix with the indicated rows�

� ident produces an identity matrix�

� zeromatrix creates a rectangular matrix of zeros�

� diagmatrix and diag matrix produce diagonal matrices whose elements you specify�

� coefmatrix returns the coe�cient matrix for the given variables of a system of linear equations�

� augcoefmatrix returns the augmented coe�cient matrix for the given variables of a system of linear
equations�

� copymatrix creates a copy of the speci
ed matrix�

� genmatrix generates a matrix from an array�

This section illustrates how to use the matrix creation commands to produce various types of matrices�
Subsequent sections explain how you can manipulate these matrices in many ways�

���

��� CHAPTER �� MATRICES

The command entermatrix�m� n	 allows you to create an m by n matrix interactively� Macsyma prompts
you for the value to be stored in each of the m�n entries� The function entermatrix also prompts you for
the type of matrix to be created� The choices are diagonal� symmetric� antisymmetric� or general� Macsyma
uses its knowledge of the di�erent types of matrices so� for instance� if you choose to create a diagonal matrix�
entermatrix asks only about the nonzero elements�

Create an antisymmetric four by four matrix mat �

�c�� mat�entermatrix�����

Is the matrix �� Diagonal �� Symmetric �� Antisymmetric �� General

Answer �� �� � or �

�

Row � Column �� �

Row � Column �� �

Row � Column �� �i	l

Row � Column �� �

Row � Column �� �i	v

Row � Column �� �i	v

Matrix entered�

� � � � �i l �

� �

� � � � �i v �

�d�� � �

� � � � �i v �

� �

� � �i l � �i v � �i v � �

You can also create a matrix� with the command matrix�row�� � � � � rown	� where each rowi is a list of matrix
elements� In the next example we create a three by three matrix�

�c�� t�matrix���ex�� � ey�� � ez������ ex	ey� ex	ez��

�ex	ey� �ey�� � ex��� ez������ ey	ez��

�ex	ez� ey	ez� �ez�� � ex�� � ey�������

� � � � �

� � ez � ey � ex �

� ����������������� ex ey ex ez �

� � �

� �

� � � � �

�d�� � � ez � ey � ex �

� ex ey ����������������� ey ez �

� � �

� �

� � � � �

� ez � ey � ex �

� ex ez ey ez ��������������� �

� � �

��	� CREATING A MATRIX ���

A shorter syntax for the matrix command is simpler to use�

�c�� �a� b� c d� e� f g� h� i�

� a b c �

� �

�d�� � d e f �

� �

� g h i �

To produce an n by n identity matrix� where each of the diagonal elements is a ��and each of the other
elements is a ��� use the command ident�n	� You can also produce any diagonal matrix of size n by n�
with all diagonal elements x and other elements zero� with the command diagmatrix�n� x 	� Notice that
diagmatrix�n� �	 is the same as ident�n	�

De
ne a three by three identity matrix�

�c�� ident���

� � � ��

� �

�d�� � � � ��

� �

� � � ��

De
ne a three by three diagonal matrix with diagonal element x �

�c�� dmat�diagmatrix��� x�

� x � ��

� �

�d�� � � x ��

� �

� � � x�

Use diag matrix to create a three by three diagonal matrix with diagonal elements x� y� and z�

�c�� diag�matrix��x� y� z��

� x � � �

� �

�dd� � � y � �

� �

� � � z �

To produce an m by n matrix of zeros use the command zeromatrix�m� n	�

�c�� zmat�zeromatrix��� ��

��� CHAPTER �� MATRICES

� � � �

� �

� � � �

�d�� � �

� � � �

� �

� � � �

The command coefmatrix��eqn�� � � � � eqnn�� �var�� � � � � varn�	 creates the coe�cient matrix for the variables
var�� � � � � varn of the system of linear equations eqn�� � � � � eqnn� Similarly� the command
augcoefmatrix��eqn�� � � � � eqnn�� �var�� � � � � varn�	 creates the augmented coe�cient matrix� which is the
coe�cient matrix with a column adjoined for the constant terms of each equation� �Constant terms are those
that are not dependent on vari�	

Both coefmatrix and augcoefmatrix accept eqni as polynomials� they need not be equations�

De
ne a system of linear equations eqs�

�c�� eqs���	zz � b	yy � a	xx � ��

�	zz � �	yy � a
 ���

��	zz � ��	yy � �	a
 ����

De
ne coefm as the coe�cient matrix for the variables xx � yy � zz of eqs�

�c�� coefm�coefmatrix�eqs� �xx� yy� zz��

� a b � �

� �

�d�� � � � � �

� �

� � � �� �� �

De
ne augm as the augmented coe�cient matrix for the variables xx � yy � zz of eqs� notice the last column
contains the constant terms of each equation

�c��� augm�augcoefmatrix�eqs� �xx� yy� zz��

� a b � � � �

� �

�d��� � � � � � a � �� �

� �

� � � �� �� � � a � �� �

The copymatrix�matrix 	 command produces a copy of the matrix matrix � This command is useful in
conjunction with the setelmx� to make a new copy of a matrix when it is changed� Note� This is the only
way to produce a new copy of a matrix aside from copying the matrix element by element� See the example
on page ����

���� EXTRACTING FROM AND ADDING TO A MATRIX ���

�c��� dmat��copymatrix�dmat�

� x � � �

� �

�d��� � � x � �

� �

� � � x �

The command genmatrix�array � i�� j �� i�� j �	 command generates a matrix from the speci
ed array array �
using array�i�� j �	 for the upper left corner element in the matrix and array�i�� j �	 for the lower right corner
element in the matrix� If i� � j �� then you do not need to specify j �� If i� � j � � �� then you do not need
to specify either i� or j ��

De
ne an array h as shown below�

�c��� h�i� j� �
 ���i � j � ���

Use h to generate a four by four matrix with upper left corner ���� � � � �	 � �� and lower corner
���� � � � �	 � ���

�c��� hilbert�genmatrix�h� �� ��

� � � � �

� � � � � �

� � � � �

� �

� � � � � �

� � � � � �

� � � � � �

�d��� � �

� � � � � �

� � � � � �

� � � � � �

� �

� � � � � �

� � � � � �

� � � � � �

Macsyma also has a built�in command hilbert which gererates Hilbert matrices� For more information� refer
to the Macsyma Reference Manual�

��� Extracting From and Adding to a Matrix

This section describes how you can extract data from a matrix or add rows� columns� or single elements of
data to a matrix for subsequent use�

The
rst subsection describes how you can extract rows� columns� or elements from a matrix� and the second
subsection describes how you can add rows and columns to the matrix� The last subsection describes how
you can change an element in the matrix� This is the only matrix operation that actually alters the input
matrix�

��� CHAPTER �� MATRICES

It is important to note that none of the commands described in the
rst two subsections actually changes the
input matrix� For example� you can extract a row of data in the matrix with the row command and perform
some operation on it� but the original matrix still contains the extracted row� Similarly� the command
addrow returns a new matrix with the speci
ed additional row�s	� it does not change the original matrix�

Starting with Macsyma ��� and Macsyma ���� Macsyma has compact ways to specify submatrices and to
assign values to them� See the Release Notes for these versions for more information�

	���� Extracting Rows
 Columns
 and Elements

You can extract entire rows or columns of a matrix for later use� This section presents the following
commands�

� row returns a matrix consisting of a speci
ed row in another matrix�

� col returns a matrix consisting of a speci
ed column in another matrix�

� submatrix makes a new matrix composed of speci
ed rows and columns from another matrix�

� minor returns the minor of the given matrix by removing the speci
ed column and row�

The command row�matrix� i	 returns a matrix of the i th row of the matrix matrix � Similarly� the command
col�matrix� i	 returns a matrix of the i th column of the matrix matrix �

De
ne a matrix hilbert �

�c�� h�i� j� �
 ���i � j � ���

�c�� hilbert�genmatrix�h� �� ��

� � � � �

� � � � � �

� � � � �

� �

� � � � � �

� � � � � �

� � � � � �

�d�� � �

� � � � � �

� � � � � �

� � � � � �

� �

� � � � � �

� � � � � �

� � � � � �

Extract row four from the matrix hilbert �

�c�� row�hilbert� ��

���� EXTRACTING FROM AND ADDING TO A MATRIX ���

� � � � � �

�d�� � � � � � �

� � � � � �

Here is a shorter syntax for extracting a row�

�c�� hilbert��� ���

� � � � � �

�d�� � � � � � �

� � � � � �

Extract column three from the matrix hilbert �

�c�� col�hilbert� ��

� � �

� � �

� � �

� �

� � �

� � �

� � �

�d�� � �

� � �

� � �

� � �

� �

� � �

� � �

� � �

Here is the shorter syntax for extracting a column�

�c�� hilbert���� ��

��� CHAPTER �� MATRICES

� � �

� � �

� � �

� �

� � �

� � �

� � �

�d�� � �

� � �

� � �

� � �

� �

� � �

� � �

� � �

To extract a submatrix� indicate the rows and columns you wish to extract using the sequence operator ����

Extract a submatrix from the matrix hilbert�

�c�� hilbert������ �����

� � � �

� � � �

� � � �

� �

� � � �

�d�� � � � �

� � � �

� �

� � � �

� � � �

� � � �

To create a matrix from a part of an existing matrix matrix � use the command submatrix�row�� � � � � rown�
matrix� col�� � � � � coln	� where the new matrix contains all rows except each rowi and all columns except
each coli� Both row�� � � � � rown and col�� � � � � coln are optional� you can extract only rows or only columns
if you wish�

Return a new matrix containing all but the third column of hilbert �

�c�� submatrix�hilbert� ��

���� EXTRACTING FROM AND ADDING TO A MATRIX ���

� � � �

� � � � �

� � � �

� �

� � � � �

� � � � �

� � � � �

�d�� � �

� � � � �

� � � � �

� � � � �

� �

� � � � �

� � � � �

� � � � �

The command minor�matrix � i � j 	 returns the minor of the given matrix by removing the speci
ed row i
and column j �

Create a minor of the matrix hilbert by removing the third row and second column�

�c�� minor�hilbert� �� ��

� � � �

� � � � �

� � � �

� �

� � � � �

�d�� � � � � �

� � � � �

� �

� � � � �

� � � � �

� � � � �

To extract an element from a matrix� use the notation matrixname�i � j �� where matrixname is the name of
the matrix� i is the row� and j is the column of the desired element�

Extract the element in row two� column three� of the matrix in �d�	�

�c��� ���� ��

�

�d��� �

�

��� CHAPTER �� MATRICES

	���� Adding Rows and Columns to a Matrix

You can use the addrow and addcol commands to add rows or columns to a matrix� respectively� The
command addrow�matrix� list�or�matrix�� � � � � list�or�matrixn	 appends the rows speci
ed in each listi or
matrixi to the matrix matrix � Similarly� the command addcol�matrix� list�or�matrix�� � � � � list�or�matrixn	
appends the columns speci
ed in each listi or matrixi to the matrix matrix �

Use zeromatrix to de
ne the matrix empty �

�c�� empty�zeromatrix�����

� � � � �

� �

�d�� � � � � �

� �

� � � � �

Add two rows to the matrix empty � as speci
ed in the lists below�

�c�� addrow�empty� �a��� a��� a���� �a��� a��� a����

� � � � �

� �

� � � � �

� �

�d�� � � � � �

� �

� a�� a�� a�� �

� �

� a�� a�� a�� �

Add a column to the matrix above�

�c�� addcol� �b��� b��� b��� b��� b����

� � � � b�� �

� �

� � � � b�� �

� �

�d�� � � � � b�� �

� �

� a�� a�� a�� b�� �

� �

� a�� a�� a�� b�� �

	���� Changing the Elements in a Matrix

This section describes how you can change the elements stored in a matrix with the setelmx command�
setelmx�x� i� j� matrix 	 changes the i � j element of the matrix matrix to x � This command returns the
altered matrix�

���� EXTRACTING FROM AND ADDING TO A MATRIX ���

Alternatively� you can use the notation matrix �i � j ��x to change the i � j element to x � In this case� Macsyma
returns the value x rather than the altered matrix�

Create a two by two matrix

�c�� abcd�matrix��a� b�� �c� d��

� a b �

�d�� � �

� c d �

Change the element in the second row� second column� to z� The result is the changed matrix abcd �

�c�� setelmx�z� �� �� abcd�

� a b �

�d�� � �

� c z �

Change the element in the
rst row�
rst column� to �� The result is the new value ��

�c�� abcd�������

�d�� �

�c�� abcd

� � b �

�d�� � �

� c z �

You can create a copy of a matrix with copymatrix� or you can assign a matrix to one or more variables�
For example�

�c�� abcd�copy�copymatrix�abcd�

� � b �

�d�� � �

� c z �

�c�� abcd�variable�abcd

� � b �

�d�� � �

� c z �

You should be aware of an important di�erence between these two approaches�

� Two matrices created with copymatrix are two distinct matrices� When you change the elements in
one with setelmx or ��� the elements of the other do not change�

� When you assign a matrix as a value to two or more variables� and then change the elements in this
matrix� the values of all variables change� Internally� both variables point to the same matrix�

��� CHAPTER �� MATRICES

This distinction is illustrated in the following example� Notice the current contents of the matrix abcd �

�c�� abcd

� � b �

�d�� � �

� c z �

Reset the element in the second row� second column� of the matrixabcd to d �

�c�� setelmx�d� �� �� abcd�

� � b �

�d�� � �

� c d �

The copied matrix abcd copy � created with copymatrix� does not re�ect this change�

�c�� abcd�copy

� � b �

�d�� � �

� c z �

The variable abcd variable� whose value is that of the matrix abcd � does re�ect the change�

�c��� abcd�variable

� � b �

�d��� � �

� c d �

��
 Arithmetic Operations on Matrices

You can use the operators ��� ��� �� ��� and �� on matrices� The operations work on the corresponding
elements of each matrix� �These operators were introduced in Section ������ page ���	 You can use the ��
operator to perform matrix multiplication� In addition� you can use the operator ��� to raise a matrix to a
power� The notation matrix���� inverts a matrix� as does the command invert� m�m is equivalent to m��	

for a matrix m�

Examples of arithmetic operations on matrices appear below�

De
ne two matrices�

�c�� mat�wxyz�matrix��w�x���y�z��

� w x �

�d�� � �

� y z �

��
� ARITHMETIC OPERATIONS ON MATRICES ���

�c�� mat������matrix�������������

� � � �

�d�� � �

� � � �

Add together the elements of the matrices mat ���� and mat wxyz �

�c�� mat����� � mat�wxyz

� w � � x � � �

�d�� � �

� y � � z � � �

Subtract the elements of the matrices mat ���� and mat wxyz �

�c�� mat����� � mat�wxyz

� � � w � � x �

�d�� � �

� � � y � � z �

You will probably do matrix multiplication with the �
 operator� since matrix multiplication is generally
non�commutative�

�c�� mat����� 	 mat�wxyz

� w � x �

�d�� � �

� � y � z �

�c�� mat����� � mat�wxyz

� � y � w � z � x �

�d�� � �

� � y � � w � z � � x �

Raise the elements of the matrix mat ���� to the third power�

�c�� mat�������

� � � �

�d�� � �

� �� �� �

To invert a matrix m� you can use the notation m����� Another way to invert a matrix is with the command
invert�matrix 	�

�c�� mat�wxyz����

��� CHAPTER �� MATRICES

� z x �

� ��������� � ��������� �

� w z � x y w z � x y �

�d�� � �

� y w �

� � ��������� ��������� �

� w z � x y w z � x y �

�c�� invert�mat������

� � � � �

� �

�d�� � � � �

� � � � �

� � � �

To compute a matrix inverse while keeping the overall factor of the matrix determinant outside the matrix
result� set the option variable detout to true� An example of detout appears on page ����

To compute the trace of a square matrix Macsyma has a built�in command matrux trace� For more
information� refer to the Macsyma Reference Manual�

��� Producing the Echelon Form of a Matrix

Computing the echelon form of a matrix results in a matrix where the
rst nonzero element in each row is
a �� and all the column elements under the
rst � in each row are ��

The command echelon�matrix 	 uses elementary row operations to produce the echelon form of the matrix
matrix �

�c�� eqs���	zz � b	yy � a	xx � ��

�	zz � �	yy � a
 ���

��	zz � ��	yy � �	a
 �����

�c�� augm�augcoefmatrix�eqs� �xx� yy� zz��

� a b � � � �

� �

�d�� � � � � � a � �� �

� �

� � � �� �� � � a � �� �

�c�� echelon�augm�

���� CALCULATING DETERMINANTS ���

� b � � �

� � � � � � �

� a a a �

� �

� a � �� �

�d�� � � � � � ������ �

� � �

� �

� � a � �� �

� � � � � �������� �

� �� �

��� Calculating Determinants

You can calculate the determinant of a matrix� This section presents the following commands�

� determinant computes the determinant of a given matrix by a method similar to Gaussian elimination�

� rank computes the order of the largest nonzero subdeterminant of the given matrix�

To calculate the determinant of the square matrix matrix � you can use the command determinant�matrix 	�
This command uses a method similar to Gaussian elimination�

The command rank�matrix 	 computes the rank of the matrix matrix � The rank is the order of the largest
nonzero subdeterminant of matrix �

�c�� t�matrix���ex�� � ey�� � ez������ ex	ey� ex	ez��

�ex	ey� �ey�� � ex�� � ez������ ey	ez��

�ex	ez� ey	ez� �ez�� � ex�� � ey�������

� � � � �

� � ez � ey � ex �

� ����������������� ex ey ex ez �

� � �

� �

� � � � �

�d�� � � ez � ey � ex �

� ex ey ����������������� ey ez �

� � �

� �

� � � � �

� ez � ey � ex �

� ex ez ey ez ��������������� �

� � �

�c�� rank�t�

�d�� �

��� CHAPTER �� MATRICES

�c�� determinant�t � lambda	ident����

� � � � � �

� ez � ey � ex ez � ey � ex � �

�d�� ������������������� � lambda� ���������������� � lambda� � ey ez �

� �

� � � � � �

� ez � ey � ex ez � ey � ex

������������������ � lambda� � ex ey �ex ey ���������������� � lambda�

� �

� � �

� � � ez � ey � ex

� ex ey ez � � ex ez �ex ey ez � ex ez ������������������ � lambda��

�

�c�� factor���

� � � � � � �

�� lambda � ez � ey � ex � �� lambda � ez � ey � ex �

�d�� � ��

�

��� Eigenanalysis of Matrices

You can
nd eigenvalues� characteristic polynomials� and eigenvectors of matrices� This section presents the
following commands�

� charpoly computes the characteristic polynomial for a given matrix with respect to the speci
ed
variable�

� eigenvalues returns the eigenvalues of the speci
ed matrix�

� eigenvectors returns the eigenvalues and the corresponding eigenvectors of the speci
ed matrix�

The command charpoly�matrix� var	� returns the characteristic polynomial of a matrix for the variable
var � You can use the solve command to solve for the eigenvalues of a matrix�

�c�� t�matrix���ex�� � ey�� � ez������ ex	ey� ex	ez��

�ex	ey� �ey�� � ex�� � ez������ ey	ez��

�ex	ez� ey	ez� �ez�� � ex�� � ey�������

���� TRANSPOSING A MATRIX ���

� � � � �

� � ez � ey � ex �

� ����������������� ex ey ex ez �

� � �

� �

� � � � �

�d�� � � ez � ey � ex �

� ex ey ����������������� ey ez �

� � �

� �

� � � � �

� ez � ey � ex �

� ex ez ey ez ��������������� �

� � �

�c�� solve�charpoly�t� ei�� ei�

� � � � � �

ez � ey � ex ez � ey � ex

�d�� �ei
 ���������������� ei
 � ����������������

� �

�c�� multiplicities

�d�� ��� ��

The command eigenvectors�matrix 	 returns a list containing several sublists� The
rst sublist contains the
eigenvalues of the matrix matrix � and the remaining sublists contain the eigenvectors corresponding to each
of the eigenvalues in the
rst sublist�

�c�� eig�info�eigenvectors�t�

� � � � � �

ez � ey � ex ez � ey � ex ey ez

�d�� ������������������� � ����������������� ��� ���� ��� ��� ����

� � ex ex

ex ey

��� �� � ���� ��� �� � ����

ez ez

You can
nd eigenvalues and eigenvectors of general �oating point matrices using eigens by schur
 See
the Macsyma Reference Manual for more information�

��� Transposing a Matrix

Use the command transpose�matrix 	 to produce the transpose of the matrix matrix � Note that transposing
the transpose of a matrix returns the matrix itself�

The next matrix could be thought of as de
ning the stress in an electric
eld�

��� CHAPTER �� MATRICES

�c�� t�matrix���ex�� � ey�� � ez������ ex	ey� ex	ez��

�ex	ey� �ey�� � ex�� � ez������ ey	ez��

�ex	ez� ey	ez� �ez�� � ex�� � ey�������

� � � � �

� � ez � ey � ex �

� ����������������� ex ey ex ez �

� � �

� �

� � � � �

�d�� � � ez � ey � ex �

� ex ey ����������������� ey ez �

� � �

� �

� � � � �

� ez � ey � ex �

� ex ez ey ez ��������������� �

� � �

�c�� solve�charpoly�t� ei�� ei�

� � � � � �

ez � ey � ex ez � ey � ex

�d�� �ei
 ���������������� ei
 � ����������������

� �

�c�� multiplicities

�d�� ��� ��

�c�� eig�info�eigenvectors�t�

� � �

ez � ey � ex ex ez

�d�� ������������������ �� ����� �� ������

� ey ey

� � �

ez � ey � ex ex ey

�� ���������������� �� ���� �� � ���� ��� �� � ������

� ez ez

Pick out one eigenvector using the part command and transpose it using the transpose command�

���� TRANSPOSING A MATRIX ���

�c�� transpose�part�eig�info� �� �� ���

� ex �

� �� �

� ey �

� �

�d�� � � �

� �

� ez �

� �� �

� ey �

Macsyma also uses the post
x operator � as a shorter way to indicate transpose�

�c�� part�eig�info� �� �� ���$

� ex �

� �� �

� ey �

� �

�d�� � � �

� �

� ez �

� �� �

� ey �

Construct a matrix whose columns are eigenvectors�

�c�� aa�addcol���part�eig�info� �� ����� part�eig�info� �� �� ���

� ex �

� �� � � �

� ey �

� �

�d�� � � � � �

� �

� ez ex ey �

� �� � �� � �� �

� ey ez ez �

��� CHAPTER �� MATRICES

�c�� aa����

� � �

� ex ey ey ey ez �

� ��������������� ��������������� ��������������� �

� � � � � � � � � � �

� ez � ey � ex ez � ey � ex ez � ey � ex �

� �

� � � �

� ez � ey ex ey ex ez �

�d�� � ��������������� � ��������������� � ��������������� �

� � � � � � � � � � �

� ez � ey � ex ez � ey � ex ez � ey � ex �

� �

� � � �

� ex ey ez � ex ey ez �

� � ��������������� ��������������� � ��������������� �

� � � � � � � � � � �

� ez � ey � ex ez � ey � ex ez � ey � ex �

�c�� aa���aa����� detout

� � � � �

� ex ey ey ey ez �

� �

� � � � �

� ey ez � ey � ex ey � ex ey ez �

� �

� � � � �

� � ex ey ey ez � ex ey � ey ez �

�d�� ���

� � �

ex ez � ey � ex ey

���� TRANSPOSING A MATRIX ���

Show that the matrix of eigenvalues de
nes a similarity transformation which diagonalizes the matrix t�

�c��� aa�� � t � aa� ratsimp

� � � � �

� ez � ey � ex �

� ��������������� � � �

� � �

� �

� � � � �

�d��� � ez � ey � ex �

� � � ��������������� � �

� � �

� �

� � � � �

� ez � ey � ex �

� � � � ��������������� �

� � �

��� CHAPTER �� MATRICES

Chapter �

Plotting

This chapter provides a brief introduction to Macsyma�s extensive plotting capabilities� Macsyma provides
commands that allow you to produce two and three�dimensional plots of functions and expressions� You
can produce hidden�line plots and contour plots� and by varying option variables� you can control the plot�s
scale� perspective� and coordinate system�

The plot illustrations in this chapter were produced using Macsyma ����

Not all plotting features are available on all versions of Macsyma� Consult the
Release Notes for information about what is available on your system�

Although the examples in this chapter introduce many commands and option variables� this document has
only a limited introduction to Macsyma�s plotting capabilities� Consult the Macsyma Reference Manual for
more information�

��� Creating Two�Dimensional Plots

This section presents the following commands�

� plot plots an expression in the y direction which is a function of the independent variable� which is
plotted in the x direction�

� paramplot plots one expression as the x coordinate against another expression as the y coordinate
where both expressions are functions of an independent parameter�

� graph plots points speci�ed by a list of abscissas and a list of ordinates�

See also contourplot� implicit plot� and plot� vect in the Macsyma Reference Manual �

This section also introduces the option variable plotnum�

You can use the command plot	exp� var � bound� � bound�
 to produce a two�dimensional plot of the expres�
sion exp� where var is the variable to plot against� and bound� and bound� are the limits of the values of the
independent variable� If you wish� you can provide a list of values to plot rather than specifying the range
with bound� and bound� �

The following example plots an expression for x between �� and �� The result is shown in Figure ���

�c�� gauss�deriv�x�����	x	exp��x
���

��

�� CHAPTER �� PLOTTING

�

� x

�d�� gauss�deriv�x� �� � � x �e

�c�� plot�gauss�deriv�x� x �� ���

X

Y

2.00-2.00 0.00

-0.50

0.50

-3.0 < X < 3.0
-0.86 < Y < 0.86

Figure ��� Two�Dimensional Plot with plot

You can also provide a list of values to be plotted� rather than a range� The next example replots the
expression gauss deriv for a list of points� The result is shown in Figure ����

�c�� plot�gauss�deriv x ��� �� �� � � � ����

X

Y

0.00-2.00 2.00

0.50

-0.50

-3.0 < X < 3.0
-0.74 < Y < 0.74

Figure ���� Two�Dimensional Plot from a List of Values

���� CREATING TWO�DIMENSIONAL PLOTS ��

When you specify the plotting range with bound� and bound� � var takes on the number of values speci�ed
by plotnum within the range� By default� the value of plotnum is ��� You can reset this variable to
control the number of points in the plot�

The next example plots ��� points in the expression gauss deriv� sin	�x
 for x between �� and �� The
result is shown in Figure ����

�c�� plot�gauss�deriv�x�	sin���	x� x �� �� plotnum�����

X

Y

0.00 2.00-2.00

-0.50

0.50

-3.0 < X < 3.0
-0.84 < Y < 0.75

Figure ���� Plot with plotnum Set Higher

The command paramplot	x�expr � y�expr � var � bound� � bound�
 plots the expression or list of expressions
x�expr as the x coordinate against the expression or list of expressions y�expr as the y coordinate� The
arguments bound� and bound� give the range of the plot�

In the following example paramplot plots x expr against y expr � The result is shown in Figure ����

�c�� x�expr�cos�x��

�d�� cos�x�

�c�� y�expr�sin��	x��

�d�� sin�� x�

�c�� paramplot�x�expr y�expr x ��	�pi �	�pi��

Plotting more points yields a more accurate representation� Compare the result of the next plot� shown in
Figure ���� with the plot in Figure ����

�c�� paramplot�x�expr y�expr x ��	�pi �	�pi� plotnum������

The two�dimensional plotting commands recognize several types of coordinate systems� You can specify the
coordinate system with an optional argument to the plotting command� An example using polar coordinates
appears below� Other coordinate systems are described in the Macsyma Reference Manual �

You can redisplay the plot in Figure ��� in polar coordinates� The result is shown in Figure ����

�� CHAPTER �� PLOTTING

X

Y

0.00 1.000.50-0.50-1.00

1.00

0.50

-1.00

-0.50

-1.0 < X < 1.00
-1.00 < Y < 1.00
Z = 0.00

Figure ���� Two�Dimensional Plot with paramplot

X

Y

1.000.50-0.50-1.00 0.00

0.50

-1.00

-0.50

1.00

-1.0 < X < 1.00
-1.00 < Y < 1.00
Z = 0.00

Figure ���� Paramplot with More Points Plotted

���� CREATING TWO�DIMENSIONAL PLOTS �

�c�� paramplot�x�expr y�expr x ��	�pi �	�pi polar� plotnum������

X

Y

1.00-0.50-1.00 0.00 0.50

-0.50

0.50

-1.00 < X < 1.00
-0.77 < Y < 0.77
Z = 0.00

Figure ���� Plot with Polar Coordinates

The command graph	x�list � y�list
 plots points speci�ed by the list 	or list of lists
 x�list and y�list �

The example below uses graph to plot lists of points produced by the numerical solution of coupled di�er�
ential equations� The result is shown in Figure ����

�c���eqns� ��diff�xt������	�x�y��diff�yt���x	z � ���	x�y�diff�zt��x	y � z��

dx dy dz

�d��� ��� � � ��� �x � y� �� � � x z � y � ���� x �� � x y � z�

dt dt dt

�c��� ic� ��at�xt�������at�yt�������at�zt��������

� � �

�d��� �x� � ��� y� � ��� z� �����

�t � � �t � � �t��

�c��� sol�xyz� runge�kutta�eqns�xyz�t ic�� ���� ������

�c���graph�assoc��xsol�xyz� assoc��ysol�xyz���

You can use the command graph�d	x�list � y�list � z�list
 to create a three�dimensional plot speci�ed by the
points in the lists x�list � y�list � and z�list � 	These arguments can also be lists of lists�

The function runge kutta produces three lists of points to plot� The example below uses graph to plot
the points from these three lists� The result is shown in Figure ����

�c���graph�d�assoc��xsol�xyz� assoc��ysol�xyz� assoc��zsol�xyz���

�� CHAPTER �� PLOTTING

X

Y

-10.00 10.000.00

0.00

-20.00

20.00

-11. < X < 13.
-20. < Y < 27.
Z = 0.00

Figure ���� Two�Dimensional Plot with graph

-10.00

0.00

X

0.00
-20.00 10.00

20.00

0.00

Y

40.00

Z

20.00

-11. < X < 13.
-20. < Y < 27.
0.00 < Z < 52.

X Y

Z

Figure ���� Three�Dimensional Plot with graph�d

���� CREATING THREE�DIMENSIONAL PLOTS ��

��� Creating Three�Dimensional Plots

This section presents the following commands�

� plot�d plots an expression three�dimensionally with respect to the speci�ed x and y variables�

� contourplot calculates the same plots as plot�d� but displays the points as a contour plot�

� graph�d produces a three�dimensional plot speci�ed by lists of x � y � and z point�

� plotsurf plots parametric surfaces embedded in three�dimensional space�

See also contourplot�d� paramplot�d� in the Macsyma Reference Manual �

To produce three�dimensional plots� use plot�d	exp� xvar � xbound� � xbound� � yvar � ybound� � ybound�

where exp is the expression to be plotted� xvar and yvar are the variables to plot against� xbound� and
xbound� are the limits of the plot�s x values� and ybound� and ybound� are the limits of the plot�s y values�

The following example plots an expression for x between � and � and for y between �� and �� The result is
shown in Figure ����

�c�� p��expr�y
� � cos��	x� � �	x�

�

�d�� y � cos�� x� � � x

�c�� plot�d�p��expr x � � y �� ���

0.00

X1.50-2.00

2.00

-1.00

6.00

0.00

8.00

Z

1.00

Y

2.00
0.00 < X < 2.0
-2.0 < Y < 2.0
0.46 < Z < 8.3

X Y

Z

Figure ���� Three�Dimensional Plot with plot�d

The variable equalscale� which is discussed in more detail in Section ���� indicates whether or not the scale
of the plot should be the same in both directions� The previous plot looks di�erent with equal scaling� as
shown in Figure ����

�c�� plot�d�p��expr x � � y �� �� equalscale�true�

�� CHAPTER �� PLOTTING

-2.00 0.00

X

2.00

0.00

Y
1.502.00

Z

6.00

8.00

0.00 < X < 2.0
-2.0 < Y < 2.0
0.46 < Z < 8.3

X Y

Z

Figure ���� Plot with equalscale set to true

The command contourplot	exp� xvar � xbound� � xbound� � yvar � ybound� � ybound�
 calculates the same
points as plot�d� but produces a contour plot of the expression exp instead�

The next example produces a contour plot of the expression in 	c
� Compare Figure ��� with Figure ���

�c�� contourplot�p��expr x � � y �� ���

Contour plots can be drawn in three dimensions� The next example uses the command contourplot�d to
produce a �D plot of the same expression� The result is shown in Figure ����

�c�� contourplot�d�p��expr x � � y �� �� contours����

You can use the command plotsurfplotsurf to plot two�dimensional surfaces embedded in three�dimensional
space� Each surface is represented in parametric form as �x	s� t
� y	s� t
� z	s� t
�� where s and t are continuous
real parameters� and x	s� t
� y	s� t
 and z	s� t
 are real�valued continuous functions� plotsurf plots a grid of
plotnum�� plotnum� plot points� and interpolates quadrilaterals between the plot points� Although the
function plotsurf has four distinct calling syntaxes� only one is illustrated here� To learn about the others�
please refer to the Macsyma Reference Manual �

plotsurf���x� y� z��	 	 	 ��xn� yn� zn���s� slo� shi� t� tlo� thi
� where

� The �rst argument represents n surfaces with n triples of expressions� Each expression evaluates to a
�oating�point number and may reference the variables s and t �

� s and t are the parameters used to specify the surface�

� slo and shi give the lower and upper limits of the parameter s�

� tlo and thi give the lower and upper limits of the parameter t �

���� CREATING THREE�DIMENSIONAL PLOTS ��

X

Y

2.000.00 1.501.000.50

2.00

-1.00

-2.00

1.00

0.00 < X < 2.0
-2.0 < Y < 2.0
Z = 0.00

–––8.0
–––7.5
–––7.0
–––6.5
–––6.0
–––5.5
–––5.0
–––4.5
–––4.0
–––3.5
–––3.0
–––2.5
–––2.0
–––1.5
–––1.00
–––0.50

Figure ��� A Contour Plot

0.00
1.00

X-2.00

2.00

-1.00

6.00

0.00

8.00

Z

1.00 2.00

Y

0.00 < X < 2.0
-2.0 < Y < 2.0
0.60 < Z < 8.2

X Y

Z

Figure ���� A Contour Plot in Three Dimensions

�� CHAPTER �� PLOTTING

�c��block��equalscale�trueplotnum����plotnum���� title��A Torus��

plotsurf������sin�th��	cos�ph� ���sin�th��	sin�ph� cos�th���

th��	�piph��	�piph��	�pi���

-4.00

-2.00

-4.00

-0.50

X

0.00

-2.00

Z

1.00

0.00

Y
2.00

2.00
4.00

A Torus

-4.0 < X < 4.0
-4.0 < Y < 4.0
-1.0 < Z < 1.0

X Y

Z

Figure ���� A Torus

Setting plot tesselation�� 	the default is �
 causes plotsurf to triangulate each quadrilateral in the plotted
surface� One important feature of triangular tesselation is that each element is a planar �gure� This eliminates
certain viewing anomalies which can occur when using nonplanar polygons�

�c��block��equalscale�trueplotnum����plotnum���� plot�tesselation��

title��A Torus Tesselated with Triangles�

plotsurf������sin�th��	cos�ph� ���sin�th��	sin�ph� cos�th���

th��	�piph��	�piph��	�pi���

��� Changing the Appearance of a Plot

This section describes the commands you can use to change the appearance of a plot� These facilities include
changing the scaling� projection� and axes of a plot�

Use the command replot	plotname
 to replot the plot plotname� To replot the most recent plot� use the
command replot���� Examples of this command appear in the subsections below�

����� Changing a Plot�s Scale

Macsyma chooses the scale of plots automatically� In general� the scale is as large as possible� while still
allowing everything to �t on your screen� This section introduces the following option variables� which allow
you to override the default scale settings�

���� CHANGING THE APPEARANCE OF A PLOT ��

-4.00

-2.00

-4.00
-1.00
-0.50

X

0.00

0.00Z

0.50

-2.00

1.00

0.00 2.00

Y
2.00

4.004.00

A Torus Tessellated with Triangles

-4.0 < X < 4.0
-4.0 < Y < 4.0
-1.0 < Z < 1.0

X Y

Z

Figure ���� A Torus Tesselated with Triangles

� equalscale indicates whether or not the scale of the plot should be the same in both directions�

� xmin� ymin� and zmin� when set� override the calculated minimum of the plot�s x � y � and z values
to determine the minimum coordinate values plotted on the axes�

� xmax� ymax� and zmax� when set� override the calculated maximum of the plot�s x � y � and z values
to determine the maximum coordinate values plotted on the axes�

� plot size adjusts the size of the plot�

By default� the option variable equalscale is false� When equalscale is false� Macsyma can rescale the
plot to �ll the display� When true� the scales of the plot are the same in both directions� Thus� if the display
is rectangular� and equalscale is false� a circle appears as an ellipse� but if equalscale is true� it appears
as a circle�

Examples using equalscale appeared in Section ���� page ���

In choosing the scale for a plot� Macsyma looks at the minimum and maximum values it has calculated
for x � y � and 	for three�dimensional plots
 z � By default� the option variables xmin� ymin� zmin� xmax�
ymax� and zmax are unbound� If you set any of them to a numeric value� this value overrides the plot�s
corresponding calculated value�

The option variable plot size 	default� ��
 controls the size of the plot on the screen�

The following example produces a polar plot of x from � to ���� The result is shown in Figure ����

�c�� plot�x x � ��� polar� plotnum�����

Figure ��� shows the change in appearance when the same plot is drawn with equalscale set to true�

�c�� plot�x x � ��� polar� plotnum���� equalscale�true�

�� CHAPTER �� PLOTTING

X

Y

-100.00-200.00 200.00100.000.00

200.00

100.00

-100.00

-200.00

-1.97e+2 < X < 1.95e+2
-1.99e+2 < Y < 1.95e+2
Z = 0.00

Page 1

Figure ���� Polar Plot of a Spiral

X

Y

-100.00

100.00

100.00

-200.00

-200.00

200.00

200.00-100.00 0.00
-1.97e+2 < X < 1.95e+2
-1.99e+2 < Y < 1.95e+2
Z = 0.00

Figure ���� Polar Plot of a Spiral with equalscale set to true

���� CHANGING THE APPEARANCE OF A PLOT ��

The next example shows how ymin and ymax can be used to clip a plot� The result is shown in Figure ����

�c�� plot�tan�x� x � �� � plotnum���� ymin���� ymax����

X

Y

10.007.505.002.500.00

25.00

-25.00

-50.00

50.00

0.00 < X < 10.0
-50. < Y < 50.

Figure ���� Plot with Speci�ed Minimum and Maximum Values

In Macsyma ��� and successors� the Front End contains a Camera View dialog box which lets you adjust
the scale of a plot and other viewing parameters� For more information� click on Graphic Menu in the Front
End Help� In Macsyma ��� this same feature is found in the Graphics Viewer� Click on �Help� in the
Graphics Viewer for more information�

����� Changing the Viewpoint of a Three�Dimensional Plot

To change the viewpoint of a plot� set the option variable viewpt to a list of three numbers that de�ne the
coordinates of the viewpoint�

By default� viewpt is unbound� Macsyma determines the perspective view as follows� First� Macsyma de�
termines the two points min��xmin� ymin� zmin� and max��xmax� ymax� zmax�� Then� Macsyma calculates
viewpt as max � �	�max
 min��

The example below replots the plot shown in Figure ���� page ��� with a new view point� The result is
shown in Figure ����

�c�� plot�d�y
� � cos��	x�� �	x x � � y �� �� viewpt��������������

The option variable plot roll 	default� �
 enables you to rotate around the viewing direction�

In Macsyma ��� and Macsyma ��� the Camera View dialog box allows you to adjust the viewpoint� roll
angle� plot size� and other viewing parameters� after a plot has been generated�

�� CHAPTER �� PLOTTING

-2.00 -1.00

Y

0.000.50 1.00
X

2.00

8.00

6.00

Z

2.00

2.00

0.00 < X < 2.0
-2.0 < Y < 2.0
0.46 < Z < 8.3

Figure ���� Three�Dimensional Plot with viewpt Changed

����� Changing Plot Titles and Axes Labels

This section describes the plotting option variables that you can use to change the titles and axes labels of
your plot�

The option variable title accepts as an argument a string� which then appears as the title in a plot drawn
by Macsyma�

You can label the x and y axes of a Macsyma plot by setting the option variables xlabel and ylabel� Each
option variable accepts as a value a string� which will then appear as the label for the x�axis 	the axis for
the �rst variable
 or the y�axis 	the axis for the second variable
 in a �D or �D plot drawn by Macsyma�

The line at the bottom of each plot is called the dataline� It displays the maximum and minimum of x and
y 	and z in �D plots
� Setting the option variable plotbounds to false suppresses display of the dataline�

The following example displays a plot with default axes� The result is shown in Figure ���

�c�� expr���	�x
�	sin���x���

� �

�d�� �� sin��� x

x

�c�� plot�expr x ���e�� ���e��� plotnum�����

Now replot the same plot with a title� labeled x and y axes� no plot bounds information� The result is shown
in Figure �����

�c��plot�expr x ���e�� ���e��� plotnum���� title��A Plot with Modified Labels�

xlabel��The First Axis� ylabel��The Second Axis� plotbounds�false�

You can control many aspects of plot axes� labels� grid lines� lighting� and other plot decorations from within
the Macsyma Graphics Viewer in Macsyma �� and from the Front End in Macsyma ����

��� Saving Plots

Once you have created some plots� you will want to save them so that they can be displayed later� There
are two schemes for saving plots� saving plots in notebooks and saving plots in plot �les�

���� SAVING PLOTS �

10.005.00

-2.00

7.502.50

0.00

4.00

X (*10e-3)

Y (*10e-3)

2.00

1.20e-3 < X < 1.00e-2
-3.61e-3 < Y < 3.83e-3

Page 1

Figure ���� Plot with Default Axes

7.505.00

-2.00

The First Axis (*10e-3)

2.50

0.00

10.00

2.00

The Second Axis (*10e-3)

4.00

A Plot with Modified Labels

Figure ����� Plot With Title� Labeled Axes� and No Plot Bounds Box

�� CHAPTER �� PLOTTING

����� Notebook Graphics in Macsyma ��	 and Successors

If you are using Macsyma on a PC� you will be working in a notebook environment� In a Macsyma notebook�
save a plot by saving the notebook in a �le� Use the command �File���Save As�� To copy only the plot�
copy it to an empty notebook using �Edit���Copy Section�� and then save it�

To paste a plot into another Windows application 	e�g� Microsoft Word for Windows
� �rst set the value
of Clipboard Force Meta�le to On in the �File���Option Defaults� menu then use �Paste� in the
�Edit� menu

To move a plot within a notebook� or to another notebook� use the mouse to select the graphics section�
then use �Edit� � �Copy Section� followed by �Edit� � �Paste Section��

You can save a plots as a �pcx� �bmp� �gif� or �rle �le by selecting the plot and clicking on the export
button on the tool bar in the Macsyma Front End�

����� File Based Graphics in Macsyma ��
 and Successors

When you create a plot on a system which uses �le�based graphics� speci�cally� in UNIX versions �� through
��� and successors� Macsyma stores all of the plot information in a �le called macsyma�plt� If you wish
to save the plot information for a given plot� use the function rename plot �le to save it in a �le with a
di�erent name� Each time you create a new plot� Macsyma stores it in the �le macsyma�plt� overwriting
the previous information in the �le�

rename plot �le	�lename
 Function

Renames the current plot �le to �lename� This command allows you to store information about the most
recent plot in a named �le� otherwise� the next plot will overwrite the default plot �le 	macsyma�plot
�

If you are using UNIX Macsyma ��� you can also save the plot from the Macsyma Graphics Viewer window�
using the menu choice �File���Save As�� Later� when you wish to load the saved plot into the Macsyma
Graphics Viewer window� use �File���Open��

Macsyma allows you to edit many plot attributes in the Macsyma Graphics Viewer window without regener�
ating the plot� Experiment with the menu items �Adjust View���� �Render Settings����� and �Other

View Parameters��

Chapter �

Macsyma File Manipulation

This chapter explains how to perform various Macsyma �le�related operations�

Although the examples in this chapter introduce many commands and option variables� the scope of this
document allows only a limited introduction to Macsyma�s �le manipulation facilities� To �nd out more�
consult the Macsyma Reference Manual �

��� Specifying Pathnames

In Macsyma� certain commands require that you specify �le pathnames� Operations that require a pathname
include�

� Running demonstration �les 	Section ���

� Saving� editing� and executing �les of Macsyma commands 	Section ���

� Saving a transcript of your session in a �le 	Section ����

When specifying �le pathnames in the Macsyma environment� use the pathname syntax which is speci�c
to your type of platform� enclosed in double quote marks� 	DOS�Windows is an exception in that each
backslash must be replaced by two backslashes�
 For example� if Macsyma is stored on the directory named
macgold� then the following commands load the Macsyma system �le �functs� from the system directory�
and the user �le �my�le� from the user�s home directory 	named homedir
 on subdirectory mysubdir�

platform command

DOS�Windows load��c�nnmacgoldnnsharennfuncts�fas���

load��c�nnhomedirnnmysubdirnnmyfile�mac���

UNIX load��c��macgold�share�functs�o���

load���homedir�mysubdir�myfile�macsyma���

VMS load��c��macgold�share�functs�fas���

load��c��homedir�mysubdir�myfile�mac���

Symbolics load��c��macgold�share�functs�bin��� �or �ibin�

load��c��homedir�mysubdir� myfile�macsyma���

All Systems load��macsyma�share�functs�bin���

load��macsyma�share�functs���

load��functs���

��

�� CHAPTER �� MACSYMA FILE MANIPULATION

load��functs��

load�functs��

When specifying pathnames in a Macsyma command �le� you can make the Macsyma code more portable
to other systems by using the�logical pathname� scheme described below� When Macsyma encounters a
pathname speci�ed by a logical pathname� the pathname is automatically converted to the appropriate
syntax for the indicated �le system�

���� Logical Pathnames

The pathnames for �All Systems� in the table above are in Macsyma�s logical pathname scheme� which works
across all platforms� A logical pathname uses a �le name convention that is independent of any particular
physical host or �le server� Logical pathnames make it easy to keep software on more than one �le server or
operating system� Each version of Macsyma has a translation table that takes the name of the logical path
and returns the physical directory and name of the installation�

This scheme uses logical names for the name of the directory where Macsyma is installed� and for �lename
extensions� Note that the logical directory name �macsyma� translates to the name of the directory where the
Macsyma software is located� The �le type extension is the logical name ��bin�� whose literal interpretation
varies across platforms� 	See below for more information

The logical pathname scheme is supported only for directories speci�ed by the option variable �le search�
This option variable contains a list of those directories to be searched if a �le name is incompletely speci�ed�
You may add additional directories to this list� The directories may be either logical or literal names� To
see the current value of �le search� enter file search� � The commands on the last three lines above use
Macsyma�s �le search facility� When you load a �le by its name only� Macsyma checks for a �le of that
name in several directories� The directories currently on the �le search list are�

� your home directory 	denoted by the symbol false

� macsyma�library��

� macsyma�library��

� macsyma�matrix�

� macsyma�ode�

� macsyma�share�

� macsyma�tensor�

For example� if you wish to load a �le found in your home directory� you can use either

load��myfile�bin���

load��myfile���

If you don�t provide a �le speci�cation� Macsyma will search for �binary� �rst� then �lisp�� then �macsyma��
In DOS�Windows� these �les would appear with su�exes �bin� �lsp� and �mac�

���� Filename Extensions

Macsyma�s logical pathname scheme uses three logical pathname extensions� �macsyma �lisp� and �bin� These
translate into literal pathname extensions as shown in Table ���

���� CUSTOMIZING YOUR MACSYMA INIT FILE ��

Logical ���� Actual Extensions ����
Extensions DOS�Windows UNIX VMS Symbolics
�macsyma �MAC �macsyma �MAC �macsyma

�lisp �LSP �lsp �LSP �lisp

�bin �FAS �o �FAS �bin �ibin

Table ��� Literal pathname extensions from logical pathnames

��� Customizing Your Macsyma Init File

The �rst time you enter Macsyma� the system automatically attempts to load your init �le� If you do not
have one� Macsyma displays the name of the �le it was trying to locate�

A Macsyma init �le is not required� but you might want to create one to contain de�nitions for functions�
option variable settings� assignments to variables� loading share packages� and so on� Use your system�s text
editor to create an init �le� You should use the name that Macsyma tried to load� The default name for the
Macsyma init �le is macsyma�user�mac
init�mac �

The following sample init �le contains customized commands you might like to add to your Macsyma init
�le�

�	 This is an empty Macsyma initialization file�

Macsyma commands which you place in this fie will be executed

each time you execute the command INITIALIZE�MACSYMA��� �

	�

�	

The following command will add a directory to the front of the

list of directories searched when incomplete pathnames are specified�

	�

file�search�cons��c���mydir��develop���file�search��

�	

The following command will cause the symbol pi to represent as

double float �pi�

	�

pi�dfloat��pi��

�	

The next command causes Macsyma to display the computation time

elapsed for each command entered�

	�

showtime�true�

�	

The following command suppresses the warning message displayed

each time a floating point number is converted into a bigfloat number�

	�

float�bf�true�

�	

The following command suppresses the warning message displayed

each time a floating point number is converted into a rational number�

�� CHAPTER �� MACSYMA FILE MANIPULATION

	�

ratprint�false�

You can use this method to de�ne default settings for your most frequently used option variables�

Macsyma loads your init �le automatically when you �rst enter Macsyma or when you enter Macsyma after
a complete initialization� accomplished with initialize macsyma��� �

To load your init �le at any other time� use the command load	�lename
� where �lename speci�es the
location of your Macsyma init �le� For example� you can load the init �le �mac�init�mac� from your home
directory as follows�

�c�� load��mac�init�mac���

��� Submitting Macsyma Batch Jobs

All versions of Macsyma support running Macsyma jobs in batch mode� To run any Macsyma batch job
successfully� however� you must be able to predict exactly what input Macsyma will ask for in the course
of running your job� and at what point in the job Macsyma will require that input� The following sections
illustrate this point and explain how to run batch jobs in DOS�Windows� Unix� and VMS�

The following batch command can be used in all versions of Macsyma but only for �les in the Macsyma
hierarchy�

batch��macsyma�user�testing��mac���

For Unix� a typical batch command would be�

batch��c��homedir�mysubdir�testing��mac���

A typical VMS batch command would be�

batch��c��homedir�mysubdir�testing��mac���

A typical DOS�Windows command is�

batch��c���homedir��mysubdir��testing��mac���

���� SUBMITTING MACSYMA BATCH JOBS ��

���� Batch Jobs in Unix

This section presents two examples for running Macsyma batch jobs in Unix� Follow the steps below to run
a Macsyma batch job�

Example �

� Create a Macsyma command �le named testing��com which contains the commands you want in�
cluded in your batch job� For example�

assume�a ���

int��sin�a	x��x�
��

integrate�int x � inf��

quit���

The line assume	a � �
 above answers Macsyma�s query about the sign of a when it executes the
integrate command� This line is necessary since a batch �le cannot ask questions�

Alternatively� you can insert assume pos�true� as the �rst line of the command �le above�

�� To execute your �le testing��com� create a Unix shell script� here called testing��bat� containing
the following line�

Macsyma ! testing��com testing��log

When your batch job is completed� the �le testing��log contains a transcript of the Macsyma session�

�� To make your shell script executable� use the following Unix command�

chmod �x testing��bat

�� To execute your Macsyma batch job at � p�m�� for example� use the Unix command at �����

testing��bat� To submit a batch job to Unix more that �� hours in advance� add the month and
date� For example� at ����� feb �� testing��bat

The second example shows an alternative way of submitting a Macsyma batch job in Unix� This slightly
more complicated approach allows you to include only Macsyma commands in your command �le and to
put responses to Macsyma queries in a separate �le� You can use a demo or another Macsyma command
�le� without making any changes to it for the batch process�

Example �

� Create a Macsyma command �le named testing��mac which contains the commands you want in�
cluded in your batch job� 	This �lename must be lower case
� Assume that testing��mac has the
same contents as testing��com in Example � above� except that the line assume	a � �
 is missing�

int��sin�a	x��x�
��

integrate�int x � inf��

quit���

�� CHAPTER �� MACSYMA FILE MANIPULATION

�� Create a second �le� testing��bat� with the following Macsyma commands shown below� The �rst
command executes the Macsyma command �le� the second command answers the integrate com�
mand�s query about the sign of a�

batch��testing��mac���

pos�

�� To execute your �le testing��bat� create a third �le called testing��exe containing the following
line�

Macsyma ! testing��com testing��log

When your batch job is completed� the �le testing��log contains a transcript of the Macsyma session�

�� To make the �le testing��exe executable� use the Unix command

chmod �x testing��exe

�� To execute your Macsyma batch job at � p�m�� for example� use the Unix command

at ����� testing��exe

To submit a batch job to Unix more that �� hours ahead of time� add the month and date to the above
command after the time� as follows�

at ����� jan �� testing��exe

���� Batch Jobs in VMS

This section presents two examples for running Macsyma batch jobs in VMS� You can follow the steps below
to run a Macsyma batch job�

Example �

� Create a Macsyma command �le with the �lename extension �COM� such as TESTING��COM� The �rst
line of the �le must be Macsyma� the other lines can contain the commands to be executed in your
batch job� For example�

Macsyma

assume�a ���

int��sin�a	x��x�
��

integrate�int x � inf��

quit���

The line assume	a � �
 above answers Macsyma�s query about the sign of a when it executes the
integrate command� Alternatively� you can insert assume pos�true� as the �rst line of the command
�le�

���� SUBMITTING MACSYMA BATCH JOBS ��

�� To submit this job after � p�m�� for example� use the VMS command

SUBMIT�AFTER������ TESTING��COM

When the job is completed� a �le called testing��log� created by the system� contains a transcript
of the Macsyma session�

The second example shows an alternative way of submitting a Macsyma batch job in VMS� This slightly
more complicated approach allows you to include only Macsyma commands in your command �le and to put
responses to Macsyma queries in a separate �le� You can use a demo or another existing Macsyma command
�le� without making any changes to it for the batch process�

Example �

� Create a �le with the �lename extension �MAC to include the Macsyma commands in your batch job�
Example� testing��mac�

int��sin�a	x��x�
��

integrate�intx�inf��

quit���

�� Create a second �le with the �lename extension �com� for example testing��com� and include the
following�

Macsyma

batch��testing��mac���

pos�

The line pos� above answers Macsyma�s query about the sign of a when it executes the integrate
command� Note� The �lename in the second line above must be in lower case�

�� To submit this job after � p�m�� for example� use the VMS command

SUBMIT�AFTER������ TESTING��COM

When the job is completed� a �le called testing��log� created by the system� contains a transcript
of the Macsyma session�

���� Batch Jobs in DOS�Windows

Create a Macsyma command �le with the �lename extension �mac� for example testing�mac�

assume�a ���

int��sin�a	x��x�
��

integrate�int x � inf��

The line assume	a � �
 above answers Macsyma�s query make about the sign of a when it executes the
integrate command� Alternatively� you can insert assume pos�true� as the �rst line of the command �le�

To run the job type�

batch��testing�mac��

�� CHAPTER �� MACSYMA FILE MANIPULATION

��� Saving Your Work

���� Saving an ASCII Transcript of Your Work

It is a good practice to begin a Macsyma session with the command write�le	�lename
 so that your entire
Macsyma session will be recorded in the �le �lename� Use the command close�le to close a �le that you
have opened with the write�le command� For example�

Open a �le to contain a transcript of this Macsyma session�

�c�� writefile��Macsyma��out���

�d�� Macsyma��out

The following c�lines and d�lines are recorded into the transcript �le�

�c�� a����

�c�� b����

�c�� c�a	b�

�d�� ���

Close the transcript �le� saving it to disk�

�c�� closefile���

�d�� Macsyma��out

As discussed in Section �� above� you can specify �lename as a pathname surrounded by double quotes 	�
�
or by using the logical pathname scheme�

If you did not begin the Macsyma session with a write�le command� you can still make a record of the
session� At any time during a Macsyma session you can issue the write�le command� then use the command
playback��� to redisplay all the input and output from the beginning of the session up to the current line�
You can then continue your session� with subsequent commands transcripting into the �le� or you can close
the �le with close�le� Try the following example�

Begin a Macsyma session without using write�le to enable transcripting�

�c�� x�����

�c�� y�����

�c�� z�x � y�

�d�� ���

Open a �le so that you can �play back� the current session into it�

�c�� writefile��Macsyma��out���

�d�� Macsyma��out

Redisplay all c�lines and d�lines since the beginning of the session�

�c�� playback���

�c�� x�����

���� SAVING YOUR WORK �

�c�� y�����

�c�� z�x � y�

�d�� ���

�c�� writefile��Macsyma��out���

�d�� Macsyma��out

�d�� done

Close the transcript �le� saving it to disk�

�c�� closefile���

�d�� Macsyma��out

���� Saving a Macsyma Notebook

Macsyma ��� and its successors create re�executable notebooks� After completing a Macsyma session� click
on �File���Save As���� 	or �File���Save� if the notebook was previously saved
� To re�execute the
notebook� click on �Edit���Select���Input�� to select all input sections� Then click on �Edit���Reexe

cute��

Macsyma �� and its successors create fancy scripts which are not re�executable� After completing a Macsyma
session� click on �File���Save Output As���� 	or �File���Save Output� if the notebook was previously
saved
�

���� Saving Your Computation Environment

To store variable settings� including the expressions associated with c�labels and d�labels� for use in a
later Macsyma session� you can use the command save	�lename� all
� Execute several commands� noting
that variables eqs� globalsolve� x � and y � as well as the c�labels and d�labels� are bound to new values
during the session�

�c�� eqs���	x � �	y � � �	x ���	y � ����

�c�� globalsolve�true�

�c�� linsolve�eqs �x y���

� ��

�d�� �x � � �� y � ���

�� ��

�c�� x�

�

�d�� � ��

��

�c�� c��

�d�� eqs � �� y � � x � � � �� y � � x � ���

Save the variables settings in a �le for use in another Macsyma session�

�c�� save��macsess�sav� all��

�� CHAPTER �� MACSYMA FILE MANIPULATION

The �le is saved in the user�s home directory unless you specify another directory� Both save and playback
support speci�cations to indicate whether all or part of the session should be saved or played back� See the
Macsyma Reference Manual for more information�

You can restore the information in the save �le with the load	�lename
 command� Begin a new Macsyma
session� noting that variables have default settings�

�c�� globalsolve�

�d�� false

�c�� x�

�d�� x

�c�� eqs�

�d�� eqs

�c�� c��

�d�� globalsolve

Now load the �le containing the variables settings you saved in a previous session�

�c�� load��macsess�sav���

macsess�sav being loaded�

Notice that now the variable values have changed�

�c�� globalsolve�

�d�� true

�c�� x�

�

�d�� � ��

��

�c�� eqs�

�d�� �� y � � x � � � �� y � � x � ���

�c�� c��

�d�� eqs � �� y � � x � � � �� y � � x � ���

Chapter ��

Translating Macsyma Expressions to

Other Languages

It is possible to translate Macsyma expressions to other languages� The primary facility for doing this is the
gentran function� Gentran can be used to generate both FORTRAN and C code� For more information�
see gentran in the Macsyma Reference Manual �

�	�� Translating Expressions to FORTRAN

You can convert Macsyma expressions to legal FORTRAN code using the special forms fortran and gentran
and the option variables discussed below� For example� consider the following�

�c�� solve�x
���	y � �� x��

�d�� �x � � sqrt��� � � y� x � sqrt��� � � y��

To convert the �rst solution given above into FORTRAN code� type

�c�� fortran�first�����

x � �sqrt�����	y�

You can also convert a matrix into a series of FORTRAN assignment statements� For example�

�c�� m�matrix��� � �� �� � ����

� � � � �

�d�� � �

� � � � �

�c�� fortran�m��

m�� �� � �

m�� �� � �

m�� �� � �

m�� �� � �

m�� �� � �

m�� �� � �

��

�� CHAPTER �	� TRANSLATING MACSYMA EXPRESSIONS TO OTHER LANGUAGES

Two option variables� fortindent and fortspaces� determine the format of the FORTRAN output� The
variable fortindent controls indentation� The default setting is �� producing a normal indentation of �
spaces� Resetting it to a positive value increases indentation�

Add three spaces to the normal indentation of six� compare the result to the output of 	c�
 above

�c�� fortran�part�d� ��� fortindent���

x � sqrt�����	y�

The variable fortspaces is initially set to false� Setting it to true causes fortran to �ll out to �� columns
using spaces�

�	�� Translating Macsyma Expressions to C

See the Gentran package in theMacsyma Reference Manual for information on translating Macsyma packages
to C�

�	�� Typesetting Macsyma Expressions with TEX

TEXis a text formatter for mathematical equations� Macsyma lets you convert Macsyma expressions auto�
matically to TEX format using the commands tex and write tex �le�

The function tex accepts one or more Macsyma expressions and converts them into TEX� If write tex �le
has been called� and there is an open TEX �le� then tex writes to that �le� Otherwise the TEX output is
sent to the terminal� See the Macsyma Reference Manual for more information about converting Macsyma
expression to TEX�

Consider the following integral�

�c�� �integrate��e
��x
�� x� � integrate��e
��x
�� x��

� �

� � x sqrt��pi� erf�x�

�d�� I �e dx � ����������������

� �

�

To convert this expression to TEX code� type

�c�� tex����

� �integrate��e
�x
�x� � sqrt��pi�	erf�x���

�� �int e
 "�" x
"�# ###"�dx#� ""�sqrt"�pi#��left�"�rm erf#x

�right�#�over"�##��

�d�� done

Chapter ��

Using the Macsyma Programming

Language

Macsyma is a full programming language as well as providing the mathematical capabilities that you have seen
in previous chapters� Macsyma accommodates many classical programming structures� including conditional
statements and loops� You can write procedures for a variety of purposes� such as numerical techniques and
combinatorial search�

Writing procedures in Macsyma for numerical techniques di�ers somewhat from writing in a purely numerical
language� such as FORTRAN� however� For example� Macsyma requires no type declarations� and �oating�
point numbers do not result from certain calculations� though they are contagious�

The examples in this chapter cover many aspects of using Macsyma as a programming language� If you wish
to learn more about programming in Macsyma� see Chapter � and also consult the Macsyma Reference

Manual �

���� Using Conditionals

To execute expressions conditionally� use the if statement�

if condition then expression� else expression�

The if statement returns the value of expression� if the condition is true and the value of expression� if the
condition is false�

The arguments expression� and expression� can be any kind of Macsyma expression� including another
nested if statement� or a group of expressions known as a compound statement 	See compound statements�
page ��
�

The condition argument is a predicate expression whose relational and logical operators always evaluates to
either true or false� Table � lists Macsyma�s prede�ned logical operators�

�c�� pulse�x� �� if x � or x !� � then �� else ���

�c�� pulse������

�d�� �

�c�� pulse����

�d�� �

��

�� CHAPTER ��� USING THE MACSYMA PROGRAMMING LANGUAGE

Omitting the else clause of an if statement is the same as specifying else false�

Logical Operator Description

� greater than
� equal to
� not equal to
� less than
�� greater than or equal to
�� less than or equal to
and logical and
or logical or
not logical not

Table �� Prede�ned Logical Operators

���� Using Iteration

Use the for statement to perform iteration� Macsyma provides several variations of the for statement which
are similar to other programming languages� 	For example� FORTRAN� Algol� and PL�
� The common
variants shown below di�er only in their terminating conditions�

for variable�initial�value step increment thru limit do body

for variable�initial�value step increment while condition do body

for variable�initial�value step increment unless condition do body

for variable in list while condition do body

for variable in list unless condition do body

The initial�value� increment � limit � and body can be any expressions� To iterate over several statements� you
can make the body a compound statement 	See compound statements� page ��
 or a block statement
	See block statement� page ��
� The condition� or predicate� is the same as that described on page ��
for the if statement� If increment is � you can omit the step � from the statement� The statement executes
until until the control variable exceeds the limit of the thru speci�cation� or the condition of an unless
clause is true or a while clause is false� For more details on the use of the for statement� see the Macsyma

Reference Manual �

Every Macsyma command returns a value� The value normally returned by a for statement is done�

�c�� s���

�c�� for i�� step � thru � do s�s � i�

�d�� done

�c�� s�

�d�� ��

The command ldisplay	exp�� � � � � expn
 is useful in for statements and blocks 	see page ��
 to display
intermediate results� The ldisplay command displays equations whose left side is expi and whose right side
is the value of the expression� Each equation has an intermediate label� which is added to the system variable
labels� which is a list of all line labels which are currently bound to an expression�

����� USING ITERATION ��

�c�� s���

�c�� for i�� step � thru � do ldisplay�s�s � i��

�e�� s � �

�e�� s � �

�e�� s � �

�e�� s � ��

�d�� done

Macsyma provides several commands similar to ldisplay� These include display� ldisp� and disp� Unlike
display� ldisplay provides a means of accessing the results through the values of the intermediate line labels
generated during the execution of the ldisplay command� Use ldisp to display values only� without the
equation format provided by ldisplay� Use disp or display if the intermediate line labels are not needed�

Another useful display command� print� appears in the answer to this chapter�s �rst practice problem on
page 	���
�

Macsyma also allows you to nest for loops�

�c�� poly���

�c��� for i�� thru � do

for j�i step �� thru � do

poly�poly � i	x
j�

�c��� poly�

� � � �

�d��� � x � � x � �� x � �� x � �� x

The remaining examples in this section illustrate the for statement in conjunction with various keywords�
Note particularly the last example� 	c�
 through 	d��
� which simulates the taylor command�

You can use the keyword in to iterate through a list�

�c��� for f in �a b� do ldisp�f��

�e��� a

�e��� b

�d��� done

Certain Macsyma commands� such as solve� return their results in a list� To check solutions� use the keyword
in to look at every element in a list�

�c��� eq�a	x
� � b	x � c�

�

�d��� a x � b x � c

�c��� quadraticsols�solve�eq x��

�� CHAPTER ��� USING THE MACSYMA PROGRAMMING LANGUAGE

� �

sqrt�b � � a c� � b sqrt�b � � a c� � b

�d��� �x � � �������������������� x � ���������������������

� a � a

�c��� for c in quadraticsols do ldisp�ev�eq c ratsimp���

�e��� � � �

�e��� � � �

�d��� done

The following example illustrates the use of the while keyword�

�c��� s���

�c��� for i�� while i !� �� do s�s � i�

�d��� done

�c��� s�

�d��� ��

Notice that you can use a for statement with the unless keyword to simulate the taylor command�

�c��� taylor�exp�sin�x�� x � ���

� � � � �

x x x x x

�d����T� � � x � �� � �� � �� � ��� � �� � � � �

� � �� ��� ��

�c��� series���

�c��� term�exp�sin�x���

�c��� for p�� unless p � do

series�series � subst�x � � term�diff�term x��p�	x
p�

�d��� done

�c��� trunc�series��

� � � � �

x x x x x

�d��� � � x � �� � �� � �� � ��� � �� � � � �

� � �� ��� ��

���� Compound Statements

To execute a sequence of statements in a context where only a single statement is permitted 	for example� in
an if or for statement
� group them into a compound statement by separating the statements with commas
and enclosing the entire group in parentheses�

The value returned by a compound statement is the value of the last statement in the group�

The example below uses a compound statement to rewrite the commands shown in 	c�
 through 	c��
 of
Section �� to simulate the taylor command� Macsyma returns the series because it is the value of the last
statement�

����� MAKING PROGRAM BLOCKS ��

�c�� �series�� term�exp�sin�x��

for p�� unless p � do

�term�diff�term x��p

series�series � subst�x � � term�	x
p� trunc�series���

� � � � �

x x x x x

�d�� � � x � �� � �� � �� � ��� � �� � � � �

� � �� ��� ��

You can use the system variable �� in the nth statement to refer to the value of the 	n�
th statement�

�c�� diff�at�exp var� var�� �� �diff�exp var�� subst�var� � var� �����

�c�� diff�at�sin�x�xy � ���

�d�� cos�y � ��

���� Making Program Blocks

Program blocks are similar to compound statements� but they also provide a way to tag statements within
the block and to assign values to variables that are local to the block� Use the block statement�

block	�var�� � � � � varn�� statement�� � � � � statementn

to establish a program block� Each vari is a variable name with an optional assignment that is local to the
block� Each statement can be any Macsyma expression� If you don�t need any local variables� you can omit
the variable list� For more information about the block statement� see the Macsyma Reference Manual �

Generally the value returned by block is the value of the last statement in the block� Alternatively� you can
use the command return	exp
 to explicitly exit the block and return a value� An example of the return
command appears on page ��

As with compound statements� you can use the system variable �� in the nth statement of the block to refer
to the value of the 	n�
th statement�

The following example rewrites the compound statement shown in 	c
 of Section ��� which simulates the
taylor command� as a function using a block statement� Notice that the �var�� � � � � varn� part of the block
statement is not used here� and thus no local variable is declared� However� the �rst command in the block
assigns a value to series� and so this variable remains bound after the block is exited�

�c�� mytaylor�expr var point hipower� ��

block�series�subst�point var expr�

for i�� thru hipower

do �expr�diff�expr var��i

series � series

� �var � point�
i	subst�point var expr��

trunc�series���

Test the function on the following input�

�c�� mytaylor�exp�sin�x�� x � ���

�� CHAPTER ��� USING THE MACSYMA PROGRAMMING LANGUAGE

� � � � �

x x x x x

�d�� � � x � �� � �� � �� � ��� � �� � � � �

� � �� ��� ��

The variable series was assigned a value in the 	statement�� � � � � statementn
 part of the block statement�
but is not declared� and so remains bound�

�c�� series�

� � � � �

x x x x x

�d�� �� � ��� � �� � �� � �� � x � �

�� ��� �� � �

The next example rewrites the function mytaylor again� This time series� is declared as a local variable in
the block� Notice that now the variable is unbound after the block is exited�

�c�� mytaylor��expr var point hipower� ��

block��series��

series��subst�pointvarexpr�

for i�� thru hipower

do �expr�diff�exprvar��i

series� � series�

� �var � point�
i	subst�point var expr��

trunc�series����

Test the function on the following input

�c�� mytaylor��exp�sin�x�� x � ���

� � � � �

x x x x x

�d�� � � x � �� � �� � �� � ��� � �� � � � �

� � �� ��� ��

Since the variable series� was declared in the block statement� it is local to the block and therefore not
bound outside it

�c�� series��

�d�� series�

���
 Tagging Statements

When you are writing complex procedures that involve many statements� you can tag the statements in
order to transfer control among them� To do so� use the go statement� The command go	tag
 transfers
control to the statement of a block that is tagged with tag �

���
� WRITING RECURSIVE FUNCTIONS �

To tag a statement precede it by a symbol� as another statement in the block� This is illustrated in the
following example�

Rewrite the mytaylor function de�ned in Section ��� this time using a go statement instead of a for
statement to perform iteration� notice that the tag value is called loop

�c�� mytaylor��expr var point hipower� ��

block��series� i���

series��subst�point var expr�

loop if i � hipower then return�trunc�series���

i � i � �

expr�diff�expr var��i

series� � series�

� �var � point�
i	subst�point var expr�

go�loop���

Test the new function

�c�� mytaylor��exp�sin�x�� x � ���

� � � � �

x x x x x

�d�� � � x � �� � �� � �� � ��� � �� � � � �

� � �� ��� ��

Note� You can use go only to transfer to a tag within the block containing that go statement�

���� Writing Recursive Functions

Like many other programming languages� Macsyma supports recursion� You have already seen an example
of a recursively de�ned array compute factorials 	Section ���� on page ��
� The example below illustrates a
recursive function that computes factorials�

�c�� myfactorial�n� �� if n � � then �

else n	myfactorial�n � ���

The trace	functionn�� � � � � functionnn
 command is useful for monitoring the execution of one or more
functions� When Macsyma encounters a function function during a computation� it displays the function�s
name and arguments upon entry� the function�s name and return value upon exit� and a count of the levels
of recursion�

To stop tracing a function� use the command
untrace	functionn�� � � � � functionnn
� The command untrace��� removes tracing from all functions�

The trace command can monitor the execution of myfactorial for n � ��

�c�� trace�myfactorial��

�c�� myfactorial����

� enter myfactorial ���

� enter myfactorial ���

�� CHAPTER ��� USING THE MACSYMA PROGRAMMING LANGUAGE

� enter myfactorial ���

� enter myfactorial ���

� enter myfactorial ���

� exit myfactorial �

� exit myfactorial �

� exit myfactorial �

� exit myfactorial �

� exit myfactorial ��

�d�� ��

�c�� untrace�myfactorial��

Another important use of functions is in the de�nition or extension of algorithms that manipulate formulas�
Consider a symbolic di�erentiation algorithm whose four basic rules are

dx

dx
�

dx

dy
� � when x �� y

d	u� v

dx
�

du

dx
�

dv

dx

d	uv

dx
� v

du

dx
� u

dv

dx

You can implement this algorithm using the recursive function given below� To implement the �rst two
di�erentiation rules� you should �rst check to see if the expression is an atom� An atom is a simple data
structure with no component parts� such as a number� a string� or a symbol� The command atom	exp

returns true if exp is an atom� and false otherwise�

�c�� atom�dummyvar��

�d�� true

�c�� atom�dummyvar � ���

�d�� false

In implementing the �rst two di�erentiation rules� we know that if atom returns false� the expression is a
composite expression�

To implement the last two rules� use the part command 	see Section ���� page ��
 to determine whether the
leading operator obtained by part�expr �� represents addition or multiplication� Based on this value� you
can apply the appropriate rule� If the leading operator is neither � nor 	� the procedure returns a di�erential
form as a result�

�c�� newdiff�exprvar� ��

if atom�expr�

then if expr � var

then �

else �

else if part�expr �� � ���

then newdiff�part�expr �� var� � newdiff�part�expr �� var�

else if part�expr ����	�

then part�expr ��	newdiff�part�expr �� var�

� part�expr ��	newdiff�part�expr �� var�

else �newdiff�expr var��

����� FUNCTIONAL ARGUMENTS AND FORMAL PARAMETERS ��

�c�� newdiff��x � ��	�x��� � g�x� x��

�d�� newdiff�g�x� x� � � x � �

���� Functional Arguments and Formal Parameters

To pass a function as an argument to another function you need only give its name in the argument list of
the call� You can then use this function in the called function by following the name of the corresponding
formal parameter with a parenthesized list of arguments�

To pass a subscripted function give the name followed by the subscripts in brackets�

To pass an array� give the name of the array in the argument list� You can then reference the arrays by
subscripting the corresponding formal parameter�

When you know the name of the function� you should precede the name with a single quote to prevent
evaluation� In this way� you can avoid potential confusion with any variables which might have the same
name�

To assign a value to a formal parameter of a function so that the corresponding actual parameter gets
changed� and remains changed� when the function is exited� you can use the operator ���� rather than the
operator ���� Using ���� in this way is discouraged� however� because the assignment takes place in the
environment of the program and not in the environment of the caller�

In this example� the variable a is initially unbound�

�c�� a�

�d�� a

A �rst attempt to de�ne a function f for binding the value � to its argument� using the ��� operator does
not work�

�c�� f�x� �� x���

�c�� f��a��

�d�� �

�c�� a�

�d�� a

Using the ���� operator allows the function � to bind the value � to its argument�

�c�� ff�x� �� x����

�c�� ff��a��

�d�� �

�c�� a�

�d�� �

For more details about functional arguments and formal parameters� see the Macsyma Reference Manual �

���� Practice Problems

Using the commands that you have learned about in this chapter� solve the following problems� Answers
appear on page ����

��� CHAPTER ��� USING THE MACSYMA PROGRAMMING LANGUAGE

Solve the �rst six problems using Macsyma lists �a�� a�� a�� to represent the three�dimensional vectors

a � a� e � a� e � a� e

x y z

Problem � � De�ne the functions dot�u� v� and cross�u� v� to return the dot �scalar� and cross �vector�
product of two vectors u and v	 respectively� �Macsyma has a dot operator
	�	 and a vector cross product
operation in the vector calculus package vect��

Problem � � Use your de�nitions to prove that� a� �b� c�� b�a � c� c�a � b� � � for arbitrary vectors a	
b	 and c�

Problem � � De�ne the functions my grad	 my div	 and my curl to return the gradient of a scalar function
f 	 and the divergence and curl of a vector function v 	 respectively� �Macsyma has commands grad	 div	
and curl in the vector calculus package vect��

Problem � � Show that my grad�f� at the point ��������� is ������������ if f � �x�y � y�z��

Problem � � Show that my div�a� at the point ������ �� is �� if a is the vector

� � � �

�x z � �� y z � x y z	

Problem � � Show that my curl�a� at the point ������ �� is ��� �� �� if a is the vector

� �

�x z � �� x y z � � y z x	

Problem � � Write a function my runge kutta to solve the following di�erential equations

dx

dt
� ���x� y�

dy

dt
� �xz � y rx

dz

dt
� xy � z

subject to the constraints� x��� � z��� � �	 y��� � �	 and r � ��� �The Macsyma commands runge kutta
and ode numsol would normally be used to solve this problem��

Chapter ��

Advanced Programming Topics

This chapter covers some of the more advanced aspects of Macsyma programming	 including e�cient use of
subscripted functions	 debugging functions	 writing macros	 translating and compiling functions	 and hints
for writing libraries� These topics are covered in greater depth in theMacsyma Reference Manual � Beginning
Macsyma users or those with little programming experience can skip this chapter� This material is more
appropriate for users with extensive programming experience in Macsyma�

���� Functional Evaluation Revisited

It is useful to brie�y review the concept of a function in Macsyma� Loosely speaking	 a Macsyma function is a
procedure all of whose arguments are evaluated once prior to execution of the procedure� �This is contrasted
with a special form	 which can evaluate its arguments in a di�erent manner�� Consider the following example�

�c�� f�x�n��x�n�

n

�d�� f�x� n� � x

�c�� f�y����

�

�d�� y

�c�� �gf�wv��

�c
� g�w�
��

�d
� v

In �c��	 a function of two arguments is de�ned� This function is called in �c��� In �c��	 some variables are
bound to show the kinds of evaluation which occur� In �c
�	 the call to an unde�ned function g results in
the following steps�

� The identity of g is determined� Since there is no function de�nition associated with g	 it is evaluated	
resulting in f� The result is the intermediate form f�w���� �It is necessary to determine that f is indeed
a function	 not a special form	 before evaluation of the arguments can take place��

� Since f is a function	 all of its arguments are evaluated� then the function de�nition for f is applied to
the evaluated arguments	 yielding the expected result�

���

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

���� Lambda Forms

������ Evaluation of lambda Forms

A lambda form is a
temporary� or
unnamed� function� See the Macsyma Reference Manual for more
information� This Section explains the evaluation of lambda forms and the substitution of lambda forms
for speci�ed operators� Consider the following example�

�c�� lambda��var��var�	�var��var���y����

�

�d�� y

�c�� flambda��var��var�	�var��var���

var�

�d�� lambda��var�� var�	� var� �

�c�� f�y����

�

�d�� y

�c
� �g�f�wv��

�c�� g�w�
��

�d�� v

This example is almost identical to the previous one� A
temporary� lambda form is de�ned	 used	 and
discarded in �c��� In �c��	 a lambda form is bound to the variable f	 and is executed in �c�� and �c��

following the previously described evaluation procedures� The symbol g is bound to �f in �c
� to show that
the operator is evaluated	 as well as the arguments�

������ Using opsubst and lambda Forms to Modify Expressions

You may want to modify an expression by manipulating some of the functional forms in place� For example	
you might want to write a function which scans an expression and returns a list of all of the arguments of the
sin function� You have several options	 but a particularly e�cient and elegant way is to use the opsubst
command to scan the expression and a lambda form to obtain the arguments of the desired function� The
following example illustrates this approach�

�c�� a�sin���x��b��
�sin���t����sin�x���c��cos���y��sin���w��sin���s�����

c sin�� w� cos�� y�

�d�� ������������������� � a sin�� x�

sin�� s�

� b �
 sin�� t� � � sin�x�� � �

�c�� �arguments�	�opsubst��sin�lambda��arg	�if not�member�arg�arguments��

then push�arg�arguments��funmake��sin��arg	�������

c sin�� w� cos�� y�

�d�� ������������������� � a sin�� x�

sin�� s�

� b �
 sin�� t� � � sin�x�� � �

�c�� arguments�

����� SUBSCRIPTED FUNCTIONS ���

�d�� �� w� � s� � x� x� � t	

This example uses the push macro	 which takes as arguments	 an element and the name of a list	 adds the
element to the front of the list	 and binds the resulting list to the indicated name� The test expression is
de�ned in �c���

The compound statement in �c�� binds an empty list to the symbol arguments	 uses opsubst to scan the
expression for sin functions and substitutes a lambda form for the sin operator whenever it encounters
one� �opsubst di�ers from subst in that it only performs the substitution when its target is used in the
functional position of an expression�� The substitution works in the following way�

� opsubst scans the expression
top down� for a sin operator�

� When it �nds one	 it substitutes the lambda form for sin	 thereby converting an expression of the
form sin�arg� into the intermediate form lambda�			��arg��

� After the lambda form is evaluated	 it checks to see if its argument is already in the list of arguments�
If not	 it adds the argument to the list� Finally	 it reconstructs the sin form� �Note� Failure to
reconstruct the sin form at the end might result in either the generation of an illegal expression or in
greatly increased execution time��

� The procedure repeats until the entire expression has been scanned�

In �c��	 we evaluate the variable arguments	 whose value was modi�ed as a side�e�ect of the opsubst
lambda substitution�

���� Subscripted Functions

A subscripted function	 e�g�	 f�n��x�	 is a Macsyma form whose functional part f�n� is a subscripted object�
An example of a subscripted function is f�n��x�	 where x is the argument and n is the index� In the following
example	 we de�ne a subscripted function and explain how it works�

�c�� f�n	�x��expand��x����n��

n

�d�� f �x� � expand��x � �� �

n

�c�� f��	�y��

� �

�d�� y � � y � � y � �

�c�� f��	�

� �

�d�� lambda��x	� x � � x � � x � ��

�c
� f�
	�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

 � �

�d
� lambda��x	� x �
 x � � x �
 x � ��

�c�� arrayinfo�f��

�d�� �hashed� �� ��	� �
		

�c�� de�nes a subscripted function� �c�� calls the function with the speci�ed index and functional argument�
�c�� evaluates the array element created by the command �c��	 and the result shows that a lambda form
has been generated and assigned to this array slot� �c
� evaluates the fourth element of the array	 which
causes the displayed lambda form to be generated and assigned to that element� �c�� shows that the array
f has been set up as a hashed array with values speci�ed for the indices � and �� �The � in the list �d��
indicates the dimension of the array��

This example steps used to de�ne and are executed when a subscripted function is de�ned and then called�

� The function de�nition generates a
template� which describes the body of the function in terms of
the array indices and functional parameters�

� When you �rst reference an speci�c array element	 a lambda form is generated and is assigned to the
array element	 and is applied to any functional arguments�

� When you call a subscripted function whose corresponding array element is already assigned	 the
associated lambda form is invoked on the functional arguments�

Note that the call to expand in the function de�nition automatically appears when Macsyma constructs the
lambda form� Subsequent calls to a subscripted function with previously�de�ned indices but new functional
arguments execute swiftly because the expand has been done once and for all� A disadvantage of this
method is that the partial evaluation of the function de�nition inhibits certain operations on the functional
arguments� More will be said about this later on page ����

������ Example� Incorporating A De�nite Integral Into A Func�

tion De�nition

This example further illustrates some other di�erences between regular and subscripted functions�

�c�� de�nes a function which computes a de�nite integral� The integral is recomputed every time the
function you invoke g� This process is ine�cient if you can compute the de�nite integral by evaluating a
closed form result at its lower and upper limit�

�c�� g�n�x��integrate�t�n�t���x��

n

�d�� g�n� x� � integrate�t � t� �� x�

�c�� g���y��

y �

�d�� �� � �

The next de�nition avoids the aforementioned shortcoming by using the result of the integration in the body
of the de�nition� However	 in this case	 the integrator needs to know the signs of certain quantities when

����� SUBSCRIPTED FUNCTIONS ���

computing the integral for general n� However	 this method is more e�cient than the previous one since the
integration does not need to be carried out each time the function is called�

�c�� gg�n�x�����integrate�t�n�t���x���

Is n positive� negative� or zero�

p�

Is x positive or negative�

p�

Is x � � positive� negative� or zero�

p�

n � �

x �

�d�� gg�n� x� � ������ � �����

n � � n � �

�c
� gg���y��

y �

�d
� �� � �

The next command does the same thing using the subscripted function mechanism� The integral is evaluated
the �rst time you call the subscripted function on a new index� That value of the index is bound before
the computation	 and you can compute the resulting integral without requiring sign information� The result
is bound as a lambda form to the array index	 so that you need not recompute the antiderviative when
you call with this index� In addition to avoiding most of the sign queries	 this method provides the correct
answer when n���

�c�� g�n	�x��integrate�t�n�t���x��

n

�d�� g �x� � integrate�t � t� �� x�

n

�c�� g��	�y��

y �

�d�� �� � �

�c�� g��	�

x �

�d�� lambda��x	� �� � ��

�c�� g���	�

is x � � positive� negative� or zero�

p�

�d�� lambda��x	� log�x��

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

Be careful when you test the functional arguments� Consider the following example which recursively de�nes
a family of functions	 each of which contains a removable singularity at x��� The straightforward subscripted
function de�nition generates a
Division by �� error when evaluated at x���

�c�� f�n	�x��sin�x��x�x�f�n��	�x��

sin�x�

�d�� f �x� � ������ � x f �x�

n x n � �

�c�� f��	�x����

�d�� f �x� � �

�

�c�� f��	�x��

sin�x�

�d�� ������ � x

x

�c
� f��	����

Division by �

Returned to Macsyma Toplevel�

We �rst try to �x this error by including a straightforward test for x�� and returning the value � in this
case� All other values are computed by recursion� This method also fails�

�c�� f��n	�x���if x � � then � else sin�x��x�x�f��n��	�x���

sin�x�

�d�� f� �x� � if x � � then � else ������ � x f� �x�

n x n � �

�c�� f���	�x����

�d�� f� �x� � �

�

�c�� f���	�x��

sin�x�

�d�� ������ � x

x

����� SUBSCRIPTED FUNCTIONS ���

�c�� f���	����

Division by �

Returned to Macsyma Toplevel�

�c�� f���	�

sin�x�

�d�� lambda��x	� ������ � x�

x

Inspection of the lambda form bound to the referenced slot shows that it is not what was intended� The
problem is that the if was evaluated before the lambda form was generated	 when x was still unbound� The
result of the if statement was used to generate the body of the function de�nition�

The next attempt tries to get around this problem by deferring evaluation of the if statement until the
function is invoked�

�c��� f��n	�x����if x � � then � else sin�x��x�x�f��n��	�x���

�d��� f� �x� � ��if x � � then �

n

sin�x�

else ������ � x f� �x��

x n � �

�c��� f���	�x����

�d��� f� �x� � �

�

�c��� f���	����

�d��� �

�c��� f���	�

�d��� lambda��x	� if x � � then �

sin�x�

else ������ � x f� �x��

x n � �

�c�
� f���	�x��

Error The control stack overflowed�

This attempt at deferred evaluation handles the special case x�� correctly	 but no longer handles the general
recursive case since n is not bound inside the body of the lambda form� The error occurs because Mac�
syma attempts to compute f��n��	 f��n��	� � � � and eventually over�ows an internal storage area� The
correct procedure	 as documented in the Macsyma Reference Manual 	 is to defer evaluation	 but to force an
evaluation of the index via a subst command�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

�c��� f��n	�x��subst��nn�n���if x � � then � else sin�x��x �

x�f��nn��	�x����

�d��� f� �x� � subst��nn � n�

n

sin�x�

��if x � � then � else ������ � x f� �x���

x nn � �

�c��� f���	�x����

�d��� f� �x� � �

�

�c��� f���	�x��

sin�x�

�d��� ������ � x

x

�c��� f���	����

�d��� �

�c��� f���	�

sin�x�

�d��� lambda��x	� if x � � then � else ������ � x f� �x��

x �

�c��� f���	�

sin�x�

�d��� lambda��x	� if x � � then � else ������ � x f� �x��

x �

This implementation handles the special case x�� and also the general case	 but doesn�t handle recursion
e�ciently since explicit calls to previously computed results are incorporated in the body of the lambda form
rather than in the results� Subsequent calls to	 say	 f���� require f����	 f����	 and f���� to be recomputed�
To implement an e�cient recursion scheme	 use two steps� First use subst and deferred evaluation to carry
out the test for x��� second	 step call another subscripted function to carry out the recursive computations
when you know that the special case has already been handled� This is done in the following example�

�c��� g�n	�x��subst��nn�n���if x�� then � else �g�nn	�x����

�d��� g �x� � subst��nn � n�

n

��if x � � then � else �g �x���

nn

����� THE DEBUGGER ���

�c��� g��	�x����

�d��� g �x� � �

�

�c��� �g�n	�x��sin�x��x�x��g�n��	�x��

sin�x�

�d��� �g �x� � ������ � x �g �x�

n x n � �

�c�
� �g��	�x����

�d�
� �g �x� � �

�

You call the function g	 but �g actually implements the recursion� We test a few cases�

�c��� g��	�x��

sin�x� sin�x� sin�x�

�d��� x �x ������� � x� � ������� � ������

x x x

�c��� g��	�

�d��� lambda��x	� if x � � then � else �g �x��

�

�c��� �g��	�

sin�x� sin�x� sin�x�

�d��� lambda��x	� x �x ������� � x� � ������� � �������

x x x

Here we test the functional arguments e�ciently and alo implement the recursive de�nition� If you want a
simpli�ed result	 include expand with your de�nition of �g�

This function handles the required tests on the functional argument and also implements the recursive
de�nition e�ciently� Should a simpli�ed form be desired	 the de�nition of �g could include a call to expand�

���� The Debugger

Complicated functions rarely work as expected the �rst time� The reason for the failure is not always
obvious� it might be due to incorrect arguments	 or to a bug within a function	 or even to a bug inside a
built�in Macsyma function� The traditional method of debugging a function is to insert print statements
and see how far the program gets before something goes wrong� Macsyma provides a sophisticated debugger
which lets you investigate the problems of functions without resorting to clumsy
trial�and�error� procedures�
Although learning how to use the debugger requires some time and e�ort	 it is well worth it for anyone who

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

programs in Macsyma� This section will discuss only a few of the debugger utilities� For a full description	
see the Macsyma Reference Manual �

The debugger provides a simpli�ed Macsyma environment �a break� which can be entered automatically	
upon detection of an error	 or manually	 by executing a break command� The break lets you investigate
the cause of an error in the environment in which the error occurs� The debugger also lets you monitor the
values passed to and returned by functions via the trace command� In many cases it is possible to determine
the cause of the error without ever inserting debugging statements into the source code�

������ The Trace Utility

The trace special form lets you monitor the execution procedures� When you use trace	 the name of the
function	 its argument list	 and the depth of recursion are displayed� The value returned by the function is
displayed when the function is exited�

The syntax of the trace command is trace�function�	 � � � 	 functionN � � Typing trace�� or inspecting
the system variable trace returns a list of functions currently traced� To untrace a function	 type un�
trace�function�	 � � � 	 functionN � to untrace speci�c functions	 or untrace�� to untrace all traced functions�

Note� Functions that do not evaluate all of their arguments and functions that are implemented as simpli�er
functions �as opposed to evaluator functions� cannot be traced� See the Macsyma Reference Manual for
more information on the former�

������ Tracing Simple Functions

In this example	 we de�ne functions fun	 and fun
 and trace them� trace displays the depth of recursion	
the word ��Enter��	 the name of the function	 and the argument list when you enter each traced function�
When the function is exited	 the depth of recursion	 the word ��Exit��	 the name of the function	 and the
value returned by the function are displayed� If space permits	 the subordinate functions are indented�

�c�� fun��x��x�fun��x����

x

�d�� fun��x� � �����������

fun��x � ��

�c�� fun��x����x�

�d�� fun��x� � � � x

�c�� trace�fun��fun���

�d�� �fun�� fun�	

����� THE DEBUGGER ���

�c
� fun��y��

� enter fun� �y	

� enter fun� �y � �	

� exit fun� y � �

y

� exit fun� �����

y � �

y

�d
� �����

y � �

�c�� untrace���

�d�� �fun�� fun�	

������ Tracing a Recursive Function

This example traces a recursive function which computes the factorial of a non�negative integer� Note that
the depth of recursion is indicated each time the function is executed�

�c�� fact�x��if x � � then � else x�fact�x����

�d�� fact�x� � if x � � then � else x fact�x � ��

�c�� trace�fact��

�d�� �fact	

�c�� fact�
��

� enter fact �
	

� enter fact ��	

� enter fact ��	

 enter fact ��	

� enter fact ��	

� exit fact �

 exit fact �

� exit fact �

� exit fact �

� exit fact �

�d�� �

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

�c
� untrace���

�d
� �fact	

������ Using the break Facility

As shown in the previous section	 the trace facility lets you monitor the executions of functions� However	 it
tells nothing about the environment in which the function is executed� The break facility lets you suspend
execution at any desired point and inspect	 or even modify	 the environment	 and then resume program
execution� �Note� you cannot continue execution from an error break�� You can enter an error break
automatically after detecting an error condition so the user can investigate the cause of the error� This
behavior is determined by the setting of the option variable debugmode�

Regular and error breaks di�er from Macsyma toplevel in that no input or output labels are generated
automatically	 and the system variables � and �th�n� are not rebound� However	 the system variable ��

is bound to the last result generated in the break� You can evaluate expressions and manually bind any
variables they wishes� The following examples illustrate some of these points�

You can enter the break environment by using the command break��� � Once in the environment	 you can
check or change the values of variables and then either continue the computation or abort it�

In PC Macsyma ���	 you may be prompted to type �� �Continue�	 �� �Return� Top�Level Macsyma	 etc� The
response would be �� or ��� In other versions	 you may be prompted to type CONTINUE� to continue or
ABORT� to abort the calculation�

�c�� �a��� break��� b����

Macsyma Break level �

�Type CONTINUE� to continue the computation� type ABORT� to abort it��

� a

��

� b

b

� abort

�c�� a�

�d�� ��

�c�� b�

�d�� b

�c
 �ev�c���

Macsyma Break level �

�Type CONTINUE� to continue the computation� type ABORT� to abort it��

� continue

Exited from Macsyma Break level �

�d
� ��

�c�� a�

�d�� ��

�c�� b�

�d�� ��

In the following example	 the system option variables radexpand and algebraic are bound at toplevel� rad�
expand is used as a local variable in a block to demonstrate how you can inspect or modify the environment
inside a break�

����� THE DEBUGGER ���

�c�� �algebraictrue�radexpandtrue��

�d�� true

The following string demonstrates how � is not bound to results generated within a break� When you enter
the break is entered from �c��	 � still evaluates to this result�

�c�� �This is the previous d�line���

�d�� This is the previous d�line�

The following block statement locally binds radexpand to false	 then enters a Macsyma break� The
variable algebraic is rebound manually within the break� When you exit the break and continue execution	
the current setting of radexpand �within the block� is displayed�

�c�� block��radexpandfalse	�break���print��radexpand value�� radexpand���

Macsyma Break level �

�Type CONTINUE� to continue the computation� type ABORT� to abort it��

� radexpand�

FALSE

Here	 the Macsyma break has been entered� The default break prompt is an underscore character� The value
of radexpand was changed when the block was entered and the local binding took e�ect�

The following commands show that the environment can be modi�ed as desired �in this case	 we change the
settings of radexpand and algebraic�� Note also the rebinding of �� but not ��

� radexpandall�

all

� ���

all

� ��

This is the previous D�line�

� algebraic�

true

� algebraicfalse�

false

� exit�

Exited from Macsyma Break level �

radexpand value all

�d�� all

Finally	 con�rm that the change made to the block variable was indeed local	 while the change to algebraic	
which was not a block variable	 persists�

�c
� radexpand�

�d
� true

�c�� algebraic�

�d�� false

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

Note that the exit command is used to return from the break and continue program execution� The abort
command can be used to exit the break and return to toplevel�

Program execution cannot be continued from an error break� Either exit or abort will exit the error break
and return to toplevel�

�����	 Entering the Debugger Automatically

Use of the error break is governed by the setting of the option variable debugmode �default �false�	 which
can be set to false	 true	 all	 or lisp� The results of the various settings when an error condition is detected
are summarized below�

� false� �the default� execution aborts and the user returns to Macsyma toplevel�

� true� enters a Macsyma error break�

� all� enters a Macsyma error break and sets the system variable backtrace to a current list of the
user�de�ned functions�

� lisp� a LISP error break is entered�

The lisp setting of debugmode is of limited use unless you are familiar with LISP and the capabilities of
the LISP debugger depend on the version of LISP which comes with your Macsyma�

Consider the following pair of functions which generates an arithmetic error when called with x���

�c�� fun��x��fun��x��

�d�� fun��x� � fun��x�

�c�� fun��x����x�

�

�d�� fun��x� � �

x

�c�� debugmode�

�d�� false

When debugmode is false	 then executing the function causes an error message to be displayed	 after which
control returns to Macsyma toplevel�

�c
� fun�����

Division by �

debugmode set to true enters an error break� The backtrace variable is not set�

�c�� debugmodetrue�

�d�� true

�c�� fun�����

Division by �

Macsyma Error Break level �

�Type CONTINUE� to continue the computation� type ABORT to abort it��

�exit�

Exited from Macsyma Error Break level �

����� HANDLING ERRORS ���

With debugmode set to all	 an error break is entered and the backtrace variable contains a list of the
functions currently entered	 in reverse order� �The arguments of the functions are not evaluated�� The
settings of debugmode to true and all are identical in all other respects�

�c�� debugmodeall�

�d�� all

�c�� fun�����

Macsyma Error Break level �

�Type CONTINUE� to continue the computation� type ABORT to abort it��

�backtrace�

�fun��x�� fun����	

�exit�

Exited from Macsyma Error Break level �

���� Handling Errors

���	�� General Error Handling

Sometimes a programmer anticipates an operation might fail� Rather than write code to execute that
operation only if it is guaranteed to succeed	 the programmer would prefer to just try it and test afterwards
to see if it succeeded� A problem arises when the operation fails with an error condition since this will halt
program execution� In this case	 it is necessary to somehow
trap� the error so it doesn�t interrupt program
execution� The errcatch facility provides this functionality in Macsyma�

The syntax for the errcatch function is errcatch�expression�� If expression executes without error then a
list containing the result of expression is returned� If an error occurs then an empty list is returned� The
error message is displayed if the option variable errormsg �default �true� is true� The last error message is
saved in the system variable error string	 and can be used to determine the type of error�

Note� if the error message includes a large Macsyma expression	 it may not display if it is too large� �The
maximum size of an expression which will be displayed is determined by the option variable error size��
Instead	 the error message will use one or more of the symbols errexp		 errexp
	 and errexp�	 which are
bound to the o�ending expression�s��

The following examples show how the errcatch special form works�

���	�� Example� Catching errors

�c�� debugmodefalse�

�d�� false

�c�� ����

Division by �

Returned to Macsyma Toplevel�

�c�� errcatch������

Division by �

�d�� �	

�c
� debugmodetrue�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

�d
� true

�c�� ����

Division by �

Macsyma Error Break level �

�Type CONTINUE� to continue the computation� type ABORT� to abort it��

� exit�

Exited from Macsyma Error Break level �

Returned to Macsyma Toplevel�

�c�� errcatch������

Division by �

�d�� �	

���	�� Example� Using errcatch

The next example uses the errcatch facility	 along with the error string and errormsg system variables	
to trap errors occurring when zero is substituted into an expression� errcatch looks for two speci�c error
conditions	 namely	 Division by zero and log���� If it determines that either of these errors has occurred
it returns a symbol identifying the error� If some other type of error occurs	 a symbol indicating an error
of unknown type has occurred appears� Examples which generate these two errors	 as well as an illegal
substitution into a di� form	 are shown below�

�c�� debugmodefalse�

�c�� subst���x���x��

Division by �

Returned to Macsyma Toplevel�

�c�� subst���x�log�x���

LOG��� has been generated�

Returned to Macsyma Toplevel�

�c
� subst���x��diff�f�x���

Attempt to differentiate with respect to a number

�

Returned to Macsyma Toplevel�

The function zero eval	 de�ned below	 performs the indicated substitution� The subst form is protected
by an errcatch to prevent program interruption� The option variable errormsg is initialized to false as
a block variable� Be careful when when setting errormsg to false to avoid overlooking valuable debugging
information�

�c�� zero�eval�expr�var��block

��errormsgfalse�result	�

resulterrcatch�subst���var�expr���

if result � �	

then �if error�string � �Division by ��

then �divide�by�zero�error

else if error�string � �LOG��� has been generated��

then �log��error

����� HANDLING ERRORS ���

else �unknown�error�

else first�result���

�c�� zero�eval�f�x��x��

�d�� f���

�c�� zero�eval���x�x��

�d�� divide�by�zero�error

�c�� zero�eval�log�x��x��

�d�� log��error

�c�� zero�eval��diff�f�x��x��

�d�� unknown�error

���	�� Catching Special Classes of Errors

The errcatch facility lets you trap all errors and you can trap mathematical errors selectively� �Mathematical
errors	 in this context	 are errors arising from arithmetic operations or from elementary transcendental
functions�� If a mathematical error occurs	 then a string containing the error message is returned as the
result�

This facility is enabled if the option variable catch mathematical error �default �false� is set to true�
The operation in question must be protected with a catch form� The following example shows how this
facility is used�

���	�	 Example� Selectively Trapping Mathematical Errors

�c�� catch�mathematical�errortrue�

�c�� debugmodefalse�

�c�� ����

Division by �

Returned to Macsyma Toplevel�

�c
� errcatch�log�����

LOG��� has been generated�

�d
� �	

�c�� catch������

�d�� Division by �

�c�� log����

LOG��� has been generated�

Returned to Macsyma Toplevel�

�c�� errcatch�log�����

LOG��� has been generated�

�d�� �	

�c�� catch�log�����

�d�� LOG��� has been generated�

Certain errors resulting from taylor and integrate can be caught when the associated option variables are
set� These option variables are catch divergent	 catch taylor essential singularity	 and catch tay�
lor unfamiliar singularity� See the Macsyma Reference Manual for further information�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

���� Macros

In advanced Macsyma programming applications	 you sometimes must delay or inhibit evaluation of function
arguments� The Macsyma Reference Manual draws a distinction between a function �a procedure which
evaluates all of its arguments in order from left to right� and a special form �a procedure which can delay
or omit evaluation of one or more of its arguments�� The � operator and the de�ne command are used to
de�ne functions� The �� operator de�nes a macro	 a utility that generates Macsyma code� Since the macro
facility gives you complete control over evaluation of a macro�s arguments	 you can use it to implement
special forms� You can use a macro when a segment of code is used repeatedly but cannot be conveniently
de�ned as a function� Implementing this segment of code as a macro improves modularity and reduces the
amount of typing� This Guide will provide only an introduction to macros� For more information	 consult
the Macsyma Reference Manual �

Loosely speaking	 a macro is a piece of code that generates code� A macro looks like a function but expands
into code at either translation or runtime� Recursion is allowed within a macro�

The following commands are used in writing macros�

� buildq delimits the body of the macro� Code substitution takes place within the body of the buildq�
Its syntax is similar to that of block�

� splice constructs the argument list of a function� splice is a keyword form for buildq that takes its
argument �which must evaluate to a list�	 and returns a form whose arguments are the list entries when
used as an argument to a form in the body of a buildq	

� macroexpand is a useful debugging tool� It expands a form repeatedly until it is no longer a macro
call�

A few examples follow�

���
�� Writing Simple Macros

In the next example we write a macro which takes a single argument and returns an equation consisting of
the unevaluated form on the left�hand side and the evaluated form on the right�hand side�

�c�� showme�arg��buildq��arg	��arg�arg��

�d�� showme�arg� � buildq��arg	� �arg � arg�

�c�� macroexpand�showme�argument���

�d�� �argument � argument

�c�� argument��

�d�� �

�c
� showme�argument��

�d
� argument � �

�c�� argumentx���

�d�� x � �

�c�� showme�argument��

�d�� argument � x � �

In �c��	 buildq is used to write the macro� In �c��	 macroexpand is used to expand a macro call to
showme to verify that the macro expands as expected� showme is tested in �c
� and �c��� Note that

����� MACROS ���

this cannot be written as a regular Macsyma function because in that case the argument would be evaluated
before it is passed to the function�

The splice keyword form is useful when writing recursive macros or macros which take an arbitrary number
of arguments� The following commands show how to construct a call to a form fun� Note the di�erence in
the argument lists of fun in lines �d�� and �d���

�c�� listvar��a�b�c	�

�d�� �a� b� c	

�c�� buildq��listvar	�fun�listvar���

�d�� fun��a� b� c	�

�c�� buildq��listvar	�fun�splice�listvar����

�d�� fun�a� b� c�

���
�� Writing a Macro to Implement a Boolean Operator

This example implements an or operator	 which we call my or to avoid confusion with the built�in or
operator� The function my or takes a list of expressions	 evaluates them sequentially	 and returns the �rst
non�false result� �This is similar to the Macsyma construct is�pred� or pred� or � � � or predn� except that
my or can return a non�boolean value��

The function my or cannot be implemented as a Macsyma function because all of the arguments to a
function are evaluated before the function gets hold of them� Consider the expression �n��n� my or�

symbolp�n�� n���� that we want to return the value true� If my or were a function then its arguments
would be evaluated prior to the function invocation� The �rst would yield true	 while the second would
generate the error message ��Macsyma is unable to evaluate the predicate N � ���� Consequently	
control would never be passed to my or� What is needed is a way to evaluate only the �rst argument� if it
is non�false then return that value� otherwise	 evaluate the subsequent arguments sequentially� The macro
facility provides the needed control over evaluation�

The macro de�nition of my or is given below� The syntax of the command is my or�pred�	 pred�	 � � � 	
predn��

my�or��args�����

if args � ��

then false

else buildq

��tmp�first�args��args�rest�args���

if tmp � false

then tmp

else my�or�splice�args����

Note that the macro takes an arbitrary number of arguments and is recursive� When invoked	 the macro
expansion continues until a non�false argument is found or else the argument list is empty� The variable
tmp	 which is set to the �rst element of the argument list	 is evaluated in the body of the buildq� The
remainder of the argument list is not evaluated�

Note also that the splice keyword form is used to provide the required syntax for the recursive call� splice
is used to generate the call to my or with the remaining arguments�

The following example tests my or� In this example my or evaluates each argument in turn and �nds that
the third one evaluates to a non�false value� Consequently	 it returns this value�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

�c�� my�or��args	��

if args � �	

then false

else buildq

��tmpfirst�args��argsrest�args�	�

if tmp � false

then tmp

else my�or�splice�args����

�c�� �arg�false�arg�false�arg��howdy�arg
�doody��

�d�� doody

�c�� my�or�arg��arg��arg��arg
��

�d�� howdy

We can use the macroexpand facility to expand the macro� �This is usually the only way to debug a
macro	 since it cannot be traced�� Note that macroexpand only expands the toplevel call� To fully expand
a recursive macro	 it is necessary to scanmap the macroexpand call�

�c
� macroexpand�my�or�arg��arg��arg����

�d
� if arg� � false then arg� else my�or�arg�� arg��

�c�� scanmap��macroexpand���my�or�arg��arg��arg�����

�d�� if arg� � false then arg�

else �if arg� � false then arg�

else �if arg� � false then arg� else false��

The question of how you actually write a macro has not yet been addressed� �In case you�re wondering	 it
won�t be addressed in great detail here	 either�� The procedure essentially involves writing down the fully
expanded form for a suitably general case and working backwards� For example	 writing my or consisted
of the following steps�

� Write down the full expansion ofmy or when called with three arguments� This means writing down a
nested if then else structure� For example	 my or�arg��arg��arg�� should expand into the structure

if arg� � false

then arg�

else �if arg� � false

then arg�

else �if arg� � false

then arg�

else false��

� From the structure of the problem	 it is clear that a recursive approach is the most e�cient one� The
recursive approach is particularly useful since the macro must take an arbitrary number of arguments�
The result of writing the previous expansion in terms of a recursive call to my or is

if arg� � false

then arg�

else my�or�arg��arg��

����� LOCALIZING INFORMATION ���

� Since the macro will be recursive	 the next step is to determine the grounding condition �here	 the
condition is that the argument list is empty�	 and what action to take when the condition is satis�ed�
This is implemented in clause

if args � �	

then false

else buildq���

� Finally	 implement the substitution and the recursive call with a buildq form� The required form is

buildq��tmpfirst�args��argsrest�args�	�

if tmp � false

then tmp

else my�or�splice�args����

The local variables tmp and args are set in the buildq variable list� Neither is evaluated at this
time� The �rst argument to my or	 tmp	 is evaluated in the body of the if statement� If the else
clause of the if statement is executed my or is called recursively on the remaining arguments� The
splice keyword form is needed to generate an argument list from the list of arguments contained in
the variable args� Note that since args is used by splice it must appear in the buildq variable list�
Note also that rede�ning args to be rest�args� must be done in the variable list if it were done in the
body of the buildq then it would be evaluated	 and if it were done inside the splice form then splice
would not be recognized as a keyword form to buildq�

� Having written the macro	 the next step is to test it� Since it is impossible to write a macro which
works without modi�cation	 you can debug it with the macroexpand and macroexpand	 facilities	
along with judicious use of scanmap when necessary�

���� Localizing Information

Much of the power of Macsyma as an interactive or programming tool derives from the richness of the
Macsyma environment� For example	 the actions of some system functions �e�g�	 ratsimp� are controlled
by the settings of system option variables �e�g�	 algebriac�� Calling ratsimp on an expression can give
di�erent �but mathematically equivalent� results	 depending on the setting of the option variable algebraic�

Unfortunately	 this feature occasionally causes some di�culties for users� It is extremely frustrating to
�nd that a program which previously worked suddenly fails to work because the global environment was
unintentionally altered by an earlier operation� Good programming techniques can insulate a function from
di�culties of this nature by guaranteeing that the function executes in the correct environment� Good
programming techniques can also guarantee that the function runs
cleanly�	 that is	 even though the
function might require a special environment	 the global environment after execution is essentially identical
to the global environment prior to execution�

Macsyma provides two separate methods for localizing information� The block mechanism is used to localize
properties and values via the block variable and local mechanisms� The context mechanism allows the user
to group database information together �this grouping is referred to as a context� so that a given context
can be made accessible or inaccessible to Macsyma�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

������ Program Blocks Revisited

The block command was discussed brie�y in Section ����� We discuss it in greater detail in this section�

As described in Section ����	 a block variable is declared by naming it in the block variable list� An
initialization value can be speci�ed in the list if desired� If a block variable has the same name as a variable
de�ned outside of the block then the value of the variable outside of the block is saved when the block is
entered and is restored when the block is exited�

Note� making a variable a block variable protects its value	 but no other properties� It does not	 for example	
protect the array property associated with a symbol� The following example illustrates this point�

�c�� array�a����

�d�� a

�c�� a��	�

�d�� a

�

�c�� variable��

�d�� �

�c
� block��a�variable	�a��	�array�variable�symbol��

�d
� symbol

�c�� a��	�

�d�� array

�c�� variable�

�d�� �

Note that the value of the symbol variable is unchanged	 but the global array a has been modi�ed�

������ Localizing Other Information Inside Program Blocks

As shown in the example in the previous section	 the block variable mechanism only protects the value
associated with a symbol� All other localizable properties must be localized via the local mechanism� �Note�
not all properties can be localized� For example	 a complete array is an example of a global object which
cannot be localized�� In the following example	 local is used to localize array and dependency information�

�c�� array�a����

�d�� a

�c�� a��	�

�d�� a

�

�c�� dependencies�

�d�� �	

�c
� block

��x	�

local�a�y��

a��	�array�depends�y�x��

break����

Macsyma Break level �

�Type CONTINUE� to continue the computation� type ABORT� to abort it��

���	� TRANSLATING MACSYMA FUNCTIONS ���

�a��	�

ARRAY

�dependencies�

�y�x�	

�exit�

Exited from Macsyma Break level �

�d
� false

�c�� a��	�

�d�� a

�

�c�� dependencies�

�d�� �	

In �c�� through �c�� a global array is created and the state of the Macsyma environment is displayed� �Note
that the array a	 generated in �c��	 is a declared array rather than a complete array	 and can therefore be
localized�� The command �c
� executes a block form in which a and y are localized� An array slot in
variablea is set	 and dependency information is provided for y � A break is then entered and we verify that
the expected properties are present inside the block� After the break and block are exited	 we verify in
�c�� and �c�� that the changes made inside the block were indeed local�

������ Program Contexts

The remaining localization mechanism available in Macsyma is the context mechanism� This mechanism
allows the user to selectively activate and deactivate database information� We do not discuss this topic in
this Guide except to note that the context mechanism is independent of the block mechanism� See the
Macsyma Reference Manual for a description of context�

���	 Translating Macsyma Functions

Like other interpreted languages	 Macsyma supports a translator� The production of machine code from
Macsyma source code is a two�step process� First	 the Macsyma code is translated into LISP code� next
the LISP code is compiled into machine code� The Macsyma translator produces LISP code which	 in most
cases	 loads and executes faster than the equivalent Macsyma source code� Numerical routines often achieve
a factor of three improvement in performance� Also	 it is easy to make translated code
cleaner� code because
of the translator warnings� The translator �ags global variables that are not explicitly declared to be global
�via the special declaration�	 brings them to the attention of the programmer and thus allows them to be
localized	 either by making them block variables	 or via the local mechanism�

The primary reason that translation improves performance is that it allows assumptions to be made con�
cerning the argument types for speci�ed operations� In particular	 it causes certain operations �such as
data type checking� to be done only once	 namely	 at translate time� For example	 the interpreted function
f�x�y���x�y will accept either symbolic or numeric arguments� When the function is executed	 the argu�
ment types must be determined before the indicated multiplication can be carried out� If it is known that
the function will be called exclusively with �oating�point arguments then the user can bypass this rather
expensive checking step by declaring the data types of the arguments and then translating the function�
When the declarations are in place	 the translator will specify that the multiplication be carried out by a
routine which handles �oating�point numbers� Of course	 if the resulting translated function is called with
arguments of an inappropriate type then a run time error will occur�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

Another bene�t of translation �of �les� is that a translated �le loads much faster than a Macsyma source
�le since the translated �le does not need to be parsed� This is also true for interpreted Macsyma functions
which are subsequently saved�

������ Translating Files and Functions

The Macsyma translator permits the user to translate interpreted functions internally via the translate
command	 or to translate Macsyma source �les and save the results in a �le via the translate �le command�
A third option	 in which interpreted functions are translated and the results are saved in a speci�ed �le	 is
available via the comp�le command� We mention the last one for completeness	 since it is used infrequently
in practice� �A user is much more likely to use a text editor to store a Macsyma function in a �le than to
enter the function interactively and save the translated result via comp�le��

The following examples show how to use translate and translate �le�

�������� Example� Translating a Function De�nition

The following Macsyma commands de�ne an interpreted function and then translate it �to core��

�c�� f�x��x���

�

�d�� f�x� � x

�c�� translate�f��

�d�� �f	

�c�� properties�f��

�d�� �function� transfun	

Note that f has both function and transfun properties	 corresponding to both the interpreted and translated
versions� The translated version of the function is executed by default�

�������� Example� Translating a Macsyma File

In the following example	 a �le named ��f	macsyma��	 which de�nes a function identical to the one in the
previous example	 exists in the directory macsyma�user�f	macsyma� The following Macsyma commands
translate the �le	 place the result in a �le named ��f	lisp��	 load the translated �le into the Macsyma
session	 and look at the resulting properties of the function� �Note� the pathnames used in this example are
the Macsyma logical pathnames��

�c�� printfile��macsymauser�f�macsyma���

f�x��x���

�d�� C MACSYMA� user f�mac

�c�� translate�file��macsymauser�f�macsyma��

Translating the file C MACSYMA� user f�mac

Translation done�

�d�� C MACSYMA� user f�lsp

�c�� load��f�lisp���

C MACSYMA� user f�lsp being loaded�

�d�� C MACSYMA� user f�lsp

���	� TRANSLATING MACSYMA FUNCTIONS ���

�c
� properties�f��

�d
� �function� transfun	

Some operating systems	 use the extensions mac and lsp	 while others use macsyma and lisp� Refer
to pathname extensions in the Macsyma Reference Manual for information for your particular version of
Macsyma�

������ Data Type Declarations

As mentioned in the previous section	 the greatest performance advantage of translation is due to the fact
that the data type declaration permits the translator to determine which machine�level operation to call on
the data	 bypassing the expensive checking step� In this section we introduce the Macsyma forms that are
used to declare data types� The forms that we will discuss are

� mode declare	 which informs the translator of the data type of a variable�

� mode identity	 which can be used to inform the translator of the data type of a more complicated
Macsyma structure�

� the special property	 which is used in declaring a variable global �or one that will have an unusual
side�e�ect��

�������� Declaring Data Types With mode declare

As mentioned earlier	 mode declare is used to specify the data type of a variable or function so that the
translator can select the most e�cient routine to carry out the speci�ed operation� The mode declare
operator also allows the translator to specify an initial value for a variable	 although it is good programming
practice to initialize the variables manually� �If you do not initialize the variables manually then your code
might run when translated but not interpreted��

The following example uses the romberg command to compute an iterated integral via numerical integration�
The �rst approach calls romberg on an interpreted argument� The second sets up functions which compute
the iterated integrals using mode declare and nested calls to romberg� Using translated functions in this
manner results in a speedup by roughly a factor of two in this case�

�c�� �showtimeall�g�x�y�z��sin�x���y���z�����

time� � msecs

� � �

�d�� g�x� y� z� � sin�x � y � z �

�c�� romberg�romberg�romberg�g�x�y�z��x����������y����������z����������

time� ������ msecs

�d�� ����������������
�

�c�� f�x��block

�mode�declare��function�f��x�y�z	�float��

declare��y�z	�special��

sin�x���y���z�����

�c
� f��y��block

�mode�declare��function�f��f��y	�float��

declare�f�special��

romberg�f�����������

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

�c�� f��z��block

�mode�declare��function�f��f���z	�float��

declare�f��special��

romberg�f������������

�c�� translate�f��f��f��

time� ��� msecs

�d�� �f�� f�� f	

�c�� romberg�f�����������

time� ����� msecs

�d�� ����������������
�

It is necessary to de�ne the functions f	 f		 and f
 to take single arguments because romberg requires that
a translated or compiled function as its �rst argument take only one argument� Calling romberg on f
 in
�c�� binds the argument of f
	 z 	 and evaluates the function f
� When f
 is evaluated	 it binds the argument
of f		 y 	 and invokes romberg on f	� When f	 is evaluated	 it binds the argument of f	 x 	 and evaluates
f� At this point	 x 	 y 	 and z evaluate to �oating�point numbers	 and f consequently returns a �oating�point
result�

It is also possible to use mode declare to improve the handling of translated arrays� See the Macsyma
Reference Manual for more information on this topic�

�������� De�ning Complex Data Types With mode identity

The mode declare form can be used to inform the translator of the data type of a variable� However	
it is often the case that the variable is a rather complicated object	 for example	 a list of �oating�point
numbers� mode declare cannot be used to declare the entries to be �oating�point numbers because it can
only declare
top�level� structures� What is needed is a way to declare the types of the elements of the list	
which can be done via mode identity� We will say little else about mode identity in this Guide� for
more information	 consult the Macsyma Reference Manual�

Note� The mode identity scheme is rather awkward when dealing with	 say	 lists of arbitrary length� For
example	 it cannot be used to assist in the translation of a structure such as apply�����list of numbers��
Such operations are best implemented directly in LISP�

������ De�ning Option Variables For Packages

When writing complicated programs	 it is often desirable to have global option variables which control the
program�s behavior� These option variables can be de�ned using the de�ne variable form	 which de�nes
the name of the variable	 its default binding	 type checking	 and an optional documentation string� As usual	
we provide some examples and refer the reader to the Macsyma Reference Manual for more information�

The �rst example de�nes a boolean variable bool with initial value true�

�c�� bool�

�d�� bool

�c�� define�variable�bool�true�boolean��

�d�� true

�c�� bool�

�d�� true

�c
� boolfalse�

���	� TRANSLATING MACSYMA FUNCTIONS ���

�d
� false

�c�� bool��

Error BOOL was declared mode BOOLEAN� has value �

Returned to Macsyma Toplevel�

�c��

Note that bool can be set to either true or false	 but attempting to set it to a non�boolean value results in
an error�

The next example shows how the user can specify the acceptable values for an option variable� In this
example	 the option variable opt will be allowed to take on any odd positive integer value� Note that opt
is initialized to ��

�c�� define�variable�opt� �� any�check� �This defines the variable OPT���

�d�� �

�c�� put��opt�lambda��arg	�if not�integerp�arg�� or arg !�� or evenp�arg�

then error��Illegal value for OPT ��arg����value�check��

�d�� lambda��arg	� if not integerp�arg� or arg !� �

or evenp�arg� then error�Illegal value for OPT � arg��

�c�� opt�

�d�� �

�c
� opt��

�d
� �

�c�� opt��

Illegal value for OPT �

Returned to Macsyma Toplevel�

�c�� opt�a�

Illegal value for OPT A

Returned to Macsyma Toplevel�

�c��

Note that the value check is implemented via a lambda form placed on the property list of the option
variable with a value check indicator�

It should be noted that de�ne variable di�ers from a toplevel binding using ��� in two important ways�
The �rst di�erence is the type checking feature� The second is that de�ne variable will set the variable to
its speci�ed initial value only if the variable is unbound� This means that the user can set an option variable
before loading in the package which de�nes it� The following example illustrates this last point�

�c�� boolfalse�

�d�� false

�c�� define�variable�bool�true�boolean��

�d�� false

�c�� bool�

�d�� false

�c
� bool��

Error BOOL was declared mode BOOLEAN� has value �

Returned to Macsyma Toplevel�

�c��

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

�������� The special Declaration

The Macsyma translator will complain when it �nds a variable that is global with respect to the local block�
If such a variable is indeed intended to be global then it should be declared special� The following example
shows how special is used in this manner� In this example	 the variable y is global with respect to the
program block	 and is explicitly declared to be special in the function de�nition of g but not f�

�c�� f�x��block�x�y��

�d�� f�x� � block�x y�

�c�� translate�f��

Warning�" y is an undefined global variable�

�d�� �f	

�c�� g�x��block�declare�y�special��x�y��

�d�� g�x� � block�declare�y� special�� x y�

�c
� translate�g��

�d
� �g	

In the next example	 we de�ne a function that takes an expression and the name of an operator and uses a
opsubst lambda construct to return a list of the arguments of the speci�ed operator�

�c�� list�args�expr�op��block��args�		�

opsubst�op�lambda��arg	�if not�member�arg�args��

then push�arg�args��

funmake�op��arg	���expr�� args��

�c�� translate�list�args��

This form

LAMBDA��ARG	�IF NOT MEMBER�ARG�ARGS� THEN PUSH�ARG�ARGS��

FUNMAKE�OP��ARG	��

has side effects on these variables

�ARGS	

which cannot be supported in the translated code�

�at this time�

�d�� �list�args	

Translation of list args fails because of the side�e�ects of the lambda form on the variable args� However	
if args is declared special then the function translates�

�c�� list�args��expr�op��block��args�		�

declare�args�special��

opsubst�op�lambda��arg	�if not�member�arg�args��

then push�arg�args��

funmake�op��arg	���expr�� args��

�c
� translate�list�args���

�d
� �list�args�	

���	� TRANSLATING MACSYMA FUNCTIONS ���

�������� Customizing the Translation Environment

It is often the case that a program needs a special environment for translation� For example	 if the program
references a macro then the macro must be de�ned prior to translation� Macsyma provides a method whereby
the user can execute Macsyma commands when a particular operation �batching	 loading	 or translating a
�le� is invoked� This is done via the eval when form�

The eval when form takes two or more arguments� The �rst is a keyword which speci�es the condition under
which the remaining forms are evaluated� The acceptable keywords are batch	 load�le	 and translate	
corresponding to batching in a Macsyma source �le	 loading a LISP or binary �le	 and translating a �le via
translate �le�

For example	 to automatically load the basic macro package prior to translation of a �le	 the toplevel form
eval when�translate� load��basic���� could be put at the beginning of the source �le� When the �le is
translated using the translate �le command	 the load form will be evaluated	 thereby de�ning the needed
macros�

�������� Compilation vs� Translation

Up to this point we have discussed the Macsyma translator	 which takes Macsyma functions and produces
LISP code	 either in memory �via the translate command�	 or in a �le �via the translate �le or compile
commands�� We now discuss �brie�y� the advantages which can be gained from compilation of the translator
output�

Compilation of a LISP function results in machine object code� Such code frequently runs faster than either
interpreted LISP or interpreted Macsyma code� This is usually achieved at the expense of run�time debugging
information	 which means that run�time errors in compiled code will often result in rather mysterious LISP�
level error messages�

Functions which are currently loaded into your environment can be compiled using the compile command	
which essentially calls the compiler on the in�core result of the translate command� A LISP or Macsyma
�le can be compiled �or translated and compiled� via the compile �le command	 which is called in the
same way as the translate �le command� The resulting binary �le usually occupies less disk space and
loads faster than the translated �le�

For more information on this topic	 consult the Macsyma Reference Manual and the Release Notes for your
version of Macsyma�

������ Additional Notes on Translation

This section mentions a few hints on the use of translation that might not be readily accessible elsewhere�

� As of ����	 the local command doesn�t translate correctly� If you want to translate a function which
contains local	 you should do the following�

� Use the LISP function �mlocal instead of local� ��mlocal takes the same arguments as local��

� Call �munlocal prior to all run�time exits in the block�

For example	 following function puts database information on the variable y inside a program block
and removes the information automatically when the block is exited�

local���x��block

��y	�

local�y��

assume�y"���

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

if x � �

then true

else false��

The function should be written as follows to make it translate correctly�

local���x��block

��y	�

�mlocal�y��

assume�y"���

if x � �

then ��munlocal��� true�

else ��munlocal��� false���

� A macro must be de�ned prior to use� �Otherwise	 a macro is interpreted as a function call�� If the
macro is de�ned in a �le	 an eval when form can be used to load the �le and thereby de�ne the
macro� Alternatively	 the macro de�nition can be included in the source code prior to the time where
it is �rst called�

� Special forms that have both the properties that some arguments are not evaluated	 and also have
optional arguments do not translate properly� If you want to write a special form at Macsyma level	
use a macro instead�

� Subscripted functions don�t translate e�ciently� They should be run interpreted instead�

���
 Hints for E�cient Programming

The typical Macsyma programmer eventually discovers that he or she uses certain procedures frequently
enough to put them into a personal library� Good programming style can greatly increase the utility of such
a library� The following hints can make this task easier�

� Don�t assume anything about the global environment� If your function requires a special
environment �i�e�	 a special option setting or a property� then set it up locally� It is important to make
the relevant option variables initialized block variables to guarantee that they have the correct settings	
even if the desired settings are the default values	 because the option variables may be changed in the
global environment�

� Localize variables and properties whenever possible� It can be frustrating to �nd that a function
pollutes the global environment by leaving variable bindings or properties around after it is called� It is
especially frustrating when a function changes the setting of a system option variable� Use the block
and local mechanisms to avoid this�

� Never use go� Although this construction is supported in Macsyma	 it is almost never necessary to
use it� Programs which use go are hard to read�

� If your code contains �oating point variables and �oating point arithmatic� it will run
much faster if the variables are declared �oat with mode declare and the code is compiled�

� Translate functions when possible� Translated code often run faster than interpreted code� The
translation process also warns the user of the presence of possibly unintended global variables�

���
� HINTS FOR EFFICIENT PROGRAMMING ���

� Don�t use ev in programs� To force an extra evaluation	 use the eval or apply functions� To force
resimpli�cation	 use the resimplify function� To force evaluation of noun forms	 use apply nouns
or an opsubst lambda construct to force evaluation of speci�ed noun forms� To substitute values for
variables	 use subst�

� Avoid using ����� It is almost always the case that an apparent need to use ���� can be eliminated
by restructuring the program�

� Use the part functions instead of subscript notation to reference list elements� The syntax
part�object	n� is preferred over object
n� because if a global array named object exists then the latter
notation will refer to the array in what might appear to be a haphazard manner�

��� CHAPTER ��� ADVANCED PROGRAMMING TOPICS

Chapter ��

Displaying Expressions

One of the complaints lodged against computer algebra systems is that it is often di�cult to express results
in a
natural� way� Even experienced Macsyma users complain that it can be as di�cult to simplify the
results as it is to derive them� This section discusses some techniques for simplifying Macsyma expressions�
These techniques give the user considerable �but not complete� control over the display of expressions�

The techniques used to simplify expressions fall into two categories� The �rst category consists of commands
that modify the structure of the expression	 via selective simpli�cation	 substitution	 or a change of internal
representations� Examples of facilities that change the internal representation are the rat and ordergreat
orderless commands and the mainvar declaration� Commands used for selective simpli�cation include
substpart	 map	 and multthru� The second category consists of commands that a�ect the display of an
expression	 in particular the ordering of terms� Facilities which fall into this category include the trunc
command and display �ags such as exptdisp�ag and powerdisp�

���� The Macsyma Display Package

The Macsyma simpli�er uses a default ordering scheme to put expressions into a
standard form�� �This
standard representation makes it easier for the simpli�er to recognize identical quantities for	 say	 purposes
of cancellation�� The ordering of atoms in a simpli�ed expression is�

mainvars � other variables � scalars � constants � numbers

with the ordering inside a category taken to be reverse�alphabetic� The display package generates the two�
dimensional display of an expression after simpli�cation� A product displays with factors in increasing order	
while a sum displays with terms in decreasing order of importance�

Note� the characters
 � and
�� are alphabetic characters� In the Macsyma alphabet	
�� comes before

a� and
 � follows
z��

Macsyma defaults to two dimensional formatted display of mathemetics using drawn mathematical symbols
and Greek letters� You can turn o� the fancy display and get two dimensional character display by setting
fancy display�false �default� true��

���� Changing the Default Display

The easiest way to change the default display is to change a display option variable� These variables are
documented in the chapter entitled Displaying and Ordering Functions in the Macsyma Reference

���

��� CHAPTER ��� DISPLAYING EXPRESSIONS

Manual� Changing the value of a display option variable doesn�t a�ect the internal representation of an
expression and can be done �or undone� at any time� However	 a display option variable should be set at
toplevel �rather than via a local binding� to guarantee that it is still set during the display phase� The
following example illustrates the e�ect of the option variable powerdisp �default� false�	 which when set to
true causes polynomials to display with terms of increasing order�

�c�� expr��x�x���

�

�d�� x � x � �

�c�� powerdisptrue�

�d�� true

�c�� expr�

�

�d�� � � x � x

�c
� reset�powerdisp��

�d
� done

�c�� ev�expr�powerdisptrue��

�

�d�� x � x � �

Note that the local binding of powerdisp in �c�� doesn�t modify the display in �d�� because the local binding
is undone prior to the generation of the display�

���� Rewriting Expressions

The �rst technique for rewriting expressions uses the rat command	 which converts an expression into
CRE �Canonical Rational Expression� form� The CRE form is a recursive representation that is suited for
polynomials and rational functions� A multivariate polynomial is represented in CRE form by rewriting the
polynomial as a polynomial in the main variable� The coe�cients are then rewritten as polynomials in the
next main variable� This procedure is repeated for all of the variables� The main variables can be speci�ed
as optional arguments to the rat command �with the right�most variable assumed to be the most important�
or to the ratvars option variable�

To illustrate the main variable concept	 consider the following representations of a multivariate polynomial�
In this example	 we express a given multivariate polynomial with respect to di�erent main variables using
the rat function�

�c�� poly�x�y�z�x�y����

�

�d�� �z � x y � y � x�

�c�� rat�poly�x��

� � � � �

�d���r� �y � � y � �� x � ��� y � �� z � � y � � y� x � z � � y z � y

�c�� rat�poly�z��

� � � � �

�d���r� z � ��� x � �� y � � x� z � �x � � x � �� y � �� x � � x� y � x

����� REWRITING EXPRESSIONS ���

�c
� rat�poly�y�x�z��

� � � � �

�d
��r� z � ��� y � �� x � � y� z � �y � � y � �� x � �� y � � y� x � y

�c�� rat�poly��ratvars�y�x�z	�

� � � � �

�d���r� z � ��� y � �� x � � y� z � �y � � y � �� x � �� y � � y� x � y

The commands �c�� and �c��	 which are equivalent	 specify that the polynomial should be rewritten using
the ordering z � x � y�

The next example shows how selective simpli�cation functions can be used in conjunction with rat to format
expressions� In this example	 we reconstruct the original form of an expression�

We �rst generate a test expression and then expand it�

�c�� �a�b�x��exp�x��c � �x����� � x�y�

x

x �b x � a� �e �

�d�� � � ������������� � �x � ��

y c

�c�� exprexpand����

x x

x b x �e a �e �

�d�� � � ������� � ����� � x � � x � �

y c c

The command listratvars displays the default variable ordering in the expression� To return the expression
to its original form	 using rat	 make the exponential the main variable�

�c�� listratvars�expr�� x �d�� �a� b� c� x� �e � y	

�c
� rat�expr�exp�x���

x �

�b x � a� y �e � �c x � � c x � c� y � c x

�d
��R� ��

c y

Now invoke some selective simpli�cation functions to put the expression in the desired form� The multthru
command in �c�� multiplies the denominator through the sum in the numerator� The substpart command
in �c�� factors the third part of the expression in place�

�c�� multthru����

x �

x �b x � a� �e c x � � c x � c

�d�� � � ������������� � ����������������

y c c

�c�� substpart�factor�piece�������

��� CHAPTER ��� DISPLAYING EXPRESSIONS

x

x �b x � a� �e �

�d�� � � ������������� � �x � ��

y c

Note� this example could also have been produced without using rat by using two calls to substpart�

The next example in this section is a minor modi�cation of the previous example� The only di�erence
between the two is the replacement of expx� with exp�x�	 but this turns out to be signi�cant because the
conversion to rational form puts exp�x� in the denominator� In such cases	 it is simpler to eliminate the
expression exp�x� through substitution	 put the resulting expression in the desired form	 and substitute
back�

�c�� �a�b�x��exp��x��c � �x����� � x�y�

� x

x �b x � a� �e �

�d�� � � ��������������� � �x � ��

y c

�c�� expand����

� x � x

x b x �e a �e �

�d�� � � ��������� � ������� � x � � x � �

y c c

The �rst step is to substitute a token for exp�x��

�c�� exprsubst�exp��x��u����

x � b u x a u

�d�� � � x � ����� � � x � ��� � �

y c c

The next step is to rewrite the expression with u as the main variable�

�c
� listratvars����

�d
� �a� b� c� u� x� y	

�c�� rat�expr�u��

�

�b x � a� y u � �c x � � c x � c� y � c x

�d���r� ��

cy

Finally	 we simplify the expression and substitute back for exp�x��

�c�� multthru����

�

x c x � � c x � c u �b x � a�

�d�� � � ���������������� � �����������

y c c

����� REWRITING EXPRESSIONS ���

�c�� map��factor����

x u �b x � a� �

�d�� � � ����������� � �x � ��

y c

�c�� subst�u�exp��x�����

� X

x �b x � a� �e �

�d�� � � ��������������� � �x � ��

y c

The �nal example in this section uses the fact that variables recognized by rat can be kernels �expressions
such as sqrt�x� or integrate�f�x�	x�� rather than just symbols� In this example	 we use rat to rewrite
an expression	 collecting coe�cients of the integrals in the expression� The main variables are speci�ed as
optional arguments to the rat command�

�c�� expra��integrate�f�x��x��b��integrate�g�x��x������c��integrate�f�x��x��

d��integrate�g�x��x������e�

� �

� � � �

� � � �

�d�� d I g�x� dx � b I g�x� dx � c I f�x� dx � a I f�x� dx � e

	 	 	 	

� � � �

� �

�c�� listratvars�expr��

�

� �

� �

�d�� �a� b� c� d� e� I f�x� dx� I g�x� dx	

	 	

� �

�

�c�� rat�expr��integrate�f�x��x���integrate�g�x��x�������

�

� �

� �

�d���r� �d � b� I g�x� dx � �c � a� I f�x� dx � e

	 	

� �

�

Note� this technique is also useful for computation� Evaluating the integrals in �d�� �via ev�d�� integrate�
or apply nouns�d�� integrate�� requires only half as much work as for the mathematically equivalent ex�
pression �d���

��� CHAPTER ��� DISPLAYING EXPRESSIONS

���� The mainvar Declaration

The mainvar declaration is used to make a variable �more important� than normal variables� For example�
by default x � y� where � is the ordering predicate� However� if x is declared to be mainvar then in
subsequent computations y � x� �If y is also declared mainvar then x � y again� but x and y are more
important than any other variables��

Themainvar declaration a	ects the internal representation of expressions by changing the canonical ordering
of variables in simpli
ed expressions� For this reason the mainvar declaration makes expressions context�
sensitive since mathematically identical expressions can have di	erent internal simpli
ed forms� depending
on the mainvar declarations in force when the expressions are simpli
ed�

The next example shows how mainvar declarations a	ect the representation of expressions� Note that a
resimpli
cation �accomplished here using the resimplify command� is required for themainvar declaration
to take e	ect�

�c�� expr��x�y�z�x�y�z	

�d�� �z � y � x� x y z	

�c�� declare�x�mainvar�

�d�� done

�c�� resimplify�expr�

�d�� �x � z � y� y z x	

With x declared mainvar� the ordering is x � z � y� When y is also declared mainvar� the ordering
changes to y � x � z�

�c� declare�y�mainvar�

�d� done

�c�� resimplify�expr�

�d�� �y � x � z� z x y	

�c�� remove��x�y	�mainvar�

�d�� done

�c�� resimplify�expr�

�d�� �z � y � x� x y z	

Note� A few points concerning the mainvar declaration should be noted� First� if you save an expression
containing a variable declared to be mainvar� then you should also save the variable itself� This guarantees
that the mainvar property will be present when the expression is reloaded� Second� a mainvar declaration
establishes a context which might require an explicit resimpli
cation to obtain fully simpli
ed results�

In the following example� identical expressions are evaluated and simpli
ed both before and after amainvar
declaration� Note that the result must be explicitly resimpli
ed to get zero�

�c�� expr��x�y

�d�� y � x

�c�� declare�x�mainvar�

�d�� done

�c�� expr��x�y

�d�� x � y

�c� expr��expr�

�d� y � y

����� INHIBITING SIMPLIFICATION ���

�c�� resimplify���

�d�� �

���� Inhibiting Simpli�cation

������ Using Invisible Boxes

You will sometimes want to display results in an unsimpli
ed form� For example� you might want to keep
certain terms in a product from combining� Simpli
cations of this nature can be inhibited by the box
command� The disadvantage of this method is that you must dissect the expression and explicitly protect
subexpressions by wrapping them in boxes�

The next example shows how to use box to inhibit simpli
cation� Note the e	ect of setting of the option
variable boxchar default����� to a more esthetic space character�

�c�� s��s���

s

�d�� �����

s � �

�c�� ��box�s��s����

�������

� s �

�d�� � �������

�s� � �

�������

�c�� boxchar�� ��

�c� �th���

s

�d� � �����

s � �

Note� the spacing between the � and the rational function in �d�� cannot be controlled� It is not possible
to set boxchar to an empty string� If the display is ambiguous due to the lack of parentheses� reasonable
results can be obtained by setting boxchar to an unobtrusive printing character such as ����� �

The
nal example in this section shows how box can be used to display a rational function as a constant
times the ratio of two monic polynomials� The
rst step is to isolate the lead coe�cients of the numerator
and denominator and divide through to yield monic polynomials�

�c�� expr����s������s�����s���

� s � �

�d�� ��������������

�

 s � � s � �

�c�� �tmp��ratcoef�num����s�hipow�num����s���

tmp��ratcoef�denom����s�hipow�denom����s����

�c�� �num�multthru�num�expr��tmp���denom�multthru�denom�expr��tmp����

��� CHAPTER ��� DISPLAYING EXPRESSIONS

�c� num

�

�d� s � �

�

�c�� denom

� � s �

�d�� s � ��� � �

�

Now that the various pieces have been isolated� we reconstruct the expression� Note what happens if no box
forms are used�

�c�� tmp��tmp��num�denom

�

� �s � ��

�

�d�� ����������������

� � s �

 �s � ��� � ��

�

After resetting boxchar to an invisible character� di	erent representations of the expression can be generated
by boxing di	erent subexpressions�

�c�� boxchar�� ��

�c�� tmp��tmp��box�num�denom�

�

s � �

�

� ������������

� � s �

s � ��� � �

�

�d�� ����������������

�c�� box�tmp��tmp���box�num�denom�

�

s � �

� �

�d�� � ������������

 � � s �

s � ��� � �

�

�c��� box�box�tmp��tmp���num��denom

����� INHIBITING SIMPLIFICATION ���

� �

� �s � ��

 �

�d��� �������������

� � s �

s � ��� � �

�

Note� expressions containing box forms are not suitable for computation� Any box forms should be removed
prior to computation via the rembox command�

������ Using Null Functions

Another way of prohibiting simpli
cation is to use a null function as a placeholder� That is� the expression
to be protected is given as the argument of a function named ����� Consider the following example�

�c�� �s��s������s��s����

�

s

�d�� ���������������

�s � �� �s � ��

�c�� � ��s��s������ ��s��s����

s s

�d�� ������� �������

s � � s � �

Note that� unlike the box technique� this method puts parentheses around the factors�

�c�� boxchar�� ��

�c� box�s��s�����box�s��s����

s s

�d� ����� �����

s � � s � �

Finally� note that the null function can be removed with an appropriate lambda substitution�

�c�� opsubst�� ��lambda��arg	�arg��d��

�

s

�d�� ���������������

�s � �� �s � ��

��� CHAPTER ��� DISPLAYING EXPRESSIONS

���� The ordergreat and orderless Commands

Another facility which allows the user to control the ordering of symbols is the ordergreat�orderless facility�
This facility� unlike the mainvar declaration� gives the user complete control over the ordering of symbols�
�The ordering among symbols which have been declared to be mainvars is reverse�alphabetic� The user has
no control over the ordering ofmainvars�� However� because of the way in which the ordergreat�orderless
mechanism is implemented� results generated using this scheme are even more context�sensitive than those
generated using the mainvar scheme�

The syntax of ordergreat is ordergreat�var�� var�� ���� varN �� This establishes the ordering var� �
var� � � � �� varN � any other variables� The orderless function is called in the same way and establishes
an ordering making its arguments less important than any other symbol� The ordering imposed by either
of these commands is removed using the unorder command� A second call to ordergreat or orderless
without
rst calling unorder results in an error�

The functions ordergreat and orderless work by establishing aliases between the speci
ed symbols and
special internal symbols which are named to be either the most important or the least important� Since
aliases are handled only by the parser �for input� and the displayer �for output�� an existing expression
cannot be reformatted using this mechanism unless it is re�entered�

The next example demonstrates how ordergreat is used� The order x � z � y is established�

�c�� �x�y�z�x�y�z	

�d�� �z � y � x� x y z	

�c�� ordergreat�x�z�y�

�d�� done

�c�� �x�y�z�x�y�z	

�d�� �x � z � y� y z x	

�c� unorder��

�d� �y� z� x	

�c�� �x�y�z�x�y�z	

�d�� �z � y � x� x y z	

The next example demonstrates that the ordergreat and orderless commands make Macsyma expressions
context�dependent� In this example� expr� and expr� contain variables with di	erent internal names since
the ordergreat command in �c�� establishes aliases for x and y � The internal names generated by the
ordergreat command are shown in �d���

�c�� expr��x�y

�d�� y � x

�c�� ordergreat�x�y�

�d�� done

�c�� expr��x�y

�d�� x � y

�c� expr��expr�

�d� � x � y � y � x

�c�� unorder��

�d�� �y� x	

�c�� expr�

�d�� y � x

�c�� expr�

����� THE ORDERGREAT AND ORDERLESS COMMANDS ���

�d�� ����X � ����y

As mentioned earlier� an existing expression must be re�parsed before any ordergreat or orderless orderings
will be used� The only practical ways to re�parse an expression are via the stringout and batch commands
or via medit� since neither re�evaluation nor resimpli
cation invokes the parser� The next example shows
how stringout and batch can be used�

�c�� expr�x�y�z

�d�� z � y � x

�c�� ordergreat�x�y�

�d�� done

Re�evaluating the existing expression doesn�t pick up the new ordering� The stringout command in �c��
writes the indicated expression to a
le in Macsyma format� and the batch command in �c�� reads the
expression back in� The ordering is picked up when the Macsyma expressions are parsed�

�c�� expr

�d�� z � y � x

�c� stringout��expr�mac��expr��

�c�� batch��expr�mac��

�c�� Z�Y�X

�d�� x � y � z

�d�� done

The
nal example shows how medit can be used to reparse an expression�

�c�� expr�x�y�z

�d�� z � y � x

�c�� ordergreat�x�y�

�d�� done

�c�� expr

�d�� z � y � x

�c� medit�expr�

In editor�

�Z�Y�X

� ��

�d�� x � y � z

Macsyma allows considerable control over the simplifying of expressions� The rat command� which converts
an expression into CRE form� is useful when it is desired to collect coe�cients of speci
ed variables� �The
�variables� used by rat need not be symbols� Non�atomic kernels� such as exp�x	 or integrate forms� can be
also used�� The mainvar declaration allows the user to specify a subset of �important� variables� although
he has no control over the ordering within this subset� The ordergreat�orderless facility allows the user
to explicitly de
ne the ordering of the main variables� but in a way that requires existing expressions to be
re�parsed before they can be used consistently�

��� CHAPTER ��� DISPLAYING EXPRESSIONS

Chapter ��

The Macsyma Pattern Matcher

The Macsyma pattern matching facility provides a powerful and useful method of testing expressions to
see if they contain expressions of a speci
ed �form�� and also to perform literal or semantic substitutions�
The pattern matching facility also gives the user the ability to extend the Macsyma simpli
er by de
ning
substitution rules that are applied automatically during the Macsyma simpli
cation phase� Finally� the
ability to de
ne recursive rules permits the user to implement recursive simpli
cations conveniently� This
chapter introduces you to the Macsyma pattern matchers and discusses the circumstances under which the
pattern matcher is most useful� Because of the complexity of the subject� this chapter is intended to introduce
you to pattern matching� Refer to �Pattern Matching and Related Functions� in the Macsyma Reference
Manual for full details�

���� Introduction to Pattern Matching Techniques

The Macsyma pattern matchers can be thought of as powerful substitution mechanisms� The �substitution�
is de
ned in terms of a rule� which de
nes a substitution for a given class of expressions� The method by
which the rule is de
ned determines if the rule will be applied automatically or only when you request it�
and also whether or not it is applied recursively�

Modifying an expression using pattern matching techniques is an alternative to the programmatic approach�
In the following example� we show how to compute the factorial of a positive integer using both programming
techniques and pattern matching� First� we implement the factorial function as a recursive function�

�c�� fact�int���block

�if int � �

then �

else if not�integerp�int�� or int � �

then �fact�int�

else int � fact�int�����

�c�� fact����

�d�� fact�� ��

�c�� fact�����

�d�� fact�����

�c� fact���

�d� �

�c�� fact���

���

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�d�� ���

Next� we implement the factorial function with rules as an extension to the Macsyma simpli
er�

�c�� posintp�n���is�integerp�n� and n����

�c�� matchdeclare�int�posintp��

�c�� tellsimpafter�fact�������

�c� tellsimpafter�fact�int��int�fact�int�����

�c�� fact����

�d�� fact�� ��

�c�� fact�����

�d�� fact�����

�c�� fact���

�d�� �

�c�� fact���

�d�� ���

Although this process looks the same as the implementation using a recursive function de
nition� it is
in fact quite di	erent� The tellsimpafter approach teaches the Macsyma simpli
er how to simplify fact
forms� A major advantage of this approach is that additional simpli
cations on fact can be added simply by
implementing additional tellsimpafter rules� without a	ecting the existing ones� Very powerful rule�based
transformations can be �taught� to Macsyma by incrementally adding small components� This modularity
makes it easy to add enhancements in stages� without making it necessary to modify existing �and previously
debugged� code�

A major disadvantage of pattern matching is that it is a relatively slow mechanism� Adding rules that are
tested automatically� as in this example� can cause a noticeable decrease in speed� a	ecting every Macsyma
computation� The question of when to use pattern matching instead of a programmatic approach will be
discussed in Section ����� A second disadvantage is that the user must learn how to use the pattern matcher�
which is itself a nontrivial task�

Two distinct pattern matchers are implemented in Macsyma�

� The general Macsyma pattern matcher permits you to de
ne rules that are applied only when ex�
plicitly requested �rules de
ned using the defmatch or deftaylor forms� or rules that are applied
automatically by the simpli
er �rules de
ned using the tellsimp or tellsimpafter forms��

� The let pattern matcher uses the rational functions package and is based on a pattern matching algo�
rithm
rst implemented in the REDUCE computer algebra system� It is designed to make substitutions
for products in rational expressions�

In the remainder of this chapter� we refer to the two pattern matchers as �the general pattern matcher�
and �the rational function pattern matcher� or �the let pattern matcher�� respectively� The choice of the
appropriate pattern matcher depends on the class of expressions and the nature of the substitution�

���� An Overview of the Pattern Matcher Facilities

As mentioned earlier� the pattern matcher is a mechanism that tests an expression to see if it contains a
subexpression of a given form� and if so takes a speci
ed action �i�e�� perform a substitution� side�e	ect a
variable� or construct a list of parts of the subexpression�� This section introduces the di	erent Macsyma

����� AN OVERVIEW OF THE PATTERN MATCHER FACILITIES ���

pattern matchers� provides examples of their use� and also discusses typical problems and issues encountered
in pattern matching�

The Macsyma pattern matching components fall into three general classes�

� Predicates� A predicate is a boolean function� i�e�� a function that returns true or false� For example�
the predicate function integerp returns true if and only if its argument evaluates to an integer� �The
�p su�x is commonly used to indicate that a function is a predicate� Not all Macsyma predicates follow
this rule� however� For example� the predicate that tests to see if its argument is an atom is called
atom� not atomp��

� Part Identi
cation� This mechanism� implemented with the defmatch mechanism in the Macsyma
general pattern matcher� tests an expression to see if it is of a speci
ed form� If so� the operation
returns a list of the pattern variables as they matched in that expression�

� Rewrite Rules� A rewrite rule is an operation that matches and substitutes subexpressions in a given
expression� This mechanism is implemented using defrule� tellsimp� and tellsimpafter in the Mac�
syma general pattern matcher� and by let in the Macsyma rational function pattern matcher�

Semantic pattern variables are de
ned using the matchdeclare facility� which uses predicates to test ex�
pressions to see if they match a speci
ed form� The ability to de
ne semantic �as opposed to literal� matches
greatly enhances the usefulness of the pattern matcher� More will be said about semantic pattern variables
and matchdeclare in a later section�

The following simple examples show how the di	erent pattern matchers are used�

������ Examples of Predicates

The predicate integerp returns true if its argument evaluates to an integer� and false otherwise� The
predicate atom returns true if its argument evaluates to an atom �a simple data structure with no component
parts�� and false otherwise� Predicates are the simplest pattern matchers� indicating whether or not an
expression is of a speci
ed form�

�c�� integerp���

�d�� true

�c�� integerp�����

�d�� false

�c�� atom�x�

�d�� true

�c� atom�x�y�

�d� false

������ An Example of a Pattern Matching Rule

The following example shows how to de
ne and apply a rule which replaces one algebraic expression by
another� We de
ne two variations of the rule� The
rst version of the rule searches for the exact pattern
of variables which it is told to
nd and replace� The second version can accept an arbitrary variable name
where it expects to
nd the velocity variable v �

We start with the expression for Newtonian kinetic energy� We then de
ne the rule relativize� which
converts Newtonian kinetic energy to relativistic energy�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c�� energy�����m�v��

�

mv

�d�� �����

�

�c�� defrule�relativize������m�v���m�c���sqrt���v���c����

� �

m v c m

�d�� relativize� � ���� �� ������������

� �

v

sqrt �� � ���

�

c

This rule changes the nature of the expression energy� See apply�� page ����

�c�� apply��energy� relativize��

�

c m

�d�� ������������

�

v

sqrt�� � ���

�

c

Now try the rule where the velocity is represented by the symbol u instead of the symbol v � The rule does
not work because it sees the letter u where it expects to see the letter v �

�c� energy� ����m�u��

�

m u

�d� ����

�

�c�� apply��energy� relativize��

�

m u

�d�� ����

�

If we declare that� in pattern de
nitions� the variable v stands for any atomic symbol� we can then de
ne the
rule relativize� with this new interpretation of v � The rule works because u is an atomic variable� which
matches the symbol v in the de
nition of the rule relativize��

�c�� matchdeclare�v�atom��

�c�� defrule�relativize������m�v���m�c���sqrt���v���c����

����� AN OVERVIEW OF THE PATTERN MATCHER FACILITIES ���

� �

m v c m

�d�� relativize� � ���� �� ������������

� �

v

sqrt �� � ���

�

c

�c�� apply��energy� relativize��

�

c m

�d�� ������������

�

u

sqrt�� � ���

�

c

������ An Example of a User�De�ned Pattern�Testing Predicate

In the following example� the defmatch mechanism� which is part of the Macsyma general pattern matcher�
is used to de
ne a function called quadratic that tests its
rst argument to see if it is a quadratic polynomial
with respect to the second argument�

�c�� matchdeclare��a�b�c	�freeof�x��

�d�� done

�c�� defmatch�quadratic�a�x���b�x�c�x�

�d�� quadratic

�c�� quadratic�a��z���a��z�a��z�

�d�� �c � a�� a � a�� b � a�� x � z	

�c� quadratic�a��z�a��z�

�d� �c � a�� a � �� b � a�� x � z	

�c�� quadratic�a��z���a��z���a��z�a��z�

�d�� false

Thematchdeclare form in �c�� de
nes the pattern variables� In this case� thematchdeclare form tells the
pattern matcher that the coe�cients cannot contain the variable given as the last argument to quadratic�
�This association comes from the fact that the symbol x is used in both the matchdeclare form in �c�� and
also in the defmatch form in �c����

Note that this implementation of quadratic allows linear or constant polynomials to match the quadratic
expression pattern by allowing the appropriate coe�cient to be zero� In a subsequent section� we show how
to write quadratic to prevent linear or constant polynomials from matching the pattern�

Note also that freeof takes more than one argument when used interactively� but is used with only one
argument in �c��� The freeof form in �c�� is not evaluated directly� but is instead used as a template
when the rule quadratic is de
ned using the defmatch form in �c��� This is discussed in greater detail in
Section �����

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

������ Examples of Rewrite Rules

The
rst example uses defrule to de
ne a rewrite rule called fsub to perform the substitution f��� � f��
The rule is applied manually using the apply� form�

�c�� defrule�fsub�f����f��

�d�� fsub � f��� �� f�

�c�� f������f����f���

�

�d�� f��� � f��� � ����

f���

�c�� apply����fsub�

�

�d�� f� � �� � f���

f�

The next example uses tellsimpafter to de
ne a rewrite rule that performs the same substitution� However�
this rule is applied automatically during the simpli
cation phase�

�c�� tellsimpafter�f����f��

�d�� �frule�� false	

�c�� f������f����f���

�

�d�� f� � �� � f���

f�

The next example uses the rational function pattern matcher to perform the same substitution� The rewrite
rule is de
ned using the let command� and is applied manually using the letsimp command�

�c�� let�f����f��

�d�� f��� ��� f�

�c�� f������f����f���

�

�d�� f��� � f��� � ����

f���

�c�� letsimp���

�

f� � f��� f� � �

�d�� �����������������

f�

The
nal example shows how the direction in which the pattern matcher scans the expression can be con�
trolled� Thematchdeclare form in �c�� allows any expression in the position indicated by x in �d�� to match
the pattern� The apply� and applyb� commands force the matcher to scan the expressions �top�down�
and �bottom�up�� respectively�

�c�� matchdeclare�x�true�

�d�� done

����� SIMPLE PATTERN TESTING� PREDICATES ���

�c�� defrule�fsub��f�f�x���g�x��

�d�� fsub� � f�f�x�� �� g�x�

�c�� apply��f�f�f�x����fsub��

�d�� g�f�x��

�c� applyb��f�f�f�x����fsub��

�d� f�g�x��

Note that the result �d�� results from scanning the expression �top�down�� while the result in �d�� results
from scanning the expression �bottom�up��

������ General Pattern Matcher Issues

Finally� we mention some of the di�culties and questions that frequently arise when using the pattern
matcher facilities� These topics will be covered in greater detail in subsequent sections�

� Looping and recursive rules� Many rules are applied recursively �until the result stops changing�� A
rule that substitutes f�f�x�� for f�x�� and is applied recursively� will loop until the resulting expression
exceeds an internal storage space� A rule that substitutes f�x� for f�x� might loop if the �new�
expression is determined to be di	erent from the �old� one after the transformation has occurred�
Macsyma will sometimes warn the user that a circular de
nition is being attempted �for example�
when the original and replacement expressions in a tellsimp�tellsimpafter rule are identical�� This
may complicate debugging�

� Specifying a semantic pattern� The power of the pattern matcher is greatly enhanced by permitting
a semantic �as opposed to a literal� match� For example� if the pattern identi
es a form such as f�x�
with the understanding that f refers to the symbol f � but that x is a �placeholder� and can refer to
expressions other than the symbol x then we refer to it as a semantic pattern� If� however� the pattern
requires only that the expression f�x� will match the pattern� then we refer to it as a literal pattern�

� In what direction does the matcher scan the expression� The transformation f�f�y�� �
g�y�� where y can be anything �that is� y is a semantic pattern variable that can match an arbitrary
expression�� yields di	erent results if the expression is scanned �top�down� instead of �bottom�up�� For
example� consider the expression f�f�f�x���� Applying the transformation �top�down� yields g�f�x���
while applying it �bottom�up� yields f�g�x���

� How �smart� is the matcher� Can �or should� the pattern matcher match� say� exp�x� in cosh�x��
Should it be able to
nd a leading factor of � �or ��� in a product�

���� Simple Pattern Testing	 Predicates

The simplest type of pattern is the predicate� A predicate is a function that returns either true or false�
Macsyma provides a large number of built�in predicates� and the user can de
ne compound predicates using
the is form� Consult the Macsyma Reference Manual for a complete list of Macsyma predicates�

In the following example� we de
ne a predicate that takes two arguments and returns true if and only if the

rst argument is a symbol and the second argument doesn�t contain that symbol�

�c�� symbol�and�freeofp�var�expr���is�symbolp�var�� and freeof�var�expr���

�c�� symbol�and�freeofp�x���x�

�d�� false

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c�� symbol�and�freeofp�x�y�x�y�

�d�� false

�c� symbol�and�freeofp�x�y�

�d� true

The rest of this section is devoted to explaining how to write predicates for pattern matching purposes� We

rst discuss the techniques used to write compound predicates� that is� predicates that are logical combinations
of simple predicates�

A useful form when writing predicates is the not� or logical negation� operator� For convenience� not is
implemented both as a pre
x operator and as a function�

�c�� not true

�d�� false

�c�� not�true�

�d�� false

Although most simple predicates are functions� compound predicates are constructed using the is� and� and
or special forms� These are implemented as special forms rather than functions because you must evaluate
the individual predicates sequentially�

The is form performs the logical evaluation of predicates which do not contain the usual logical operators
and� or� and not� That is� the is form forces the logical evaluation of expressions such as inequalities
that are themselves legitimate Macsyma expressions� It is good programming practice to write compound
predicates using is� even when it is not needed to force the logical evaluation� The next example shows how
to use is�

�c�� ���

�d�� � � �

�c�� is�����

�d�� true

�c�� true or false

�d�� true

�c� is�true or false�

�d� true

Note that the is form is needed in �c�� to carry out the logical evaluation of the inequality� The command
�c�� shows that is can be used� even if the logical evaluation occurs automatically�

In this example� we construct a predicate that returns true if its argument is a positive �oating point
number� Note what happens if the predicates are evaluated in the incorrect order�

�c�� floating�point�and�positivep�arg���is�floatp�arg� and arg � ���

�c�� positive�and�floating�pointp�arg���is�arg � � and floatp�arg���

�c�� floating�point�and�positivep�����

�d�� true

�c� positive�and�floating�pointp�����

�d� true

�c�� floating�point�and�positivep���

�d�� false

����� LITERAL VS� SEMANTIC MATCHES� MATCHDECLARE ���

�c�� positive�and�floating�pointp���

�d�� false

�c�� floating�point�and�positivep�a�

�d�� false

�c�� positive�and�floating�pointp�a�

Macsyma was unable to evaluate the predicate�

A � �

Returned to Macsyma Toplevel�

Note that the test that arg � � must follow the �oating point check or else a non�numeric input will generate
a Macsyma error� The components of an and form are evaluated left�to�right until a component evaluates
to false� in which case the remaining forms are not evaluated and false is returned� If all of the components
evaluate to true then the value true is returned� An or form evaluates its components left�to�right until
a component evaluates to true� in which case the remaining forms are not evaluated and true is returned�
If none of the components evaluates to true then the value false is returned� The components of and and
or must evaluate to either true or false� �Note that the construct false or �� which is allowed in some
languages� generates an error in Macsyma��

As indicated earlier in this chapter� predicates are used to construct pattern variables for the Macsyma pat�
tern matchers� The user de
nes a pattern variable using the matchdeclare form and associated predicates�
The pattern matcher tests an expression to see if it
ts the pattern by passing it to the indicated predicate�
A predicate used in a matchdeclare form must have the expression to be tested appear at the end of the
predicate argument list� Any parameters that are passed to the predicate must precede the expression being
tested�

���� Literal vs� Semantic Matches	 matchdeclare

Pattern matching provides a convenient means of implementing mathematical relationships� However� rela�
tionships of this nature must frequently be interpreted as identities� For example� the simpli
cation
sin�x�� � cos�x�� � � should hold regardless of the expression in the locations indicated by the placeholder
x�

The e	ectiveness of a pattern matcher is greatly increased if the matcher can make semantic matches� The
type of expression that can match a semantic pattern variable is determined by the matchdeclare property
associated with a pattern variable� The matchdeclare property is generated by a matchdeclare form�
which takes an even number of arguments� The
rst element in the pair of arguments to matchdeclare
is a pattern variable �a variable that is used in a rule de
nition�� and the second is a predicate that must
evaluate to true for a test expression to match� If the
rst argument in a pair is a list of variables then each
variable in the list acquires the same matchdeclare property� If no matchdeclare is speci
ed then only a
literal match can be made for that pattern variable�

In the previous section it was noted that the predicate used in a matchdeclare must be written so that
the expression to be tested is the last argument in the predicate�s argument list� When de
ning the pattern
variable in a matchdeclare form� this last argument is omitted� For example� if a pattern variable named
intvar should match integers� the predicate integerp should be used� Since integerp takes one argument�
the matchdeclare form matchdeclare�intvar� integerp�� should be used�

It is important to note that the matchdeclare information is incorporated into the rule when the rule is
de
ned� Simply rede
ning the matchdeclare property on a pattern variable will not a	ect existing rules
that use the pattern variable� The rule must be rede
ned with the new matchdeclare in place before the
new pattern variable will be used� However� a predicate that is speci
ed in the matchdeclare form is
used dynamically� so rede
ning a matchdeclare predicate will in fact change the behavior of rules using

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

the corresponding pattern variables� This information is provided not so much to encourage a programmer
to rede
ne pattern match predicates after a rule has been generated �this will usually lead to inexplicable
behavior on the part of the pattern matcher�� but rather to provide further insight into the pattern matching
mechanism and also to point out that tracing the predicates or rules �using the Macsyma trace facility� can
help to debug pattern matching problems�

Note� the presence ofmatchdeclare information on a symbol can be determined by inspecting the property
list of the symbol� If such information is present� a matchdeclare indicator will appear on the property
list� The matchdeclare information on a symbol can be inspected using the printprops special form�

�c�� matchdeclare�x�symbolp�

�d�� done

�c�� properties�x�

�d�� �matchdeclare	

�c�� printprops�x�matchdeclare�

matchdeclare�x� symbolp�

�d�� done

���� The General Pattern Matcher

There are three interfaces to the Macsyma general pattern matcher�

� the defmatch facility� which generates functions that identify subexpressions and binds them to user�
speci
ed variables�

� the defrule facility� which generates rewrite rules that are invoked manually�

� the tellsimp�tellsimpafter facility� which generates rewrite rules that are invoked automatically by
the Macsyma simpli
er�

This section begins with an overview of the general pattern matcher� then discusses the three interfaces in
detail� The section concludes with a discussion of issues that arise when using the general pattern matcher
with translated or compiled
les�

������ An Overview of the General Pattern Matcher

The general pattern matcher is used extensively throughout Macsyma� The three interfaces all require that
the same procedure be followed when using the general pattern matcher�

� To use the facility� the user
rst de
nes syntactic pattern variables using matchdeclare� Any predi�
cates used in the matchdeclare calls should be de
ned prior to de
ning the rule�

� The next step is to de
ne the rule using defmatch� defrule� tellsimp� or tellsimpafter�

� The procedure used to apply the rule depends on the method used to de
ne it�

The process of de
ning a rule using the general pattern matcher generates a LISP function that� when invoked
on a given expression� decides if the match can be made and� if so� takes the appropriate action� �The action
may not transform the expression�a rule de
ned using defmatch identi
es indicated subexpressions but

����� THE GENERAL PATTERN MATCHER ���

doesn�t transform the expression� rules de
ned using deftaylor� tellsimp� or tellsimpafter are rewrite rules
and do transform the expression�� The resulting LISP function can be compiled for increased e�ciency�

The problem of matching a subexpression to a pattern is a di�cult one� The Macsyma pattern matchers
don�t employ full backtracking in the sense that if they search a branch of an expression tree for a match
and
nd they cannot make one� they will not back up and search another branch� The result from the user�s
point of view is that the pattern matcher fails to match when the user thinks it should� This de
ciency can
usually be alleviated by de
ning less ambitious rules� In general� rules de
ning substitutions for sums or
products will not work� In particular� the substitition sin�x��� cos�x�� � � cannot be implemented directly�

In the remainder of this section� the three interfaces to the general pattern matcher are discussed in detail�

������ Identifying Subexpressions	 defmatch

The defmatch facility identi
es subexpressions and binds these subexpressions to user�speci
ed variables�
defmatch is faster than deftaylor� tellsimp� or tellsimpafter� It is commonly used to test an expression
to see if it is of a speci
ed form and� if so� identi
es the components� For example� a quadratic polynomial
equation solver can be implemented easily using defmatch�

The syntax of defmatch is defmatch�name� pattern� parm�� � � � � parmN �� defmatch generates a function
called name that takes as its arguments an expression to be tested and the parameters parm� through
parmN � To apply the rule� the user calls the function explicitly� The test pattern� indicated by pat�
tern� can contain variables with matchdeclare properties� If the match succeeds� a list of the form
patternvar� � subexpr� � � � � � patternvarK � subexprK � is returned where patternvar�� � � � � patternvarK
are pattern variables used in the de
nition of pattern� The pattern variables are also bound to the indicated
expressions� The parameters are typically used to indicate� say� the independent variables in a polynomial�
and are passed as arguments to the predicate�s� associated with the matchdeclare forms�

If the pattern contains no pattern variables or parameters then the function generated by defmatch returns
true if the match succeeds� If the match fails� the function returns false� The function generated by
defmatch is added to the system rules list� and can be removed using remove or kill�

A rule generated by defmatch can be inspected with the disprule command�

Note� The defmatch command is not recursive� since recursion does not make sense in this context� For
this reason� defmatch is much faster than the other general pattern matcher facilities� and should be used
whenever possible�

�������� defmatch Summary

� De�ning defmatch rules� defmatch�name� pattern� parm�� � � � � parmN � generates a function
name that is called by name�expr � parm�� � � � � parmN �� If the match succeeds� a list of the form
patternvar� � subexpr� � � � � � patternvarK � subexprK � is returned� The toplevel bindings pattern�
var� �subexpr�� � � � � patternvarK �subexprK are also made� If the match fails� false is returned� Since
defmatch is a special form it does not evaluate any of its arguments�

� Inspecting defmatch rules� disprule	name
 displays the rule named name that is generated by
defmatch� The names of rules generated by defmatch are placed on the rules list�

� Removing defmatch rules� remove	name� rule
 removes the rule named name� kill	name

removes all information associated with name� including the rule de
nition�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�������� Examples of defmatch

The
rst example uses defmatch to identify a quadratic polynomial� The
rst step is to write a defmatch
rule that identi
es a quadratic polynomial �not an equation� and� if given such an expression� returns a list
identifying the coe�cients�

�c�� nonzero�and�freeof�x�expr���is�expr � and freeof�x�expr���

�c�� matchdeclare��b�c	�freeof�x��a�nonzero�and�freeof�x���

�c�� defmatch�quadratic�a�x���b�x�c�x��

�c� quadratic���x�����x���x�

�d� �c � �� a � �� b � � �� x � x	

�c�� �a�b�c	

�d�� ��� � �� �	

In lines �c�� through �c��� a defmatch function called quadratic is de
ned that tests an expression to see
if it is a quadratic polynomial� If quadratic
nds a match then a list containing the pattern variables and
their values is returned� The pattern variables are also bound to these values� If the expression fails to
match� quadratic returns false� In �c��� it is veri
ed that the pattern variables are also bound at toplevel�

The next few commands show some examples for which quadratic fails to match� They also shows that
quadratic can match expressions that are polynomials in non�atomic variables�

�c�� quadratic�a��y�b��y�

�d�� false

�c�� quadratic�a��y���b��y�

�d�� false

�c�� quadratic�aa�exp���t��bb�exp�t��cc�exp�t��

T

�d�� �c � cc� a � aa� b � bb� x � �e 	

The
rst argument in �c�� is a polynomial in the variable exp�t	�

Finally� we show why care must be taken when using defmatch�generated functions at toplevel� Consider
the following example�

�c�� quadratic���x�����x���x�

�d�� �c � �� a � �� b � � �� x � x	

�c��� quadratic���a�����a���a�

�d��� false

Why did �c��� fail to match� Since quadratic is a toplevel Macsyma function� we can trace it to see what
arguments it receives�

�c��� trace�quadratic��

�c��� quadratic���a�����a���a�

� Enter quadratic ���� �	

� Exit quadratic false

�d��� false

����� THE GENERAL PATTERN MATCHER ���

The trace information shows that the arguments to quadratic evaluate to integers� This is because the
call to quadratic in �c�� bound the pattern variables a� b� and c to the values �� ��� and � respectively�
and these bindings were used in �c��� when the arguments to quadratic were evaluated� For this reason�
defmatch rules are usually called inside a block with the pattern variables local to the block�

We can recover the expected behavior of quadratic by quoting the variables in the argument list�

�c��� quadratic����a������a����a�

�

� Enter quadratic �� a � � a � �� a	

� Exit quadratic �c � �� a � �� b � � �� x � a	

�d��� �c � �� a � �� b � � �� x � a	

The next example uses defmatch to
nd the homogeneous solution of a second�order constant�coe�cient
linear ordinary di	erential equation� The variables a� and a� represent the arbitrary constants of the
solution� This example is adapted from the demo
le macsyma�ode�odetrix�demo�

�c�� matchdeclare��b�c	�freeof�u�x��f�freeof�u���

�c�� defmatch�solde��diff�u�x��� � b��diff�u�x� � c�u � f�u�x��

�c�� solder�eqn�u�x���block

��b�c�f�disc�r��r��alpha�beta	�

if solde�eqn�u�x� � false

then return�false�

else �disc� b�� � �c� alpha� �b���

if asksign�disc� � �zero

then return��e��alpha�x� � �a� � a��x��

else �beta� sqrt�disc����

if asksign�disc� � �pos

then �r�� alpha � beta� r�� alpha � beta�

return�a���e��r��x� � a���e��r��x���

else �beta� �i�beta�

return��e��alpha�x� � �a��cos�beta�x�

� a��sin�beta�x��������

In �c�� and �c��� a defmatch function is generated that matches constant�coe�cient second�order linear
ordinary di	erential equations� The scope of the match is determined both by the matchdeclare form in
�c�� and by the structure of the test expression in �c��� Note that the expression must be an equation to
match the pattern �this di	ers from the syntax of most built�in Macsyma solvers� where an expression is
assumed to be an equation with right�hand side equal to zero if it is not an equation� and that the lead
coe�cient must be �� These restrictions could be eliminated by modifying the defmatch form and adding
another pattern variable to represent the coe�cient of the second derivative term�

The function solder calls the defmatch�generated function solde to check to see if the expression is of
the required form and� if so� identi
es the various parts� If the expression is not of the required form then
solde returns false� If the expression is of the required form� the solution of the characteristic polynomial is
constructed and the appropriate form of the solution is generated� The asksign command is used to obtain
the needed sign information�

Note also that the pattern variables in solder are local variables �either because they are block variables� or
because they appear in the argument list�� This is good programming practice since a defmatch�generated

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

function binds the pattern variables� and failure to localize them with the block mechanism would leave
them bound at toplevel�

We proceed to test the function�

�c� eq���diff�y�t����a��diff�y�t��b�y�f�t�

�

d y dy

�d� ��� � a �� � b y � f�t�

� dt

dt

�c�� sol�solder���y�t�

�

is b � a positive� negative� or zero!

p

a t

� ��� �

� sqrt�a � b� t

�d�� �e ��i a� sinh������������������

�

�

sqrt�a � b� t

� a� cosh�������������������

�

�c�� ev�eq��y�sol�diff� ratsimp�

�d�� � � f�t�

The result �d�� doesn�t simplify to � � � because the solution �d�� is only the homogenous solution of the
given di	erential equation�

The next few examples show that solder fails to match equations that don�t match the pattern speci
ed by
the defmatch form�

�c�� eq���diff�y�t����t��diff�y�t��y��

�

d y dy

�d�� ��� � t �� � y � �

� dt

dt

�c�� solder���y�t�

�d�� false

The equation in �d�� fails to match because the coe�cient of the
rst derivative is not a constant�

����� THE GENERAL PATTERN MATCHER ���

�c�� �diff�y�t����a��diff�y�t��y

�

d y dy

�d�� ��� � a �� � y

� dt

dt

�c��� solder���y�t�

�d��� false

The expression in �d�� fails to match because it is not an equation�

�c��� �diff�y�t����y��diff�y�t����y��

�

d y dy

�d��� ��� � y �� � � y � �

� dt

dT

�c��� solder���y�t�

�d��� false

The expression in �d��� fails to match because it is a nonlinear equation�

�c��� expand���eq��

�

d y dy

�d��� � ��� � � a �� � � b y � � f�t�

� dt

dT

�c�� solder���y�t�

�d�� false

The expression in �d��� fails because the lead coe�cient is di	erent from ��

������ Transforming Expressions with Rewrite Rules	 defrule

The defrule interface to the general pattern matcher de
nes rewrite rules that modify expressions by re�
cursive substitutions� Rules generated by defrule are applied manually� and the user determines how the
expression is scanned and the order in which the rules are applied�

The syntax for defrule is defrule	name� pattern� replacement
� where name is the name of the rule� pattern
is an expression containing pattern variables� and replacement is an expression to be substituted in for an
expression that matches pattern� As usual� if no pattern variables are speci
ed by matchdeclare then only
literal match will be made�

Once a rule has been implemented by defrule� it is applied manually by a call to apply�� applyb�� apply��
or applyb�� These special forms are called with the same syntax� but the manner in which they apply the
rules is di	erent� The syntax is applyXX�expr � rule�� � � � � ruleN � where expr is an expression to be
simpli
ed and rule�� � � � � ruleN are the names of rules� and XX is ����b� or b��

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

A rule generated by defrule is added to the system rules infolist� The rule de
nition can be inspected by
typing disprule�name�� where name is the name of the rule� To remove a rule de
nition� type remove�name�
rule� or kill�name�� The former is preferred� since it removes only the rule associated with name� whereas
the latter removes all information associated with name� To remove all rules generated using defrule�
defmatch� or tellsimp�tellsimpafter� type remove�all� rule��� Typing kill�rules�� is an alternative
method of removing all of the rules�

�������� defrule Summary

� De�ning a Rule� defrule�name� expr � repl� generates a rule called name that replaces expr with
repl � The scope of the match is determined by the matchdeclare properties present on the pattern
variables when the defrule form is executed�

� Displaying a Rule� disprule�name� � name�� � � � � nameN � displays the substitution rules of the
named rules name� � name�� � � � � nameN �

� Removing a Rule� remove�name� rule� deletes the rule name� To delete several rules use re
move�name� � name�� � � � � nameN �� rule�� The command kill�name� removes all information associ�
ated with name� including any rule de
nitions� The command kill�rules� deletes all rules named on the
system rules infolist� which contains the names of rules de
ned using defrule� defmatch� tellsimp�
and tellsimpafter�

� Applying a Rule� The forms apply�� apply�� applyb�� and applyb� apply rules generated using
defrule� The syntax is applyfn�expr �rule�� � � � � ruleN � where applyfn is one of the four previously
mentioned special forms� expr is the expression to simplify� and rule�� � � � � ruleN are the names of
rules de
ned using defrule� The manner in which the rules are applied is summarized below�

Applying defrule rules�

� apply��expr � name�� � � � � nameN � repeatedly applies the rule speci
ed by name� to expr top�down
until it fails� then applies the rule to all subexpressions of the resulting expression� The recursive
application of the rule ends when the rule has been applied at the maximum allowable depth� The
process is repeated on the resulting expression with the remaining rules�

� apply��expr � name�� � � � � nameN � applies the rule speci
ed by name� to expr top�down until it fails�
The remaining rules are applied sequentially at the same level until all have failed� The procedure then
repeats on the subexpressions of the result�

� applyb��expr � name� � � � � � nameN � repeatedly applies the rule speci
ed by name� to expr bottom�
up until it fails� then applies the rule to all subexpressions of the resulting expression� The recursive
application of the rule ends when the rule is applied to the maximum allowable height� The process is
repeated on the resulting expression with the remaining rules�

� applyb��expr � name� � � � � � nameN � applies the rule speci
ed by name� to expr bottom�up until it
fails� The remaining rules are applied sequentially at the same level until all have failed� The procedure
then repeats on the subexpressions of the result�

Note� the system option variables maxapplydepth �default�� � and maxapplyheight �default�� �
control the maximum depth and height� respectively� to which the apply functions search�

�������� Examples of defrule

This example uses defrule to perform the syntactic substitution cotx� cosx
sin x

� This is a syntactic substitu�
tion since it is de
ned for any expression in the position indicated by x�

����� THE GENERAL PATTERN MATCHER ���

�c�� matchdeclare�angle�true��

�c�� defrule�cotrule�cot�angle��cos�angle��sin�angle��

cos�angle�

�d�� cotrule � cot�angle� �� ����������

sin�angle�

�c�� �cot�x��exp�cot���y���a�cot�u�v�z��b	

cot�� y� a cot�z � v � u�

�d�� �cot�x�� �e � ����������������	

b

�c� applyb����cotrule�

cos�� y�

��������

cos�x� sin�� y� a cos�z � v � u�

�d� �������� �e � ����������������	

sin�x� b sin�z � v � u�

The next example uses defrule to de
ne a
nite�di	erencing utility for ordinary di	erential equations� For
simplicity� we assume that the di	erential equations use y and x as the dependent and independent variables
respectively� and h is the step size� The following di	erencing schemes are implemented�

� forward� dy�x�
dx

�
y�x�h��y�x�

h

� centered� dy�x�
dx

�
y�x�h��y�x�h�

�h

� backward� dy�x�
dx

�
y�x��y�x�h�

�h

The
nite di	erencing mechanism is implemented as follows�

� The di	erencing scheme to be used is determined by the setting of the option variable di�erence type�
which defaults to forward�

� The rule diftran substitutes the pseudo�operator delta�n� �which is really a just a placeholder� for
nth�order derivatives of y with respect to x �

� The rule deltatran n recursively simpli
es di	erences by
rst rewriting

deltan��expr�� deltan� ���delta���expr��

and then di	erencing the delta���expr� form�

� The rule deltatran � implements the simpli
cation delta���expr�� expr�

The function �n dif takes an expression and applies the rules as necessary�

We begin by declaring the option variable di�erence type and setting up the rules�

�c�� define�variable�difference�type� �forward� any�check��

�c�� put��difference�type�

lambda��foo	�if not�member�foo���forward�central�backward	��

then error��not a valid differencing method� ��foo����value�check��

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c�� posintp�n���is�integerp�n� and n���

�d�� posintp�n� �� is�integerp�n� and n � ��

�c� matchdeclare�n�posintp�t�true��

�c�� defrule�diftran��diff�y�x��x�n��delta�n	�y�x���

n

d

�d�� diftran � ��� �y�x�� �� delta �y�x��

n n

dx

The option variable di�erence type contains the names of the di	erencing schemes� The rule diftran converts
di� forms into expressions containing delta� Next� we implement the simpli
cation rules for delta�

�c�� defrule�deltatran���delta��	�t��t�

�d�� deltatran�� � delta �t� �� t

�

�c�� defrule�deltatran�n�delta�n	�t��

delta�n��	�apply��apply���delta��	�t��difference�type	���

�d�� deltatran�n � delta �t� ��

n

delta �apply��apply�� �delta �t�� difference�type	��

n � � �

Note that the name of the rule implementing the di	erencing scheme is given in the variable di�erence type�
which is evaluated in the apply form�

Next� we implement the di	erencing schemes�

�c�� defrule�forward�delta��	�t�� ratsimp��at�t�x�x�h��t��h��

at�t� x � x � h� � t

�d�� forward � delta �t� �� ratsimp����������������������

� h

�c�� defrule�central�delta��	�t�� ratsimp��at�t�x�x�h��at�t�x�x�h������h���

�d�� central � delta �t� ��

�

at�t� x � x � h� � at�t� x � x � h�

ratsimp�������������������������������������

� h

�c��� defrule�backward�delta��	�t�� ratsimp��t�at�t�x�x�h���h��

t � at�t� x � x � h�

�d��� backward � delta �t� �� ratsimp����������������������

� h

Before we go any further� we test the rules�

����� THE GENERAL PATTERN MATCHER ���

�c��� diff��diff�y�x��x���

�

d

�d��� ��� �y�x��

�

dx

�c��� del�apply��diff�diftran�

�d��� delta �y�x��

�

�c��� apply��del�deltatran�n��difference�type��forward

y�x � � h� � � y�x � h� � y�x�

�d��� delta ��������������������������������

� �

h

�c�� apply��del�deltatran�n��difference�type��backward

� y�x � h� � y�x � � h� � y�x�

�d�� delta �� �������������������������������

� �

h

�c��� apply��del�deltatran�n��difference�type��central

y�x � � h� � y�x � � h� � � y�x�

�d��� delta ����������������������������������

� �

 h

�c��� apply����deltatran���

y�x � � h� � y�x � � h� � � y�x�

�d��� ��������������������������������

�

 h

All of the rules work as expected� The next step is to de
ne a function called �n dif that applies the rules
in the proper order� Note that we need to apply diftran only one time� so we invoke the rule in a separate
apply� form�

�c��� FIN�DIF�expr���block

�expr�apply��expr�diftran��

apply��expr�deltatran�n�deltatran�����

We now compile the rules for increased e�ciency and test �n dif�

�c��� compile�rule�all��

�c��� fin�dif�a��diff�y�x��x��b�y�x��g�x��

a �y�x � h� � y�x��

�d��� ������������������� � b y�x� � g�x�

h

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c��� fin�dif��diff�y�x��x�����diff�y�x��x����y�x����

y�x � � h� � � y�x � h� � y�x� y�x � h� � y�x�

�d��� ������������������������������ � ���������������

� h

h

� � y�x� � �

������ Automatic Simpli�cation of Expressions	 tellsimp and tell�

simpafter

The tellsimp and tellsimpafter commands provide a means of extending the Macsyma simpli
er� Rules
de
ned using these two special forms are applied automatically and recursively during the simpli
cation
stage� As the names suggest� rules de
ned using tellsimp are applied prior to the Macsyma simpli
cation
stage� while rules de
ned by tellsimpafter are applied after the Macsyma simpli
cation stage� For most
applications� tellsimpafter should be used since this allows the Macsyma simpli
er to cancel any subex�
pressions that would otherwise have to be scanned� tellsimp should be used only when it is necessary to
override a built�in simpli
cation�

Since the two forms are identical except for the point in the Macsyma simpli
cation process in which they
are applied� the subsequent discussion will mention tellsimpafter only� However� unless otherwise noted�
the remarks also apply to tellsimp�

The syntax for tellsimpafter is tellsimpafter�pattern� repl � cond�� where pattern is an expression to search
for and repl is the replacement expression when a match is found� The variable cond is an optional argument
that� if present� is a predicate depending on the pattern variables that must evalute to true for the rule
to
re� �This feature permits tellsimpafter rules to be de
ned recursively�� The value returned by a
tellsimpafter form is a list containing the name of the rule and the name of the internal simpli
cation
function that applies the rule�

As usual� the scope of the match is determined by the matchdeclare properties of the associated pattern
variables� If no matchdeclare properties are present then only literal matches will be made� Since the
matchdeclare information is used only when the tellsimpafter form is executed �thereby de
ning the
rule�� the old rule must be removed and the new rule de
ned if it is desired to change the matchdeclare
properties of any of the pattern variables�

The rule name generated by tellsimpafter is based on the main operator in pattern� If the main operator is
a symbol� the rule name will be a symbol� otherwise� the rule name is a string� �Note that if the rule name
is a string then it is case sensitive�� The following example shows how to generate a few simple rules and
review their de
nitions�

�c�� tellsimpafter�a�b�c�

�d�� ��rule�� simplus	

�c�� stringp�first����

�d�� true

�c�� tellsimpafter�f�x��g�

�d�� �frule�� false	

�c� symbolp�first����

�d� true

�c�� disprule�frule��

����� THE GENERAL PATTERN MATCHER ���

�d�� frule� � f�x� �� g

�c�� disprule���rule���

�d�� �rule� � b � a �� c

�c�� disprule���rule���

��rule�� is not a user rule�

Returned to Macsyma Toplevel�

tellsimpafter rules can be removed using the remrule form� The syntax for remrule is remrule�operator �
rulename�� where operator is the name of the operator to which a simpli
er rule was attatched� and rulename
is either the name of the rule to be deleted or the keyword all� If all is speci
ed� all rules associated with
the operator operator are deleted� If the operator is a symbol then both operator and rulename must be
symbols� If the operator is not a symbol� operator and rulename must be speci
ed as strings� Continuing
the previous example� we remove the rules�

�c�� rules

�d�� ��rule�� frule�	

�c�� remrule�f�frule��

�d�� f

�c��� remrule�������rule���

�d��� �

�c��� rules

�d��� �	

The command remove�rulename� rule� can also be used to remove rule de
nitions�

Note� tellsimpafter rules can be compiled using the compile rule form�

�������� tellsimpafter Summary

Note� all information in this section also applies to tellsimp�

� De�ning rules� tellsimpafter�pattern� repl � cond� replaces pattern with repl when cond �if given�
evaluates to true� The scope of the match depends on the matchdeclare properties of the pattern
variables�

� Reviewing rules� disprule�rule� prints the de
nition of the rule given by rule� which is either an
upper�case string or a symbol� The system infolist rules contains the names of all rules de
ned using
defmatch� defrule� and tellsimpafter�

� Removing rules� remrule�operator � rule� removes the rule rule that is associated with the operator
operator � Both rule and operator are either upper�case strings or symbols� remrule��operator � all�
removes all tellsimpafter rules associated with the operator operator �

� Other methods of removing rules� remove�rule� rule� removes the rule named rule� which is
either a symbol or an upper�case string� kill�rule� removes all information associated with rule� which
can be either a string or a symbol� kill�rules� removes all of the rule de
nitions contained in the system
infolist rules�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�������� Di�erences between tellsimp and tellsimpafter

As mentioned in the previous section� rules de
ned by tellsimp and tellsimpafter are invoked at di	erent
times in the simpli
cation process� tellsimp rules are invoked prior to the Macsyma simpli
cation stage�
and should only be used to override default simpli
cations�

The Macsyma simpli
er puts the argument lists of commutative operators into a canonical form� This is
why� for example� x�y�z and x�z�y both display as z�y�x � the canonical representation of the expressions
����x�y�z	 and ����x�z�y	 is ����z�y�x	� The commutativity of ��� permits this kind of rearrangement�
However� there is no guarantee that an unsimpli
ed expression will be in canonical form� and as a consequence
pattern matching will be more di�cult� For this reason� a call to tellsimp that attempts to make a
substitution for a sum or product generates a warning�

�c�� tellsimp�x�y�z�

Warning� Putting rules on ��� or ��� is inefficient� and may not work�

�d�� ��rule�� simplus	

�c�� tellsimp�x�y�z�

Warning� Putting rules on ��� or ��� is inefficient� and may not work�

�d�� ��rule�� simptimes	

Since tellsimpafter rules are invoked on simpli
ed expressions� this particular problem does not arise�
However� since the general pattern matcher does not employ backtracking� tellsimpafter rules on ��� and
��� will not in general simplify subexpressions of sums or products� �Rules on ��� should be implemented
with the let pattern matcher� which is discussed later in this chapter�� For example� some of the following
expressions which contain x�y do not simplify�

�c�� tellsimpafter�x�y�z�

�d�� ��rule�� simplus	

�c�� x�y

�d�� z

�c�� a��x�y�

�d�� a z

�c� a�x�a�y

�d� a y � a x

�c�� x�y�z

�d�� z � y � x

�������� Examples of tellsimp and tellsimpafter

In the
rst example� we declare ��� to be a post
x operator and de
ne tellsimpafter rules on ��� that
implement the factorial function�

�c�� postfix��"���

�c�� ��"��"��"��"�"�n"	

�d�� �� "� � "� � "� � "� "� N "	

�c�� posintp�n���is�integerp�n� and n����

�c� matchdeclare�pint�posintp��

�c�� tellsimpafter��"����

����� THE GENERAL PATTERN MATCHER ���

�c�� tellsimpafter�pint"�pint � �pint���"��

�c�� ��"��"��"��"�"�n"	

�d�� ��� �� �� �� �� N "	

Next� we implement a simpli
cation rule that implements the identity x � gamma�x� �� when x is not a
positive integer�

�c�� not�posintp�n���not�posintp�n���

�c�� matchdeclare�not�pint�not�posintp��

�c��� tellsimpafter�not�pint"�gamma�not�pint�����

�c��� n"

�d��� gamma�n � ��

�c��� ����"

gamma��� is undefined

Returned to Macsyma Toplevel�

Note that the last tellsimpafter rule generates an error when the resulting gamma expression contains an
illegal argument� In order to prevent errors of this sort� we remove that rule and rede
ne it so that the rule
does not
re when the argument is a non�positive integer� We do this by adding the condition that the rule

re only when the pattern variable is not an integer� The matchdeclare property on the pattern variable
not pint prevents it from matching positive integers� so this condition prevents the rule from
ring when
the pattern variable is a non�positive integer� �An alternative method to prevent this kind of error would be
to rede
ne the predicate not posintp��

�c��� rules

�d��� �"rule�� "rule�� "rule�	

�c�� remrule��"���"rule����

�c��� tellsimpafter�not�pint"�gamma�not�pint����not�integerp�not�pint����

We now test the new rule�

�c��� �����"�n"	

�d��� ��� �� "� gamma�n � ��	

�c��� rules

�d��� �"rule�� "rule�� "rule	

In the next example� we use tellsimp to override the default simpli
cation of �!�� which signals an error�
We will install a rule which de
nes the replacement �!� � �� Note that the
rst attempt to de
ne the rule
fails since the simpli
er signals an error before the rule overriding the simpli
cation is installed� In order
to de
ne the rule� it is necessary to turn the simpli
er o	 by �locally� binding the option variable simp to
false� It is preferable to bind simp as a block variable rather than as an ev�ag as this method guarantees
that the binding of simp holds for the duration of the tellsimp command� The simp should never be bound
to false at toplevel�

�c�� ���

��� has been generated

Returned to Macsyma Toplevel�

�c�� tellsimp�������

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

��� has been generated

Returned to Macsyma Toplevel�

�c�� block��simp�false	�tellsimp��������

�d�� ��rule�� simpexpt	

�c� ���

�d� �

Note that the purpose of the block statement in �c�� is to localize the binding of simp to false� Rules
generated by tellsimp� tellsimpafter� defmatch� and defrule cannot be localized�

The next example uses tellsimpafter to extend the integrator to handle a class of integrals related to the
incomplete gamma function� Note that Macsyma can do the following improper integrals�

�c�� �assume�a���b����declare�b�integer��

�d�� done

�c�� integrate�t��b����exp��t��t���inf�

�d�� �B � ��#

�c�� integrate�t��b����exp��t��t�a�inf�

�d�� gamma�b� a�

However� it cannot do the following de
nite integral� even though the integral can be deduced from the
integrals in �c�� and �c���

�c� integrate�t��b����exp��t��t���a�

a

�

� b � � � t

�d� I t �e dt

	

�

�

We will use tellsimpafter to set up a rule which computes integrals of the type �c�� as the di	erence of the
integrals �c�� and �c���

We
rst decide what level of generality is desired� It is not unreasonable to demand that there be a semantic
match on the variable of integration� Furthermore� we insist that the upper limit of integration� a� be
positive� We will do limited testing on the integrand� leaving most of the work to integrate� and will
instead make the substitution if the result is free of integrate noun forms�

�c�� positivep�limit���is�asksign�limit���pos��

�c�� integ�expr�var�limit���integrate�expr�var���inf� �

integrate�expr�var�limit�inf��

�c�� matchdeclare�t� symbolp� �expt�� expt�	� true� uvar� positivep��

�c�� block

��simp�false	�

tellsimpafter��integrate�t��expt����e��expt���t���uvar��

result�

freeof�nounify��integrate�� result�integ�t�expt��exp�expt���t�uvar����

����� THE GENERAL PATTERN MATCHER ���

�d�� �integraterule�� simpinteg	

The tellsimpafter rule binds the pattern variables and passes them to the function integ� which attempts
to compute the modi
ed de
nite integrals� The result returned by integ is bound to result� which is then
checked to see if it is independent of integrate noun forms� If so� result is substituted for the original
integral�

Note� It is necessary to bind simp to false to prevent the outative property of integrate from pulling the
factor "e!�expt�� out of the integral�

Note� In this case� it is necessary to refer to the exponential function as "e!�expt�� rather than exp�expt��
since the former is the simpli
ed form of the latter� and will be the form seen by the rule when it is invoked
on simpli
ed Macsyma expressions�

Finally� we test the rule�

�c�� integrate�t��b����exp��t��t���a�

�d�� �b � ��# � gamma�b� a�

�c��� integrate�t���exp��t��t�����

� �

�d��� � � �� �e

The e�ciency of this scheme can be improved by writing integ di	erently� For example� integ could
incorporate the results of the integrals in its function de
nition rather than compute the integrals each time
the rule is invoked� However� this would involve substantially more e	ort since very little testing is done on
the integrand in this implementation of the rule� Note� In this example� it would be su�cient to implement
the integration rule directly with the following form�

block

��simp�false	�

tellsimpafter��integrate�t��expt����e��expt���t���uvar��

integrate�t��expt����e��expt���t���inf� �

integrate�t��expt����e��expt���t�uvar�inf���

This can be done this way because the integral is simple enough that the replacement rule will never contain
an integrate noun form� However� if the class of integrals were enlarged and the replacement were to yield
an integrate noun form then the tellsimpafter rule would also
re on that form� resulting in an in
nite
loop� In this example� the current method� namely� triggering the rule if and only if the integration succeeds�
does� not result in an in
nite loop�

The
nal example uses tellsimpafter to rewrite the log of a product as a sum of logs� That is� the goal is
to implement the rule

log

�
a�Y

a��a�

a�

�
�

a�X
a��a�

log a�

It is necessary to bind simp to false to prevent simpli
cation of the prod and sum forms prior to the
de
nition of the rule�

�c�� matchdeclare��a��a��a��a	�true��

�c�� block��simp�false	�

tellsimpafter��log��prod�a��a��a��a���apply��sum��log�a���a��a��a	����

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c�� log�product�a�i	�i���inf��

inf

����

$

�d�� � log�a �

� i

����

i � �

Note� It is necessary to apply the sum form in order to force the evaluation of the summation index prior to
the handling of the sum form� Failure to apply the sum form results in an incorrect rule because the sum
form will simplify to log�a��� �a��a���� before the pattern variable de
nitions are inserted by evaluation�

�������� Additional Information on tellsimp and tellsimpafter

Since tellsimp and tellsimpafter generate rules which are invoked automatically by the Macsyma simpli
er�
some additional information might be useful�

The simpli
er is called on all Macsyma expressions� including the arguments of special forms� �Arguments
are usually simpli
ed before operators�� The quote operator� which prevents evaluation� does not prevent
simpli
cation� The Macsyma simpli
er usually works �inside�out� or �bottom�up� when simplifying expres�
sions� Furthermore� tellsimp and tellsimpafter rules are usually applied in the order in which they appear
on the system rules infolist� The application mechanism for these rules is similar to the applyb� mechanism
for the application of defrule rules�

Finally� it should be noted that adding tellsimp or tellsimpafter rules can greatly increase overall execu�
tion time� Compiling the rules �using the compile rule form� substantially improves performance� The
user should take into consideration the disadvantages as well as the obvious conveniences a	orded by this
mechanism�

������ De�ning Taylor Expansions of Unknown Functions

The deftaylor facility permits the user to de
ne the Taylor expansion of an unknown univariate function
about �� It does not allow expansions about other points� In the following example� we
rst compute the
expansion of an unknown function f�x�� then de
ne an expansion for f�x� and re�compute the expansion�

�c�� taylor�f�x��x�����

%

� %

d % �

���� �f�x��% � x

� %

% dx %

d % %X � �

�d���t� f��� � ��� �f�x��% � x � ���������������������

dx % �

%x � �

� � � �

�c�� deftaylor�f�x��sum�a�n	�x�n�n���inf��

����� THE GENERAL PATTERN MATCHER ���

�d�� �f	

�c�� taylor�f�x��x�����

� �

�d���t� a � a x � a x � a x � � � �

� � � �

�c� taylor�f�x��x�����

� � �

�d��t� a � a x � a x � a x � a x � a x � � � �

� � � � �

Note that the result �d�� is just the Taylor series of the unknown function f�x� about x � �� The expansion
for the unknown function f�x� �assumed to be about x � �� is de
ned in �c��� and is used when taylor is
invoked in �c�� and �c���

Note that taylor never returns a noun form� When given an unknown function in �d��� taylor returns
a general expansion rather than� say� �taylor�f�x�� x� �� ��� This explains the need for deftaylor� A rule
de
ning the Taylor expansion of an unknown function could not be installed by tellsimp or tellsimpafter
since taylor never generates a noun form to trigger the rule�

�����
 Translating and Compiling Rules

This section discusses the role of the LISP compiler when loading a translated or compiled
le that contains
rule de
nitions� When a
le of this type is loaded� a message to the e	ect that rules are being compiled is
displayed� We provide a brief discussion of why this happens� its advantages and disadvantages� and what
options the user has in this situation�

A compiled rule generally runs much faster than a translated or interpreted rule� However� translating
and compiling a rule is not straightforward �as far as Macsyma is concerned� since it requires that the
matchdeclare properties be present when the rule is generated� As was discussed at the beginning of this
section� when the general pattern matcher de
nes a rule� it generates a function based on the pattern� the
pattern variables� and the replacement� Since the Macsyma translator does not evaluate Macsyma forms�
existingmatchdeclare forms are not evaluated at translate time and consequently rules cannot be de
ned at
translate time� Therefore� the translator parses a rule de
nition but does not evaluate the form� Evaluation
takes place as the
le is loaded� The following sequence of events occurs at load time�

� LISP forms are evaluated when loaded into Macsyma� In particular� matchdeclare and rule�writing
forms are evaluated�

� If a rule�writing form is evaluated� a LISP function is generated�

� If appropriate� the resulting LISP function is compiled automatically� �By default� such functions are
compiled��

Although some of the previous versions of Macsyma did not include LISP compilers� all of the current ones
do� However� in some versions the compiler is quite slow� Compilation of rules can be skipped by setting
the option variable compile rules in tr
les �default�true� to false� This will reduce the time spent loading
the
le� but will increase execution time since the interpreted rules will run slower than the compiled rules�

Note� Interpreted rules can be compiled �in a manner analagous to compiling interpreted functions� using
the compile rule form� This speeds up rule execution signi
cantly� especially for rules de
ned by tellsimp
and tellsimpafter� See the Macsyma Reference Manual for more information�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

���� The Rational Function Pattern Matcher

As mentioned earlier� Macsyma contains two pattern matching mechanisms� The
rst mechanism� the
general pattern matcher� was described in the previous section� This section describes the rational function
pattern matcher� It is designed to make substitutions for products in rational expressions� This alternative
pattern matcher is recursive and permits the user to de
ne substitution rules and control their application
conveniently�

In order to use the rational function pattern matcher� the user
rst de
nes pattern variables with matchde
clare �this step can be omitted if the user wants to consider literal matches only�� Next� the substitution
rules are de
ned using the let form� The rules are applied by the letsimp form in the order in which they
were de
ned� Since letsimp is recursive� it performs the indicated substitutions until the result no longer
changes�

���
�� De�ning Substitution Rules	 let

The let form is used to de
ne substitution rules� In its simplest form� let permits the user to de
ne the
pattern and its replacement� If desired� the user can also provide the name of a predicate and associated
arguments that depend on any atoms or arguments of any kernels �that is� a functional expression of the
form cos�x� or n#� as arguments to let� When called in this fashion� let
rst matches atoms and functional
arguments� then evaluates the predicate arguments according to the pattern variable bindings� and
nally
evaluates the predicate with the speci
ed arguments� The rule is applied if and only if the predicate evaluates
to true� The syntax for let �as well as for associated operations� is summarized below�

Finally� it is possible to isolate let rules so that they can be applied selectively� This is done by associating
the rule with a rule package� By default� a let rule goes into the package default let rule package�
The current let rule package is speci
ed by the value of the system variable current let rule package�
All let commands �letrules� letsimp� let� and remlet� use the package speci
ed by the value of cur
rent let rule package unless the package name is speci
ed as an argument to the command� However�
the only way to create a new let rule package is to call let and specify the name of the new package� A
rule can be installed in a di	erent rule package by including as a
nal optional argument to let the name
of the package� When specifying a package name this way� it is necessary to enclose all of the preceding let
arguments in square brackets to tell let that the
nal argument is the name of a rule package rather than
the name of a predicate or a predicate argument�

If needed� let rules can be removed with the remlet command� Either remlet�� or remlet�all� will remove
all let rules in the current let rule package� remlet�pred� will remove the substitution rule de
ned for the
expression pred � The name of a let rule package can be supplied as a second argument to remlet� which will
remove the speci
ed let rule in the named let rule package� The command remlet	all�name
 will remove
all of the rules in the package speci
ed by name and will also delete the speci
ed let package�

The names of existing let rule packages are contained in the system variable let rule packages�

Finally� we mention that the rules contained in a let rule package can be displayed by the command letrules�
which takes either zero or one arguments� If letrules is called with no arguments� it displays the contents
of the default rule package �speci
ed by the system variable current let rule package�� If called with
the name of an existing let rule package as its argument� it displays the contents of that let rule package�
Calling letrules with the name of a non�existent package results in an error�

�������� let Syntax

De
ning let rules�

����� THE RATIONAL FUNCTION PATTERN MATCHER ���

� let	prod � subst
 de
nes a substitution rule� prod � subst � in the rule package speci
ed by cur
rent let rule package�

� let	prod � subst � pred � arg�� � � � � argN
 de
nes a substitution rule� prod � subst � in the rule package
speci
ed by current let rule package� which will be executed if and only if the form pred�arg� �
arg�� � � � � argn� evaluates to true� where the expressions arg�� � � � � argn contain the pattern variables
used in prod �

� let	�prod � subst �� name
 de
nes a substitution rule� prod � subst � in the rule package speci
ed by
name� If the speci
ed rule package doesn�t already exist� it is created�

� let	�prod � subst � pred � arg� � � � � � argN �� name
 de
nes a substitution rule� prod � subst � in the rule
package speci
ed by name� which will be executed if and only if the form pred�arg� � arg�� � � � � argN �
evaluates to true�

Displaying let rules�

� letrules	
 displays the let rules in the rule package speci
ed by current let rule package�

� letrules�name� displays the let rules in the rule package speci
ed by name� An error results if name
is not the name of an existing let rule package�

Removing let rules�

� kill	name
 removes all substitution rules in the rule package speci
ed by name but doesn�t delete the
speci
ed rule package�

� remlet	prod
 removes the substitution rule for the expression prod in the rule package speci
ed by
current let rule package�

� remlet	all
 removes all substitution rules in the rule package speci
ed by current let rule package�

� remlet	prod �name
 removes the substitution rule for the expression prod in the rule package speci
ed
by name�

� remlet	all� name
 removes all substitution rules in the rule package speci
ed by aname� Furthermore�
the rule package speci
ed by name is deleted�

Note� The package default let rule package cannot be deleted�

For example� the following example installs a substitution rule in the default let rule package� which is called
default let rule package� The system variable let rule packages is evaluated to show that no new
package is created by this call to let�

�c�� let�rule�packages

�d�� �default�let�rule�package	

�c�� let�x�y���z�

�

�d�� x y ��� z

�c�� let�rule�packages

�d�� �default�let�rule�package	

The next example installs a let substitution rule into a let rule package called new let rule package�

�c� let��x�y���z	�new�let�rule�package�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�

�d� x y ��� z

�c�� let�rule�packages

�d�� �default�let�rule�package� new�let�rule�package	

�c�� letrules��

�

x y ��� z

�d�� done

�c�� letrules�default�let�rule�package�

�

x y ��� z

�d�� done

�c�� letrules�new�let�rule�package�

�

x y ��� z

�d�� done

Further examples of let are provided in the next section�

Note� let rules cannot be compiled�

���
�� Applying let Rules	 letsimp

Substitution rules de
ned by let are applied by letsimp� The letsimp form takes one required argument�
which is the expression to �simplify� with the substitution rules� and any number of additional arguments�
which are the names of let rule packages� Only the
rst argument to letsimp is evaluated�

If no optional arguments are provided� the package speci
ed by current let rule package is used� If
multiple package names are provided� they are applied left to right� That is� letsimp	expr � name� � name�

is equivalent to letsimp	letsimp	expr � name�
� name�
�

When applying let rules to a quotient� letsimp by default simpli
es the numerator and denominator in�
dependently and returns the result� Setting the system option variable letrat �default � false� to true
causes letsimp to
rst simplify the numerator and denominator independently� then simplify the resulting
�simpli
ed� quotient�

The rules in the speci
ed let rule package are applied repeatedly by letsimp until the expression is un�
changed� Care should therefore be taken to write rules that will eventually terminate� Furthermore� it
should be noted that the let rule that is de
ned last will be the
rst to be executed� In fact� if the user
de
nes rules a� b� and c� in that order� then letsimps an expression using these rules� the result will be
obtained by
rst applying c until the result stops changing� then b� then a� and then repeating the rule
sequence cba until no further changes are made� Take care to avoid de
ning circular let substitutions�

�������� letsimp Summary

� letsimp	expr
 recursively applies the rules in the let rule package speci
ed by the value of cur
rent let rule package to expr �

� letsimp	expr � �name�� � � � � �nameN
 applies the rules in the let rule packages name�� � � � � nameN
to expr �

����� THE RATIONAL FUNCTION PATTERN MATCHER ���

Calling letsimp with the name of a non�existent let rule package results in an error�

���
�� Examples of let Rules

This section contains some examples which demonstrate how to use the let pattern matcher�

�������� Example �

The
rst example shows how letsimp treats powers�

�c�� let�x���y�

�

�d�� x ��� y

�c�� ���x�����x�����x���x�x���x��	

� � � � �

�d�� ���� ��� �� �� x� x � x 	

� � x

x x

�c�� letsimp���

� � �

�d�� ����� �� �� �� x� y� x y	

x y y x

The substitution rule is de
ned in �c��� Since no matchdeclare property is associated with x� this is a
literal match� Some test expressions are generated in �c��� and letsimp is applied to these expressions
in �c��� Some of the terms with negative exponents simplify since letsimp simpli
es the numerator and
denominator separately�

�c� letrules��

�

x ��� y

�d� done

�c�� remlet�x���

�d�� done

�c�� letrules��

�d�� done

The call to letrules in �c�� displays the known substitution rules� The remlet call in �c�� removes the
substitution de
ned for x!�� as veri
ed by �c���

�������� Example �

This example shows how letrat controls the behavior of letsimp� We start by de
ning a rule to perform a
rational substitution for ��x!��

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c�� let�x����y�

�

�d�� �� ��� y

�

x

�c�� expr����x�����x�����x���x�x���x��	

� � � � �

�d�� ���� ��� �� �� x� x � x 	

� � x

x x

�c�� letsimp�expr�

� � � � �

�d�� ���� ��� �� �� x� x � x 	

� � x

x x

�c� letsimp�expr��letrat�true

y � � �

�d� ��� y� �� �� x� x � x 	

x x

Since ��x!� does not occur in either the numerator or denominator of any of these expressions� letsimp
will not
nd it unless it is permitted to look at the entire expression� This explains why the result �d�� is
unchanged� In �c��� binding letrat to true enables letsimp to consider the quotients after it attempts to
simplify the numerators and denominators� and consequently it simpli
es some of the expressions�

�������� Example �

This example demonstrates some of the limitations of letsimp in simplifying functions�

�c�� let�x���y�

�

�d�� x ��� y

�c�� letsimp��x���f�x���	�

�

�d�� �y� f�x �	

Note that no substitution into the argument of f was made� The let pattern matcher is not designed to
substitute into functional forms� Substitutions into functional forms should be done using the general pattern
matcher�

����� THE RATIONAL FUNCTION PATTERN MATCHER ���

The next example shows that rational substitutions of functional forms can be made� as long as they aren�t
made to functional arguments� �The exceptions� of course� are the functions ��� and ���� which the let
pattern matcher is designed to handle��

�c�� let�f�x��g�

�d�� f�x� ��� g

�c� letsimp��f�x����a�f�x��f�f�x��	�

�

�d� �g � a g� f�f�x��	

�������� Example �

This example demonstrates that the let pattern matcher� like the general pattern matcher� is unable to make
general substitutions for sums�

�c�� let�x�y�z�

�d�� y � x ��� z

�c�� letsimp��x�y��x�y�����x�y��n�a�x�a�y	�

� � n

�d�� �y � x� y � � x y � x � �y � x� � a y � a x	

Note that the substitution failed in each case� Furthermore� the second element in the list was expanded�
this happened when letsimp converted its argument to CRE form�

�������� Example �

This example illustrates the recursive nature of letsimp� The matchdeclare form is used to generate a
semantic match� and a trivial predicate �truep� is used to trace the action of letsimp�

�c�� matchdeclare��x�y	�symbolp��

�c�� truep�foo�bar����print�&&truep args� ����foo�bar	��true��

�c�� let�x�y���z�truep�x�y�

�

�d�� x y ��� z where truep�x� y�

�c� letsimp�u�v���a�b���

truep args� �u� v	

truep args� �a� b	

�d� � z

The pattern variables are allowed to match any symbols using the matchdeclare form in �c��� A trivial
predicate �trivial in that it always returns true� is de
ned in �c��� �The purpose of truep is to show the
order in which letsimp performs the substitutions� Since it returns true for any pair of arguments� the
substitution will be performed whenever the pattern variables x and y match�� Note that the arguments of
truep depend on the pattern variables which are used in the
rst argument to the let form� In �c��� a sum
is simpli
ed� The information printed by truep shows that in this case the individual terms are simpli
ed�
giving the expected result�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c�� letsimp�u�v���a�b���

truep args� �u� b	

truep args� �z� v	

�d�� a z

In �c��� a complicated product is simpli
ed� The
rst match is made on u and b� and the indicated sub�
stitution is made� The next call to letsimp matches the substituted variable z and the original variable v �
yielding a � z� �The reader might well wonder why the result z!� was not obtained instead� This is due to
the canonical re�ordering of the argument list of ��� prior to calls to letsimp��

�������� Example �

This example is similar to the previous example� except that we de
ne the pattern variables to exclude the
substituted variable z from matching the pattern variables�

�c�� not�z�p�symbol���is�symbolp�symbol� and symbol �z��

�c�� matchdeclare��x�y	�not�z�p��

�c�� let�x�y���z��

�c� letsimp�u�v���a�b���

�

�d� z

Note that by de
ning the pattern variables in such a way as to exclude matching the symbol z � with the
predicate not z p� we obtain a di	erent result�

�������	 Example 	

This example is similar to the previous two� except that we de
ne the pattern variables to match any
symbols and exclude the substituted variable z from matching the pattern variables by means of optional
arguments of the let form �the previous example excluded z from matching the pattern variable through the
matchdeclare predicate�� We use the Macsyma trace command to see how letsimp scans its argument�

�c�� matchdeclare��x�y	�symbolp��

�c�� not�z�p�symbol��symbol����is�symbol� �z and symbol� �z��

�c�� let�x�y���z�not�z�p�x�y��

�c� trace�not�z�p��

�c�� letsimp�u�v���a�b���

� Enter not�z�p �u� b	

� Exit not�z�p true

� Enter not�z�p �z� v	

� Exit not�z�p false

� Enter not�z�p �a� v	

� Exit not�z�p true

�

�d�� z

����� THE RATIONAL FUNCTION PATTERN MATCHER ���

Note that letsimp matched one of the pattern variables to z the second time around� but the predicate
not z p prevented letsimp from performing the indicated substitution� letsimp then successfully matched
the variables a and v and made a substitution� resulting in z!��

It is more e�cient to obtain this behavior with matchdeclare� as in example six� rather than as a side
condition to let� as in this example�

�������
 Example

This example uses the let pattern matcher to implement part of the trigonometric identity sin� x�cos� x � �
for any x � Since it was shown in example four of this section that the let pattern matcher cannot make
substitutions for sums� we must decide to substitute either sin�x�!� � ��cos�x�!� or cos�x�!� � ��sin�x�!��

�c�� matchdeclare�arg�true��

�c�� let�sin�arg������cos�arg����

� �

�d�� sin �arg� ��� � � cos �arg�

�c�� �a�cos�x����b�sin�x����sin������cos������sin�f�x���	

� � � �

�d�� �b sin �x� � a cos �x�� sin ���� cos ���� sin �f�x��	

�c� letsimp���

� � � �

�d� �� b cos �x� � a cos �x� � b� � � cos ���� cos ����

 �

cos �f�x�� � � cos �f�x�� � �	

Note that attempting to implement the two substitutions sin�x�� � �� cos�x�� and cos�x�� � �� sin�x��

can lead to circular substitutions� The Macsyma trigsimp function� which is not implemented with pattern
matching techniques� actually tries both substitutions and uses the one that produces the �simplest� form�

�������� Example �

This example uses the let pattern matcher to simplify derivative consequences of an equation� For example�
given the relation �diff�x� t� n� � f�x� t� for some n� the higher�order derivatives of x can be expressed in
terms of f�x� t� and its derivatives�

The following example implements the rule to simplify subsequent derivatives of x given that
�diff�x� t� �� � a � x � sin�t��

�c�� derivabbrev�true�

�c�� depends�x�t��

�c�� bigger�integerp�reference�test���is�integerp�test� and test �� reference��

�c� matchdeclare�n�bigger�integerp�����

�c�� let��diff�x�t�n��diff�a�x�sin�t��t�n����

n

d x

�d�� ��� ��� diff�a sin�t� x� t� n � ��

n

d t

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

The command �c�� de
nes a simpli
cation rule for derivatives of degree greater than �� The matchdeclare
property on n guarantees that the rule is applied to derivatives of degree � or greater� We proceed to test
the rule�

�c�� �x��diff�x�t���diff�x�t�����diff�x�t������b��diff�x�t����c��diff�x�t���	

�

�d�� �x� x � x � �x � � c x � b x 	

t t t t t t t t t t t

�c�� letsimp���

� � �

�d�� �x� x � a sin�t� x� a sin �t� �x �

t t

� � � �

� � a cos�t� sin�t� x x � a cos �t� x �

t

a c sin�t� x � a b sin�t� x � a c cos�t� x	

t

A few comments are in order� First� we require literal matches for t and x � �The requirement on x should
be clear� The requirement on t is mainly for the sake of convenience� x must have a functional dependency
on the variable of di	erentiation�� Second� the predicate bigger integerp� strictly speaking� should test to
guarantee that its
rst argument is a positive integer� However� since the predicate is called every time a
match is attempted� this would slow the process down�

���
 Debugging Pattern Matching Routines

The information in this section is applicable to both Macsyma pattern matchers�

The following problems typically arise when using the Macsyma pattern matchers�

� A rule doesn�t match an expression when the user thinks it should�

� A rule matches an expression when the user thinks it shouldn�t�

� A recursive rule fails to exit� and either goes into an in
nite loop or over�ows one of the internal spaces�

������ Example	 Failure to Match

Probably the most common problem is that the pattern matcher fails to match a subexpression� This can
occur for the following reasons�

� The pattern is a complicated expression which fails to match on the
rst attempt� and no further
search is performed since the pattern matcher does not implement full backtracking� For example� the
substitution sin� x�cos� x� � will often fail to match� The solution is usually to write less ambitious
patterns� i�e�� instead of the previously mentioned substitution� try sin� x� �� cos� x�

� The matchdeclare forms or predicates incorrectly de
ne the desired semantic pattern variables� In
many cases� this can be diagnosed by tracing the predicates�

���	� DEBUGGING PATTERN MATCHING ROUTINES ���

� The pattern contains a verb form that should instead be a noun form� or vice�versa� �It is usually
correct to use the noun form�� The easiest way to debug a problem of this sort is to review the rule
de
nition using disprule with the system option variable noundisp �default �false� set to true� The
e	ect of noundisp is described in detail later in this chapter� �An alternative method of inspecting a
rule to see what form is incorporated is to look at the LISP representation of the expression returned
by disprule� We won�t say much more about this technique since it is presumes a working knowledge
of LISP��

Since the
rst two cases have been discussed in detail in previous sections� we provide an example of the last
one only� In this example� we de
ne tellsimpafter rules to transform some derivatives�

�c�� tellsimpafter�diff�f�x��x��g�x��

�d�� �diffrule�� false	

�c�� diff�f�x��x�

d

�d�� �� �f�x��

dx

�c�� disprule�diffrule��

�d�� diffrule� � diff�f�x�� x� �� g�x�

�c� tellsimpafter��diff�ff�x��x��gg�x��

�d� �derivativerule�� simpderiv	

�c�� diff�ff�x��x�

�d�� gg�x�

�c�� disprule�derivativerule��

d

�d�� derivativerule� � �� �ff�x�� �� gg�x�

dx

Note that the expression in �d�� did not transform to g�x�� as one might have expected� Note also that the
names of the rules are di	erent�the rule generated in �c�� is called di�rule�� while the rule generated in
�c�� is called derivativerule�� The reason for these di	erences is that the rule generated in �c�� is on the
verb form of the derivative� while the rule generated in �c�� is on the noun form of the derivative� Since the
rule di�rule� is applied after the simpli
cation of the di� form in �c��� which results in a noun form� the
result �c�� does not simplify with the rule di�rule�� �di�rule� will� however� simplify the result of� say�
funmake��diff� f�x�� x����

Even experienced users can be unsure of when it is appropriate to quote an operator or function in a rule
de
nition� For some operators� it does not matter if it is quoted or not�these operators always simplify to a
unique form� including the time when the rule is written� These operators are prede
ned and have both alias
and noun properties �i�e�� log� sin� cos�� and always return noun forms �unless the user goes out of his
way to create a verb form� in which case he deserves to lose�� Any user�de
ned function or built�in function
that has a noun property but no corresponding alias property �i�e�� di�� limit� integrate� matrix� has
both noun and verb forms� and care must be taken to see that the correct form is incorporated in the rule
de
nition�

The option variable noundisp �default �false� controls the printing of noun forms� When noundisp is set to
true� the display of an operator is changed if the operator appears in an �unusual� form� Consider the
following example�

�c�� noundisp�true�

�c�� �f�x���f�x�	

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�d�� �f�x�� �f�x�	

�c�� �log�x���log�x��funmake�verbify��log���x	�	

�d�� �log�x�� log�x�� �log�x�	

�c� properties�log�

�d� �database info� kind�log� increasing�� alias� noun�

gradef� built�in simplifications� user�defined simplifications�

system function	

���	� DEBUGGING PATTERN MATCHING ROUTINES ���

�c�� �diff�f�x��x���diff�f�x��x��funmake��diff��f�x��x	�	

d d

�d�� ��� �f�x��� �� �f�x��� diff�f�x�� x�	

dx dx

�c�� properties�diff�

�d�� �system function� noun� built�in simplifications�

user�defined simplifications	

Both the noun and verb forms of f can appear naturally� as demonstrated in �d��� The noun form is the
�unusual� one in such cases� Since log has a noun property and a corresponding alias property� the noun
form is the usual one� The
rst two forms in �d�� are noun forms� and the third one� which is a verb form
generated by devious methods� displays with � to point out the fact that this operator is the �unusual� one�
Since di� has a noun form but no corresponding alias property� both the noun and verb forms can appear
naturally� In �d��� the noun form displays in two�dimensional format while the verb form displays in linear
format�

If all else fails� the user can check which form of the operator is present by means of commands such as
freeof�nounify��diff�� expr���

In the next example� we de
ne some rules containing unknown functions and built�in functions with the
noun and alias properties and look to see which forms can incorporate noun forms and which forms cannot�

�c�� tellsimpafter��f�x��g�x��

�d�� �frule�� false	

�c�� tellsimpafter�ff�x��gg�x��

�d�� �ffrule�� false	

�c�� tellsimpafter��log�x��y�

�d�� �logrule�� simpln	

�c� noundisp�true

�d� true

�c�� disprule�frule��

�d�� frule� � �f�x� �� g�x�

�c�� disprule�ffrule��

�d�� ffrule� � ff�x� �� gg�x�

�c�� disprule�logrule��

�d�� logrule� � log�x� �� y

Note that the rule frule� contains the noun form of f � while the rule �rule� contains the verb form of � �
The log operator in �d�� is not quoted since it has simpli
ed to the �usual� noun form�

�c�� properties�log�

�d�� �Database Info� kind�log� increasing�� alias� noun�

gradef� Built�in Simplifications�

User�defined Simplifications� System Function	

�c�� properties�diff�

�d�� �System Function� noun� Built�in Simplifications�

User�defined Simplifications	

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

������ Example	 Incorrect Matching

A user occasionally
nds that a rule successfully matches on an expression� but that the result is not what
he had intended� This is usually caused by an incorrectly speci
ed matchdeclare declaration� although it
can also be caused by the inappropriate selection of a rule application mechanism �when using the defrule
interface�� The following example shows how such problems can be isolated�

In this example� we attempt to use defrule to isolate the constant term in the denominator of a rational
function� �Note� it is better to use defmatch for jobs like this�� We begin by de
ning the scope of the
pattern variable and the rule� and then test it on a few expressions�

�c�� matchdeclare�const��freeof�s���

�c�� defrule�rat��s��s�const���const��

s

�d�� rat� � ���������� �� const�

s � const�

�c�� apply��s��s��� rat��

�d��

�c� apply��s��s���� rat��

�d� �

When testing the rule� �d�� yields the expected answer� but �d�� yields the �wrong� answer� Recalling that
defrule rules are applied recursively� we suspect that the problem is due in part to the recursive application
of the rule� To investigate this� we rede
ne the rule to return a list rather than an atom� since the list
structure might indicate that the recursive application is to blame�

�c�� remove�rat�� rule�

�d�� done

�c�� defrule�rat��s��s�const����const�	�

S

�d�� rat� � ���������� �� �const�	

s � const�

�c�� apply��s��s��� rat��

�d�� �	

�c�� apply��s��s���� rat��

�d�� ���		

Note that the result in �d�� contains a nested list� suggesting that the rule was applied twice� To determine
what happens in this case� we trace the rule rat��

�c�� trace�rat��

�d�� �rat�	

���
� PATTERNS VERSUS FUNCTIONS ���

�c��� apply��s��s���� rat��

s

� Enter rat� ������	

s � �

� Exit rat� ��	

� Enter rat� ���		

� Exit rat� false

� Enter rat� ��	

� Exit rat� ��	

� Enter rat� ���		

� Exit rat� false

� Enter rat� ��	

� Exit rat� false

�d��� ���		

The result of the
rst application of rat� yields the expected answer� ��� However� since apply� applies
the rule recursively over the result and then its subexpressions� it is
rst applied to �� and� failing to match
there� to the subexpression �� Since the pattern s��s � const�� matches � if const� � �� � transforms to ��
and consequently �� transforms to ����

The problem is therefore that the matchdeclare property on const� allows const� � �� Strengthening the
matchdeclare declaration on const� by excluding const� � � yields the expected behavior�

�c��� nonzeroandfreeof�var�exp���is�exp � and freeof�var�exp���

�c��� matchdeclare�const��nonzeroandfreeof�s���

�c��� defrule�rat��s��s�const���const��

s

�d��� rat� � ���������� �� const�

s � const�

�c�� apply��s��s��� rat��

�d��

�c��� apply��s��s���� rat��

�d��� �

Of course� the best
x is to use defmatch rather than defrule� since the recursive nature of defrule is
inappropriate for this problem�

���� Patterns versus Functions

This section gives a few guidelines describing when it is appropriate to use pattern matching and when
it is appropriate to implement the transformation using a function� Such guidelines are necessarily vague�
and may be based on assumptions which are invalid in the context of speci
c problems� The suggestions
presented in this section should therefore be interpreted with this all�purpose disclaimer in mind�

The current implementations of the pattern matchers contain the following de
ciencies�

� A functional form in a pattern must contain a
xed number of arguments� There is no mechanism
equivalent to the �rest args� feature supported in the function mechanism�

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

� The pattern matcher is relatively slow� Furthermore� adding a large number of tellsimp or tellsimp
after rules can slow down almost all computations�

� It is not possible to incorporate mode declare information into rules�

Even with these de
ciencies� the pattern matchers are useful and powerful tools� and the time required to
learn how to use the pattern matchers is well spent� Furthermore� the pattern matcher is often a valuable
aid in designing and implementing new packages� Although a pattern matching implementation of a package
might be prohibitively slow for the
nal version� it is often useful to construct a prototype of a new package
using the pattern matcher because of the ease of implementation and the great �exibility inherent in this
method� Once the prototype works and the developer has a good model in mind� he can implement the
nal
version of the package �using programmatic techniques� in Macsyma or LISP to achieve increased speed�

���� Complex Example of Pattern Matching

The
nal example uses defmatch and a tricky lambda substitution to extend Macsyma�s inverse Laplace
transform capability� In particular� we want to implement the inverse of the Laplace transform of t � f�t��

�c�� assume�s����

�c�� laplace�t�f�t��t�s�

d

�d�� � �� �laplace�f�t�� t� s��

ds

�c�� ilt���s�t�

d

�d�� ilt�� �� �laplace�f�t�� t� s��� s� t�

ds

�Aside� we assume s � � in �c�� to avoid sign questions in subsequent computations��

Our goal is to implement an ilt simpli
er that explicitly computes the inverse transform of expressions of the
form �d��� �This type of substitution can be done more directly using defrule or tellsimpafter� However�
we prefer the defmatch approach because the recursive application of rules generated by defrule or tell
simpafter is not needed for this problem� Furthermore� tellsimpafter rules a	ect the overall performance
of Macsyma��

We proceed as follows�

� Write a defmatch rule that identi
es the ilt form in which we are interested� with su�ciently general
semantic pattern variables to make it useful�

� Write a simpli
cation function that assumes it is given an ilt form and uses the defmatch rule to
decide if it is of the appropriate form for inversion� If so� construct the inverse transform� otherwise�
return the original form�

� Write a function that applies the simpli
cation function to ilt forms in an expression using an op
subst�lambda construct�

�c�� use�nilt�false�

�c�� assume�s���v����

����� COMPLEX EXAMPLE OF PATTERN MATCHING ���

�c�� laplace�t�f�t��t�s�

d

�d�� � �� �laplace�f�t�� t� s��

ds

�c� expr�ilt���s�t�

d

�d� ilt�� �� �laplace�f�t�� t� s��� s� t�

ds

�c�� symbol�and�notequal�v��v����is�symbolp�v�� and v� v���

�c�� matchdeclare�t�symbolp��f�s	�symbol�and�notequal�t���

�c�� defmatch�ilt�diff�rule��ilt��diff��laplace�f�t��t�s��s��s�t��t��

The command �c��� which sets use nilt to false� disables the extended ilt code� �This just reduces the
time needed for ilt to �noun out� the extended package can�t invert this transform� either�� The command
�c�� informs Macsyma that the transform variables are positive� In �c�� and �c��� we demonstrate that ilt
is unable to invert this transform� In �c�� through �c��� we de
ne the defmatch procedure that recognizes
expressions of the form �c�� and identi
es pertinent subexpressions�

We next declare ilt to be outative so that constants will factor out of the ilt forms �thereby simplifying the
patterns that we have to write� and test the rule on a few examples�

�c�� declare�ilt�outative��

�c�� expr�ev�expr�ilt�

d

�d�� � ilt��� �laplace�f�t�� t� s��� s� t�

ds

�c��� ilt�diff�rule�expr�t�

�d��� false

�c��� ilt�diff�rule��expr�t�

�d��� �s � s� f � f� t � t	

�c��� ilt�laplace�u�g�u��u�v��v�u�

d

�d��� � ilt��� �laplace�g�u�� u� v��� v� u�

dv

�c��� ilt�diff�rule����u�

�d��� �s � v� f � g� t � u	

Note that ilt di� rule matches in �c��� but not in �c���� due to the leading minus sign� This is not a
problem since the rule will be applied only to ilt forms�

In the next phase� we de
ne the function ilt simp that takes an ilt form� calls ilt di� rule on it� and
returns the inverse transform of the expression if it is of the right form� otherwise� it returns the original
expression� We
rst remove any global bindings of f � t � and s�

�c�� remvalue�f�t�s�

�d�� �f� false� s	

��� CHAPTER ��� THE MACSYMA PATTERN MATCHER

�c��� expr��ilt�laplace�t�f�t��t�s��s�t�

d

�d��� ilt��� �laplace�f�t�� t� s��� s� t�

ds

�c��� ilt�simp�expr���block

��f�s�t�match	�

if �match�ilt�diff�rule�expr�part�expr��������� false

then subst�match��t�f�t��

else expr��

�c��� ilt�simp�expr�

�d��� t f�t�

The function ilt simp� de
ned in �c���� inverts the transform� as is demonstrated in �c���� Finally� we write
a function called my ilt that invokes ilt simp using an opsubst�lambda substitution� �This approach�
when coupled with the outative simpli
cation property that was added to ilt� greatly simpli
es the steps
needed to implement simpli
cations of this type�� The function my ilt scans an expression for an ilt noun
form� isolates its argument list� reconstructs the ilt noun form� and invokes ilt simp on the result� The
result of ilt simp is substituted for the original ilt form� �It is important that my ilt return the original
form if the ilt form cannot be inverted#�

�c��� my�ilt�expr���

opsubst�nounify��ilt� � lambda���foo		�apply�ilt�simp��funmake�nounify��ilt��foo�	���expr��

�c��� a�t�f�t����t�f�t�

�d��� a t f�t� � � t f�t�

�c��� laplace���t�s�

d

�d��� � ��� �laplace�f�t�� t� s���

ds

d

� a ��� �laplace�f�t�� t� s���

ds

�c��� ilt���s�t�

d

�d��� � ilt��� �laplace�f�t�� t� s��� s� t�

ds

d

� a ilt��� �laplace�f�t�� t� s��� s� t�

ds

�c��� my�ilt���

�d��� a t f�t� � � t f�t�

Bibliography

�Be� Bender� C� M� and Orszag� S� A�� Advanced Mathematical Methods for Scientists and Engi�

neers� McGraw�Hill Book Company ���	
��

�Ge� Gentleman� W� M� and Johnson� S� C�� �The Evaluation of Determinants by Expansion by
Minors and the General Problem of Substitution� in Mathematics of Computation �April
��	��� vol� �
� no� ����

�Go� Golnaraghi� M�� Keith� W�� and Moon� F� C�� �Stability Analysis of a Robotic Mechanism
Using Computer Algebra in Applications of Computer Algebra� Pavelle� R�� ed�� Kluwer
Academic Publishers� Boston ���
���

�Gr� Gradshteyn� I� S� and Ryzhik� I� M�� Table of Integrals� Series� and Products� Academic Press�
Inc�� New York ���
���

�Le� Lee� C� S� G�� �Robot Arm Dynamics in Tutorial on Robotics� Lee� C� S� G�� Gonzalez� R�
C�� and Fu� K� S�� ed�� IEEE Computer Society Press ���
���

�Lh� Leu� M� C� and Hemati� N�� �Automated Symbolic Derivation of Dynamic Equations of Motion
for Robotic Manipulators� in Journal of Dynamic Systems� Measurement� and Control �Sept�
��
��� vol� ��
�

�Na� Nayfeh� A� H�� Problems in Perturbation� John Wiley and Sons� New York ���
���

�Va� Vandergraft� J� S�� Introduction to Numerical Computations� Academic Press� New York
���	
��

�Wa� Wang� P� S�� �Modern Symbolic Mathematical Computing Systems in Applications of Com�

puter Algebra� Pavelle� R�� ed�� Kluwer Academic Publishers� Boston ���
���

���

��� BIBLIOGRAPHY

Appendix A

Hints for New Users of Macsyma

Often� new users of Macsyma have a number of unrealistic expectations about the nature of symbolic
computing and what computer algebra systems can do� Sometimes these misconceptions can lead to poor
experiences with the system� The following maxims may help you avoid �start up problems with Macsyma�

� Learn how symbolic algebra di�ers from other computational methods�

Algebraic manipulation is a new and di�erent computational approach for which prior experience
with computational methods is likely to be misleading� Attempt to learn the ways in which algebraic
manipulation di�ers from other approaches� Some of these di�erences are covered in Chapter ��

For example� consider the problem of inverting an n� n matrix� In numerical analysis� you learn that
the problem requires on the order of n� operations� Some theoreticians will even point out that� for n
su�ciently large� the number of multiplications can be reduced to n����

This kind of analysis is not altogether helpful in dealing with matrices with symbolic entities� Consider
the problem of estimating the number of terms in the symbolic calculation of a matrix inverse� Since
the matrix is symbolic� there is no special structure to exploit� and the general inverse can be calculated
as the matrix of cofactors divided by the determinant� The number of terms in the determinant of the
general n � n matrix whose elements are the symbols aij has� when fully expanded� n� terms� Each
cofactor element is an �n � �� � �n � �� determinant� Thus� each of the n� elements of the inverse
has� in fully expanded form� n� � �n � ��� terms� If you now subsitute numbers for the elements� the
numerical inverse is of the order of n�n� operations� For n � �� this is clearly nowhere near n��

When poorly posed� some algebraic manipulation problems have a combinatorial or exponential char�
acter which makes them very di�erent from problems of numerical analysis�

� Decide whether a numeric approach is more e�ective for your problem than a symbolic

approach�

Sometimes� trying to solve the most general formulation of your problem is too hard� If you can
identify one or two symbolic parameters to carry through the problem� you may �nd it easier to graph
parametric solutions than to solve the general problem�

� Curb exponential growth of time and memory requirements and avoid generalizing prob�

lems�

A common tendency for a beginning user is to needlessly generalize a problem and thus cause inevitable
exponential growth� Consider the problem of obtaining determinants of matrices whose entries are
formulas that vary from problem to problem� New users often consider obtaining the determinant of
a general matrix and substituting the entries into the result� This might work for matrices of order
n � �� but it is a poor plan for dealing with exponential growth inherent in the problem�

���

��� APPENDIX A� HINTS FOR NEW USERS OF MACSYMA

You should be aware of the types of calculations that have exponential growth in the general case� These
include matrix calculation� repeated di�erentiation of products or quotients �brute force Taylor series
calculations�� and solutions of systems of polynomial equations�

� Anticipate a certain amount of trial�and�error in calculations�

A certain amount of trial�and�error is necessary in many calculations to determine a good sequence of
operations for obtaining the solution� It pays� however� to consider carefully before trying a powerful
method�

Consider� for example� the problem of obtaining a truncated Taylor series of an expression with several
variables� If you truncate all variables� the number of terms in your result might be an exponential in
the number of variables and the degree of the truncation� Thus� it is not surprising that the time it
takes to compute the sixth order terms is much larger than that of the �fth order�

� Keep the number and degree of a problem�s variables to a minimum�

Reduce the number and degree of variables in a problem as much as possible� since the exponential
growth inherent in some computations is usually a function of the number and degree of variables in
the expression� This rule is especially applicable to expressions represented as polynomials or rational
functions or inputs to powerful polynomial�based algorithms �such as factorization� matrix operations�
and equation solving��

� Convert from general to rational representation to avoid overhead�

It is occasionally useful to convert all expressions to the internal rational function form when you expect
to manipulate large formulas �greater than �� terms�� Use the rat command to avoid the overhead
of general representation� The downside of this approach is that you can lose the structure of the
formulas�

� Use pattern matching to customize your application�

Pattern matching is a very useful Macsyma facility which allows you to tune the system to your
application� Although learning to use the pattern matching facilities e�ectively is no small task� users
with complicated problems will bene�t greatly from the e�ort� An introduction to pattern matching
appears in Chapter ���

� Recurse Carefully�

Symbolic computing makes it easy to use an important technique� the ability to formulate calculations
and algorithms recursively� Recursion is a powerful alternative to iteration� New users frequently abuse
recursion by omitting proper end or beginning conditions� This often leads to unending recursions�
and subsequent crashes or �out of memory errors from stack over�ow� Macsyma has many debugging
and tracing tools to catch errors due to faulty recursions� Information on programming techniques for
debugging functions in Macsyma appears in Chapter �� and Section �����

Appendix B

Answers to Practice Problems

This appendix presents solutions to the practice problems that have been given in the preceding chapters�
Note that a solution generally represents only one of the many ways in which the problem could have been
solved with Macsyma�

B�� Answers for Chapter �

This section presents the solutions to the problems given in Section ��
� page ���

Problem � � See page ���

�c�� f�expr� x� �� ratsubst�� � cos�x��	� sin�x��	� expr�

�c	� f�sin�y���� y��

	

�d	� �� � cos �y�� sin�y�

Problem � � See page ���

�c�� f�expr� x� �� subst��� � cos�	x���	� sin�x��	� expr�

�c	� f�sin�y��	� y��

� � cos�	 y�

�d	� ������������

	

�c�� f�sin�y���� y��

�

�d�� sin �y�

Problem � � See page ���

�c�� expr��sqrt�r�	 � a�	� � a��sqrt�r�	 � b�	� � b��r�	

� �sqrt�r�	 � b�	� � sqrt�r�	 � a�	� � b � a�

��sqrt�r�	 � b�	� � sqrt�r�	 � a�	� � b � a��

��	

��
 APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

	 	 	 	

�sqrt�r � a � � a� �sqrt�r � b � � b�

�d�� ���������������������������������������

	

r

	 	 	 	

sqrt�r � b � � sqrt�r � a � � b � a

� �������������������������������������

	 	 	 	

sqrt�r � b � � sqrt�r � a � � b � a

�c	� ratsimp����

�d	� �

�c�� radcan�expr��

�d�� �

Problem � � See page ���

�c�� �b � a��d � c� � ����y � x��� � ���z � y�����	�

� � 	

�d�� ��������� � ��������� � �b � a� �d � c�

� �

�y � x� �z � y�

�c	� expand��� 	� ���

� � �

�d	� � ����������������� � �������� � �������� � b d � a d � b c � a c

� � � �

�y � x� �z � y� �z � y� �y � x�

Problem � � See page ���

�c�� expr��d�c���w�a�x�b��

�d�� �d � c� ��w � a� x � b�

Answers to problems � a through f �

�c	� expand�expr��

�d	� d w x � c w x � a d x � a c x � b d � b c

�c�� multthru�expr��

�d�� �d � c� �w � a� x � b �d � c�

�c�� distrib�expr��

�d�� d �w � a� x � c �w � a� x � b d � b c

�c�� ratsimp�expr��

�d�� ��d � c� w � a d � a c� x � b d � b c

�c�� ratsimp�expr�c�d��

�d�� d ��w � a� x � b� � c ��w � a� x � b�

B��� ANSWERS FOR CHAPTER � ���

�c�� ratsimp�expr�b�a��

�d�� �d � c� w x � a �d � c� x � b �d � c�

Problem � � See page ���

�c�� expr�d�w � a�x �c�w � a�x � bd � bc�

�d�� d �w � a� x � c �w � a� x � b d � b c

�c	� factor�expr��

�d	� �d � c� �w x � a x � b�

�c�� factorsum�expr��

�d�� �d � c� ��w � a� x � b�

Problem 	 � See page ���

�c�� expr�log��b � a�d � �b � a�c�z � log��b � a�d � �b � a�c�y

� log��b�a�d � �b�a�c�x � w�

�d�� log��b � a� d � �b � a� c� z � log��b � a� d � �b � a� c� y

� log��b � a� d � �b � a� c� x � w

�c	� factorsum�expr��

�d	� log��b � a� �d � c�� �z � y � x� � w

�c�� ratsimp�expr� log��a � b��d � c����

�d�� log��b � a� d � �b � a� c� �z � y � x� � w

Problem
 � See page ���

�c�� expr����log�x��	 � x�	��

�

�d�� ������������

	 	

log �x� � x

Answer to part a�

�c	� partfrac�expr� x��

� �

�d	� ��������������������� � ���������������������

	 log�x� �log�x� � x� 	 �x � log�x�� log�x�

Answer to part b�

�c	� partfrac�expr� log�x���

� �

�d	� ���������������� � ����������������

	 x �log�x� � x� 	 x �log�x� � x�

�	� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

Problem � � See page ���

�c�� �x � ����sqrt�x� � ���

x � �

�d�� �����������

sqrt�x� � �

�c	� ratsimp���� algebraic�true�

sqrt�x� �x � �� � x � �

�d	� �����������������������

x � �

Problem �� � See page ���

Solution Method ��

�c�� �load�nusum��� trigsimp�imagpart�

closedform�sum�kexp��ikx��k���n�

� � ��

�d��

��n���cos�x��n�sin��n���x� � �n���sin�x�cos��n���x�

� ���

	cos�x��	

Solution Method ��

�c�� �sum�cos�kx�� k� �� n� � �sum�cos�kx�� k� �� n��

n n

���� ����

� �

�d�� � cos�k x� � � cos�k x�

� �

���� ����

k � � k � �

�c	� lhs��� � exponentialize�rhs�����

n

����

� �i k x � �i k x

� ��e � �e �

n �

���� ����

� k � �

�d	� � cos�k x� � �����������������������������

� 	

����

k � �

B��� ANSWERS FOR CHAPTER � �	�

�c�� ev��� sum� simpsum�true��

�i �n � �� x �i x � �i �n � �� x � �i x

�e � �e �e � �e

n ����������������������� � ���������������������������

���� �i x � �i x

� �e � � �e � �

�d�� � cos�k x� � ���

� 	

����

k � �

�c�� ev�demoivre���� ratsimp� trigreduce��

n

����

� cos�n x � x� cos�n x� cos�x�

�d�� � cos�k x� � ������������ � ������������ � ������������

� 	 cos�x� � 	 	 cos�x� � 	 	 cos�x� � 	

����

k � �

�

� ������������

	 cos�x� � 	

�c�� diff��� x��

n

����

� �n � �� sin�n x � x� 	 sin�x� cos�n x � x�

�d�� � � k sin�k x� � � �������������������� � ���������������������

� 	 cos�x� � 	 	

���� �	 cos�x� � 	�

k � �

n sin�n x� 	 sin�x� cos�n x� sin�x� 	 cos�x� sin�x�

� ������������ � ����������������� � ������������ � ���������������

	 cos�x� � 	 	 	 cos�x� � 	 	

�	 cos�x� � 	� �	 cos�x� � 	�

	 sin�x�

� ���������������

	

�	 cos�x� � 	�

�	� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

�c�� combine����

n

����

� � �n � �� sin�n x � x� � n sin�n x� � sin�x�

�d�� � � k sin�k x� � ��

� 	 cos�x� � 	

����

k � �

	 sin�x� cos�n x � x� � 	 sin�x� cos�n x� � 	 cos�x� sin�x� � 	 sin�x�

� ��

	

�	 cos�x� � 	�

Problem �� � See page ���

Solution Method ��

�c�� �load�nusum��� closedform�sum�n����n�n���m����

� 	 m

�� ���m � �m ��	m �����

�d�� ���� � �����������������������

�

	 �

Solution Method ��

�c�� nusum���nn��� n� �� m��

� 	 m

� �� m � � m � �	 m � ��� � ��

�d�� ������������������������������ � ��

� �

B�� Answers for Chapter �

This section presents the solutions to the problems given in Section ���� page 	��

Problem � � See page 	��

�c�� x�� � �x�� � ��x�	 � 	�x � ��

� � 	

�d�� x � � x � �� x � 	� x � �

�c	� solve��� x��

�d	� �x � �� x � 	�

�c�� multiplicities�

B��� ANSWERS FOR CHAPTER � �	�

�d�� ��� ��

Problem � � See page 	��

�c�� eq�x�� � x�	������ � ����������	 � ��

	

� x �

�d�� x � ���� � ������� � �

	��� �������

Find the number of real roots�

�c	� nroots�eq��

�d	� �

Find all real roots�

�c�� ev�realroots�eq�� numer�true��

�d�� �x � ������������

Find all numerical roots�

�c�� allroots�eq��

�d�� �x � ���������� �i � ������������� x � ������������ � ���������� �i�

x � ����������� �i � ����������� x � � ����������� �i � �����������

x � �����������

Problem � � See page 	��

�c�� eq��x � y � z � ��

�d�� z � y � x � �

�c	� eq	�yz � xz � xy � ����

�d	� y z � x z � x y � � ��

�c�� eq��z�� � y�� � x�� � ����

� � �

�d�� z � y � x � ���

�c�� solve��eq�� eq	� eq��� �x� y� z���

�d�� ��x � �� y � �� z � � ��� �x � �� y � � �� z � ���

�x � �� y � �� z � � ��� �x � �� y � � �� z � ��� �x � � �� y � �� z � ���

�x � � �� y � �� z � ���

Problem � � See page 	��

�c�� eqs��x�	y � y � �� y � 	x � ���

	

�d�� �x y � y � �� y � 	 x � ��

�	� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

The solutions are long� so suppress display of the d�line�

�c	� solve�eqs� �x� y���algexact�true

Look at the third solution�

�c�� part��� ���

sqrt���� �� ��� � 	

�d�� �x � ��������� � ���� � ��������������������� � ��

�	 ��� sqrt���� �� ��� �

� ��������� � ����

�	 ���

	�� 	�� ��� ���

	 �� sqrt���� � ��� � � 	 �� sqrt���� � ��� � � 	

y � ��

	�� ���

� 	 �� sqrt���� � ���

Problem � � See page 	��

�c�� eq��ax � �	y � z � �b�

�d�� � z � �	 y � a x � � b

�c	� eq	�x � �cy � �z � ��

�d	� � � z � � c y � x � �

�c�� eq��x � �y � c�

�d�� � y � x � c

Answer to part a�

�c�� linsolve��eq�� eq	� eq��� �x� y� z��� globalsolve�false�

	

� c � �� c � �� b � � a c � c � �� b

�d�� ��x � ������������������� y � � �������������������

� c � � a � �� � � c � 	� a � ��

	

� a c � b �� c � �� � � c

z � ����������������������������

� c � � a � ��

�c�� y�

�d�� y

Answer to part b�

�c�� linsolve��eq�� eq	� eq��� �x� y� z��� globalsolve�true

�c�� y�

� � a c � c � �� b

�d�� � ������������������

B��� ANSWERS FOR CHAPTER � �	�

� � c � 	� a � ��

�c�� remvalue�x� y� z��

�d�� �x� y� z�

Problem � � See page 	��

�c�� eq��x�	 � y�	 � ��

	 	

�d�� y � x � �

�c	� eq	���xz � ��

�d	� � � x z � �

�c�� solve��eq�� eq	�� �x� y� z���

	

�d�� ��x � �r�� y � � sqrt�� � �r� �� z � ���

	

�x � �r��� y � sqrt�� � �r�� �� z � ��� �x � �� y � � �� z � �r����

�x � �� y � �� z � �r�	��

Problem 	 � See page 	��

�c�� eq�e�	x�� � ex�� � x�� � 	x�	 � x � 	 � ��

	 � � � 	

�d�� e x � e x � x � 	 x � x � 	 � �

Answer to part a� This returns the six general solutions� The k� symbols in the solutions are the undeter�
mined coe�cients that satisfy the last equation in each list� for example� k�� � ��

�c	� taylor�solve�eq� x� e� �� �	���

	

�� k� � �� e � 	

�d	��T� ��x � k� � ���������������� � � � �� k� � 	 k� � k� � 	��

	

� k� � � k� � �

k� � �

�x � ���� � ����������� � � � �� k� � ���

	�� ���

e �� k�� e

Answer to part b� Notice that �d�� returns the second half of the general solution above�

�c�� taylor�solve�eq� x� e� �� �	��� taylor�solve�choose�order�true�

	

Possible choices for the order of a series solution are� �� �� ��

�

Please enter your choice�

�	� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

�	���

k� � �

�d���T� ��x � ���� � ����������� � � � �� k� � ���

	�� ���

e �� k�� e

Answer to part c� This is but one of the many choices for coe�cient that you could make�

�c�� taylor�solve�eq� x� e� �� �	���taylor�solve�choose�coef�true�

�

Possible choices for the coef� of ���� are�

	��

e

sqrt��� �i � � sqrt��� �i � �

�k� � ��������������� k� � � ��������������� k� � ��

	 	

Please enter your choice�

k� � ��

Possible choices for the coef� of � are� �k� � 	� k� � � �� k� � ��

Please enter your choice�

k� � 	�

�� e � �

�d���T� ��x � 	 � ���� � � � ��� �x � ���� � ������ � � � ���

� 	�� ���

e �e

B�� Answers for Chapter �

This section presents the solutions to the problems given in Section ��
� page ����

Problem � � See page ����

De�ne the Legendre polynomials using the Rodrigues formula�

�c�� p�l� x� �� ��	�l�l�diff��x�	 � ���l� x� l��

	 l

diff��x � �� � x� l�

���������������������

l

	

�d�� p�l� x� �� ���������������������

l�

De�ne the Legendre polynomials using the recurrence relation�

B��� ANSWERS FOR CHAPTER � �		

�c	� p�����

�c�� p����x

�c�� p�n���ratsimp��	n � ��xp�n � ���n � �n � ��p�n � 	��n�

Problem � � See page ����

�c�� assume�x ��

�c	� integrate�x��� � x�� x�� logabs�true�

�d	� � x � log�� � x�

�c�� forget�x ��

Problem � � See page ����

�c�� assume�a � ��

�c	� integrate�exp��ax��cos�x� � sin�x��� x� �� inf�� intanalysis�false�

a � �

�d	� ������

	

a � �

Or� alternatively�

�c�� ldefint�exp��ax��cos�x� � sin�x��� x� �� inf��

a �

�d�� ������ � ������

	 	

a � � a � �

�c�� forget�a � ��

Problem � � See page ����

�c�� assume�m � �� n � ��

�c	� integrate��cos�mx� � cos�nx���x� x� �� inf�� intanalysis�false�

laplace�call�all�

�d	� log�n� � log�m�

�c�� forget�m � �� n � ��

Problem � � See page ����

�c�� romberg��cos�	x� � cos��x���x� x� ����� �����

�d�� ���	�����

Problem � � See page ����

�c�� depends�y� x��

�d�� �y�x��

�c	� y � �integrate�f�x � t�� t� �� x��

�	
 APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

x

�

�

�d	� y � I f�x � t� dt

�

�

�

�c�� changevar��� x � t � u� u� t��

�

�

�

�d�� y � � I f�u� du

�

�

x

�c�� diff��� x��

dy

�d�� �� � f�x�

dx

Problem 	 � See page ����

�c�� limit�log�cos�x���log�� � sin�x��� x� �pi�	��

�

�d�� �

	

Problem
 � See page ����

�c�� expr��sin�x� � atan�x���x�	�log�x � ���

sin�x� � atan�x�

�d�� ����������������

	

x log�x � ��

�c	� tlimit�expr� x� ���

�

�d	� �

�

Problem � � See page ����

�c�� taylor�sin�et��t� e� �� ���

	 � � �

B��� ANSWERS FOR CHAPTER � �	�

t e t e

�d���T� e � ����� � ����� � � � �

� �	�

�c	� ldefint��� t� �� ���

� �

e e

�d	� ��� � �� � e

��� ��

�c�� trunc����

� �

e e

�d�� e � �� � ��� � � � �

�� ���

Problem �� � See page ����

�c�� depends�f� x�

�c	� eq�diff�f� x� �� � �diff�f� x��� � �sech�x��	�

� f�	�sech�x��	tanh�x� � a��

�
� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

�

	 df 	 d f

�d	� � f �	� sech �x� tanh�x� � a� � � �� �� � � sech �x�� � ���

dx �

dx

�c�� sol�f � ��diff�exp��g � ��x�sech�x�� x� 	� � g�g � 	��	exp�gx��

	

d �g � �� x 	 g x

�d�� f � � ���� ��e sech�x��� � �g � 	� g �e

	

dx

�c�� constraint�g�� � �g � a � �

�c�� exponentialize�true

�c�� ev�eq� ev�sol� diff�� diff�

�c�� factor���

�c�� scsimp��� constraint��

�d�� �

�c�� remove�f� dependency�

Restore option variables to their default settings�

�c��� reset��

Problem �� � See page ����

�c�� depends�y� x��

�d�� �y�x��

�c	� ��xy � y�	� � �x�	 � xy��diff�y� x� � ��

	 dy 	

�d	� �x y � x � �� � y � � x y � �

dx

�c�� ode��� y� x��

	 	 �

x y � 	 x y

�d�� �������������� � �c

	

�c�� method�

�d�� exact

�c�� intfactor�

�d�� x

Problem �� � See page ����

�c�� depends�y� x��

�d�� �y�x��

�c	� x�y�	 � �x�diff�y� x� � 	y�� � �xy � ��

B��� ANSWERS FOR CHAPTER � �
�

	 dy �

�d	� x �y � � x� �� � 	 y � � x y � �

dx

�c�� ode��� y� x��

	

� y � �� x y

	 log������������� � �� log���������

x sqrt�x�

������������������������������������

��

�d�� x � �c �e

�c�� method�

�d�� genhom

�c�� odeindex�

�

�d�� � �

	

Problem �� � See page ����

�c�� depends�y� x��

�d�� �y�x��

�c	� eq�diff�y� x� 	� � ��xdiff�y� x� � y � ��

dy

	 ��

d y dx

�d	� ��� � �� � y � �

	 x

dx

Solve by the default method�

�c�� ode�eq� y� x��

�d�� y � �k	 �y �x� � �k� �j �x�

� �

�c�� method�

�d�� bessel

Solve by the series method�

�c�� ode�eq� y� x� odeseries��

DIAGNOSIS� TYPE� singular equal ROOTS� R�� � R	� �

SINGULARITIES� ��� inf�

�
� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

inf

���� ��n 	 ��n

� �� �� x

�d�� �y � �k	 �log�x� � ���������������

� ��n 	

���� � ��n�

��n � �

inf inf

���� ��n 	 ��n ���� ��n 	 ��n

� harm��� ��n� �� �� x � �� �� x

� 	 � ����������������������������� � �k� � ����������������

� ��n 	 � ��n 	

���� � ��n� ���� � ��n�

��n � � ��n � �

�c�� method�

�d�� bessel

Problem �� � See page ����

�c�� assume�a � ��

�c	� eq����diff�f�x�� x� 	� � 	�diff�g�x�� x� � sin�x��

	

d d

�d	� � ���� �f�x��� � 	 ��� �g�x��� � sin�x�

	 dx

dx

�c�� eq	�a�diff�g�x�� x� 	� � �diff�f�x�� x� � acos�x��

	

d d

�d�� a ���� �g�x��� � �� �f�x�� � a cos�x�

	 dx

dx

�c�� atvalue�g�x�� x � �� ��

�c�� atvalue��diff�f�x�� x�� x � �� ��

�c�� atvalue��diff�g�x�� x��x � �� ��

B��� ANSWERS FOR CHAPTER � �
�

�c�� desolve��eq�� eq	�� �f�x�� g�x����

��	 sqrt��� x

	� a sin�����������

� sqrt�a� 	 sqrt��� x

���������������������� � � a cos�����������

sqrt��� �� a � 	� � sqrt�a� � a sin�x�

�d�� �f�x� � �� � ���������� � a

� a � a � 	

��	 sqrt��� x 	 sqrt��� x

� a sin����������� 	� a cos�����������

� sqrt�a� � sqrt�a�

��������������������� � ���������������������������

sqrt��� � a � �

� f���� g�x� � ���

� a

�� a � �� cos�x� �

� ���������������� � ��

� a � 	 	

Problem �� � See page ����

�c�� depends��u� v�� xx�

�c	� eq��� � u�	��� � u�	��diff�u� xx� 	� � udiff�u� xx��	��� � u�	�

� w��	u � g�lu�sqrt�� � u�	��

du 	

	 	 u �����

	 u d u dxx g u

�d	� u w� � ������� � �� ���� � �������� � ��������������

	 	 	 	

� � u dxx � � u l sqrt�� � u �

Expand the equation above with taylor� keeping terms up to cubic terms

�c�� taylor�eq� u� �� ���

	 du 	 du 	 �

	 �l w� � l ����� � g� u 	 �	 l ����� � g� u

d u dxx d u 	 dxx

�d���T� ���� � ������������������������ � ���� u � �������������������

	 l 	 	 l

dxx dxx

� � � �

�
� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

�c�� neq�expand�subst�w�	 � g�l� w��	� ����

	 	 �

	 	 d u d u � du 	 du 	 g u

�d�� u w � u ���� � ���� � u ����� � u ����� � ����

	 	 dxx dxx 	 l

dxx dxx

Since u is small� scale it with ell �for ll greater than ���

�c�� u � ve�ll�

ll

�d�� u � e v

Evaluate the equation above into the original neq � then di�erentiate�

�c�� ev�neq� �� diff��

	 	

ll 	 � ll 	 d v ll d v � ll � dv 	 � ll dv 	

�d�� e v w � e v ���� � e ���� � e v ����� � e v �����

	 	 dxx dxx

dxx dxx

� ll �

e g v

� ����������

	 l

�c�� multthru�e��ll� ���

	 	

	 	 ll 	 d v d v � ll � dv 	 	 ll dv 	

�d�� v w � e v ���� � ���� � e v ����� � e v �����

	 	 dxx dxx

dxx dxx

	 ll �

e g v

� ����������

	 l

Choose ll � ����

�c�� nneq�ev��� ll � ��	��

	 	 �

	 	 d v d v 	 � dv 	 dv 	 e g v

�d�� v w � e v ���� � ���� � e v ����� � e v ����� � ������

	 	 dxx dxx 	 l

dxx dxx

B��� ANSWERS FOR CHAPTER � �
�

Introduce the change of variable�

�c�� changeofv�x � �w � ew��xx�

�d�� x � �e w� � w� xx

�c��� depends��v�� v��� x�

�c��� gradef�x� xx� w � ew��

�c�	� v � v� � ev��

�d�	� v � e v� � v�

Introduce the change of variable changeofv into the di�erential equation nneq �

�c��� ev�nneq� �� diff��

	 	

	 d v� 	 d v� 	

�d��� e �e v� � v�� �e ���� �e w� � w� � ���� �e w� � w� �

	 	

dx dx

	 � dv� dv� 	

� e �e v� � v�� �e ��� �e w� � w� � ��� �e w� � w��

dx dx

	

dv� dv� 	 d v� 	

� e �e v� � v�� �e ��� �e w� � w� � ��� �e w� � w�� � e ���� �e w� � w�

dx dx 	

dx

	 �

d v� 	 	 e g �e v� � v��

� ���� �e w� � w� � �e v� � v�� w � ����������������

	 	 l

dx

Truncate the di�erential equation above� keeping only terms e� or lower�

�c��� nnneq�ratsubst��� e�	� ���

	 	 	

d v� d v� 	 d v�

�d��� �� e l ���� w w� � �	 e l ���� � 	 e l v� � �	 e l v� � 	 l� ����

	 	 	

dx dx dx

dv� 	 	 �

� 	 e l v� ����� � 	 l v�� w � e g v� ���	 l�

dx

�
� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

Equate terms independent of e�

�c���e���ratcoef�nnneq� e� ���

	

d v� 	

�d��� ����� � v�� w

	

dx

Equate terms to the �rst order in en�

�c��� e���ratcoef�nnneq� e� ���

	 	 	

d v� d v� 	 d v� dv� 	

�d��� �� l ���� w w� � �	 l ���� � 	 l v� � 	 l v� ���� � 	 l v� ����� �

	 	 	 dx

dx dx dx

	 �

w � g v� ���	 l�

�c��� ode�e��� v�� x��

�d��� v� � �k� sin�x� � �k	 cos�x�

Re�express the solution to the di�erential equation�

�c��� sol�e���trigreduce�ic	��� x � �� v� � acos�b��

�diff�v�� x� � �asin�b����

�d��� v� � a cos�x � b�

Put the solution of v� into the di�erential equation e � and carry out the derivative�

�c��� e���ev�e��� �� diff� trigreduce� expand��

� 	 �

a w cos�� x � � b� a g cos�� x � � b�

�d��� � �������������������� � ������������������� � 	 a w w� cos�x � b�

	 � l

� 	 � 	

a w cos�x � b� � a g cos�x � b� d v� 	 	

� ���������������� � ����������������� � ���� w � v� w

	 � l 	

dx

B��� ANSWERS FOR CHAPTER � �
	

�c	�� ode��� v�� x��

� 	 �

�d	�� v� � � ��� a l w � a g� cos�� x � � b� � �� a l w w� x sin�x � b�

� 	 �

� �� a l w x sin�x � b� � �	 a g x sin�x � b�

� 	 � 	

� �� �	 a l w w� � � a l w � � a g� cos�x � b������ l w � � �k� sin�x�

� �k	 cos�x�

The secular term�

�c	�� ratcoef��� x� ���

� 	 �

��� a l w w� � � a l w � � a g� sin�x � b�

�d	�� � � ���

	

�� l w

Choose the parameter for w� to eliminate the secular term

�c		� eq�w��solve��� w���

	 	 	

� a l w � � a g

�d		� �w� � � �������������������

�� l w

�c	�� ev�changeofv� eq�w���

	 	 	

e �� a l w � � a g�

�d	�� x � �w � ����������������������� xx

�� l w

�c	�� ev�sol�e��� ���

	 	 	

e �� a l w � � a g�

�d	�� v� � a cos��w � ����������������������� xx � b�

�� l w

Since e was introduced for bookkeeping purposes

�c	�� ev��� e � ���

	 	 	

� a l w � � a g

�d	�� v� � a cos��w � ������������������� xx � b�

�� l w

�

 APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

B�� Answers for Chapter ��

This section presents the solutions to the problems given in Section ���
� page �	��

Problem � � See page �	��

�c�� dot�a� b� �� block�sum�a�i�b�i�� i� �� ���

�c	� cross�a� b� ��

block��temp�� temp	� temp���

if listp�a� and listp�b�

then �temp��a�	�b��� � a���b�	��

temp	�a���b��� � a���b����

temp��a���b�	� � a�	�b����

return��temp�� temp	� temp����

else print��undefined�operations��

Problem � � See page �	��

�c�� �aa��a���� a�	�� a�����

bb��b���� b�	�� b�����

cc��c���� c�	�� c�����

�c�� expand�cross�aa� cross�bb� cc�� � ccdot�aa� bb� � bbdot�aa� cc���

�d�� ��� �� ��

Problem � �See page �	��

�c�� my�grad�a� ��

block�if listp�a�

then print��undefined�operations�

else return��diff�a� x�� diff�a� y�� diff�a� z����

�c�� my�div�a� ��

block��temp��

if listp�a�

then temp�ratsimp�diff�a���� x� � diff�a�	�� y� � diff�a���� z��

else print��undefined�operations��

�c�� my�curl�a� ��

block��temp� temp�� temp	� temp���

if listp�a�

then �temp��diff�a���� y� � diff�a�	�� z��

temp	�diff�a���� z� � diff�a���� x��

temp��diff�a�	�� x� � diff�a���� y��

temp��ratsimp�temp��� ratsimp�temp	�� ratsimp�temp����

return�temp��

else print��undefined�operations��

B��� ANSWERS FOR CHAPTER �� �
�

Problem � � See page �	��

�c�� expr�x�	y � y��z�	

�c�� my�grad�expr��

	 	 	 �

�d�� �� x y� � x � � y z � � 	 y z�

�c��� ev��� x � �� y � �	� z � ����

�d��� �� �	� � �� � ���

Problem � � See page �	��

�c��� a���x�	z� �	y��z�	� xy�	z�

�c�	� my�div�a���

	 	 	

�d�	� � � y z � 	 x z � x y

�c��� ev��� x � �� y � ��� z � ���

�d��� � �

Problem � � See page �	��

�c��� my�curl��xz��� �	x�	yz� 	yz�����

� 	 	

�d��� �	 z � 	 x y� � x z � � � x y z�

�c��� ev��� x � �� y � ��� z � ���

�d��� ��� �� ��

Problem 	 � See page �	��

�c�� r�	���

�c	� ff�t� x� y� z��������x � y�

�c�� gg�t� x� y� z����xz � rx � y

�c�� hh�t� x� y� z���xy � z

�c�� my�runge�kutta�f� g� h� t�� tfinal� x��� y��� z��� size���

block��x�list���� y�list���� z�list����

k�� k	� k�� k�� l�� l	� l�� l�� m�� m	� m�� m�� x�� y�� z���

x��x��� y��y��� z��z���

for t�t� thru tfinal step size do

�x�list�endcons�x�� x�list��

y�list�endcons�y�� y�list��

z�list�endcons�z�� z�list��

k��sizeapply�f� �t� x�� y�� z����

l��sizeapply�g� �t� x�� y�� z����

m��sizeapply�h� �t� x�� y�� z����

k	�sizeapply�f� �t � size�	� x� � k��	� y� � l��	� z� � m��	���

l	�sizeapply�g� �t � size�	� x� � k��	� y� � l��	� z� � m��	���

m	�sizeapply�h� �t � size�	� x� � k��	� y� � l��	� z� � m��	���

��� APPENDIX B� ANSWERS TO PRACTICE PROBLEMS

k��sizeapply�f� �t � size�	� x� � k	�	� y� � l	�	� z� � m	�	���

l��sizeapply�g� �t � size�	� x� � k	�	� y� � l	�	� z� � m	�	���

m��sizeapply�h� �t � size�	� x� � k	�	� y� � l	�	� z� � m	�	���

k��sizeapply�f� �t � size� x� � k�� y� � l�� z� � m����

l��sizeapply�f� �t � size� x� � k�� y� � l�� z� � m����

m��sizeapply�f� �t � size� x� � k�� y� � l�� z� � m����

x��x� � �k� � k���� � �k	 � k�����

y��y� � �l� � l���� � �l	 � l�����

z��z� � �m� � m���� � �m	 � m������

�x�list� y�list� z�list��

Index

� operator� ��
�� operator� ��
� ��
� operator� ��
� operator� ��
� operator� ��
� operator� ��
� operator� ��
�������

comment delimiters� ��
��

begin comment delimiter� ��
�� ��
�� �operator�� �	�
�� �operator�� ��
�� ��
� �operator�� ��� �

� operator� ��
�mlocal� function� ���
�munlocal� function� ���
�n symbol� ��	
�� ��
	� variable� ��
		� variable� ���
		n variable� ���
	c constant� ��
 e constant� ��
	emode� variable� ��� ��
 i constant� ��
	k
 constant� �

	k� constant� �

 pi constant� ��
!operator� ��
!!operator� ��
all �keyword�� ��� ���
do �keyword�� ���
else �keyword�� ���� ���� �	�
in �keyword�� ���
series keyword� ���
step �keyword�� ���
then �keyword�� ���� �	�
thru �keyword�� ���
unless �keyword�� ���
while �keyword�� ���

rename plot �le �function�� ���

abort� function� �

addcol� function� ���� ���
addition operator� ��
addrow� function� ���
algebra� ��
algebraic� variable� ��� �	�
algexact� variable� �	� 	�� �	�
allroots� function� �	� 	�� �	�
and� ���� ���
answers to practice problems� ��	
apply� function� ���� �
�
apply
� function� ���� ���
apply�� function� ���
apply nouns� function� ���
applyb
� function� ���
applyb�� function� ���
approximations

�nding� 	�
array� ��
array� function� ��
assignment� ��� ��

local� ��
assignment operator� ��
assume� function�
�� ���� �		
assume pos� function�
�
��

end comment delimiter� ��
asymptotic Taylor series expansion� ��
at� 		
atom� ��
atom� function� �	�� ���
atvalue� function� ��	� �
�
augcoefmatrix� function� ���� ��
� ��

augmented coe�cient matrix� ��

axes� changing a plot"s� ���

backslash� x
backtrace� variable� �

batch� function� ��	
batch jobs� ���

submitting in all systems� ���
submitting in DOS�Windows� ���
submitting in VMS� ��

���

��� INDEX

bc�� function� ��
boat� function� �
bfprecision� variable� �

bidirectional limit�
�
big�oat� �	
binding

local� ��
binding power� ��
binding� local� ��
block� function� ���#�	�� �

box� function� ���
boxchar� variable� ���
break� function� �
�� �
�
buildq� function� ���

C
translating macsyma expressions to� ���

c�line� ��
calculus� 		
case�sensitivity� x
catch divergent� variable� ���
catch mathematical error� variable� ���
catch taylor essential singularity� variable� ���
catch taylor unfamiliar singularity� variable�

���
cfactor� function� ��
changevar� function� ���
��

� �	

changing a plot� ���
characteristic polynomials of matrices� ���
charpoly� function� ���� ���
closedform� function� �	�� �	�
close�le� function� ���
coe�� function� ��
coe�cient matrix� ��

augmented� ��

coefmatrix� function� ���� ��

col� function� ���� ���
columns� adding to a matrix� ���
combine� function� ��� ��� �	�� �
�
command lines

typing in� ��
commands

format of� x
comment delimiters

�� �end comment�� ��
�� �begin comment�� ��
�� ��� ��� ��

comparative simpli�cation� sequential� �

compilation or translation of rules� ���
compile� function� ���
compile �le� function� ���
compile rule� function� ���� ���
compile rules in tr �les� variable� ���
complex number� �	� ��

composite functions� ��
compound statements� ��� ��

conditional statements� ���
constant� ��
contourplot� function� ���� ���
contourplot�d� function� ���
copymatrix� function� ���� ���� ���
creating a matrix� ���
current let rule package� variable� ���

d�line� ��
debugmode� variable� �

declared arrays� ��
decomposition

partial� ��
default let rule package� variable� ���
default rule package� variable� ��	
de�ning functions� ��
de�nite integration�
�
defmatch� function� ���� ���� ��
� ���
defrule� function� ���� ��

deftaylor� function� ���� ���
defule� function� ���
demoivre� function� ��� �
� �	�
dependencies� variable� 	�
depends� 		
depends� function� ��� 	��
�� ��� ���� �		
depends� usage� 	

desolve� function� �
�
determinant� function� ���� ���
determinants of matrices� ���
detout� function� ��

detout� variable� ���
detrminant� function� ���
doat� function� �
diag matrix� function� ���
diagmatrix� function� ���� ��	
di�� 		
di�� function� ��� 		#
�� ��
� ���� �	�� �	�� �	
�

�
�� �

di�� usage� 		
di�erentiating expressions� 		

prede�ned functions� 	

total di�erential� 	

disp� function� ��	
display� function� ��	
disprule� function� ���
distrib� function� ��� ��� ��

distrib� usage� ��
division operator� ��
do �keyword�� ��	� ��

dollar sign

ending command lines with� ��
dontfactor� variable� ��� ��

INDEX ���

DOS�Windows
batch jobs� ���� ���

double factorial operator� ��
dpart� function� ��� ���

e�line� ��� �	� �	
echelon� function� ��
� ���
echelon forms of matrices� ��

eigens by �schur� function� ���
eigenvalues� function� ���
eigenvalues of matrices� ���
eigenvectors� function� ���� ���
endcons� function� �
�
entering Macsyma� �
entermatrix� function� ���
equal to� ���
equalscale� variable� ���� ��	
equation� ��
equations

linear� �

non�linear� ��

errcatch� function� �
�� ���
error string� variable� ���
errormsg� variable� �
�� ���
ev� function� ��� ��� ���
ev� usage� ��
eval� function� ���
eval when� function� ���� ���
exact vs� �oating point arithmetic� �
exit� function� �

exiting Macsyma� �
exp� function� ��
expand� function� 	� ��� ��� ��� ��� ��� ��� ��
�

�
�� �

expand� usage� ��
expanding� ��

expressions containing radicals� ��
logarithms of products and powers� ��
partial fractions� ��
trigonometric expressions� ��

exponentialize� function� ��� �
� �	�
exponentialize� variable� ��� ��
exponentiation operator� ��
exponentiation� non�commutative operator� ��
expressions� ��

di�erentiating� 		
expanding� ��
extracting parts of� ��
factoring� ��
integrating�
�
numbers in� �	
simplifying� ��
substituting in� ��
translating To C� ���

translating to FORTRAN� ���
trigonometric� ��
variables in� ��

expressions� constants in� ��
expressions� operators in� ��
extracting parts

of a list� �

of a matrix� ���
of an expression� ��

factor� function� ��� ��� ���� ���
factor� usage� ��
factorial operator� ��
factoring� ��
factorsum� function� ��� ���
factorsum� usage� ��
�le based graphics� ���
�le manipulation� ���
le search �option variable�� ���
�lename extensions� ���
�lenames� ���
�rst� function� �
� ��
�xed�size arrays� ��
�oat� �	
�oating point number� precision of a� �	
�oating point vs� exact arithmetic� �
�oating�point errors� �
for� ���
for� function� ���
for� ��	� ��

forget� function�
��
�� �		
format of Macsyma commands� x
fortindent� variable� ���
FORTRAN

translating Macsyma expressions to� ���
FORTRAN� example� �
fortspaces� variable� ���
fractional decomposition

partial� ��
freeof� function� ���
function� ix

composite� ��
de�ning a� ��
removing de�nition� �	

function templates� ��

genmatrix� function� ���� ���
getting started� �
globalsolve� variable� �	� ��� ���� �	�
go� function� �	�� �	�
gradef� 		
gradef� function� 	��
�� �
�
graph� function� ���
graph�d� function� ���� ���

��� INDEX

greater than� ���
greater than or equal to� ���

halfangles� variable� ��� ��
hashed arrays� ��
help facilities

on�line� ��
herald

Macsyma ��� and Successors� �
Macsyma ��� and its successors� ��

ic
� function� ��
ic�� function� ��
ident� function� ���� ��	� ���
if� ���� �	�
if� function� 	� �

if� �	�
ilt� function� ��	� ���
imagpart� function� ��� ��
in �keyword�� ��	� ��

inde�nite integration�
�
inf constant� ��
init �le

customizing� ���
initialization �le� ���
intanalysis� variable�
��
��
��

� �		
integer� �	
integerp� function� ���
integrate� function�
�#
��
�#

� ��� �		
integrate� usage�
�
integrating expressions�
�

de�nite�
�
inde�nite�
�
numerical�

intfactor� variable� ��� �
�
intosum� function� ��� ��
inverse Laplace transforms� ��	
invert� function� ���� ��

inverting matrices� ��	
is� ���
iterated statements� ���

k�� in taylor solve solutions� 	�� �	�
kill� function� ���� ���� ��	

Laplace
transforms
inverse� ��	

laplace� function� ��	� ��

laplace call� variable�
��
	�

laplace call� variable� �		
last� function� �
� ��� �

Laurent series� ��� ��
lde�nt� function�
��
�� �		� �	

ldisp� function� ��	� ��

ldisplay� function� ���� ��	
Legendre polynomials� ���
less than� ���
less than or equal to� ���
let� function� ���� ���
let rule packages� variable� ��	
letrules� function� ���� ��	
letsimp� function� ���
lhs� function� �
� �	�
limit� function�
�� ��� �	

limits�
�
limits from above�
�
limits from below�
�
lindstedt� function� ���
linear equations� �

linsolve� ��
linsolve� function� �	� �
� ���� �	�
listp� function� �

listratvars� function� ���
lists� �

extracting elements from� �

operations on� �

load� function� ���
local� function� ���
local binding� ��� ��
log� function� ��� �

logabs� variable�
��
�� �		
logexpand� variable� ��
logical

and� ���
not� ���
or� ���

logical operator� ���
logical pathnames� ���

macroexpand� function� ���
Macsyma code

writing� ���
Macsyma code� writing� �	�
mainvar� function� ��	� ���
map� function� ��� ��	
map� usage� ��
matchdeclare� function� �� ���� ��

MATLAB� ���
matrices� ���

adding rows and columns to� ���
arithmetic operations on� ���
augmented coe�cient� ��

characteristic polynomials of� ���
coe�cient� ��

creating� ���
determinants of� ���
echelon forms of� ��

INDEX ���

eigenvalues of� ���
eigenvectors of� ���
extracting columns of� ���
extracting elements of� ���
extracting rows of� ���
inverting� ��	
scalar multiplication of� ���
transposing� ���

matrix� function� �� 	� ���� ���� ���� ���� ���
matrix� usage� ���
matrix �trace� function� ��

matrix trace� function� 	
max� function� 	
medit� function� ��	
method� variable� ��� �	� �
�#�
�
minf constant� ��
minor� function� ���� ���
mode declare� function� ���
mode identity� function� ���
multiplication operator� ��
multiplication� non�commutative operator� ��
multiplicities� variable� �	� ���� �	�
multivariate Taylor series expansion� ��
multthru� function� ��� ��� ��� ��	� ��
� �
�
multthru� usage� ��

naming plots� ���
negation operator� ��
negative numbers� �	
nonlinear equations� ��
not� ���
not� function� ���
not equal to� ���
notation conventions� x
noundisp� variable� ���
nroots� function� �	� 	�� �	�
number� �	

precision of a� �
number� precision of a� �
numer� variable� ��� 	�
numeric vs� symbolic computation� �� �
numerical integration�

numerical roots� 	�
nusum� function� ��#�	� �	�

ode� function� ��� ��� ��� �
� ���� ���� �
�� �
��
�
�

ode� usage� ��
ode numsol� function� ���
ode sti�sys� function� ���
odeindex� variable� ��� �
�
odelinsys� function� ��	� ���
ODEs� ��
odetutor� variable� ��

operator� ��� ��
logical� ���
and� ���
not� ���
or� ���

on matrices� ���
priority� ��

opsubst� function� �	�� �		
option variable� ix
or� ���� ���
ordergreat� function� ��	� ���
orderless� function� ��	� ���
ordinary di�erential equations� ��

�rst order� ��
second order� ��� �

series solution� ���
solving� ��

paramplot� function� ���
parentheses� ��
part� function� ��� ��� ��� ��� ���� ���� �	�� ���
part� usage� ��
partfrac� function� ��� ��� ���
partfrac� usage� ��
partial fractional decomposition� ��
pathnames� ���
pattern matching� ���
percent sign� ��
perturbation techniques for solving ODEs� ���
pickapart� function� �	
piece� variable� ��� �	
playback� function� ���
plot� function� ��	
plot�d� function� ���
plot roll� variable� ���
plot size� variable� ��	
plotbounds� variable� ���
plotnum� variable� ��	
plots� ��	

changing the appearance of� ���
changing the axes of� ���
changing the scale of� ���
changing the viewpoint of� ���
naming� ���
polar coordinates� ���
saving� ���
three�dimensional� ���
two�dimensional� ��	

plotsurf� function� ���
polar coordinate plots� ���
polarform� function� ��
power series method

for solving ODEs� ��
powerdisp� variable� ��

��� INDEX

practice problems
algebra� ��
answers to� ��	
calculus� ���
programming in Macsyma� �	�
solving equations� 	�

precision of a �oating point number� �

precision of a number� �	
prede�ned functions� di�erentiating� 	

preventing evaluation of

a function name� �	�
a limit� ��
a sum� ��
an integral�
�

preventing evaluation of
a derivative� 	

print� function� ��	� �

printprops� function� ��

priority of operators� ��
product rule� ��
program blocks� ���
programming in Macsyma� ���� �	�

block statements� ���
compound statements� ��

conditional statements� ���
formal parameters� �	�
functional arguments� �	�
iterated statements� ���
logical operators� ���
practice problems� �	�
recursive functions� �	�
referring to previous results� ���
tagging statements� �	�

push� function� �		

quadratr� function�

quanc�� function�

radcan� function� ��� �
�
�� ��	
radcan� usage� �

radexpand� variable� ��
radicals

simplifying expressions with� �

rank� function� ���� ���
rat� function� ��	� ��

ratcoef� function� ���� ���� �
�� �
	
ratfac� variable� ��
rational number� �	
rational simpli�cation� ��
ratsimp� function� ��� �	� ��� ��� �
� �
� ����

��	#�	�
ratsimp� usage� ��
ratsimp� variable� ��

ratsubst� function� ��� ���
�� ���� ��	� �
�

ratsubst� usage� ��
realpart� function� ��� ��
realroots� function� �	� 	�� �	�
rectform� function� ��
recursive functions� �	�
remlet� function� ���� ��	
remove� function� 	�� ���� �
�
removing

features from objects� 	

functional de�nitions� �	
values from variables� ��

remrule� function� ���
remvalue� function� ��� ��� ��� �	�
replot� function� ���
reset� function� �
�
resimplify� function� ���
rest� function� ��
return� function� �

reveal� function� �

rhs� function� �
� �	�
rmeove� function� ���
rncombine� function� ��
romberg� function�

� �		
roots

numerical� 	�
roots� function� �	� 	�� 	�
rootsepsilon� variable� �	� 	�
row� function� ���
rows� adding to a matrix� ���
runge kutta� function� ���

save� function� ���
saving plots� ���
saving your work in a transcript� ���
scalar multiplication of matrices� ���
scale� changing a plot"s� ���
scsimp� function� ��� �
� �
�
scsimp� usage� �

semicolon

ending command lines with� ��
sequential comparative simpli�cation� �

series keyword� ���
setelmx� function� ���#���
soat� function� �
showtime� variable�
�
simplifying� ��

half angles� ��
radicals� logarithms� and exponentials� �

two �rational expressions� ��

simpson� function�

simpsum� variable� ��#�
� �	�
single quote

preventing evaluation of
a derivative� 	

INDEX ��	

a function name� �	�
a limit� ��
a sum� ��
an integral�
�

solutions to practice problems� ��	
solve� function� ��� �	#	�� ��
� ���� ��	� �	�� �	��

�
	
solve� usage� �	
solveexplicit� 	�
solveexplicit� variable� �	� 	�
solveradcan� variable� �	� 	�
solvetrigwarn� variable� �	� 	�
solving equations� �	

containing trigonometric functions� 	�
linear� �

nonlinear� ��
ordinary di�erential equations� ��

special� ���
special� variable� ���
special form� ix
splice� function� ���� ���
sqrt� function� ��� ��� ��� �

stringout� function� ��	
submatrix� function� ���� ���
subscripted variable� �

subst� function� ��� ��� ��� ��� ���� �		� ��	� �
�
subst� usage� ��
substituting in expressions� ��
substpart� function� �	� ��� ��	
subtraction operator� ��
sum� function� 	� ��#��� �	�� �	�� �

sum rule� ��
sumcontract� function� ��� ��
summations� ��
symbolic vs� numeric computation� �� �
system variable� ix

tagging statements� �	�
taking limits from above�
�
taking limits from below�
�
taylor� function� ��#��� ��	� ��
� �	

Taylor series� ��

asymptotic expansion� ��
multivariate expansion� ��

taylor solve� function� �	� 	�� �	�
taylor solve choose coef� variable� �	�
taylor solve choose order� variable� �	�
taylorinfo� ��
taylorinfo� function� ��
tellsimp� function� �� ���� ��
� ��

tellsimpafter� function� ���� ��
� ��

TEX� ���
tex� function� ���
three�dimensional plots� ���

thru �keyword�� ��	
title� variable� ���
tlimit� function�
�� ��� �	

tlimitswitch� function�
�
tlimswitch� variable� ��
total di�erential� 	

trace� function� �	�� �
�
transcript� saving your work in a� ���
transforms

Inverse Laplace� ��	
translate� function� ���
translate �le� function� ���
translating Macsyma expressions to C� ���
translating Macsyma expressions to FORTRAN�

���
translating Macsyma expressions to other languages�

���
transpose� function� 	� ���� ���� ���
transposing matrices� ���
traprule� function�

trigexpand� function� ��
trigexpand� variable� ��� ��
trigexpandplus� variable� ��� ��
trigexpandtimes� variable� ��� ��
trigonometric function� ��

evaluating� ��
expanding� ��
solving equations� 	�
table of prede�ned functions� ��

trigreduce� function� 	� ��#��� �
� ���� �
�
trigreduce� usage� ��
trigsimp� function� ��� ��
trunc� function� ��� ��� ��
� ��	� �	�
two�dimensional plots� ��	
typesetting

with TEX� ���

undeclared arrays� ��
Unix

batch jobs� ���
unless �keyword�� ��

untrace� function� �	�� �
�

values� ��
variable� ��

assigning a value to� ��
removing a value from� ��

view point� changing a �D plot"s� ���
viewpt� variable� ���
VMS

batch jobs� ���� ��

while �keyword�� ��

Windows

��
 INDEX

batch jobs� ���
write tex �le� function� ���
write�le� function� ���
writing Macsyma code� ���

xlabel� variable� ���
xmax� variable� ��	
xmin� variable� ��	
xthru� function� ��� ��
xthru� usage� ��

ylabel� variable� ���
ymax� variable� ��	
ymin� variable� ��	
yp� variable� ��

zeromatrix� function� 	� ���� ��	
zmax� variable� ��	
zmin� variable� ��	

