Macsyma Mathematics and System Reference Manual

This document corresponds to Macsyma version 420 and PC Macsyma 2.1 and successors. The Technical Documentation Team at Macsyma Inc. prepared this document. The software described in this document is furnished only under license, and may be used or copied only in accordance with the terms of such license. Nothing contained in this document should be construed to imply the granting of a license to make, use, or sell any of the software described herein. The information in this document is subject to change without notice, and should not be construed to imply any representation or commitment by Macsyma, Inc.

Macsyma and Macsyma Newletter are registered trademarks of Macsyma, Inc. PC Macsyma is a trademark of Macsyma, Inc. PDEase is a registered trademark of Macsyma, Inc. MathTips and DataViewer are trademarks of Macsyma Inc. Matlab is a trademark of the MathWorks, Inc. All other product names mentioned herein are trademarks of their respective owners.

This document may not be reproduced in whole or in part without the prior written consent of Macsyma Inc.

Copyright ©1996 Macsyma, Inc.
All Rights Reserved

Macsyma, Inc.
telephone: (800)–macsyma (800) 622–7962

e-mail: info-macsyma@macsyma.com

Internet URL: http://www.macsyma.com

Printed in the USA.
Printing year and number: 96 1
Contents

1 Introduction to Macsyma .. 1
 1.1 The Macsyma Documentation Set .. 1
 1.1.1 Organization of This Manual .. 2
 1.1.2 Notation .. 3
 1.1.2.1 Fonts .. 3
 1.1.2.2 Modifier Keys ... 3
 1.2 Entering and Exiting Macsyma .. 4
 1.2.1 Entering Macsyma and Getting Started 4
 1.2.2 Cleaning Up .. 4
 1.2.3 Exiting Macsyma ... 4
 1.3 Macsyma Screen Display of Input and Output 5
 1.3.1 Type of Display Lines ... 5
 1.3.2 Entering Command Lines .. 6
 1.3.3 Levels of Control .. 8
 1.4 On-Line Help ... 9
 1.4.1 The Macsyma Primer ... 9
 1.4.2 The Mathematics Topic Browser 10
 1.4.3 Math/Tips Browser .. 10
 1.4.4 Hypertext Topic Descriptions 11
 1.4.5 Executable Examples and Demonstrations 12
 1.4.6 Function Templates ... 13
 1.5 Editing Input and Correcting Errors 14
 1.6 Audio Output ... 14
 1.7 Customizing Macsyma Initialization Files 14
 1.7.1 System-wide Init Files .. 14
 1.7.2 Personal Init Files .. 14

I Mathematical Capabilities of Macsyma 17

2 Basic Mathematical Structures ... 19
 2.1 Sets ... 19
 2.1.1 Basic Operations on Sets 19
 2.2 Numbers ... 21
3 Predefined Mathematical Functions

3.1 Basic Mathematical Functions

3.1.1 Signs and Absolute Values

3.1.2 Delta Functions

3.1.3 Conversion of Non-Integral Values to Integers

3.1.4 Modular Arithmetic for Real Numbers

3.1.5 Square Roots

3.1.6 Maximum and Minimum

3.2 Exponentials and Logarithms

3.3 Simplification of Exponentials, Logarithms, and Radicals

3.3.1 Computing With Radicals

3.4 Trigonometric Functions

3.4.1 The Main Trigonometric Functions

3.4.2 Other Trigonometric Functions

3.4.3 Simplification of Trigonometric Functions

3.5 Special Functions

3.5.1 Special Functions with Closed-Form Symbolic Expressions

3.5.2 Bessel Functions

3.5.2.1 Bessel Function of the First Kind

3.5.2.2 Modified Bessel Function of the First Kind

3.5.2.3 Complex Bessel Function of Positive Fractional Order

3.5.2.4 Bessel Function of the Second Kind

3.5.2.5 Modified Bessel Function of the Second Kind

3.5.3 Airy Functions

3.5.4 Exponential Integrals

3.5.5 Other Special Functions

3.5.5.1 The Polygamma Functions

3.5.5.2 The Polylogarithm Functions
3.6 Combinatorial and Number-Theoretic Functions .. 52
 3.6.1 Permutations ... 52
 3.6.2 Gamma Functions ... 53
 3.6.3 Factorial and Related Functions 54
 3.6.4 Simplification of Factorials ... 56
 3.6.5 Riemann Zeta and Related Functions 56
 3.6.6 Number-Theoretic Functions .. 58
 3.6.6.1 Prime Numbers .. 58
 3.6.6.2 Bernoulli and Euler Functions 58
 3.6.6.3 Fibonacci Numbers .. 59
 3.6.6.4 Other Number-Theoretic Functions 59
3.7 Statistical and Probability Functions .. 60
 3.7.1 Random Numbers and Error Functions 60
 3.7.2 Probability Functions for Discrete Distributions 61
 3.7.3 Probability Functions for Continuous Distributions 62
 3.7.4 Continuous Multivariate Probability Distributions 67
3.8 Geometric Functions ... 67
 3.8.1 Formulas for Lengths, Areas and Volumes 67
 3.8.1.1 Linear Dimensions of 2-Dimensional Figures 67
 3.8.1.2 Areas of 2-Dimensional Figures 68
 3.8.1.3 Linear Dimensions of 3-Dimensional Figures 69
 3.8.1.4 Areas of 3-Dimensional Figures 69
 3.8.1.5 Volumes of 3-Dimensional Figures 70
 3.8.1.6 Spherical Trigonometry .. 71
 3.8.1.7 Points and Lines in N Dimensions 71
 3.8.1.8 Figures in N Dimensions 72
 3.8.2 Curvature of Two-Dimensional Surfaces 72
3.9 Miscellaneous Functions .. 73
 3.9.1 Logical Bitwise Operations .. 73
 3.9.2 Other Miscellaneous Functions .. 73
4 Data Analysis ... 75
 4.1 Summary Statistics for Data Samples ... 75
 4.1.1 Summary Statistics for Lists of Data 75
 4.1.2 Summary Statistics for Bivariate Matrix Data 76
 4.2 Least Squares and Curve Fitting ... 77
 4.2.1 Fitting Curves to Numerical Data 77
 4.2.2 Solving Linear Equations by Least Squares 80
 4.2.3 Interpolation of Curves ... 80
 4.3 Physical Units and Atomic Properties ... 82
 4.3.1 Physical Constants .. 82
 4.3.2 Units Conversion ... 84
 4.3.3 Database of Atomic Properties 84
5 Basic Algebraic Operations

5.1 Algebraic Integers .. 89
5.2 Polynomial Algebra .. 90
5.3 Factoring and Related Capabilities 93
5.4 Rational Expressions 97
 5.4.1 Rational Functions 97
 5.4.2 Extended Rational Expressions 100
5.5 Simplifying Polynomials and Rational Functions 101
 5.5.1 The Expanding Functions 101
 5.5.2 Simplification of Rational Functions 103
 5.5.3 Applying the Distributive Law of Multiplication over Addition .. 106
 5.5.4 Isolating Variables 109
 5.5.5 Controlled Expansion of Rational Expressions 109
 5.5.6 Optimization of Symbolic Expressions for Numerical Evaluation ... 111
 5.5.6.1 Minimizing Floating Point Operations 111
 5.5.6.2 Finding Common Subexpressions 112
5.6 Summations and Products 113
 5.6.1 Arithmetic, Geometric and Harmonic Series 113
 5.6.2 Basic Operations on Summations and Products ... 113
 5.6.3 Advanced Summation Capabilities 117
5.7 Solving Equations and Inequalities 120
 5.7.1 Solving Linear Equations and Inequalities 121
 5.7.2 Roots of Polynomials 122
 5.7.2.1 Exact Roots of Polynomials 122
 5.7.2.2 Floating Point Roots of Polynomials 128
 5.7.3 Solving Recurrence Equations 129
 5.7.4 Exact Solutions of Equations 130
 5.7.5 Approximate Symbolic Solutions of Equations 135
 5.7.6 Floating Point Numerical Solutions of Equations . 137
 5.7.6.1 Roots by Bisection 137
 5.7.6.2 Newton’s Method 138
 5.7.7 Gröbner Bases 139
 5.7.8 Solving Parametric Equations 142

6 Basic Calculus Operations 145

6.1 Differential Calculus 145
 6.1.1 Limits ... 145
 6.1.2 Differentiation 147
 6.1.3 Partial Differentiation 151
 6.1.4 Taylor and Laurent Series 153
 6.1.4.1 Univariate Taylor Series 153
6.1.4.2 Multivariate Taylor Series 155
6.1.4.3 Reversion of a Taylor Series 156
6.1.4.4 Laurent Series .. 156
6.1.4.5 Infinite Power Series 157
6.1.4.6 Padé Approximants .. 158
6.1.5 Asymptotic Analysis .. 159

6.2 Integral Calculus ... 160
6.2.1 Indefinite Integration ... 160
6.2.1.1 The Main Command for Indefinite Integration 160
6.2.1.2 The Risch Algorithm 161
6.2.1.3 Integration of Trigonometric–Exponential Expressions 161
6.2.1.4 Integration by Parts 161
6.2.1.5 Integration of Derivatives of Unspecified Functions 162
6.2.2 Definite Integration .. 162
6.2.2.1 Main Commands for Definite Integration 162
6.2.2.2 Elliptic Integrals .. 167
6.2.2.3 Exponential Integrals 168
6.2.3 Numerical Integration ... 168
6.2.3.1 Romberg Method .. 168
6.2.3.2 Newton–Cotes Quadrature 170
6.2.3.3 Extrapolated Gaussian Quadrature 171
6.2.3.4 Trapezoidal and Simpson Rules 173
6.2.4 Integration of Dirac Delta Functions 174

6.3 Laplace Transforms ... 174

6.4 Poisson and Fourier Series 176
6.4.1 Poisson Series ... 176
6.4.2 Fourier Integrals and Series 179
6.4.2.1 Fourier Integral Transforms 180
6.4.2.2 Fourier Integral Coefficients 180
6.4.2.3 Fourier Series ... 181
6.4.2.4 Auxiliary Functions 181
6.4.3 Fast Fourier Transforms 183

6.5 Ordinary Differential Equations 184
6.5.1 Systems of Linear Ordinary Differential Equations 184
6.5.2 First and Second Order ODEs 185
6.5.2.1 The Main Command for Exact Solution of ODEs 185
6.5.2.2 Other Commands for Exact Solution of ODEs 189
6.5.2.3 Frobenius Series Method for Solving ODEs 191
6.5.2.4 Applying Initial and Boundary Conditions to ODEs ... 192
6.5.2.5 Changes of Variables in ODEs 193
6.5.3 Approximate Symbolic Solutions of ODEs 193
6.5.3.1 Lindstedt’s Perturbation Method 193
6.5.3.2 Method of Averaging 194

v
6.5.3.3 Method of Multiple Scales ... 194
6.5.3.4 Taylor Series Solutions of ODEs 197
6.5.4 Numerical Methods for Ordinary Differential Equations 198
 6.5.4.1 Runge–Kutta Method .. 198
 6.5.4.2 Other Runge–Kutta Methods ... 199
 6.5.4.3 Solving Stiff Differential Equations 200
 6.5.4.4 Plotting Numerical Solutions of Differential Equations 201
 6.5.4.5 Generating Finite Difference Approximations 201
6.6 Optimization and Control ... 202
 6.6.1 Transfer Functions of Linear Differential Control Systems 202
 6.6.2 Analytic Optimization .. 203
 6.6.3 Calculus of Variations .. 203
 6.6.4 Numerical Optimization ... 205
 6.6.5 Linear Programming .. 206
6.7 Partial Differential Equations ... 206
 6.7.1 Lie Symmetries and Symbolic Solutions of PDEs 206
 6.7.2 Numerical Solutions of Systems of PDEs 210
 6.7.3 Other Facilities for PDEs .. 210
6.8 Integral Equations .. 211
6.9 Operator Algebra .. 213

7 Linear Algebra and Matrices .. 221
 7.1 Basic Matrix Operations .. 221
 7.1.1 Matrix Arithmetic .. 221
 7.1.2 Defining Matrices and Matrix Elements 221
 7.1.3 Building Special Matrices .. 224
 7.1.4 Extracting Parts of Matrices 226
 7.1.5 Transpose, Flip and Related Operations 227
 7.1.6 Predicates to Identify Matrices 228
 7.2 Determinant, Inverse, and Related Functions 228
 7.2.1 Trace, Determinant and Characteristic Polynomials 228
 7.2.2 Inverse and Related Functions 231
 7.2.2.1 Moore–Penrose Pseudo-Inverse 232
 7.2.3 Solving Matrix Equations .. 232
 7.3 Eigenvalues and Eigenvectors ... 233
 7.3.1 Exact Eigen-Analysis .. 233
 7.3.2 Eigenvalues and Eigenvectors of General Real Matrices 236
 7.3.3 Eigenvalues and Eigenvectors of Symmetric Real Matrices 237
 7.4 Normal Forms of Matrices .. 237
 7.4.1 Cholesky Decomposition ... 237
 7.4.2 Hessenberg Form ... 237
 7.4.3 Jordan Form .. 239
 7.4.4 LDU Decomposition ... 240
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.5</td>
<td>LU Decomposition</td>
<td>240</td>
</tr>
<tr>
<td>7.4.6</td>
<td>QR Decomposition</td>
<td>242</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Schur Form</td>
<td>242</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Singular Value Decomposition</td>
<td>243</td>
</tr>
<tr>
<td>7.5</td>
<td>Special Matrix Types</td>
<td>243</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Banded Matrices</td>
<td>243</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Block Structured Matrices</td>
<td>245</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Cauchy Matrices</td>
<td>247</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Circulant Matrices</td>
<td>247</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Hadamard Matrices</td>
<td>248</td>
</tr>
<tr>
<td>7.5.6</td>
<td>Hankel Matrices</td>
<td>248</td>
</tr>
<tr>
<td>7.5.7</td>
<td>Krylov Matrices</td>
<td>249</td>
</tr>
<tr>
<td>7.5.8</td>
<td>Pascal Matrices</td>
<td>249</td>
</tr>
<tr>
<td>7.5.9</td>
<td>Toeplitz Matrices</td>
<td>249</td>
</tr>
<tr>
<td>7.5.10</td>
<td>Vandermonde Matrices</td>
<td>250</td>
</tr>
<tr>
<td>7.6</td>
<td>Functions of a Matrix</td>
<td>251</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Matrix Exponentiation</td>
<td>251</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Functions of Normal Matrices</td>
<td>251</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Functions of a Matrix by Jordan Form</td>
<td>252</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Functions that Apply to Matrices Element by Element</td>
<td>253</td>
</tr>
<tr>
<td>7.7</td>
<td>Macsyma for Matlab Users</td>
<td>254</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Command Naming Conventions</td>
<td>254</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Basic Operators</td>
<td>254</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Functions That Create Matrices</td>
<td>255</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Matrix, Vector, List, and Scalar Data</td>
<td>256</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Functions That Give Information About Matrices</td>
<td>257</td>
</tr>
<tr>
<td>7.7.6</td>
<td>Matrix Decompositions</td>
<td>257</td>
</tr>
<tr>
<td>7.7.7</td>
<td>Functions That Act on Lists</td>
<td>258</td>
</tr>
<tr>
<td>7.7.8</td>
<td>Polynomials as Lists of Coefficients</td>
<td>259</td>
</tr>
<tr>
<td>7.7.9</td>
<td>Functions for Numerical Analysis</td>
<td>261</td>
</tr>
<tr>
<td>7.7.10</td>
<td>Matlab Style Programming</td>
<td>262</td>
</tr>
<tr>
<td>7.7.11</td>
<td>Matlab Utility Functions</td>
<td>263</td>
</tr>
<tr>
<td>7.7.12</td>
<td>The Matlab to Macsyma Translator</td>
<td>264</td>
</tr>
<tr>
<td>7.7.12.1</td>
<td>Translating Matlab Command Files into Macsyma Command Files</td>
<td>264</td>
</tr>
<tr>
<td>7.7.12.2</td>
<td>Loading Matlab Command Files into Macsyma</td>
<td>264</td>
</tr>
<tr>
<td>7.7.12.3</td>
<td>Limitations of the Matlab to Macsyma Translator</td>
<td>264</td>
</tr>
<tr>
<td>7.8</td>
<td>Other Linear Algebra and Matrix Capabilities</td>
<td>265</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Matrix Convolution</td>
<td>265</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Special Control of Matrix Operations</td>
<td>265</td>
</tr>
<tr>
<td>7.8.3</td>
<td>The Dot Operator</td>
<td>267</td>
</tr>
<tr>
<td>7.8.4</td>
<td>Pfaffians</td>
<td>268</td>
</tr>
<tr>
<td>7.8.5</td>
<td>The Matrice Package</td>
<td>269</td>
</tr>
<tr>
<td>7.8.6</td>
<td>Miscellaneous Matrix Functions</td>
<td>275</td>
</tr>
</tbody>
</table>
8 Vector and Tensor Analysis

8.1 Vector Algebra and Calculus ... 277
 8.1.0.1 Defining Vectors .. 277
 8.1.0.2 Dot and Cross Products 278

8.1.1 Basic Differential Operators in Vector Fields 278
 8.1.1.1 Simplifying Vector Expressions 278
 8.1.1.2 Vector Fields in Specific Coordinate Systems 279
 8.1.1.3 Scalar and Vector Potentials 280

8.2 Indicial Tensor Analysis ... 281
 8.2.1 Tensor Algebra Operations 281
 8.2.1.1 Specifying the Metric Tensor 281
 8.2.1.2 Assigning Component Values to Indicial Tensors 281
 8.2.1.3 Defining Tensor Symmetry Properties 282
 8.2.1.4 Contraction Identities for Indicial Tensors 283
 8.2.1.5 Specifying Coordinate Symbols in Indicial Tensor Computations 284
 8.2.1.6 Simplification of Indicial Tensor Expressions 284
 8.2.1.7 Tensor Index Counting 287
 8.2.1.8 Special Indicial Tensors and Tensor Densities 288
 8.2.1.9 Noncommutative Multiplication Operator in Indicial Tensors 288

8.2.2 Tensor Calculus Operations 288
 8.2.2.1 Derivatives Which are Independent of the Affine Connection 288
 8.2.2.2 Covariant Derivatives 289
 8.2.2.3 Riemannian Curvature 292
 8.2.2.4 Setting Derivatives of Tensors to Zero 292

8.2.3 Frame Fields and Related Topics 293
 8.2.3.1 Frame Fields .. 293
 8.2.3.2 Affine Torsion .. 294
 8.2.3.3 Conformal Nonmetricity 295

8.2.4 Display of Indicial Tensors 295

8.2.5 Conversion from Indicial to Component Tensors 296

8.2.6 Re-Initialization and Clean Up 298

8.3 Component Tensor Computations 298
 8.3.1 Initialization, Metrics, and Christoffel Symbols 298
 8.3.2 Curvature Tensors .. 302
 8.3.3 Other Differential Operators 303
 8.3.4 Frame Fields and Related Topics 304
 8.3.4.1 Frame Fields .. 304
 8.3.4.2 Affine Torsion .. 305
 8.3.4.3 Conformal Nonmetricity 306

8.3.5 Taylor Series Capability .. 306

8.3.6 Tensor Transformation Functions 307

8.3.7 Display of Component Tensors 308

8.3.8 Alternate Gravity Theories .. 308
13.1 Manipulating Properties of Atomic Variables ... 360
13.1.1 Manipulating Predefined Properties .. 361
13.1.2 Manipulating User-defined Properties .. 366
13.1.3 Mathematical Properties ... 367
 13.1.3.1 Members of the Features List .. 367
 13.1.3.2 Members of the Features and Opproperties Lists 369
 13.1.3.3 Members of the Opproperties List .. 370
 13.1.3.4 Mathematical Properties not on Features or Opproperties Lists 372
13.1.4 Non-mathematical Properties ... 373
13.2 Manipulating Relational Information in the Database 375
13.3 Provisos Capability ... 379
13.4 Contexts ... 380

14 Pattern Matching and Related Functions ... 385
14.1 General Pattern Matching ... 386
 14.1.1 Defining Pattern Variables .. 386
 14.1.2 Defining and Removing Patterns .. 386
 14.1.3 Displaying Rules ... 390
 14.1.4 Using Rules ... 390
14.2 Pattern Matching for Rational Expressions ... 391
 14.2.1 Defining And Removing Rules ... 391
 14.2.2 Displaying Rules .. 392
 14.2.3 Using Rules ... 392
14.3 Type Testing Predicates ... 393
 14.3.1 Testing for Properties of Numbers ... 393
 14.3.2 Testing for Mathematical Properties of Expressions 394
 14.3.3 Testing for Properties of Strings .. 396
 14.3.4 Testing for Other System Properties .. 397

III Programming in Macsyma ... 399

15 The Macsyma Programming Language .. 401
 15.1 Conditionals and Logical Operators ... 401
 15.2 Compound Statements .. 403
 15.3 Program Blocks .. 404
 15.4 The Do Statement .. 407
 15.4.1 Commonly Used Forms .. 407
 15.4.2 Additional Forms of the Do Statement 409

16 Data Types and Objects in Macsyma ... 411
 16.1 Overview of Macsyma Objects ... 411
 16.1.1 Symbols .. 411
 16.1.2 Functions ... 411
16.1.3 Special Forms .. 412
16.1.4 Operators ... 412
16.1.5 Option Variables .. 412
16.1.6 System Variables ... 413
16.1.7 Properties .. 413
16.1.8 Keywords ... 413
16.1.9 Keyword Forms .. 413

16.2 Numbers .. 414
 16.2.1 Types of Numbers ... 414
 16.2.2 Limits on Fixnums in Macsyma 415
 16.2.3 Limits on Single Float Numbers in Macsyma 415
 16.2.4 Limits on Double Float Numbers in Macsyma 416

16.3 Strings ... 416
 16.3.1 Building Strings .. 417
 16.3.2 Identifying Strings .. 417
 16.3.3 Changing the Appearance of Strings 418
 16.3.4 Evaluating Strings 418

16.4 Symbols ... 418

16.5 Variables .. 418

16.6 Subscripted Variables and Arrays 420
 16.6.1 Declared Arrays .. 420
 16.6.2 Hashed Arrays .. 422
 16.6.3 Array Functions .. 422
 16.6.4 Creating and Manipulating Arrays 422

16.7 Lists .. 425
 16.7.1 Manipulating Lists 426

16.8 Matrices .. 428

17 Translation and Compilation, Special Forms, and Macros 431
 17.1 Type Declarations and Optimization 431
 17.2 Translation From Macsyma Language into Lisp 433
 17.2.1 Main Translation Commands 434
 17.2.2 Translator Options 434
 17.3 Compilation .. 437
 17.4 Methods for Package Writers 439
 17.5 Macros .. 441
 17.5.1 Defining Macros 441
 17.5.2 Forcing Macro Expansion 443

18 Writing and Debugging Programs in Macsyma 445
 18.1 Error Handling ... 445
 18.1.1 Special Error Conditions 447
 18.2 The Macsyma Debugger 447
18.2.1 User-Settable Program Break Points ... 448
18.2.2 Tracing Function Calls ... 449
18.2.3 Tracking Assignments of Variable Values ... 451
18.2.4 Debugging Your Own Functions ... 451

18.3 Timing and Metering ... 453

18.4 Writing Interactive Programs .. 454
18.4.1 Defining Your Own Command Menu ... 454
18.4.2 Using the Function `choose_variable_values` to Create Menus 455
18.4.3 Using `one_of` and `select_one_of` to Offer Menus 455
18.4.4 Other Interactive Input Commands ... 456
18.4.5 Miscellaneous User Interface Control Functions 456
\hspace{20pt} 18.4.5.1 Options for Symbolics Lisp Machine 458

18.5 Miscellaneous Functions .. 458

19 File Management ... 461
19.1 File Naming Conventions ... 461
\hspace{20pt} 19.1.1 Specifying File Pathnames .. 461
\hspace{20pt} 19.1.2 Logical Pathnames .. 462
\hspace{20pt} 19.1.3 Filename Extensions .. 463
19.2 Searching, Reading, and Manipulating Files 464
19.3 Reading and Writing Command Files and Data Files 465
\hspace{20pt} 19.3.1 Executing Files of Macsyma Commands 465
\hspace{20pt} 19.3.2 Writing Files of Macsyma Commands 469
\hspace{20pt} 19.3.3 Reading or Writing Numerical Data Files 469
\hspace{20pt} \hspace{20pt} 19.3.3.1 Reading Numerical Data Files 469
\hspace{20pt} \hspace{20pt} 19.3.3.2 Writing Numerical Data Files 470
19.4 Making a Transcript of Your Session ... 470
19.5 Saving Your Computations in Executable Form 471
19.6 Freeing Storage ... 472

20 Interfaces to Other Languages .. 475
20.1 The Basic FORTRAN Generator ... 475
20.2 Gentrans ... 476
\hspace{20pt} 20.2.1 Translatable Statements ... 476
\hspace{20pt} \hspace{20pt} 20.2.1.1 Translatable Macsyma Statements and Expressions 476
\hspace{20pt} \hspace{20pt} 20.2.1.2 Comments and Literal Strings ... 477
\hspace{20pt} \hspace{20pt} 20.2.1.3 Other Translatable Forms ... 477
\hspace{20pt} 20.2.2 The Main GENTRAN Command ... 478
\hspace{20pt} 20.2.3 Directing GENTRAN Output to Files 478
\hspace{20pt} 20.2.4 GENTRAN's Template Mode for Mixed Language Files 479
20.2.5 Control of Evaluation .. 480
\hspace{20pt} \hspace{20pt} 20.2.5.1 Control of Evaluation of Input Statements 480
\hspace{20pt} \hspace{20pt} 20.2.5.2 Translation of Numerical and Boolean Values 481
20.2.6 Optimization and Segmentation of GENTRAN Output Code 481
20.2.7 Options for Control of GENTRAN 482
 20.2.7.1 Switches 482
 20.2.7.2 Temporary Variables 483
 20.2.7.3 Variable Type Declarations 484
20.2.8 Formatting of GENTRAN Output Code 485
 20.2.8.1 FORTRAN-Specific Formatting Commands 485
 20.2.8.2 C-Specific Formatting Commands 485
 20.2.8.3 Ratfor-Specific Formatting Commands 485
20.3 The \TeX\ Interface 485
 20.3.1 Converting Macsyma Expressions to \TeX\ 486
 20.3.1.1 The \TeX\ and LATEX\ Commands 486
 20.3.1.2 Putting \TeX\ Output into Files 488
 20.3.2 Creating \TeX\Xon Display Output Lines 488
 20.3.2.1 Creating \TeX\Xon Display Output Lines in Notebooks 488
 20.3.2.2 Putting \TeX\Xon Output with Input and Text in Files 488

IV Advanced Topics 491

21 Grammar, Syntax and Representation 493
 21.1 Grammar and Syntax 493
 21.1.1 The Parser 493
 21.1.2 Binding Powers 494
 21.1.3 Parts of Speech 494
 21.2 Mathematical Operators 494
 21.2.1 Prefix Operators 496
 21.2.1.1 Predefined Prefix Operators 496
 21.2.1.2 Defining Your Own Prefix Operators 497
 21.2.2 Postfix Operators 497
 21.2.2.1 Predefined Postfix Operators 497
 21.2.2.2 Defining Your Own Postfix Operators 498
 21.2.3 Infix Operators 498
 21.2.3.1 Predefined Infix Operators 498
 21.2.3.2 Defining Your Own Infix Operators 500
 21.2.4 Nary Operators 500
 21.2.4.1 Predefined Nary Operators 501
 21.2.4.2 Defining Your Own Nary Operators 501
 21.2.5 Nofix Operators 502
 21.2.5.1 Defining Your Own Nofix Operators 502
 21.2.6 Matchfix Operators 502
 21.2.6.1 Predefined Matchfix Operators 502
 21.2.6.2 Defining Your Own Matchfix Operators 503
 21.2.7 Special Operators 503

xiii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.2.8</td>
<td>Logical Operators</td>
<td>504</td>
</tr>
<tr>
<td>21.2.9</td>
<td>Syntax Extension</td>
<td>504</td>
</tr>
<tr>
<td>21.3</td>
<td>Internal Representation of Macsyma Expressions</td>
<td>505</td>
</tr>
<tr>
<td>21.3.1</td>
<td>General Form</td>
<td>506</td>
</tr>
<tr>
<td>21.3.2</td>
<td>Canonical Rational Expressions (CRE) Form</td>
<td>506</td>
</tr>
<tr>
<td>21.3.3</td>
<td>Extended CRE Form</td>
<td>507</td>
</tr>
<tr>
<td>21.3.4</td>
<td>Poisson Series Form</td>
<td>507</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Results of Operations Applied to Inequalities .. 29
3.1 Examples of floor, ceiling, fix, and round ... 33
3.2 Controlling the Expansion of Logarithms .. 35
3.3 Simplifying Radicals .. 38
3.4 The Effect of domain on Simplification of Rational Exponents 39
3.5 Trigonometric Functions and Their Inverses ... 40
3.6 Automatic simplification of Riemann’s Zeta function 57
3.7 Results from discrete_moment .. 62
3.8 Results from continuous_moment .. 66
4.1 Values of Option Variables for multivariate_statistics 76
4.2 Physical Constants in the phycon package .. 83
4.3 Predefined Expressions in dimen Package .. 86
5.1 A Comparison of distrib, multthru and expand 108
6.1 Summary of fourier Package Command Names 179
7.1 Behavior of set_element on Lists and Matrices 223
7.2 Effect of Settings of new_mat_subsr_mode .. 224
7.3 Aliases for Some Lengthy Command Names ... 234
7.4 Comparison of Macsyma and Matlab Operators 254
7.5 Options for matrix .. 270
8.1 Global Dot Product Option Variables, and How They Relate 279
8.2 Predefined Coordinate Systems Understood by Macsyma in vect_coordsys .. 280
8.3 Notation used for Christoffel Symbols and Connection Coefficients 290
8.4 Notation used for Frame Coefficients, Frame Fields and Connection Coefficients in itensor .. 294
8.5 Correspondence of Frame Field Object Indices with Conventional Tensor Notation ... 294
8.6 Notation used for Affine Torsion in Connection Coefficients in itensor 295
8.7 Notation used for Conformal Nonmetricity in Connection Coefficients in itensor .. 295
8.8 Option Variables Reset by the Function setflags 299
8.9 Correspondence of Frame Field Arrays in cens or with Conventional Tensor Notation ... 299
8.10 Display Choices for Christoffel Symbols in ctensor 300
8.11 Predefined Coordinate Systems Understood by Macsyma in ct_coordsys .. 301
21.12 Examples of Special Operators .. 503
21.13 Delimiters .. 504
21.14 Predefined Special Operators ... 504
Acknowledgements

The Technical Documentation Staff of Macsyma Inc. wrote the *Macsyma Mathematics and System Reference Manual*. It is based on a document originally written at MIT by Richard Bogen and later maintained by the Macsyma Division of Symbolics, Inc. Contributions were made at MIT by Ellen Golden, Jeffrey Golden, Michael Genesereth, Richard Pavelle, Michael Wester, Charles Karney, Kent Pitman, Richard Fateman, and Alexander Doofovskoy. Thanks are also due to Pitts Jarvis, Howard Cannon, and David Goodine.

Macsyma includes many capabilities developed by a large number of people at different institutions for which we are grateful. This entry contains legal acknowledgments for contributed software. If this entry is missing an acknowledgment you feel it should contain, please get in touch with Macsyma, Inc.

This version of Macsyma, (except where noted) contains:

1. Implementations of the Spear/Buchberger Grobner basis algorithm and Spear’s ideal contraction algorithm. We are grateful to Gail Zacharias, the original author, for permission to distribute them. (Original source file: MIT-MC:SHARE;GROB 202.) Copyright (c) 1984, 1985 Gail Zacharias. Enhancements copyright (c) 1986, 1987, 1988 Symbolics, Inc. All rights reserved.

2. An implementation of the Pullman/Strauss Jordan Form algorithm. We are grateful to Nicholas Strauss, the original author, and the MIT SCHEME project, for permission to distribute it. (Original source file: mitl-mc:share:eigen 8.) Copyright (c) 1985 Massachusetts Institute of Technology. Enhancements copyright (c) 1987, 1988 Symbolics, Inc. All rights reserved.

3. An improved Poisson series package using code supplied by Professor Richard Fateman. Copyright (c) 1982 Massachusetts Institute of Technology. Additional changes copyright (c) 1986 Richard J. Fateman. Enhancements copyright (c) 1988 Symbolics, Inc. All rights reserved.

6. The GENTRAN numerical code generation facility. Copyright (c) 1986 Barbara Gates and Paul S. Wang, Kent State Univ., Kent, Ohio 44242. Enhancements copyright (c) 1988 Symbolics, Inc. All rights reserved.

7. The ODEFI ordinary differential equation solver using first integrals, based on the Prelle–Singer algorithm. Implemented by Roman Shtokhamer, Dept. of CIS, Univ. of Delaware.

8. The TEX package for the conversion of Macsyma, expressions into TeX. It is based on a package written by Prof. Richard J. Fateman of the University of California at Berkeley. Copyright (c) 1987 Richard J. Fateman Enhancements copyright (c) 1989 Symbolics, Inc. All rights reserved.
9. The GENINV package for computing the Moore-Penrose matrix pseudo-inverse. Designed and developed by Dr. Daniel Zwillinger and Dr. Michael J. Sousa of Zwillinger & Associates, Arlington, MA.

10. The ODELIN2 package for second order linear ordinary differential equations. Designed and implemented by Prof. Shunro Watanabe of Tsuda College, Kodaira, Tokyo, Japan.

11. Extensions to the inverse Laplace transform package. Designed and implemented by Michael Clarkson of Institute of Space and Celestial Science, York University, York, Canada, and also of Centre de Morphologie, Ecole des Mines, Fontainbleu, France.

12. The PDELIE package. Designed and implemented by Peter Vafeades of Trinity University, San Antonio, Texas. Copyright Trinity University and Peter Vafeades.

13. The SOLVER package. Designed and implemented by Eckhard Hennig and Ralf Sommer of the University of Kauerslautern, drawing on a previous design and implementation by Hennig Trispel and Ralf Sommer at the University of Braunschweig, Germany.

14. access to the Eispack library of routines, which is made available through the National Energy Software Center in Argonne, IL (Lisp machine only).

A report or thesis that contains results obtained by using Macsyma, should acknowledge that the work was done with the aid of Macsyma, a large symbolic manipulation program developed at the MIT Laboratory for Computer Science and supported from 1975 to 1983 by the National Aeronautics and Space Administration under grant NSG 1323, by the Office of Naval Research under grant N00014-77-C-0641, by the U. S. Department of Energy under grant ET-78-C-02-4687, and by the U. S. Air Force under grant F49620-79-C-020, between 1982 and 1992 by Symbolics, Inc. of Burlington, Mass., and since 1992 by Macsyma, Inc. of Arlington, Mass. Macsyma is a registered trademark of Macsyma, Inc.

A copy of the report or thesis should also be sent to Macsyma, Inc at this address:

Macsyma, Inc.
telephone: (800)-macsyma (800) 622-7962

e-mail: info-macsyma@macsyma.com

Internet URL: http://www.macsyma.com
Chapter 1

Introduction to Macsyma

Macsyma is an interactive symbolic, numerical and graphical mathematical problem solving tool. Macsyma offers symbolic and numeric manipulation and solution capabilities in algebra, calculus and numerical analysis; 2D and 3D report-quality graphics; interactive scientific notebooks; and a user programming environment.

Macsyma was developed and maintained at the Massachusetts Institute of Technology from 1969 until 1982. From 1982 to 1992, Macsyma was supported by Symbolics, Inc. Since 1992 Macsyma has been enhanced and supported by Macsyma Inc.

The Macsyma system is the result of over a quarter century of development effort. Macsyma consists of more than 300,000 lines of source code. A development team works on support and enhancement of the code and of over 1000 pages of documentation.

1.1 The Macsyma Documentation Set

The Macsyma hardcopy documentation consists of

- The Macsyma User's Guide

The Macsyma on-line documentation consists of

- Mathematical topic menus (to lead you to the appropriate commands)
- Hypertext descriptions of about 2000 topics with cross references
- Over 500 function templates (to help you compose your own commands)
- Over 800 executable examples of individual commands
- Over 200 executable demonstrations of Macsyma packages and applications.
- A MathTips system illustrating problem descriptions, expressions and commands that transform one form to another

New users should begin with “Your First Session with Macsyma” and the on-line help, and progress to the Macsyma User’s Guide.
1.1.1 Organization of This Manual

This manual is one of three manuals which document Macsyma. The *Macsyma Mathematics and System Reference Manual* deals with the symbolic and numerical mathematical capabilities of Macsyma. This volume also deals with using Macsyma as a software system: inputting and editing Macsyma commands, displaying output, writing simple programs, saving files, translating and compiling, as well as writing and debugging your own programs.

The *Macsyma Graphics and User Interface Reference Manual* deals with plotting, the user interface, the Macsyma Front End, and the notebook interface.

The chapters in the *Macsyma Mathematics and System Reference Manual* include:

- Chapter 1 describes basic operations such as entering and exiting Macsyma, obtaining online help, and customizing your Macsyma environment.

- Part I Mathematical Capabilities of Macsyma
 - Chapter 2 contains an introduction to set theory and the different types of numbers with which Macsyma can work.
 - Chapter 3 contains descriptions of predefined mathematical functions.
 - Chapter 4 describes functions and capabilities for analysis of experimental data. These include general curve fitting, error analysis, and conversion of physical units and dimensional analysis.
 - Chapter 5 describes functions and option variables used in manipulating and solving algebraic problems.
 - Chapter 6 describes functions and option variables used in solving calculus problems.
 - Chapter 7 describes commands used in matrix algebra.
 - Chapter 8 describes commands and option variables for vector and tensor analysis.

- Part II Mathematical Utilities
 - Chapter 9 explains the methods of evaluation used by Macsyma.
 - Chapter 10 describes the basic processes of simplification, expansion, and substitution.
 - Chapter 11 shows you how to write your own Macsyma functions.
 - Chapter 12 describes the many functions you can use to modify how Macsyma displays expressions and other items, as well as functions for ordering expressions.
 - Chapter 13 describes how you can control Macsyma’s knowledge about objects by installing properties and relationships into Macsyma’s database.
 - Chapter 14 describes pattern matching techniques and functions.

- Part III Programming in Macsyma
 - Chapter 15 describes the programming structures provided in Macsyma.
 - Chapter 16 describes the different kinds of data Macsyma understands, shows the formats for that data, and discusses the terminology used for describing data types and structures.
 - Chapter 17 describes how you write, translate, and compile macros and packages.
 - Chapter 18 introduces you to error handling and debugging techniques available for Macsyma programs. These including writing menus, timing and metering, tracing, and writing interactive programs.
 - Chapter 19 describes numerous nonmathematical operations you can perform in Macsyma such as obtaining files from remote locations, making a transcript of your session, controlling storage, and timing computations.
 - Chapter 20 describes the interfaces available in Macsyma to TeX, FORTRAN, and C.
1.1. THE MACSYMA DOCUMENTATION SET

- Part IV Advanced Topics
 - Chapter 21 describes parsing mathematical expressions in Macsyma and their resulting internal representations.

The Macsyma Graphics and User Interface Reference Manual manual includes:

- An introduction to the different types of Macsyma objects and to the notational conventions used throughout the manual.
- A description of the Macsyma Front End.
- An introduction to the user interface and description of basic operations such as entering and exiting Macsyma, obtaining online help, entering and editing command lines, and creating your own menus.
- An introduction to Macsyma User Interface. This includes the Macsyma Front End, Macsyma notebooks, and their settable attributes for text, hypertext links, graphics, printing, mathematics, notebooks and navigation.
- A description of commands for creating, visualizing, and manipulating graphical objects.

1.1.2 Notation

This section describes the notations that are used throughout the manual to make it clearer and more readable. Any unfamiliar terms are defined in the next section devoted entirely to Macsyma terminology.

1.1.2.1 Fonts

This manual uses a number of different fonts or typefaces to facilitate recognition of objects or contexts. The appearance and meaning of each is listed below:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>integrate</td>
<td>A Macsyma object (See Section 16.1 for more information.)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Argument to a function</td>
</tr>
<tr>
<td>return, space</td>
<td>Keyboard key, space bar</td>
</tr>
<tr>
<td>fib(2);</td>
<td>Commands typed to Macsyma or results of calculations in examples</td>
</tr>
<tr>
<td>Error: number</td>
<td>An error message. Italics indicate the characteristics of the items</td>
</tr>
<tr>
<td>is too big.</td>
<td>that can be inserted in that position. In this example, the error</td>
</tr>
<tr>
<td>status line</td>
<td>message contains a number in the position indicated by number.</td>
</tr>
<tr>
<td>Calculus</td>
<td>Menu item</td>
</tr>
</tbody>
</table>

1.1.2.2 Modifier Keys

A modifier key is a keyboard key that does not transmit characters, but instead is used in conjunction with other keys in a combined keystroke to perform some action. An example is the CONTROL key (CTRL or \(\text{CTRL} \) on some keyboards). Press the CONTROL key while holding down the C, to produce CTRL-C, the interrupt key for UNIX Macsyma implementations.

Your keyboard may have the following modifier keys, which are shown with their abbreviated prefixes:
1.2 Entering and Exiting Macsyma

1.2.1 Entering Macsyma and Getting Started

If you have a window system and you have installed a Macsyma icon, you enter Macsyma by clicking on the icon with your mouse. Otherwise, you enter Macsyma by typing `macsyma` at the command processor or your operating system exec, or monitor level. Depending on which version of Macsyma you have, there are other ways to enter Macsyma. See the Release Notes that come with your version.

Macsyma 2.0 and its successors enable you to open the Macsyma Front End window without starting Macsyma. The switch(s) on the Macsyma command line (or the command line in the icon properties box) will cause the Macsyma Front End to always start Macsyma when you start the Macsyma Front End.

`macsyma_greeting()`

Displays the initial Macsyma greeting message. See `preferred_greeting_style`, page 457.

1.2.2 Cleaning Up

`initialize_macsyma()`

The `initialize_macsyma` function performs four very useful operations. It:

1. Kills all values of labels and all items on information lists. (This is equivalent to typing `kill(all) ;;`)
2. Resets all option variables to their default values. (This is equivalent to typing `reset(all) ;;`)
3. Restarts the Macsyma process.

Although this is the simplest way, it is not the fastest, since it may take some time to reload your init file and redraw the initial Macsyma pane. If you have done nothing that necessitates reloading your init file, it may be sufficient to type the two commands `reset(all) ;;` and `kill(all) ;;`. These special forms are explained in detail in Section 19.6. For the present purpose, it is enough to know that `reset` resets Macsyma option variables to their default values, while `kill` removes arguments.

Finally, you can clear the screen by using the following:

`clearscreen()`

Type `clearscreen()$` to clear the screen. In modern window interfaces to Macsyma, this merely causes the window to scroll upward until the screen is blank.

1.2.3 Exiting Macsyma

To exit Macsyma, type `exit();`, `quit();`, or `logout();`. The actions of these functions differ. Refer to their definitions below.
exit()

Function

The function exit allows you to leave Macsyma without disturbing its state. When Macsyma is later reentered, any previously defined functions, variables, and properties are still accessible.

The expression exit(); is now generalized to exit any command loop. In a Macsyma Break, exit(); returns outward one level just as typing exit; would there. In a toplevel Macsyma Break, exit(); returns outward one level to a regular break.

Exit also appears on the command menu.

quit({arg})

Function

The function quit allows you to leave Macsyma, destroying your current state. You should call this function only when you do not intend to continue your session. If you plan to return, you should use exit instead.

The argument arg is optional. If arg is true, you will exit Macsyma and your current state will be destroyed. If arg is false, you’ll exit Macsyma preserving its state. (This is the same as typing exit();)

In previous versions of Macsyma, quit did not destroy your current state. If you do not specify arg, Macsyma uses the value of the option variable quit::really::quits (default: true) to determine how to leave your Macsyma state. If the option variable is set to false, however, quit will leave Macsyma but not destroy the user’s context. In a later release, the default value of this option variable may be eliminated.

quit::really::quits default: true

Option Variable

Controls the default action for the function quit if you do not specify arg. When quit::really::quits is true, the default, typing quit(); destroys any Macsyma state you’ve created and ends your session. When quit::really::quits is false, typing quit(); lets you leave Macsyma preserving your current state. This is the same as typing exit();.

logout()

Function

The logout function allows you to leave Macsyma destroying your current state and log out from your machine.

1.3 Macsyma Screen Display of Input and Output

1.3.1 Type of Display Lines

When you begin your session with Macsyma, you see the label (c1), followed by a prompt or blinking cursor. This is a signal for you to enter a Macsyma command.

There are four kinds of labeled lines in Macsyma. The first kind is labeled (ci), which signals a command line or c-line. Command lines are numbered and therefore can also be used in computations. You’ll see how they are used later in the chapter.

The second type of line label is used for the results of computations. These display lines (d-lines) are labeled in the form (di), where the numbering matches that of the corresponding c-line.

A third type of label is used when a computation produces several intermediate results (for example, several solutions to an equation). Macsyma labels these intermediate results (ei), called e-lines, where i is incremented by one for each intermediate line.

These three distinct labels make it easy for you to distinguish between your input and the system’s output. You can set these prefixes yourself by changing the values of the following option variables.

The fourth kind of label is used with the Matlab command files and the Matlab translator; it is called an m-line. See also Section 7.7.12.2, page 264.
inchar default: c

This option variable controls the alphabetic prefix of the labels for C-LINES.

linechar default: e

This option variable controls the alphabetic prefix of the labels for E-LINES.

The option variable programmode (default: true) determines whether Macsyma displays the intermediate steps of an operation. (See Section 5.7.4.

outchar default: d

This option variable controls the alphabetic prefix of the labels for D-LINES. For example, you could change this prefix to user by typing:

Example
(c1) outchar: 'user;
(user1) user
(c2) x+2;
(user2) x + 2
(c3) diff(user2,x);
(user3) 1

Note: Some Macsyma routines assume that the first alphabetic character of inchar, outchar, and linechar is different. Take care not to set these option variables to symbols that conflict.

labels(char)

Returns a list of all labels which have the same first character as char. The argument char need not be a single character, but all characters other than the first are ignored. The argument char must be a symbol. It is not evaluated. Normally, char is either c, d or e. If you have generated many E-LINES for some reason, for example, using isolate, then first(rest(labels(c))); reminds you what the last C-LINE was.

labels

The system variable labels holds a list of all line labels which are bound to expressions. The variable labels is one of the infolists.

ttyoff default: false

Controls the printing of output to the console. If it is set to true, printing output to the console is stopped.

1.3.2 Entering Command Lines

Macsyma command lines are strings of characters representing mathematical expressions involving equations, arrays, functions, and programs. A command line must be terminated with either a semicolon (;) or a dollar sign ($). Which alternative you choose depends on whether or not you want to have the result displayed. Use a semicolon (;) as a termination symbol for the command or expression entered in a C-LINE when you wish to have the result of this command or expression displayed on a D-LINE.

Note: In the Front End in Macsyma 2.0 and its successors, a semicolon is not necessary to terminate a command line. Instead, the ENTER key will submit the command to Macsyma and cause the output to be displayed. Line feed is indicated in the Macsyma 2.1 Front End by Shift-ENTER (whereas in the old Front End, ENTER indicated line feed).

Use a dollar sign ($) as a termination symbol for the command or expression entered in a C-LINE when you do not wish to have the result of the command or expression displayed. You would use a dollar sign
1.3. MACSYMA SCREEN DISPLAY OF INPUT AND OUTPUT

when you do not need to see the result immediately, as when you are assigning variables, or when you know what the result is. Whether or not you choose to display the D-LINE, Macsyma generates a D-LINE, which allows you to reference the D-LINE at some later time if desired. The dollar sign has the same meaning in the Front End of Macsyma 2.0 and successors. In the new Front End, there is also an alternative gesture available to submit a command line and suppress output: CONTROL-ENTER.

Note: If you are using Macsyma on a machine other than a PC, you may have to type a return after the semicolon or dollar sign to enter an expression.

Macsyma ignores extra spaces, tabs, and carriage returns in command lines except when they occur in strings, which are delimited by double quotes. A backslash (\) is used to force preservation of the following character (including its case). Case is automatically preserved inside quoted strings.

If a command line contains a syntax error, Macsyma displays a message to help you correct the error. For example:

```
(c1) (((x+1)*x+2)*x+3;
     Missing ")")"
```

Below is a sample session that illustrates line labels and terminators.

```
(c1) solve(x^2 + b*x + c, x);
     2
     sqrt(b - 4 c) + b
     2
     x = - ---------------, x = - ---------------
     2

(d1) [x = - ---------------, x = - ---------------]
     2
```

In general, results are displayed on D-LINES as above. However, E-LINES are used to display intermediate results under certain conditions. Some functions, such as `ldisp` or `dispfun` will display their arguments on E-LINES. Others, like `solve`, `alldisc` and `linsolve` will display their results on E-LINES or D-LINES, depending on the setting of the option variable `programmode` (Refer to `programmode` on page 134 for more information) The default value for `programmode` is `true`, and results in only the D-LINE being used. However, if it is set to `false`, as in the example below, partial results appear on E-LINES which are then referenced on the D-LINE.

```
(c2) programmode: false$

(c3) solve(x^2 + b*x + c, x);
     Solution:
     2
     sqrt(b - 4 c) + b
     2
     x = - ---------------
     2

(e3)

(b - sqrt(b - 4 c))
  2
  x = - ---------------

(e4)

(d4) [e3, e4]
```

In this example, notice that there is no line (d3) since intermediate results were produced and the line index was incremented. The general pattern of indexing is of the form (ci), (ei), (ei)+1, . . . , (ej), (dj).

A Macsyma expression can refer to the results of any previously indexed line (even if it was not displayed) through the use of the line labels. For example, typing `substitute(7, b, e4)` would substitute 7 for b in the expression (e4) above.

You can also refer to the immediately preceding D-LINE with the system variable `%`.

% default: %

System Variable

Represents the result of the last computation performed at `toplevel`. See Section 1.3.3 for more information.
Care should be taken in cases where an expression containing \% is reevaluated, since the value of \% changes each time a new line is computed. Notice in the example below that the expression referenced by its C-LINE retains its original value, \(x^2\), each time it is referenced. The system variable \% however, does not refer to \(x^2\), but to whatever happens to appear on the previous line, so when it is used repeatedly, its value changes with each new result.

Example

\[
\begin{align*}
(c1) & \ x^2; \\
(d1) & \ x \\
(c2) & \ \text{diff}(d1,x) \\
(d2) & \ 2 \ x \\
(c3) & \ \text{diff}(d1,x); \\
(d3) & \ 2 \ x \\
(c4) & \ x^2\$
\end{align*}
\]

Function

Returns the \(n^{th}\) previous computation. That is, if the next expression to be computed is \((d_j)\) this is \((d_j-n)\).

When using the batch functions, it is inconvenient to keep track of which output line label Macsyma assigns to a computation; yet later command lines often need to refer to an earlier computation. One way to get around this, of course, is to explicitly label some of the command lines. Alternatively, you can refer to previous results using \%th\((n)\) where \(n\) is a positive integer. For example, \%th\((1)\); returns the same thing that \%\ does. \%th\((2)\); returns the result previous to the result returned by \%\.

This is also useful in batch files for referring to a group of D-LINES. For example, \sum(%th(i),i,1,10)\; returns the sum of the last ten D-LINES. See page 404 for information on the function \%\%.

Information intended for human readers of Macsyma code or output is contained in comments. Such information will not be evaluated by Macsyma. Comments can be included in your Macsyma session by enclosing them in */ and */. A comment can be any number of lines long.

1.3.3 Levels of Control

When you enter Macsyma and see the C-LINE prompt, you are at toplevel Macsyma, where most of your work will take place. The command line interpreter is called toplevel. Calls to the evaluator, the simplifier and the display functions take place at this level.

There are a number of ways of leaving Macsyma toplevel, intentionally and otherwise. In some cases action on your part is needed to return you to toplevel, while in others it happens automatically. For example, if you are asked whether an expression is positive, negative or zero, you are returned to toplevel automatically upon answering the question. In this section we are concerned primarily with actions you must take to control the level at which you are working.

When you leave toplevel, you enter a Macsyma break. A break is a pause in a computation. A Macsyma break is a Macsyma input-output handler that is not at toplevel and that is entered for debugging purposes. Hence, it is sometimes called the Macsyma debugger.

Macsyma breaks can be deliberately invoked with the break function (See break, page 448), or can occur when Macsyma encounters an error. Whether an error leads to an error message or a break is controlled by debugmode (See debugmode, page 450).
Recovering from a Macsyma break can be done by typing `toplevel` to reenter `toplevel` with the computation saved (See `toplevel`, page 448); `exit` to return to the interrupted computation (See `exit`, page 449); or `abort` to reenter `toplevel` and abort the interrupted calculation (See `abort`, page 449).

For a full discussion of these and other ways of determining the flow of control, see Section 18.2.

1.4 On-Line Help

The Macsyma on-line help system is designed so that the user can obtain all help on-line, rarely referring to the hardcopy documentation. On-line help is available through keyboard commands and, in recent versions of Macsyma with modern window interfaces, through menu systems.

The keyboard command `help` summarizes the main keyboard commands for obtaining on-line help.

```plaintext
help();
```

Describes the on-line help facilities. The function `help` also appears on the command line as a menu item. To select the menu item `help`, click left or middle on it.

The main on-line help facilities are:

- The interactive primer
- Mathematics topic menus
- MathTips
- Hypertext topic descriptions
- Executable examples and demonstrations
- Function templates
- The `apropos` command

Sometimes you know part of the name of the command you want to use. The `apropos` command may then be of assistance.

```plaintext
apropos(arg)
```

Takes a symbol or a string as an argument and looks through all the Macsyma symbols with `describe` entries for ones with that symbol or string appearing anywhere within them. For example, `apropos(exp);` returns a long list of all the flags and functions that have `exp` as part of their names, such as `expand`, `exp`, and `exponentialize`. If you can only remember part of the name of a command, you can use `apropos` to find the complete name. Similarly, you locate a command or commands dealing with a particular type of expression by using a string which would be mnemonic for that operation. See `find_symbol`, page 451.

The menu system provides access to all of these help options except `apropos`, which is accessible only through the keyboard command at this time.

1.4.1 The Macsyma Primer

The most elementary on-line assistance is the interactive Macsyma `primer`. It is accessible through either:

- The menu item `Help — Primer`
- The keyboard command `primer(scriptname);`
CHAPTER 1. INTRODUCTION TO MACSYMA

Function

`primer(scriptname)`

Type `primer();` to run an interactive tutorial for the novice that includes an introduction to Macsyma syntax, assignment and function definition, and the simplification commands.

The function `primer` accepts an optional argument of `scriptname`, which allows the user to indicate the topic in which they are interested. For example, `primer(syntax);` enters directly at the `syntax` script.

1.4.2 The Mathematics Topic Browser

Sometimes you know what computational task you wish to perform, but you do not know the name of the appropriate Macsyma command. You can explore ways to solve your problem by using these help facilities.

- The Mathematics Topic Browser. You can open the topic browser by clicking on the item `MathHelp` on the main menu bar. In Macsyma 420 the top level topics themselves appear along in the menu bar along the top of the Macsyma Front End Window.
- The MathTips browser (see Section Section 1.4.3).
- The Table of Contents of the *Macsyma Mathematics and System Reference Manual*. This volume has been carefully organized along functional themes so that you can locate commands simply by knowing what mathematical problem or operation you wish to address.

Each mathematics browser topic has a submenu of more narrowly defined topics to choose from. After you select a subtopic, the mathematics browser shows you a list of the most commonly used commands in this topic area. You can then choose to `Describe` the command, to run an executable `Example`, or to open a function `Template`.

On most of the mathematics topic submenus, the last choice is `Packages`, which provides a list of the external packages in Macsyma in the given topical area. When you select `Packages`, the buttons in the resulting window offer a different set of choices for help information: `Describe`, `Usage` (a more in-depth description), and `Demo`.

1.4.3 MathTips Browser

The MathTips browser allows you to choose a topic and subtopic in which you want to perform computations. After you select a subtopic, the MathTips browser presents you with a list of many common computations in that area. Each tip consists of

- A one-line verbal description of the computational task
- An example input to the computation, which appears on the left side of the browser
- The desired output from the computational task, which appears on the right side of the browser
- The command or short program which accomplishes the computational task. This item appears at the bottom of the browser dialog when you select a particular task.

For most MathTips, you can submit the appropriate command sequence to Macsyma by clicking on the button marked `Submit`.

You can open the MathTips browser from inside the mathematics topic browser, using the `Tips` button; or by clicking on `Help | MathTips` on the `Help` menu.

MathTips are not available in Macsyma 419 and successors.
1.4.4 Hypertext Topic Descriptions

Click on the Describe button on a topic menu, to enter the database of hypertext topic descriptions. Alternatively, if you know the name of the command or topic you need to explore, but you are unsure of the calling syntax of the command or exactly how it is used, you can look up the command name by using:

- The menu Help—Index
- The keyboard command `describe(topic);`

Recent releases of Macsyma contain over 2,000 topic descriptions which contain hypertext cross references. If you click your mouse on one of the active words in the text, you will see a description of the topic named by that word. The basic description of any topic can be found by using the `describe` command, and more in-depth information can be accessed by using the `usage` command.

`describe(topic)`
Special Form

Displays a description of `topic`, which can be a command, option, or concept. If `describe` fails to find information about a feature that you think might be present, try using `usage` if it might be an out-of-core feature, or `apropos` to generate other candidates that `describe` might know about.

The `describe` database also includes hypertext. Recent releases of Macsyma contain over 2,000 topic descriptions which contain hypertext cross references. If you click your mouse on one of the active words in the text, you will see a description of the topic named by that word. The basic description of any topic can be found by using the `describe` command, and more in-depth information can be accessed by using the `usage` command.

Additional or local information can be added to `describe`. See `declare_description`, page 439.

In addition, descriptions of topics, packages, functions and options are available through the MathHelp topic browser. The Browser can be opened from the bar at the top of the Macsyma Front End window. The major topics in the MathHelp topic browser are:

- Numbers
- Algebra
- Calculus
- Lists and Arrays
- Matrices
- Parts
- Graphics
- Utilities.

To explore what Macsyma can do in one of these areas, click on the corresponding menu item. Each MathHelp topic has a subordinated menu of more narrowly defined subtopics. After you select a subtopic, you are shown a list of the most common commands in this topic area. You can choose to `describe` the command, run an active `example`, or obtain a Function Template.

In most major topic areas, the last subtopic is “Packages,” which provides a list of the library packages in Macsyma in the given topic area. When you select “Packages,” the buttons offer a different set of choices for help information: `describe`, `usage` (a more in-depth description), and a button `demo` to launch an executable demonstration.
usage\((\text{topic})\)

Function

Prints useful information about \text{topic}, particularly if \text{topic} is an out-of-core file. For example, type usage\((\text{fourier})\); to find out about the \text{fourier} function.

In addition, usage files for topics, packages, functions and options are available through the MathHelp topic browser. The Browser can be opened from the bar at the top of the Macsyma Front End window. The major topics in the MathHelp topic browser are:

- Numbers
- Algebra
- Calculus
- Lists and Arrays
- Matrices
- Parts
- Graphics
- Utilities.

To explore what Macsyma can do in one of these areas, click on the corresponding menu item. Each MathHelp topic has a subordinated menu of more narrowly defined subtopics. After you select a subtopic, you are shown a list of the most common commands in this topic area. You can choose to describe the command, run an active example, or obtain a Function Template.

In most major topic areas, the last subtopic is “Packages,” which provides a list of the library packages in Macsyma in the given topic area. When you select “Packages,” the buttons offer a different set of choices for help information: describe, usage (a more in-depth description), and a button demo to launch an executable demonstration.

You can create your own usage info by placing a file called \text{topic}.usage in one of the directories in your search path. See Section 19.1.2, page 462 for information about setting up your search path.

1.4.5 Executable Examples and Demonstrations

We use the terms example and demo for executable sample programs illustrating two slightly different types of topics in Macsyma.

- An example is a short program illustrating the basic use of one Macsyma command.
- A demo is a longer program illustrating either an application of Macsyma or the use of some external package or major facility in Macsyma.

Recent releases of Macsyma include about 800 examples and 200 demonstrations. In window versions of Macsyma, all of these programs are accessible through the menu system. To see a list of demos in your Macsyma, click your mouse on the menu item Help—Demo a Feature. You can start a Demonstration in several ways:

- Click on the name of a Demonstration in the Help—Demo a Feature list.
- Click on the name of a Demonstration when it appears in the hypertext description of some topic.
- Type demo\((\text{demo name})\);.
demo({*topic*})

Special Form

Initiates an executable demonstration named *topic*. The function **demo** pauses after each command line until you press the **RETURN** key or the **SPACE** bar. In Macsyma 2.0 and its successors, you can click on the **OK** button. To interrupt the **demo**, press any other key. In Macsyma 2.0 and its successors, you can click on **INTERUPT** button to interrupt. An interrupted **demo** can be continued by typing `batcon();`. When the **demo** is finished, it prints `done`.

In Macsyma 2.0 and its successors, a list of demos can be obtained and launched by clicking on Help | Demos and then selecting the demo with the mouse. Demonstrations can be launched from the hypertext help system.

In some versions of Macsyma, typing `demo();$` displays a menu of various executable Macsyma demonstrations. To select a demo from a keyboard menu, type the number of the demo followed by a semicolon. To select a demo from a momentary menu, click left on the name of the demo.

You can create your own demonstration by placing a file called `topic.demo` in the `macsyma:demo;` directory in your Macsyma. See also Section 19.1.2, page 462.

example(commandname)

Special Form

Presests an example of *commandname* in a manner similar to **demo**, pausing after each command until you press the **RETURN** key or the **SPACE** bar. In Macsyma 2.0 and its successors, you can click on the **OK** button. For example, type `example(ode2);` to display an example of the **ode2** function. To interrupt the **example**, press any other key. In Macsyma 2.0 and its successors, you can click on the **INTERUPT** button to interrupt.

You can create your own examples by placing a file called `topic.example` in the example directory in your Macsyma. See also Section 19.1.2, page 462.

pause_prompt default: **Pausing. Type Return to continue.**

Option Variable

This option variable contains the string that Macsyma presents to you when it must pause during a demonstration (**demo**) or because your computation has reached the bottom of the Macsyma Listener (**playback**). To change the pause prompt, assign this option variable to a different string.

Example

(c1) `pause_prompt:"Press SPACE bar or RETURN."$`

(c2) `pause_prompt;`

(d2) Press SPACE bar or RETURN.

You can examine an existing Macsyma demo or example by unpacking its source code with **unpack_topic**.

unpack_topic(topicname {, to_file})

Function

Unpacks source code for examples or demonstrations, so you can access the code for your own use.

Macsyma examples and demonstrations are packed in large files in order to conserve disk space. `unpack_topic("topicname.example");` or `unpack_topic("topicname.demo");` creates a file in the example or demo directory containing the source code for the example or demo named *topicname*.

If you supply a second argument *to_file* to **unpack_topic**, it is used as the destination of the unpacked file.

1.4.6 Function Templates

A Function Template is a dialog box which specifies the arguments to a Macsyma command, indicating which ones are optional. It provides blank spaces for you to fill in as you define your own command. You can obtain a Function-Template for nearly all of the functions and special forms, (but not option variables) which appear in the mathematics topic menus by pressing the button labeled **Template** in the mathematics topic menu dialog box. Recent releases of Macsyma contain function templates for over 400 Macsyma commands.
1.5 Editing Input and Correcting Errors

The methods for editing input differ among the different Macsyma releases:

- Macsyma 2.0 and its successors have advanced methods for editing commands in place.
- Macsyma 417.125 through Macsyma 419 have some inplace editing capabilities and also a Macsyma Input Editor Window.
- Earlier releases of Macsyma have a TECO-like input editor.

1.6 Audio Output

\texttt{beep()}

\textit{Function}

Rings the console bell or flashes the screen if your console does not have audio capabilities.

1.7 Customizing Macsyma Initialization Files

A Macsyma initialization file is a file that contains either Macsyma commands or Lisp forms. These commands often set options, assign variables, define functions, or load packages. There are two kinds of initialization files: system-wide init files, and users’ personal init files.

1.7.1 System-wide Init Files

Macsyma 2.0, releases 417 and successors support a “system-wide” or “machine-wide” Macsyma-init file. The standard logical pathname for such a file is "macsyma:system;init.type" where type can be bin, lisp, or macsyma. See Section 19.1.2, page 462 for information on logical pathnames; see your Release Notes for details on your version of Macsyma. If the system-wide init file exists, then Macsyma will load in that file just before loading in your personal Macsyma-init file. This can be used as the canonical file for users to place any fixes sent via e-mail or for making a Macsyma program available to all users of a system.

1.7.2 Personal Init Files

An initialization file is optional, but if you find yourself frequently using certain commands each time you begin working with Macsyma, you should consider creating one.

The first time you enter Macsyma, the system automatically attempts to load your initialization file. Macsyma looks for this file in your home directory. (Check Release Notes for your version of Macsyma.) The initialization file must have the name macsyma-init, or if you are working in MS-Windows, mac-init, and must be located in your home directory. If you are not sure where your home directory is, you can use the function \texttt{user_homedir_pathname} to find out. The file extension for the initialization file may be either .macsyma, .lisp, or .bin.

There are several ways you can create a Macsyma initialization file:

- Use the special form \texttt{save(filespec, arg1, \ldots, argn)} where \texttt{filespec} is the pathname of a file and \texttt{arg1, \ldots, argn} are arguments such as lists of line labels (or other arguments) that you want to save in the file. See the function \texttt{save} for more information on possible arguments.

For example, to create an initialization file that contains a function \texttt{average} that computes the average of a list of numbers, you could type:

\begin{verbatim}
(c1) average(list):=apply("+",list)/length(list)$
\end{verbatim}
(c2) save("s:/Jdoe/macsyma-init.lis"),c1);
(d2) [s:/Jdoe/macsyma-init.lisp]

- Use the function \texttt{stringout} (\texttt{filespec}, \texttt{a}_1, \ldots, \texttt{a}_n) where \texttt{filespec} is the pathname of a file and \texttt{a}_1, \ldots, \texttt{a}_n are the c-lines (or other arguments) that you want in the file. See page 469 for more information on possible arguments.

For example, to create an initialization file that sets the option variable \texttt{debugmode:true$}, you could type:

(c1) debugmode:true$

(c2) stringout("s:/Jdoe/macsyma-init.macsyma",c1);
(d2) s:/Jdoe/macsyma-init.macsyma

- Use your text editor to create a file containing Lisp forms or Macsyma commands. Save the file using the filename that Macsyma tries to load when you first enter Macsyma; this is usually your home directory.

\textbf{Note:} If you want to use both Macsyma code and Lisp code for your init file, then use the following procedure: Write your init file in Macsyma code. Place a call to \texttt{load} in that file which names another file that contains any Lisp code you need.

If you want to edit an existing initialization file, you'll have to explicitly load it again for the changes to take effect. After you save the file, you can get Macsyma to load that file by typing:

(c1) loadfile("s:/Jdoe/macsyma-init.lisp")$

The next time you reboot your machine and enter Macsyma, your new initialization file is loaded automatically. See \texttt{loadfile}, Section 19.5 or \texttt{load}, Section 19.3.1.
Part I

Mathematical Capabilities of Macsyma
Chapter 2

Basic Mathematical Structures

The focus of nineteenth century mathematics was to define problems and solutions in terms of equations and variables. In the twentieth century, the fundamental paradigm of pure mathematics shifted to sets and mappings: it is generally desirable to describe problems and solutions in terms of sets and mappings between the sets. From good sets-and-mappings descriptions in mathematics, you can usually derive the equations-and-variables description of computational mathematics. Sometimes the sets-and-mappings descriptions entail unnecessary conceptual overhead, and then it is more useful to work directly with equations and variables. While Macsyma provides some facilities for performing basic operations with sets, Macsyma automates primarily the mathematics of equations and variables, which is the heart of computational mathematics.

The Macsyma Mathematics and System Reference Manual describes the main body of Macsyma’s mathematical capabilities. It is organized according to a taxonomy of mathematics, to make it easy for you to find topics. You will also find additional utilities which are useful for mathematical computations (such as pattern matching and assignment of mathematical properties such as even or odd).

2.1 Sets

2.1.1 Basic Operations on Sets

Macsyma’s set package implements the basic primitives of set theory, using Macsyma’s list representation. A set is represented as an irredundant list. Thus \([1, 2, 3, x]\) and \([2, 3, x, y]\) are both sets.

Note: \([2, 3, x, x, y]\) is not a set since it has a redundancy. Sets created by Macsyma have elements in a particular order.

The notation for both input and output of a set is \([\ldots]\) rather than \{\ldots\}. We feel that this ambiguity in notation is desirable. It allows list processing on sets and set processing on lists without the need for conversion.

Note: The arguments to functions in the set package need not be sets—arbitrary lists are acceptable, possibly unsorted and/or redundant. Thus, functions such as \texttt{intersect} (see below) accept arbitrary lists but always return a set. For example,

\begin{verbatim}
(c1) intersect([2,3,2,y,x],[2,3,2,y,y]);
(d1) [2, y]
\end{verbatim}

The functions provided are self-explanatory, so the following brief descriptions should be sufficient. Do \texttt{demo(set)}; for an executable demonstration.
intersection(a, b)
Function
Returns the intersection of a and b, which are sets. The function can be applied to an arbitrary number of arguments.

intersect(a, b)
Function
A synonym for intersection.

union(a, b, c, \ldots)
Function
Returns the union of a, b, c, \ldots, which are sets. The function can be applied to an arbitrary number of arguments.

complement(a, b)
Function
Returns the relative complement of a in b, that is, the set of elements of b which are not in a.

setdifference(a, b)
Function
Returns the set of elements of a which are not in b.

Note: setdifference(a, b) is complement(b, a).

symmdifference(a, b)
Returns the symmetric difference of a and b, which is equal to the union of the set differences: union(setdifference(a, b), setdifference(b, a)).

powerset(s)
Function
Returns the set of all subsets of s, which is a set.

subpowerset$(\text{given}_\text{set}, k)$
Function
Returns a list of all subsets of the set given_set which have exactly k elements. The input given_set must be a list with distinct elements, and k must be a non-negative integer.

setify(l)
Function
Converts the list l to a set. For example, setify([2, x, 2, 3, 8, x]) returns [2, 3, 8, x].

subset(a, f)
Function
Returns the set of elements of a which satisfy the condition f. For example, subset([1, 2, x, x+y, z, x+y+z], atom); results in [1, 2, z] The argument f should be a function of one argument that returns true or false. Here is another example: subset([1,2,7,8,9,14], evenp); returns [2, 8, 14]

setp(l)
Function
Returns true if l is a set, false otherwise.

subsetp(a, b)
Function
Decides whether or not a is a subset of b and returns true or false accordingly.

disjointp(a, b)
Function
Decides whether a and b have no common elements and returns true if so and false otherwise.

canonlt
default: orderlessp
Option Variable
Specifies an order. The default value is orderlessp, which is the default order. The value of canonlt must be a strict total preorder (a function of two arguments that returns true or false such that the associated relation is transitive and irreflexive). It need not be universally well-defined so long as it is well-defined for its arguments. The notion of equivalence is derived from the order notion by the law of trichotomy: Given two objects a and b, exactly one of the following holds:
1. a is less than b.
2. b is less than a.
3. a and b are equivalent.

Note: Equivalence is, in general, weaker than equality. Also, since the default value of `canonlt` is `orderlessp`, it follows that the default notion of equivalence is equality.

Consider the following example. Suppose we define a function h by

```lisp
(c1) h(n):=for i do if n=(2^i)*entier(n/(2^i)) then return(i-1)$
```

Thus h returns the largest positive integer e such that n is divisible by 2^e (n is assumed to be a positive integer). Next define an order function f by:

```lisp
(c2) f(a,b):=is( h(a) < h(b) )$
```

For example, with this order, 9 is less than 2 and 6 is equivalent to 10.

Next we set `canonlt` by

```lisp
(c3) canonlt:f$
```

Then, all functions in the `set` package return the elements of the set sorted, (according to the function f), with all redundancies eliminated.

For example,

```lisp
(c4) setify([6,20,2,9,8,12]);
(d4) [9, 2, 12, 8]
```

2.2 Numbers

Macsyma can handle many different types of numerical quantities. These include integers ($\ldots, -1, 0, 1, 2, \ldots$) rational numbers (that is, fractions having the form a/b where a and b are integers, and $b \neq 0$), and radicals (that is, quantities expressed as the roots of other quantities).

2.2.1 Integers, Rational Numbers, and Radicals

By default, Macsyma uses exact arithmetic, based on integers, rational numbers, radicals and exact transcendental numbers (such as e and π). Macsyma resorts to floating point numbers only when you tell it to do so.

- Macsyma interprets 2 as an exact number, and 2.0 as a floating point number.
- Macsyma treats $\sqrt{2}$ as a transcendental number, equal to no floating point number. To get a floating point value, do `dfloat(sqrt(2))` or use any of the other commands for converting to floating point numbers.
- Macsyma treats the number π (which is represented in input as `%pi`) and the base of natural logarithms e (which is represented in input as `%e`) as transcendental numbers, equal to no floating point number. You can get a floating point value of $\%pi$ by entering `dfloat(%pi)` or use any of the other commands for converting to floating point numbers (see `sfloat`, page 23 and `bfloat`, page 23, etc.).

`integer_print_width` default: 0

Option Variable

Controls the width of the field used to display integers. The value of `integer_print_width` must be an integer: if it is 0, then Macsyma’s default formatting for integers is used. This option variable can be used with fixed width fonts to create columnar tables of numbers.
If it is a positive integer, then a fixed width field of that size is used for the display, including the sign of the number, if any. If the number is shorter than \texttt{integer_print_width} then the number is right-justified in the field, and the left part of the field is padded with spaces. If the number is longer than \texttt{integer_print_width}, then additional width will be used. The number is never shortened.

\texttt{ndigits(expr)} \hspace{1cm} \textit{Function}

The function \texttt{ndigits} counts the number of digits comprising the integer or rational number \texttt{expr}. If \texttt{expr} is a rational number, then \texttt{ndigits} will return the ratio of the number of digits in the numerator to the number of digits in the denominator. If \texttt{expr} is a list or a matrix, \texttt{ndigits} will map itself onto the elements of the list or matrix. This function is useful when doing expression swell analyses.

Do \texttt{demo(complexity);} for a demonstration that includes \texttt{ndigits}.

2.2.2 Floating Point Numbers

2.2.2.1 Predicates Involving Floating Point Numbers

\texttt{floatp(expr)} \hspace{1cm} \textit{Function}

Returns \texttt{true} if \texttt{expr} is a floating point number (\textit{i.e.} single-float or double-float); otherwise it returns \texttt{false}. This name replaces the obsolete name \texttt{floatnump}.

\texttt{sfloatp(expr)} \hspace{1cm} \textit{Function}

Returns \texttt{true} if \texttt{expr} is a single-float else \texttt{false}.

\texttt{dfloatp(expr)} \hspace{1cm} \textit{Function}

Returns \texttt{true} if \texttt{expr} is a double-float else \texttt{false}.

\texttt{bfloatp(expr)} \hspace{1cm} \textit{Function}

Returns \texttt{true} if \texttt{expr} is a bigfloat else \texttt{false}.

\textbf{Note:} In particular, if \texttt{x} is a bigfloat number, \texttt{floatp(x)} is \texttt{false} but \texttt{bfloatp(x)} is \texttt{true}.

\textit{Example}

(c1) \texttt{floatp(1.0, 1.e00, 1.0d0, 1.0b0)};
(c2) \texttt{[true, true, true, false]}

2.2.2.2 Converting To and From Floating Point Numbers

\texttt{float(expr)} \hspace{1cm} \textit{Function}

This function is obsolete. Use \texttt{sfloat} or \texttt{dfloat}.

\texttt{float default: false} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, all rational numbers and bigfloats are converted to floating-point numbers automatically during simplification.

\texttt{bfprecision default: 20} \hspace{1cm} \textit{Option Variable}

Setting \texttt{bfprecision} to \texttt{n} sets the bigfloat precision to \texttt{n} digits.

\texttt{dfloat(expr)} \hspace{1cm} \textit{Function}

Converts integers, rational numbers, single-floats, bigfloats and built-in numerical constants (\textit{i.e.} \texttt{%pi}, \texttt{%e}, \texttt{%phi}, \texttt{%catalan} and \texttt{%gamma}) in \texttt{expr} to double-floats. If your machine does not support double-floats, you'll get single-floats instead.
If `dfloat` does not convert some nested expressions completely, you can use the `scanmap` function:

```lisp
scanmap('dfloat, exp);
```

sfloat(exp)
Function

Converts integers, rational numbers, double-floats, bigfloats and built-in numerical constants (*i.e.* `%pi`, `%e`, `%phi`, `%catalan` and `%gamma`) in `exp` to single-floats.

If `sfloat` does not convert some nested expressions completely, you can use the `scanmap` function:

```lisp
scanmap('sfloat, exp);
```

bfloat(exp)
Function

Converts all numbers and functions of numbers to bigfloat numbers. During float-to-bigfloat conversion, a warning is printed, but it can be inhibited by means of the option variable `float2bf`, described below.

The precision of the bigfloat numbers is controlled by `bfprecision`, also described below. The number of displayed digits of a bigfloat number is controlled by `bfprecision` (*default*: 0).

float2bf
Option Variable

If this option variable is `false`, Macsyma prints a warning message when a floating-point number is converted into a bigfloat number. Conversion may lead to a loss of accuracy in all computations that use the converted value.

For example, typing `bfloat(1.2);` causes Warning: Float to bigfloat conversion of 1.2.

2.2.2.3 Formatting of Floating Point Numbers

always_use_scientific_notation
Option Variable

If set to `true`, then scientific notation will be used in the display and TeXing of all floating point numbers. This is sometimes desirable for uniformity. For example, the number 2300.5 prints in scientific notation as 2.3005e+3.

bfprint_precision
Option Variable

You can compute bigfloats with a precision of `bfprecision` digits and display them with a smaller number of digits – the value of the option variable `bfprint_precision`. If `bfprint_precision` is 0 (the default), or if `bfprint_precision > bfprecision`, then the value of `bfprecision` controls the number of digits used for display. However, if `bfprint_precision` has a value between 2 and `bfprecision`-1, then it controls the number of digits which are displayed. The minimum number of digits displayed is 2, one to the left of the decimal point and one to the right. If the value of `bfprint_precision` is negative, then `bfprecision + bfprint_precision` digits are printed, but at least two. *E.g.*, setting `bfprint_precision:-3$` means that all but the last three digits (but at least two) of a bigfloat number should be printed no matter what `bfprecision` is set to. You cannot set `bfprint_precision` to 1.

float_print_width
Option Variable

Controls the width of the field used to display floating point numbers. `float_print_width` must be an integer: If it is 0, then Macsyma’s default formatting is used.

If it is a positive integer, then a fixed width field of that size is used for the display, including the sign of the number, if any. If necessary, the number is shortened and rounded to fit. If the number is shorter than `float_print_width` then the number is right-justified in the field, and the left part of the field is padded with spaces.

If it is a negative integer, then if necessary, the number, not including its sign, if any, is shortened and rounded to fit. In this case, however, if the number is shorter than `float_print_width` then no special action is taken.
float_print_digits_after_point default: false

Option Variable

Controls the number of digits to print after the decimal point when displaying floating point numbers. The two variables float_print_width and float_print_digits_after_point are essentially independent of one another, but when both are set the settings should be compatible.

The value of float_print_digits_after_point must be false or a non-negative integer. If it is false, then it has no effect. If it is a non-negative integer, then that is the number of digits that will be printed after the decimal point. The option bftrunc has similar output control. See bftrunc on page 353.

2.2.3 Complex Numbers

A complex expression is specified by adding the real part of the expression to \(i = \sqrt{-1} \) times the imaginary part. Thus the roots of the equation \(x^2 - 4x + 13 = 0 \) are \(2 \pm 3i \). Macsyma’s representation for \(i \) is \(%i \).

Examples

(c1) \((\sqrt{-4}+\sqrt{2.25})^2;)\n
(d1) \((2 \ %i + 1.5)\)
(c2) expand(%);\n(d2) \(6.0 \ %i - 1.75\)

You can simplify products of complex expressions by expanding the product. You can use the functions realpart, imagpart, rectform, polarform, cabs, and carg, which are described below, to simplify quotients, roots, and other functions of complex expressions.

The following conventions are used for these functions when they deal with complex variables:

- All variables are assumed to take on real values exclusively unless they are declared to be complex;
- All functions are assumed to be real valued unless they are declared to be complex;
- The complex argument is maintained in the half-open interval \((-\pi, \pi]\) whenever possible;
- The argument of 0 is arbitrarily assumed to be 0, although normally you need not worry about this, since Macsyma simplifies \(0e^{i0}\) to 0;
- Trigonometric functions are normally assumed to take on their principal values.

Note: Simplification of algebraic and transcendental functions of a complex variable may give rise to apparent factors of \(%i \). For example, \(\sqrt{-c+d} \) may be transformed to \(%i*\sqrt{c-d} \).

Do demo(complex); for an executable demonstration of complex arithmetic in Macsyma.

conjugate(x) Function

Returns the complex conjugate of its argument.

cabs(exp) Function

Returns the complex absolute value, or complex modulus, of exp.

carg(exp) Function

Returns the argument or complex phase angle of exp. Due to the conventions and restrictions described above, principal value cannot be guaranteed unless exp is numeric.

Examples

(c1) rectform(sin(2*%i+x));
(d1) \(\cosh(2) \sin(x) + %i \sinh(2) \cos(x)\)
(c2) \(\text{polarform}(\%) \);
\[
\sqrt{\cosh(2) \sin(x) + \sinh(2) \cos(x) + i \, \text{atan2}(\sinh(2) \cos(x), \cosh(2) \sin(x))}
\]
\(e \)
(c3) \(\text{rectform}(\log(3 + 4 \ast i)) \);
\[
\log(5) + \frac{\pi}{3} \, \text{atan}(-)
\]
(c4) \(\text{polarform}(\%) \);
\[
\sqrt{\log(5) + \frac{\pi}{3} \, \text{atan}(4/3) + i \, \text{atan}(---------)}
\]
(c5) \(\text{rectform}((2 + 3.5 \ast i)^{.25}) \);
\[
0.36825883 \, i + 1.3682662
\]
(c6) \(\text{polarform}(d5) \);
\[
0.2629126 \, i
\]
(d6) \(1.4169569 \, e \)

2.2.3.1 Rectangular Form

realpart(exp)

Returns the real part of exp. realpart and imagpart work on expressions involving trigonometric and hyperbolic functions, as well as sqrt, log, and exp.

imagpart(exp)

Returns the imaginary part of the expression exp. The real or imaginary part of an expression of the form \(z^n \), where \(z \) is not purely real, is algebraic if \(n \leq \text{maxposex} \). Otherwise, for compactness, it is expressed as \(|z|^n \cos(n \arg z) \) or \(|z|^n \sin(n \arg z) \).

rectform(exp)

Returns an expression of the form \(a + bi \), where \(a \) and \(b \) are purely real.

rectformlist(expr)

Returns the same answer as does \(\{\text{realpart}(expr), \text{imagpart}(expr)\} \); For most expressions rectformlist is about twice as fast as calling realpart and imagpart separately, since rectformlist (like rectform) computes the realpart and imagpart simultaneously.

(c1) \(\text{rectformlist}(\cos(x + i \ast y)^2) \);
\[
\cos(x) \cosh(y) - \sin(x) \sinh(y),
-2 \cos(x) \sin(x) \cosh(y) \sinh(y)
\]

2.2.3.2 Polar Form

polarform(exp)

Returns \(re^{i \tau} \) where \(r \) and \(\tau \) are purely real.
\begin{verbatim}

\textbf{polarformlist}\((\text{expr}) \) \\
\textit{Function}

Returns the same answer as does \texttt{\texttt{cabs}(expr), carg(expr)}; only about twice as fast. \textbf{polarformlist} (like \texttt{polarform}) computes \texttt{cabs} and \texttt{carg} simultaneously.

\((\text{c1}) \) \texttt{polarformlist(cos(x+%i*y)^2);}
\[
\begin{array}{c}
2 & 2 \\
2 & 2
\end{array}
\]

\((\text{d1}) \) \texttt{[sin(x) sinh(y) + cos(x) cosh(y),}
\[
\text{-2 atan2(sin(x) sinh(y), cos(x) cosh(y))]}\]

\end{verbatim}

\textbf{2.2.4 Continued Fractions}

Do \texttt{demo(contfrac);} for an executable demonstration of continued fractions.

\textbf{cf}\((\text{exp}) \) \\
\textit{Special Form}

Converts \texttt{exp} into a continued fraction. \texttt{exp} is an expression composed of arithmetic operators and lists that represent continued fractions. A continued fraction \(a+1/(b+1/(c+\ldots)) \) is represented by the list \([a, b, c, \ldots] \). \(a, b, c, \ldots \) must be integers. \texttt{cf} binds \texttt{listarith} to \texttt{false} so that it may carry out its function. See Section 7.8.2, page 266. For this reason, \texttt{cf} is a special form. Nevertheless, it does evaluate its argument. \texttt{Exp} may also involve \texttt{sqrt(n)} where \texttt{n} is an integer. In this case the behavior of \texttt{cf} is governed by \texttt{cflength}, described below.

\textbf{cflength} \texttt{default: 1} \\
\textit{Option Variable}

Controls the number of periods of expansion used by \texttt{cf} when called on an expression involving the square root of an integer. The default is to give one period.

\textbf{cfdisrep}\((\text{list}) \) \\
\textit{Function}

Converts the continued fraction represented by \texttt{list} into general representation.

\textit{Example}

\((\text{c1}) \) \texttt{cf([1,2,-3]+[1,-2,1]);}
\((\text{d1}) \) \texttt{[1, 1, 1, 2]}
\((\text{c2}) \) \texttt{cfdisrep(%) ;}
\[
\begin{array}{c}
1 \\
1 + \text{--------} \\
1 + \text{------} \\
1 + \text{--} \\
2
\end{array}
\]

\textbf{cfexpand}\((x) \) \\
\textit{Function}

Returns a matrix of the numerators and denominators of the next-to-last and last convergents of the continued fraction \(x \).

\textit{Example}

\((\text{c1}) \) \texttt{cflength:4, cf(sqrt(3)) ;}
\((\text{d1}) \) \texttt{[1, 1, 2, 1, 2, 1, 2, 1, 2]}
\((\text{c2}) \) \texttt{cfexpand(%) ;}
\[
\begin{array}{c}
[265, 97] \\
[] \\
[153, 56]
\end{array}
\]
\((\text{c3}) \) \texttt{d2[1,2]/d2[2,2],numer ;}
\((\text{d3}) \) 1.73214285
\end{verbatim}
2.2.5 Predefined Constants

A number of common mathematical constants have special names.

%catalan
Special Symbol

Catalan’s constant, which has been variously denoted by, G, and $\beta(2)$. It is unanimously defined to be

\[
\text{inf} \quad \frac{n}{2} \quad \psi(-1) \quad \pi \quad \psi(-1) \\
\text{\%catalan} = \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4} \\
\text{n = 0}
\]

%catalan currently has a **numer** property of $0.9159665\ldots$ and a **constant** property. It is used in the trigamma and dilogarithm simplification routines to permit reduction to closed forms. See Section 3.5.5.2, page 52.

%e
Special Symbol

The base of the natural logarithms. It has a **numer** property of 2.7182817 and a **constant** property. The **numer** property for different versions of Macsyma may differ slightly.

%enumer default: false
Option Variable

When **true**, this option variable causes %e to be converted into floating-point whenever **numer** is **true**. The default is that this conversion takes place only if the exponent in e^x evaluates to a number. The command `ev(%e, numer)` is a special case, where `ev` converts %e to floating-point whether or not **%enumer** is **true**.

%gamma
Special Symbol

The Euler-Mascheroni constant, γ, is used along with the polygamma simplification routines to permit their reduction to closed forms. γ can be defined as follows:

\[
\text{%gamma} = \gamma = \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{1}{n} - \log m \right).
\]

%gamma has a **numer** property of 0.5772157 and a **constant** property. The **numer** property for different versions of Macsyma may differ slightly. For more information on polygamma simplification routines, see page 51.

%i
Special Symbol

The square root of -1. %i has a **constant** property.

%pi
Special Symbol

The transcendental number π. It has a **numer** property of 3.1415927 and a **constant** property. The **numer** property for different versions of Macsyma may differ slightly.

%phi
Special Symbol

%phi, which is equal to $(\sqrt{5} + 1)/2$, has a **numer** property of 1.618034 and a **constant** property. The **numer** property for different versions of Macsyma may differ slightly. If you want the rational function package to know about %phi, do `tellrat(%phi^2-%phi-1);` and `algebraic:true;`. See Section 5.1, page 89, and see Section 5.1, page 89.

The following three symbols, which represent different types of infinity, have meaning only for the functions limit, integrate, sum and product.

inf
Special Symbol

Real positive infinity. **inf** has a **constant** property.
minf

Real minus infinity. \texttt{minf} has a constant property.

infinity

Complex infinity, an infinite magnitude of arbitrary phase angle. \texttt{infinity} has a constant property.

The following two Boolean constants are defined.

true

The Boolean constant, true.

false

The Boolean constant, false.

The following two system variables have \texttt{true} and \texttt{false} for their values:

\texttt{on default: true}

System variable with the value \texttt{true}.

\texttt{off default: false}

System variable with the value \texttt{false}.

2.3 Equations and Inequalities

2.3.1 Equations

An equation is formed by inserting an equal sign (=) between any two expressions. Equations can be added, subtracted, multiplied, or divided by any expression. You can operate on equations just as you would any expression. They can also serve as arguments to functions.

\textit{Examples}

\texttt{(c1) x+1=y^2}
\texttt{(c2) x-1=2*y+1}
\texttt{(c3) d1+d2;}
\begin{align*}
2 \\
\texttt{(d3)} & \quad 2 \ x = y \ + \ 2 \ y \ + \ 1 \\
\texttt{(c4)} & \quad d1/y; \\
\texttt{(d4)} & \quad x + 1 \\
\texttt{(c5)} & \quad 1/y; \\
\texttt{(d5)} & \quad ----- = y \\
\end{align*}

Do \texttt{demo(equations)}; for an executable demonstration of computing with equations in Macsyma.

2.3.2 Inequalities

Macsyma has two commands for the simplification of inequalities.
2.3. EQUATIONS AND INEQUALITIES

<table>
<thead>
<tr>
<th>Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ineqsimp(c + (a >= b));</code></td>
<td>c + a >= c + b</td>
</tr>
<tr>
<td><code>ineqsimp(-2 * (a > b));</code></td>
<td>-2 a < -2 b</td>
</tr>
<tr>
<td><code>ineqsimp((a > b) + (c > d));</code></td>
<td>c + a > d + b</td>
</tr>
<tr>
<td><code>ineqsimp((a > b) + (c >= d));</code></td>
<td>c + a > d + b</td>
</tr>
<tr>
<td><code>ineqsimp((a > b) + (d < c));</code></td>
<td>c + a > d + b</td>
</tr>
<tr>
<td><code>ineqsimp(ineq_reverse(a > b) + (d < c));</code></td>
<td>d + b < c + a</td>
</tr>
</tbody>
</table>

Table 2.1: Results of Operations Applied to Inequalities

ineqsimp(exp)

Simplifies expressions containing inequalities. By “inequalities” we mean “true inequalities” i.e., \(a > b\), \(a < b\), \(a \geq b\) (represented as \(a \geq b\)), \(a \leq b\) (represented as \(a \leq b\)), and \(a \neq b\) (represented as \(a \neq b\)), as well as “equalities”, for example, \(a = b\). For example,

ineq_reverse(ineq)

Reverses inequalities in `ineq`. For example,

\[
\begin{align*}
\text{ineq_reverse(a>b);} & \quad \rightarrow \quad b < a \\
\text{ineq_reverse(a<b);} & \quad \rightarrow \quad b > a \\
\text{ineq_reverse(a=b);} & \quad \rightarrow \quad b \neq a
\end{align*}
\]

Macsyma also has a command to solve linear systems of inequalities. See `ineq_linsolve`, Section Section 5.7.1, page 121.

2.3.3 Boolean Expressions

boolsimp(expr)

(for “Boolean simplification”) takes a boolean expression `expr` containing the operators `and`, `or`, `not` and at most two variables. It then uses the Macsyma rational function package and arithmetic modulo 2 to construct a simple canonical form that has the same truth value as the given input expression. See `demo(boolean)` for an example of how this works.

You must set the Macsyma option variable `prederror` to `false` when using `boolsimp`. This is necessary because Macsyma’s usual truth value analysis is trivariate: \(\text{true, false, unknown}\). See also Section 18.1, page 446.

\[
\begin{align*}
(c1) \quad & \text{boolsimp(true and false)}; \\
(d1) & \quad \text{false} \\
(c2) & \quad \text{boolsimp(x or (not x))}; \\
(d2) & \quad \text{true} \\
(c3) & \quad \text{boolsimp(x or y or (x and y))}; \\
(d3) & \quad x \text{ or y}
\end{align*}
\]

Note: `boolsimp` is restricted to at most two variables.
Chapter 3

Predefined Mathematical Functions

This chapter describes the definitions of predefined mathematical functions in Macsyma. You probably use the common mathematical constants \(\pi \) and \(e \) and trigonometric functions in many of your computations. You can control the operation of these constants and functions with certain option variables in Macsyma, which are also described in this chapter.

3.1 Basic Mathematical Functions

3.1.1 Signs and Absolute Values

\texttt{signum}(\texttt{exp}) \hspace{1cm} \textit{Function}

If \(\texttt{exp} < 0 \) then \texttt{signum} returns \(-1\); if \(\texttt{exp} > 0 \) then \(1 \) is returned, otherwise \(0 \) is returned. If \(\texttt{exp} \) is not numeric then a simplified but equivalent form is returned. For example, \texttt{signum}(-\texttt{exp}) is replaced by \(-\texttt{signum}(\texttt{exp})\).

\texttt{csignum}(\texttt{exp}) \hspace{1cm} \textit{Function}

Returns the complex signum of \texttt{expr}. \texttt{csignum} is defined by

\[
\text{csignum}(z) = \begin{cases}
0 & \text{if } z = 0 \\
1 & \text{if } \Re(z) > 0 \text{ or } \Re(z) = 0 \text{ and } \Im(z) > 0 \\
-1 & \text{if } \Re(z) < 0 \text{ or } \Re(z) = 0 \text{ and } \Im(z) < 0
\end{cases}
\]

(3.1)

In other words, \texttt{csignum}(z) equals \(1 \) if \(z \) is in the right half plane or on the positive imaginary axis; it equals \(-1\) if \(z \) is in the left half plane or on the negative imaginary axis; and equals 0 at the origin. \texttt{csignum} is a natural extension of \texttt{signum} to the complex plane. For real \(z \), \texttt{is(csignum}(z) = \texttt{signum}(z)) \); is \texttt{true}. For all \(z \) (real or complex), \texttt{sqrt}(z^2); returns \texttt{csignum}(z)*z. Also, \texttt{csignum}(-z); returns \texttt{csignum}(z).

\texttt{polysign}(\texttt{exp}) \hspace{1cm} \textit{Function}

Is similar to \texttt{signum} but always returns a numerical result by looking at the numerical factor of the highest degree term in \texttt{exp}.

\texttt{abs}(\texttt{exp}) \hspace{1cm} \textit{Function}

Returns the absolute value of \texttt{exp}. If the expression \texttt{exp} contains \%i, then \texttt{cabs} is called. See Section 2.2.3, page 24. The character used to draw the absolute value symbol is defined by \texttt{absboxchar} (default: \!).

31
abs uses cabs default: true

Option Variable

If this is true, then abs of a complex quantity computes its complex modulus. If this is false, then abs of such a quantity remains as abs. E.g. abs(a+I*b); becomes sqrt(a^2+b^2) (when abs uses cabs:true;) or abs(a+I*b) (when abs uses cabs:false;).

unit_step(x) Function

This function is defined by (1 + signum(x))/2; it returns 0 if x < 0; 1/2 if x = 0; and 1 if x > 0.

unit_ramp(x) Function

This function is defined by (x + abs(x))/2; it returns 0 if x ≤ 0 and x if x ≥ 0.

3.1.2 Delta Functions

kron_delta(a, b) Function

If a = b then 1 else 0.

k_delta(a, b) Function

Semantic Kronecker delta function which evaluates only when a - b contains no nonconstant variables. k_delta can remain in an expression until a - b becomes constant, at which time, k_delta evaluates as follows: if zeroop(a-b); is true then return 1, else return 0. (See Section 8.2.1.8, page 288 for the generalized Kronecker delta.)

For immediate evaluation, use kron_delta. See Section 3.1.2, page 32.

Do example(k_delta); for an example.

delta(exp) Function

The Dirac delta generalized function. Currently, only delint, deltasimp, fourier, ilt and laplace know about the delta function. delta is the symmetric delta function which has half of its weight on each side of zero. However, laplace treats delta as having all of its weight on the positive side of zero.

Do example(delta); for an example.

See also deltasimp, page 32 and delint, page 174.

Example
(c1) laplace(delta(t-a)*sin(b*t),t,s);

Is a positive, negative, or zero?
pos;

(d1) \sin(a b) \%e

deltasimp(exp, var) Function

Performs simplifications on the expression exp, if exp contains Dirac delta functions whose arguments depend on the variable var. For example,

Example
(c4) deltasimp(delta(a*x),x);
(c4) delta(x)/abs(a)

Do example(deltasimp); for an example. See also delint, page 174.

3.1.3 Conversion of Non-Integral Values to Integers

There are four functions for converting non-integers, including floats, bigfloats, and complex numbers, to integers (or Gaussian integers). Each function accepts a non-integer numerical argument and returns an
integer. If the argument is a complex number, the real and ideal parts are converted independently. Table 3.1 shows some simple examples.

<table>
<thead>
<tr>
<th>argument</th>
<th>floor</th>
<th>ceiling</th>
<th>fix</th>
<th>round</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-2/3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 3.1: Examples of floor, ceiling, fix, and round

floor(exp)

Converting its numerical argument by truncating toward negative infinity. That is, floor returns the largest integer that is not larger than exp. This command has the alternative name `entier`. Do example(floor); for an executable example.

See table 3.1.

(c1) floor(3.4);
(d1) 3

ceiling(exp)

Converting its numerical argument by truncating toward positive infinity. That is, ceiling returns the smallest integer that is not smaller than exp. This command has the alias `ceil`. Do example(ceiling); for an executable example.

See table 3.1.

(c1) ceiling(3.4);
(d1) 4

fix(exp)

Converting its numerical argument by truncating toward zero. Do example(fix); for an executable example.

See table 3.1.

(c1) fix(3.9);
(d1) 3

round(exp)

Converting its numerical argument by rounding to the nearest integer. If exp is exactly half way between two integers (e.g. 2.5 or 3.5 or 5/2 or 7/2), then round returns the nearest even integer. Do example(round); for an executable example.

See table 3.1.

(c1) round(3.5);
(d1) 4
(c2) round(4.5);
(d1) 4

Here are some more esoteric examples:

- round(e+%i*pi); returns 3*%i + 3
- floor(asin(3/2)); returns 1 - %i
- round(sin(2+3*%i)); returns 9 - 4*%i
3.1.4 Modular Arithmetic for Real Numbers

nummod(num, den) Function

Computes the periodic sawtooth function which generalizes the remainder and fractional part functions.
For real num and den,
nummod(num, den) gives num - den * floor(num/den).
For example, nummod(6/5, 1) gives 1/5.
Do example(nummod); for more examples.
See also return_nummod, page 44, fix, page 33, mod, page 92.

3.1.5 Square Roots

sqrt(exp) Function

Returns the principal square root of exp. It is represented internally by (exp)^1/2. Automatic simplification of radicals is controlled by radexpand. See Section 3.3, page 37, and Section 3.3.1, page 38.

Example
(c1) sqrt(x^2);
(d1) abs(x)
(c2) sqrt(4)
(d2) 2

Note: sqrt(4); returns 2, not -2.

isqrt(exp) Function

Takes one integer argument and returns the integer square root of its absolute value.

inrt(exp, n) Function

Takes two integer arguments, exp and n, and returns the integer nth root of the absolute value of exp.

Note: that inrt(exp, 2) is equivalent to isqrt(exp).

3.1.6 Maximum and Minimum

min(x_1, ..., x_n) Function

Returns the minimum of its arguments, or a simplified form if some of its arguments are non-numeric.

max(x_1, ..., x_n) Function

Returns the maximum of its arguments, or a simplified form if some of its arguments are non-numeric.

3.2 Exponentials and Logarithms

exp(exp) Function

The exponential function, usually represented as e^x. The expression exp(x); is equivalent to \%e^x.
%emode default: true

When true, \(e^{i\pi x} \) is simplified as follows: it becomes \(\cos(\pi x) + i\sin(\pi x) \) if \(x \) is an integer or a multiple of \(1/2, 1/3, 1/4, \) or \(1/6 \) and thus simplifies further. For other numerical \(x \) it becomes \(e^{i\pi y} \) where \(y \) is \(x-2^k \) for some integer \(k \) such that \(\text{abs}(y) < 1 \). If %emode is false no simplification of \(e^{i\pi x} \) takes place. See also see Section 3.4.3, page 45.

\[\log(exp) \]

The principal branch of the natural logarithm of \(exp \).

Do example(\log); for an example.

\[\text{logb}(base,exp) \]

The logarithm of \(exp \) to base \(base \). For example, \logb(10,100); returns 2 and \logb(b,x); returns \(\log(x)/\log(b) \).

\[\log_{10}(x) \]

\(\log_{10}(x) = \logb(10,x) \) is the base 10 logarithm of \(x \).

\[\text{decibel}(x) \]

\(\text{decibel}(x) = 10 \cdot \log_{10}(x) \) is \(x \) expressed in decibels.

\[\text{logexpand default: true} \]

Controls the simplification of logarithms of products and powers, as shown in table 3.2. The effects of each of the successive settings of \text{logexpand} are cumulative. The simplification rules enabled by a given setting are added to the rules above it. Setting \text{logexpand} to all or to super enables \(\log(\exp(z)) \) to give \(z \), even when \(z \) might be complex. After all, this might even be correct! See also \text{taylor_logexpand}, page 154.

<table>
<thead>
<tr>
<th>Setting of logexpand</th>
<th>Simplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>(\log(1/b)) becomes (-\log(b)) for (b) a positive integer</td>
</tr>
<tr>
<td>true</td>
<td>(\log(a^b)) becomes (b \cdot \log(a))</td>
</tr>
<tr>
<td>all</td>
<td>(\log(a \cdot b)) becomes (\log(a) + \log(b))</td>
</tr>
<tr>
<td>super</td>
<td>(\log(a/b)) becomes (\log(a) - \log(b)) for rational numbers (a/b) with (a \neq 1)</td>
</tr>
</tbody>
</table>

Table 3.2: Controlling the Expansion of Logarithms

\[\text{logsimp default: true} \]

If false, then no simplification of \%e to a power containing logarithms is done.

\[\text{lognumer default: false} \]

If true, then negative floating-point arguments to \text{log} are always converted to their absolute value before the \text{log} is taken. If \text{numer} is also true, then negative integer arguments to \text{log} are also converted to their absolute value.

\[\%e_to_numlog default: false \]

When true, for \(r \) some rational number, and \(x \) some expression, \(e^{r \log x} \) is simplified into \(x^r \). If \(r \) is an integer, this simplification happens by default. This transformation can also be achieved by use of \text{radcan} (which also does more complicated transformations of this kind).
lognegint default: false

If true implements the transformation rule: \(\log(-n) \) becomes \(\log n + i\pi \) when \(n \) is a positive integer.

logcontract\((exp)\) Function

Recursively scans an \(exp \), transforming subexpressions of the form \(a_1 \log(b_1) + a_2 \log(b_2) + c \) into the form \(\log(\text{ratsimp}(b_1^{a_1} * b_2^{a_2}))) + c \). The coefficients that contract in this manner include by default both explicit integers and symbols declared to be integer. However, this can be controlled by means of the option variable logconcoeffp, described below.

logconcoeffp default: false Option Variable

Controls which coefficients are contracted by logcontract. You do this by setting this option variable to the name of a predicate function of one argument. For example, if you like to generate \(\sqrt{\text{s}}\), you can use the predicate in the illustration below.

Examples

\((c1) \) \(2*(a*\log(x) + 2*a*\log(y))\)
\((c2) \) \(\logcontract(y); \)
\((d2) \) \(\quad 2 \quad 4 \)
\((c3) \) \(\logcontract(\log(\sqrt{x+1}+\sqrt{x})) + \log(\sqrt{x+1}-\sqrt{x}); \)
\((d3) \) \(\quad 0 \)
\((c4) \) \(\\text{logconcoeffp}::'\logconfun$ \)
\((c5) \) \(\logconfun(m) := \text{featurep}(m, \text{integer}) \text{ or} \ \text{ratnump}(m)$
\((c6) \) \(\logcontract(1/2*\log(x)); \)
\((d6) \) \(\log(\sqrt{x}). \)

full_logcon default: true Option Variable

Controls how much logcontract expands or rearranges the expression to find contractions. If true, logcontract sorts the expression to enable enhanced contraction opportunities:

\((c1) \) \(2*(a*\log(x) + 2*a*\log(y))\)
\((c2) \) \(\logcontract(y); \)
\((d2) \) \(\quad 2 \quad a \ \log(x \ y) \)

If you set full_logcon: false$, then logcontract will only contract what it sees syntactically in the expression as given.

3.3 Simplification of Exponentials, Logarithms, and Radicals

radcan\((exp)\) Function

Simplifies \(exp \), which can contain logs, exponentials, and radicals, by converting it into a form that is canonical over a large class of expressions and a given ordering of variables; that is, all functionally equivalent forms are mapped into a unique form. For a somewhat larger class of expressions, radcan produces a regular form \([n2]\). Two equivalent expressions in this class do not necessarily have the same appearance, but their difference is simplified by radcan to zero. For some expressions radcan can be quite time consuming. This is the cost of exploring certain relationships among the components of the expression for simplifications based on factoring and partial-fraction expansions of exponents. Because exploring all types of simplifications in which nested radicals can participate is very expensive, radcan sometimes fails to discover simplified forms. For example, radcan is unable to reduce the expression

\[\sqrt{\text{expand}}((1+\sqrt{x})^2)) - (1+\sqrt{x}) \]
to 0 where \(x \geq 0 \). The option variable \%e_to_numlog (default: false) can also be useful. See Section 3.2, page 35.

Examples

(c1) \((\log(x^2+x)-\log(x))^{a/\log(x+1)}(a/2)\);

\[
\frac{2^a}{\log(x + x) - \log(x)}
\]

(d1) \(\frac{a/2}{\log(x + 1)}\);

(c2) radcan(%);

(d2) \(\frac{a/2}{\log(x + 1)}\);

(c3) \(\log(a^{(2*x)+2*a^x+1})/\log(a^x+1)\);

\[
\frac{2^x}{\log(a + 2^a + 1)}
\]

(d3) \(\frac{x}{\log(a + 1)}\);

(c4) radcan(%);

(d4) \(\frac{x}{\log(a + 1)}\);

(c5) \(\%e^{-x-1}/(\%e^{(x/2)+1})\);

\[
\frac{x}{\%e - 1}
\]

(d5) \(\frac{x/2}{\%e + 1}\);

(c6) radcan(%);

(d6) \(\frac{x/2}{\%e - 1}\)

radexpand

default: true

Option Variable

When set to false, this option variable inhibits certain transformations: \(\text{radcan}(%\sqrt{1-x})\) remains \(\sqrt{1-x}\) and does not become \(\%i \sqrt{x-1}\); and \(\text{radcan}(%\sqrt{x^2-2x+1})\) remains \(\sqrt{x^2-2x+1}\) and is not transformed to \(-x+1\). Another way to get the effect of \(\text{radexpand: false}\) is to set \(\text{domain}\) (default: real) to \(\text{complex}\) (see \(\text{domain}\)). This can be overridden by setting \(\text{radexpand}\) to all irrespective of the setting of \(\text{domain}\). If set to all, this option variable causes \(n^{th}\) roots of factors of a product that are powers of \(n\) to be pulled outside of the radical. For example, if \(\text{radexpand}\) is all, \(\sqrt{x^2}\) becomes \(4x\).

Examples

(c1) \(\text{radexpand: true}\)$

(c2) \(\text{sqrt}(x*y)\);

(d2) \(\text{sqrt}(x*y)\);

(c3) \(\text{radexpand: all}\)$

(c4) \(\text{sqrt}(x*y)\);

(d4) \(\text{sqrt}(x) \text{ sqrt}(y)\)

3.3.1 Computing With Radicals

The following functions are useful for denesting multiple square roots. Expressions containing radicals are also simplified by the function \(\text{radcan}\). See Section 3.3, page 36 for a full discussion.
rootscontract(expr)

Function

Converts products of roots into roots of products. For example, \(\text{rootscontract(sqrt(x)*y^(3/2))}\) becomes \(\text{sqrt}(x*y^3)\). The precise behavior of \text{rootscontract} is controlled by \text{rootsconmode}, described below.

Caveat: Care should be taken when using \text{rootscontract} since the transformation it provides is not always valid. E.g. \(\text{rootscontract(sqrt(x)*sqrt(y)-sqrt(x*y))}\) gives 0 which is not valid when \(x = y = -1\). (The correct answer then is \(-2\).)

\text{rootscon_simplifier default: ratsimp}

Option Variable

Determines the simplification function that \text{rootscontract} uses to simplify its result. The option \text{rootscon_simplifier} can be set to the name of any simplification function of one argument.

This is analogous to the \text{taylor_simplifier} variable for \text{taylor}. For example:

<table>
<thead>
<tr>
<th>Expr</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>((c1)) expr: sqrt(a+b)*sqrt(c+d);</td>
<td>(\text{sqrt}(b + a) \text{ sqrt}(d + c))</td>
</tr>
<tr>
<td>((d1)) sqrt(b + a) sqrt(d + c)</td>
<td>(\text{sqrt}((b + a) (d + c)))</td>
</tr>
</tbody>
</table>

If you set \text{rootscon_simplifier} to simplify, you get:

<table>
<thead>
<tr>
<th>Expr</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>((c2)) rootscontract(expr);</td>
<td>(\text{sqrt}(b + a) \text{ sqrt}(d + c))</td>
</tr>
<tr>
<td>((d2)) sqrt(b + a) sqrt(d + c)</td>
<td>(\text{sqrt}((b + a) (d + c)))</td>
</tr>
</tbody>
</table>

simplify(expr)

Function

Invokes the general simplifier on \(expr\). Obviously, \(\text{simplify}(expr)\) is the same as \(expr\); since Macsyma normally simplifies expressions anyway. The function \text{simplify} does not bind \text{simp} to \text{true}.

\text{rootsconmode default: true}

Option Variable

Can be set to \text{false, true} or \text{all}. The effects of these different settings are described in Table 3.3.1. The examples in the table, and more, can be tried out by typing \text{example(rootscontract)};.

When \text{rootsconmode} is \text{false}, \text{rootscontract} contracts only with respect to rational number exponents whose denominators are the same. The key to the \text{rootsconmode:true} examples is simply that 2 divides into 4 but does not divide 3. When \text{rootsconmode:all}, the least common multiple of the denominators of the exponents is determined.

When \text{radexpand} is \text{true} and \text{domain} is \text{real} (their default values), \text{rootscontract} converts \text{abs} into \text{sqrt}. For example, \(\text{rootscontract(abs(x)*sqrt(y))}\) results in \(\text{sqrt}(x*2*y)\).

\text{rootscontract} uses \text{ratsimp} in a manner similar to \text{logcontract} (see page 36).

\text{Example}

<table>
<thead>
<tr>
<th>Expr</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>((c1)) rootsconmode:true$</td>
<td>(\text{true})</td>
</tr>
<tr>
<td>((c2)) rootscontract(sqrt(sqrt(5)*5)-5^(1/4)*sqrt(sqrt(5)+1));</td>
<td>(0)</td>
</tr>
<tr>
<td>((d2))</td>
<td>(0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expr</th>
<th>Value of rootsconmode</th>
<th>Result of applying rootscontract</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{1/2}y^{1/2})</td>
<td>false</td>
<td>((x*y)^{1/2})</td>
</tr>
<tr>
<td>(x^{1/2}y^{1/4})</td>
<td>false</td>
<td>(x^{1/2}y^{1/4})</td>
</tr>
<tr>
<td>(x^{1/2}y^{1/4})</td>
<td>true</td>
<td>((x*y)^{1/2})</td>
</tr>
<tr>
<td>(x^{1/2}y^{1/3})</td>
<td>true</td>
<td>(x^{1/2}y^{1/3})</td>
</tr>
<tr>
<td>(x^{1/2}y^{1/4})</td>
<td>all</td>
<td>((x^{2/3})^{1/4})</td>
</tr>
<tr>
<td>(x^{1/2}y^{1/3})</td>
<td>all</td>
<td>((x^{2/3})^{1/6})</td>
</tr>
</tbody>
</table>

Table 3.3: Simplifying Radicals
denest_sqrt(exp) \hspace{1cm} \textit{Function}

sqrtdenest(exp) \hspace{1cm} \textit{Function}

Denests square roots in the expression \textit{exp} of simple, numerical, binomial surds. The older name \textit{sqrtdenest} is obsolete. \textit{denest_sqrt} performs its transformations once. Sometimes it useful to denest an expression more than once. See also \textit{denest_sqrts}.

denest_sqrts(exp) \hspace{1cm} \textit{Function}

Denests square roots in the expression \textit{exp} of simple, numerical, binomial surds. Sometimes it helps to apply \textit{denest_sqrt} more than once: \textit{denest_sqrts} does this until the expressions stops changing.

\[(c1) \text{denest_sqrts}(408*\sqrt{2}+577)^{(1/24)}; \]
\[1/12 \]
\[(d1) \quad (12 \sqrt{2} + 17) \]
\[(c2) \text{denest_sqrts}(408*\sqrt{2}+577)^{(1/24)}; \]
\[1/3 \]
\[(d2) \quad (\sqrt{2} + 1) \]

\textbf{mlpbranch} \hspace{0.5cm} \textit{default: false} \hspace{0.5cm} \textit{Option Variable}

Directs the simplifier to use the principal branch when simplifying \(-1\) to a power. Quantities such as \((-1)^{1/3}\), which has an \textit{odd} rational exponent, and \((-1)^{1/4}\), which has an \textit{even} rational exponent, are handled as indicated in table \textit{3.4}. The other effects of \textit{domain} (default: \textit{real}) are explained in Chapter 13 on databases.

<table>
<thead>
<tr>
<th>domain:</th>
<th>real</th>
<th>complex</th>
<th>complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlpbranch:</td>
<td>false</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>((-1)^{1/3})</td>
<td>-1</td>
<td>((-1)^{1/3})</td>
<td>\sqrt{3}i/2+1/2</td>
</tr>
<tr>
<td>((-1)^{1/4})</td>
<td>((-1)^{1/4})</td>
<td>((-1)^{1/4})</td>
<td>\sqrt{2}i/2+\sqrt{2}/2</td>
</tr>
</tbody>
</table>

Table 3.4: The Effect of \textit{domain} on Simplification of Rational Exponents

\[\text{%piargs} \hspace{0.5cm} \textit{default: true} \hspace{0.5cm} \textit{Option Variable} \]

Provides automatic simplification of trigonometric functions for some angles of the form \(r\pi\) and \(r\pi + \varphi\), where \(r\) is a rational number. If \textit{true}, the automatic simplification of trigonometric and inverse trigonometric functions is enabled. Expressions of the form \textit{trigfun}(\(r\pi + \varphi\)) are simplified if \(r\) is an integer multiple of \(1/2\) (or \(i/2\), for hyperbolic functions), or if \(\varphi\) is 0 and the result is expressible.
in non-nested radicals. If false, these evaluations are inhibited. Inverse trigonometric functions will reconstruct, where possible, the rational multiples of π, including many cases where radicals are nested. %piargs:all will force trigfun(rπ) into algebraic (probably nested radical) form when r is an integer divided by (8*3*5*17) (or half that, for tan and cot). These are the known cases (excluding iterated half angles, and multiples of π/257 and π/65537) which avoid complex subexpressions. When the denominator of r contains a higher power of 2, yet you still want to obtain (nested) radicals, halfangles:true will force iterated application of the half-angle formulas.

Examples
(c1) [tan(3*%pi/10), sin(3*%pi/10)/cos(3*%pi/10),
 sin(3*%pi/5)/(1+cos(3*%pi/5))];

 %pi
 cos(---)

 %pi sqrt(5) + 1 10
 [cot(--), ---------, -----------]

 5 %pi sqrt(5) - 1
 4 sin(---) 1 - --------

 5 4

(d1) [cot(--), -- , -- , --]

(c2) map('atan, %);

 3 %pi 3 %pi 3 %pi
 [---, ----, ----] 10 10 10

(c3) map('acot, %th(2));

 %pi %pi %pi
 [---, ---, ---]

 5 5 5

(c4) block([%piargs:all], resimplify(%th(3)));

 sqrt(2) (sqrt(5) - 1)
 ------------------------- + 2 sqrt(2)

 2

(d4) [-----------------------------,
 sqrt(sqrt(5) + 5)
 sqrt(2) (sqrt(5) + 1)
 -------------------------, -------------------------]

 (sqrt(5) - 1) sqrt(sqrt(5) + 5)
 sqrt(5) - 1
 2 sqrt(2) (1 - --------)

 4

Table 3.5: Trigonometric Functions and Their Inverses

<table>
<thead>
<tr>
<th>Circular Functions</th>
<th>Inverse Circular Functions</th>
<th>Hyperbolic Functions</th>
<th>Inverse Hyperbolic Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>asin</td>
<td>sinh</td>
<td>asinh</td>
</tr>
<tr>
<td>cos</td>
<td>acos</td>
<td>cosh</td>
<td>acosh</td>
</tr>
<tr>
<td>tan</td>
<td>atan</td>
<td>tanh</td>
<td>atanh</td>
</tr>
<tr>
<td>cot</td>
<td>acot</td>
<td>coth</td>
<td>acoth</td>
</tr>
<tr>
<td>sec</td>
<td>asec</td>
<td>sech</td>
<td>asech</td>
</tr>
<tr>
<td>csc</td>
<td>acsc</td>
<td>csch</td>
<td>acsch</td>
</tr>
</tbody>
</table>
3.4. TRIGONOMETRIC FUNCTIONS

(c5) \text{map(}\text{atan},\%); \quad 3 \quad \pi 3 \quad \pi 3 \quad \pi
\begin{array}{llll}
\text{[---, ---, ---]}
\end{array}
\quad 10 \quad 10 \quad 10

(d5) \text{map(}\text{acot},\%\text{th}(2)); \quad \%\pi \quad \%\pi \quad \%\pi
\begin{array}{llll}
\text{[---, ---, ---]}
\end{array}
\quad 5 \quad 5 \quad 5

\%\text{args default: true} \quad \text{Option Variable}

Provides automatic simplification of trigonometric functions for some angles of the form ix. If \text{true}, this option variable enables the conversion of trigonometric (hyperbolic) functions of expressions proportional to i to hyperbolic (trigonometric) functions. If \text{false}, this conversion is inhibited.

(c1) \sin(\%i*\pi); \quad \%i \sinh(x)
(d1) \%i \sin(\%i*\pi);
(c2) \sinh(\%i*\pi); \quad \%i \sin(x)

\text{atrighswitc}h \quad \text{default: false} \quad \text{Option Variable}

If \text{true}, expresses $\text{asec}(x)$ as $\text{acos}(1/x)$, and $\text{acsc}(x)$ as $\text{asin}(1/x)$. The variable \text{atrighswitc}h is an \text{evflag}.

\text{atrighswitc}h \quad \text{default: false} \quad \text{Option Variable}

If \text{true}, expresses $\text{acosh}(x)$ by convention as $\%i*\text{acos}(x)$, and $\text{asech}(x)$ by convention as $\%i*\text{asec}(x)$. The variable \text{atrighswitc}h is an \text{evflag}.

\text{atan2}(y, x) \quad \text{Function}

Returns the value of $\text{atan}(y/x)$ in the interval $-\pi$ to π.

\text{trigsign default: true} \quad \text{Option Variable}

If \text{true}, this option variable permits simplification of negative arguments to trigonometric functions. For example, $\sin(-x)$ becomes $-\sin(x)$ only if \text{trigsign} is \text{true}.

\text{logarc default: false} \quad \text{Option Variable}

If \text{true}, this option variable causes the simplifier to convert inverse circular and hyperbolic functions to logarithmic form.

\text{logarc}(\text{exp}) \quad \text{Function}

Returns a form of exp in which inverse circular and hyperbolic functions have been converted to logarithmic form.

\text{Examples}
\begin{enumerate}
\item[(c1)] $\sin(\%\pi/7)+\tan(\%\pi/6)$;
\begin{array}{llll}
\%\pi & 1 \\
\sin(---) & + & -------
\end{array}
\quad 7 \quad \text{sqrt}(3)
\item[(d1)]
\item[(c2)] $\text{ev}(\%\text{nume}r)$;
\item[(d2)] 1.011234
\item[(c3)] $\text{diff(atanh}(\text{sqrt}(x))$, $x)$;
\item[(d3)]
\end{enumerate}

\begin{array}{llll}
1 & \quad \text{--------}
\end{array}
\quad 2 \quad (1 - x) \quad \text{sqrt}(x)
(c4) solve(x^2+10^5*x+1);
(d4) [x = - sqrt(2499999999) - 50000, x = sqrt(2499999999) - 50000]

(c5) d4[2],numer;
(d5) x = - 9.99999747378752e-06

(c6) bfloat(d4[2]);
(d6) x = - 9.99999747378752b-6

(c7) bfprecision:25$
(c8) sin(.5b0);
(d8) 4.794255386042030002732879b-1

3.4.2 Other Trigonometric Functions

gd(x) Function
Gudermannian function, 2atan(e^x) - π/2).

agd(x) Function
Inverse Gudermannian function, log (tan(π/4 + x/2)) (which is an indefinite integral of sec x).

vers(x) Function
Versed sine, 1 - cos x.

covers(x) Function
Covered sine, 1 - sin x.

exsec(x) Function
Exsecant, sec x - 1.

hav(x) Function
Haversine, (1 - cos x)/2.

3.4.3 Simplification of Trigonometric Functions

For on-line demonstrations of Macsyma’s capabilities in trigonometry, do demo(trig); and demo(poisson);

trigexpand(exp) Function
Expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in \(\exp \). For best results, \(\exp \) should be expanded. To enhance user control of simplification, this function expands only one level at a time, expanding sums of angles or multiple angles. To obtain full expansion into sines and cosines immediately, set the option variable trigexpand: true.

trigexpand default: false Option Variable
If true, this option variable causes expansion of all expressions containing \(\sin \) and \(\cos \)s occurring subsequently.

halfangles default: false Option Variable
If true, this option variable causes half-angles to be simplified away.

Caveat: halfangles(sin(x/2)); gives sqrt(1-cos(x))/sqrt(2) and halfangles(cos(x/2)); gives sqrt(cos(x)+1)/sqrt(2), but both of these have a sign ambiguity and are only valid for certain \(x \). (For example, the former is valid for \(x \) in \([0,2\pi]\) and the latter for \(x \) in \([-\pi,\pi]\).) The correct answers are signum(sin(x/2))*sqrt(1-cos(x))/sqrt(2) and signum(cos(x/2))*sqrt(cos(x)+1)/sqrt(2), respectively.
3.4. TRIGONOMETRIC FUNCTIONS

halfangles(expr)

Function
Causes a single level of simplification of half-angles in expr without setting the switch or having to reevaluate the expression with ev. Either
\text{infsimplify('halfangles,expr); or ev(expr,halfangles);}
will simplify all levels. For example, \(expr = \sin(x/64) \).

\textbf{trigexpandplus default: true}

Option Variable
Controls the “sum” rule for \texttt{trigexpand}. Thus, when \texttt{trigexpand} is used or the \texttt{trigexpand} option variable set to \texttt{true}, expansion of sums like \(\sin(x+y) \) takes place only if \texttt{trigexpandplus is true}.

\textbf{trigexpandtimes default: true}

Option Variable
Controls the “product” rule for \texttt{trigexpand}. Thus, when the \texttt{trigexpand} command is used or the \texttt{trigexpand} option variable set to \texttt{true}, expansion of products such as \(\sin(2\times x) \) takes place only if \texttt{trigexpandtimes is true}.

Example
\begin{verbatim}
(c1) x+\sin(3\times x)/\sin(x),\texttt{trigexpand=\texttt{true}}, \texttt{expand;}
 \hspace{2cm} 2
(d1) - \sin(x) + 3 \cos(x) + x
\end{verbatim}

(c2) \texttt{trigexpand(\sin(10\times x+y));}
\hspace{2cm} \cos(10 \times x) \sin(y) + \sin(10 \times x) \cos(y)

\textbf{trigr\texttt{reduce}(expr, \texttt{var})}

Function
Combines products and powers of trigonometric and hyperbolic sines and cosines of \texttt{var} into those of multiples of \texttt{var}. It also tries to eliminate these functions when they occur in denominators. If \texttt{var} is omitted then all variables in \texttt{expr} are used. Related material can be found in the description of \texttt{poissimp} (see Section 6.4.1, page 176).

Example
\begin{verbatim}
(c3) \texttt{expand(trigr\texttt{reduce(d1));}}
(d3) \hspace{2cm} 2 \cos(2 \times x) + x + 1
\end{verbatim}

The trigonometric simplification routines use declared information in some simple cases. Declarations about variables are used as shown below.

\textit{Examples}
\begin{verbatim}
(c4) \texttt{declare(e, even, o, odd)}$
\hspace{2cm} 1 \sin(x + (e + 1/2) * \pi);
(d5) \hspace{2cm} \cos(x)
\hspace{2cm} \sin(x + (o + 1/2) * \pi);
(d6) \hspace{2cm} - \cos(x)
\end{verbatim}

\textbf{triginverses default: true}

Option Variable
Controls the simplification of the composition of trigonometric and hyperbolic functions with their inverse functions. If \texttt{true}, the \textit{arcfun(fun(x))} simplification is inhibited. If set to \texttt{all}, then both \texttt{atan(tan(x))} and \texttt{tan(atan(x))} simplify to \texttt{x}. If \texttt{false}, both the \textit{arcfun(fun(x))} and \texttt{fun(arcfun(x))} simplifications are inhibited.

Beware that the value of \texttt{all} is risky when arguments contain unconstrained symbols. The simplification of \texttt{atan(tan(a))} to a is valid only within half a period of the origin. When \(a = 3\pi/4 \) we have \(\tan(3\pi/4) = \tan(-1) = -\pi/4 \). The answer \(3\pi/4 \) (which is \(a \)) would be incorrect, since the range of \texttt{atan} is defined to be \([-\pi/2, \pi/2]\]. \texttt{true} and \texttt{false} are the only settings of \texttt{triginverses}
which are immune to branch errors, and thus preserve the consistency of, e.g.,
\(\texttt{atan(tan(3\pi/4)) = subst(3\pi/4, 'a, atan(tan('a)))} \).
CHAPTER 3. PREDEFINED MATHEMATICAL FUNCTIONS

return_nummod default: false

Option Variable

When triginverses is true, return_nummod controls whether expressions such as $\text{atan}(\text{tan}(x))$ return an expression involving nummod or simply return unchanged. return_nummod is an envflag. See Section 13.1.4, page 373 for a complete list.

Examples:

(c1) triginverses: all

(c2) $\text{atan}2(2-2*\text{sqrt}(3)-4*\text{sqrt}(2),-2*\text{sqrt}(3)-2);$
17 $\%\text{pi}$

(d2)

(c3) $\text{tan}(x);$
(d3) $\text{tan}(x);$

(c4) $\text{atan}2(\text{tan}(z));$ /* no information available on z to simplify */

(d4) $\text{atan}2(\text{tan}(z));$

(c5) /* unless we use NUMMOD */

atn$\text{atan}2(\text{tan}(z));$, return_nummod;

(d5) $\%\text{pi}$$\%\text{pi}$

(c6) $\%\text{pi}$$\%\text{pi}$

(d6) $\%\text{pi}$$\%\text{pi}$

(c7) /* However */

assume(zz>-$\%\text{pi}/2$ and zz<=$\%\text{pi}/2$)$

(c8) $\text{atan}2(\text{tan}(zz));$

(d8) $\text{atan}2(\text{tan}(zz));$

(c9) $\text{atan}2(\text{tan}(4));$

(d9) $\text{atan}2(\text{tan}(4))$

Do demo(trig_angles); and example(nummod); for additional examples.

The following function offers a way to simplify trigonometric functions using identities:

trigsimp(expr)

Function

Employs the identities $\sin^2 x + \cos^2 x = 1$ and $\cosh^2 x - \sinh^2 x = 1$ to simplify expressions containing tan, sec, etc. to sin, cos, sinh, and cosh so that further simplification may be obtained by using trigrreduce on the result.

Examples

(c7) $\text{exp1}2:(1-\text{sin}(x)^2)*\text{cos}(x)/\text{cos}(x)^2+\text{tan}(x)*\text{sec}(x)^2;$

(d7) $\text{sec}(x)*\text{tan}(x) + \text{-------}$$\cos(x)$

(c8) $\text{trigsimp}(\text{exp1});$

(d8) $\text{sec}(x) + \text{-------}$$\cos(x)$

(c9) $\text{exp2}2:(\text{tan}(x)^2+\text{sec}(x)^2)/(1-\text{tan}(x)*\text{sec}(x));$

(d9) $\text{-------} + \text{tan}(x)$

1 - $\text{sec}(x)\text{tan}(x)$
There are a number of ways to explicitly invoke identities such as \(\sin^2(x) + \cos^2(x) = 1 \). The simplest method is substitution. For example,

\[(c10) \text{trigsimp(exp2)};\]

\[
\frac{4}{3} \sin(x) + \sin(x) - 1
\]

\[(d10) \frac{2}{4} \cos(x) \sin(x) - \cos(x)\]

Often you want to recognize that \(\sin^4(x) \) can be transformed using the same rule. For this you need the added power of \texttt{ratsubst}.

\[(c11) \text{d1;}\]

\[
\frac{2}{2} - \sin(x) + 3 \cos(x) + x
\]

\[(d11) \frac{2}{4} \sin(x)^2 + 1 - \cos(x)^2;\]

\[(d12) 4 \cos(x) + x - 1\]

\texttt{ratsubst} performs a \texttt{ratsimp} (and thus an expansion) as well as apply the substitution. Similarly, you can use the functions \texttt{letsimp} and \texttt{defrule} together with additional declarations to define more intricate rules.

Although not as powerful as \texttt{ratsubst}, the \texttt{tellsimpafter} command enables the automatic application of a rule.

\textit{Example}

\[(c13) \text{ratsubst(}1 - \cos(x)^2, \sin(x)^2, \sin(x)^4);\]

\[(d13) \cos(x) - 2 \cos(x) + 1\]

\texttt{tellsimpafter} is a powerful tool for automatically applying substitutions. It can be used in conjunction with other functions to simplify expressions.

\texttt{exp\text{\texttt{onentialize}}} \texttt{ \text{default: false}}

\textit{Option Variable}

If \texttt{true}, this option variable causes all circular and hyperbolic functions to be converted to exponential form.

\texttt{exp\text{\texttt{onentialize}}(\textit{exp})}

\textit{Function}

Returns a form of \textit{exp} in which circular and hyperbolic functions have been converted to exponential form.

\texttt{demoivre} \texttt{ \text{default: false}}

\textit{Option Variable}

If \texttt{true}, this option variable causes \(e^{a+ib} \) to simplify to \(e^a (\cos b + i \sin b) \) if \(b \) is free of \(i \). The values \(a \) and \(b \) are not expanded. See also see Section 3.2, page 35.

\texttt{demoivre(\textit{exp})}

\textit{Function}

Causes the conversion without setting the option variable \texttt{demoivre} or having to reevaluate the expression with \texttt{ev}.
3.5 Special Functions

3.5.1 Special Functions with Closed-Form Symbolic Expressions

Name of Package: `specfun`

`specfun` is a package for computing special functions with closed-form symbolic expressions. The array functions which compute orthogonal polynomials from recurrence relations are stored in a separate file called `specfun2`, so that they can remain uncompiled. `specfun2` is loaded automatically when you load `specfun`.

Two methods for computing special functions are available:

- `special-function(n,x)` (using function syntax) tells Macsyma to compute the function from an explicit formula. Nothing is saved to assist with future evaluations. This method is faster for isolated single evaluations.
- `special-function[n](x)` (using array syntax), tells Macsyma to compute the function from a recurrence relation and store for reuse all the functions `special-function[0]`, ..., `special-function[n]`. When several function evaluations are made, this is much more efficient.

The functional form `special-function(n,x)` often gives a more simplified symbolic result, hence is preferable for general use.

One can change the name of a special function, say `new_legendre` for `legendre_p`, by typing into Macsyma:

```latex
new_legendre(n,x):=subst('%p,nounify('legendre_p),legendre_p(n,x))$
```

The special functions available, and the command syntaxes available for each one, are listed below. In this notation, `n` and `m` must be integers, `n ≥ 0`, and `a`, `b`, `x`, `th` and `ph` are real numbers.

- Chebyshev polynomials $T_n(x)$
 - `chebyshev_t(n,x)`
 - `chebyshev_t[n](x)`
- Chebyshev polynomials $U_n(x)$
 - `chebyshev_u(n,x)`
 - `chebyshev_u[n](x)`
- Gegenbauer polynomials
 - `gegenbauer_c(n,a,x)`
 - `gegenbauer_c[n](a,x)`
- Hermite polynomials
 - `hermite_h(n,x)`
 - `hermite_h[n](x)`
- Laguerre polynomials
 - `laguerre_l(n,x)`
 - `laguerre_l[n](x)`
- Associated Laguerre polynomials
 - `alaguerre_l(n,a,x)`
 - `alaguerre_l[n](a,x)`
- Legendre polynomials, 1st kind
 - `legendre_p(n,x)`
 - `legendre_p[n](x)`
- Legendre polynomials, 2nd kind
 - `legendre_q(n,x)`
 - `legendre_q[n](x)`
- Associated Legendre polynomials, 1st kind
 - `alegndre_p(n,m,x)`
 - `alegndre_p[n,m](x)`
- Associated Legendre polynomials, 2nd kind
 - `alegndre_q(n,m,x)`
 - `alegndre_q[n,m](x)`
- Jacobi polynomials p
 - `jacobi_p(n,a,b,x)`
 - `jacobi_p[n](a,b,x)`
- Spherical Bessel
 - `sbessel_j(n,x)`
 - `sbessel_j[n](x)`
- Spherical Hankel, 1st kind
 - `shankel_h1(n,x)`
 - `shankel_h1[n](x)`
- Spherical Hankel, 2nd kind
 - `shankel_h2(n,x)`
 - `shankel_h2[n](x)`
- Spherical harmonics
 - `sharmonic_y(n,m,th,ph)`
 - `sharmonic_y[n,m](th,ph)`
- Spherical Neumann
 - `sneumann_n(n,x)`
 - `sneumann_n[n](x)`
poly_revert\((\text{test_poly}, x, \text{shape_polys})\)

Function

Returns the list of coefficients needed to express a polynomial *test_poly* in terms of a basis of *shape_polys*.

- *test_poly* is a univariate polynomial in the variable *x*.
- *x* is an atomic variable.
- *shape_polys* is a list of polynomials in order of ascending degree.

No two polynomials on the list should have the same maximal degree.

pochhammer\((n, i)\)

Function

The Pochhammer symbol is equivalent to \(\Gamma(n + i)/\Gamma(n)\). For integer *i*, this expression is computed. In particular, for integer *i* (which is greater than zero), this gives \(n*(n+1)*...*(n+i-1)\). The Pochhammer symbol is usually written as \((n)_i\).

hgfred\((\text{num_list}, \text{denom_list}, \text{arg})\)

Function

Simplifies the hypergeometric function with numerator parameters specified by *num_list*, denominator parameters specified by *denom_list* and argument specified by *arg* and returns a closed-form representation if possible. Otherwise, a result of the form \(\text{hyper}_f\{n, m\}(\text{list}_1, \text{list}_2, \text{arg})\) where \(\text{list}_1\) is a list of length \(n\) and \(\text{list}_2\) is a list of length \(m\) is returned. In general,

\[
\text{hyper}_f\{n, m\}([a_1, \ldots, a_n], [b_1, \ldots, b_m], x) = \sum_{k=0}^{\infty} \frac{(a_1)_k \cdots (a_n)_k}{(b_1)_k \cdots (b_m)_k} \frac{x^k}{k!}
\]

where \((a)_m\) is the Pochhammer symbol, \(\text{pochhammer}(a, m)\).

An error is signalled if *num_list* and *denom_list* are not specified as lists.

Examples

(c1) `hgfred([1], [], x);`

\[
\begin{align*}
1 \\
1 - x
\end{align*}
\]

(d1) `hgfred([], [], x);`

\[
\begin{align*}
x \\
\%
\end{align*}
\]

(c2) `hgfred([1], [2], x);`

\[
\begin{align*}
\text{hyper}_f & \quad ([1, 2], [], x) \\
2, & 0
\end{align*}
\]

Note: The definition of *hyper_f* is provided in the *specfun2* package.

(c4) `load("specfun")$`
(c5) `eval(d3);`

\[
\begin{align*}
\inf & \\
\backslash & n \\
\> & (n + 1)! \times \\
\/
\end{align*}
\]

(d4) `n = 0`
3.5.2 Bessel Functions

Name of Package: \texttt{bessel}

Macsyma’s Bessel function capability includes:

- special argument simplification;
- half integer order formulas for all four Bessel functions ($J_n(z)$, $I_n(z)$, $Y_n(z)$, and $K_n(z)$);
- negative order and argument simplification;
- floating point routines for the Bessel functions $J_n(z)$ (including complex floating point arguments) and $I_n(z)$;
- differentiation formulas for all four Bessel functions.

Bessel functions are sometimes introduced by Macsyma when solving differential equations.

3.5.2.1 Bessel Function of the First Kind

\texttt{bessel_j[nu]}(z) \quad \textit{Function}

This returns the Bessel function $J_{nu}(z)$, of real order nu for complex z.

For $nu \geq 2$ and real x, \texttt{bessel_j[nu]}(x) sets up an array \texttt{bessel_j_array} of $N + 1$ elements, where $N = |nu|$ such that \texttt{bessel_j_array[i]} gives the value of \texttt{bessel_j[i+nu-N]}(x) for $i = 0, \ldots, N$.

For $nu \geq 2$ and complex z, \texttt{bessel_j[nu]}(z) sets up an array \texttt{bessel_j_array} of $N + 1$ elements, where $N = |nu|$ such that \texttt{bessel_j_array[i]}(z) gives the value of \texttt{bessel_j[i+nu-N]}(z) for $i = 0, \ldots, N$.

The obsolete function names \texttt{j0(x)}, \texttt{j1(x)}, and \texttt{jn(x,n)} are still supported, but their use is discouraged.

3.5.2.2 Modified Bessel Function of the First Kind

\texttt{bessel_i[n]}(x) \quad \textit{Function}

This returns the value of the modified Bessel function $I_n(x)$ of order n and real x.

For integer $n \geq 2$ and real x, \texttt{bessel_i[n]}(x) creates an array \texttt{bessel_i_array} which behaves like \texttt{bessel_j_array} described above.

The obsolete function names \texttt{i0(x)}, \texttt{i1(x)}, and \texttt{in(x,n)} are still supported, but their use is discouraged.

Since the modified Bessel function blows up like e^{x} as x tends to infinity, they cannot be evaluated directly for $|x| > 83$ (due to overflow). The following functions avoid this problem:

\texttt{g0(x)} \quad \textit{Function}

Returns $Bessel_i_0(x) \cdot \exp(-\abs(x))$.

\texttt{g1(x)} \quad \textit{Function}

Returns $Bessel_i_1(x) \cdot \exp(-\abs(x))$.

\texttt{gn(x, n)} \quad \textit{Function}

Returns $Bessel_i_n(x) \cdot \exp(-\abs(x))$. The array generated by \texttt{gn} is called \texttt{bessel_i_array}.

3.5.2.3 Complex Bessel Function of Positive Fractional Order

The next series of functions compute Bessel functions of positive fractional order.
bessel(z, a)
Returns the Bessel function \(J \) for complex \(z \) and real \(a > 0 \). It also creates an array \(\text{cbessel}_j_\text{array} \) such that \(\text{cbessel}_j_\text{array}[i] = j \lfloor i + \text{a-entier}(a) \rfloor(z) \).

airy(z)
Returns the Airy function \(\text{Ai} \) of real argument \(x \).

\(\text{nzeta}(z) \)
Returns the complex value of the plasma dispersion function for complex \(z \). It is related to the complex error function by the following formula: \(\text{nzeta}(z) = i \sqrt{\pi} e^{-z^2} (1 - \text{erf}(-iz)) \).

\(\text{nzetar}(z) \)
Returns realpart(\(\text{nzeta}(z) \)).

\(\text{nzetai}(z) \)
Returns imagpart(\(\text{nzeta}(z) \)).

Note: The functions \(\text{nzeta} \), \(\text{nzetar} \), and \(\text{nzetai} \) do not take \texttt{dfloat} or \texttt{bigfloat} arguments.

3.5.2.4 Bessel Function of the Second Kind

\(\text{bessel}_y[nu](z) \)
This represents the Bessel function \(Y_{\nu}(z) \), of real order \(\nu \). Macsyma can perform some simplification of this function.

3.5.2.5 Modified Bessel Function of the Second Kind

\(\text{bessel}_k[nu](z) \)
This represents the Bessel function \(K_{\nu}(z) \), of real order \(\nu \). Macsyma can perform some simplification of this function.

3.5.3 Airy Functions

Name of Package: \texttt{airy}

Original Author: L. P. Harten

\textbf{Description:} Type \texttt{load(airy)}; to load the Macsyma Airy functions. The Airy equation \(y'' - xy = 0 \) for \(y = y(x) \) has two linearly independent solutions, taken to be \(\text{Ai}(x) \) and \(\text{Bi}(x) \). This equation is very popular as an approximation to more complicated problems in many settings in mathematical physics. The numerical method is to use the convergent \texttt{taylor} series for \(|x| < 3 \), and the asymptotic expansions for \(x < -3 \) or \(x > 3 \), as needed. This results in only very minor numerical discrepancies at \(x = 3 \) or \(x = -3 \); for details, see [AbrSte, section 10.4 and Table 10.11].

To get the floating-point Taylor expansions of the functions in this file, type \texttt{ev(taylor(ai(x), x, 0, 9), inferal1)}.

Section 3.5 also contains an Airy function.
ai(x)
ai is the notation for the Airy function of the first kind. If x is a number, the result is a floating-point number. Otherwise, a simplified form is returned if possible. For numeric x, an error occurs if the argument is large enough to cause an overflow in the exponentials or a loss of accuracy in \(\sin \) or \(\cos \). This makes the range of validity about \(-2800\) to \(1.\,e38\). The symbolic derivative is also known.

bi(x)
bi is the notation for the Airy function of the second kind. If x is a number, the result is a floating-point number. Otherwise, a simplified form is returned if possible. For numeric x, an error occurs if the argument is large enough to cause an overflow in the exponentials or a loss of accuracy in \(\sin \) or \(\cos \). This makes the range of validity about \(-2800\) to \(25\). The symbolic derivative is also known.

dai(x)
dai is the notation for the Airy function of the first kind. If x is a number, the result is a floating-point number. Otherwise, a simplified form is returned if possible. For numeric x, an error occurs if the argument is large enough to cause an overflow in the exponentials or a loss of accuracy in \(\sin \) or \(\cos \). This makes the range of validity about \(-2800\) to \(1.\,e38\). The symbolic derivative is also known.

dbi(x)
dbi is the notation for the Airy function of the second kind. If x is a number, the result is a floating-point number. Otherwise, a simplified form is returned if possible. For numeric x, an error occurs if the argument is large enough to cause an overflow in the exponentials or a loss of accuracy in \(\sin \) or \(\cos \). This makes the range of validity about \(-2800\) to \(25\). The symbolic derivative is also known.

Examples
(c1) diff(ai(x),x);
dai(x)
(d1) diff(dai(x),x);
x*ai(x)
(c2) diff(bi(x),x);
bi(x)
(d2) diff(dbi(x),x);
x*bi(x)
(c3) diff(bi(x),x);
bi(x)
(d3) diff(dbi(x),x);
x*bi(x)

3.5.4 Exponential Integrals

The following functions may be introduced by the integrate function.

exp_int(x)
The exponential integral defined by \(\text{Ei}(x) = \int_{-\infty}^{x} \frac{e^t}{t} \, dt \). Do demo(exp_int); for a demonstration.

sin_int(x)
The sine integral defined by \(\text{Si}(x) = \int_{0}^{\infty} \frac{\sin t}{t} \, dt \).

cos_int(x)
The cosine integral defined by \(\text{Ci}(x) = \gamma + \log x + \int_{0}^{x} \frac{\cos t - 1}{t} \, dt \).

sinh_int(x)
The sinh integral defined by \(\text{Shi}(x) = \int_{0}^{\infty} \frac{\sinh t}{t} \, dt \).
3.5. SPECIAL FUNCTIONS

\texttt{cosh_int}(x) \hspace{1cm} \textit{Function}

The \texttt{cosh} integral defined by \(\text{Chi}(x) = \gamma + \log(x) + \int_0^x \frac{\cosh(t) - 1}{t} \, dt \).

\textit{Examples}

(c1) \texttt{integrate(sin(t)/t,t)}; \hspace{1cm} \texttt{sin_int(t)}
(d1) \hspace{1cm} \texttt{sin_int(-x)}; \hspace{1cm} - \texttt{sin_int(x)}
(c2) \texttt{exp_int(-0.5)}; \hspace{1cm} -0.5597735

3.5.5 Other Special Functions

Basic simplification routines for the polylogarithmic functions and the polygamma functions are included. Macsyma uses subscripted notation to be consistent with standard reference texts for these functions.

\textbf{Note:} The existence of a notation does not imply that definitions, numerical or other properties are known to Macsyma.

3.5.5.1 The Polygamma Functions

\texttt{psi}[n](exp) \hspace{1cm} \textit{Function}

The \texttt{psi}[n] function represents the \(n \)th order polygamma function. Following the conventions of [AbrSte],

\[\psi^{(n)}(z) = \frac{d^{n+1}}{dz^{n+1}} \log \Gamma(z) \quad (n = 0, 1, 2, \ldots) \]

The derivative of this function is also provided. Currently, there are no numerical routines for the polygammans. Simplification to closed forms in terms of \texttt{sin}, \texttt{cos}, or \texttt{zeta} functions is possible for \(\texttt{exp} \) a rational number, with \(n = 0 \); or for \(\texttt{exp} \) an integer, or a rational number \(p/q \) with \(q = 2, 3, 4, \) or 6, and with \(n \) integral and greater than \(-1\). These simplifications are controlled by \texttt{maxpsi}posint, \texttt{maxpsi}negint, \texttt{maxpsi}fracdenom, and \texttt{maxpsi}fracdenom.

\texttt{maxpsi}fracdenom \hspace{.5cm} \textit{Option Variable}

The largest \(q \) for which simplification of \(\texttt{psi}[0](p/q) \) occurs. The values of \(p \) and \(q \) must be integers with \(0 < p/q < 1 \).

\texttt{maxpsi}fracnum \hspace{.5cm} \textit{Option Variable}

The largest \(p \) for which simplification of \(\texttt{psi}[0](p/q) \) occurs. The values of \(p \) and \(q \) must be integers with \(0 < p/q < 1 \).

\texttt{maxpsi}negint \hspace{.5cm} \textit{Option Variable}

For \(x < \texttt{maxpsi}negint < 0 \) no closed forms are computed for \(\texttt{psi}[n](x) \). The variable \texttt{maxpsi}negint must be set to integer values.

\texttt{maxpsi}posint \hspace{.5cm} \textit{Option Variable}

The largest value of the integral part of \(x \) for which a closed form for \(\texttt{psi}[n](x) \) is computed. \texttt{maxpsi}posint must be set to integer values.
3.5.5.2 The Polylogarithm Functions

\(\text{li}[n](x) \)

The polylogarithms follow the conventions of Lewin [Lewin81], namely: \(\text{li}_n(x) = \int_0^x \frac{\text{li}_{n-1}(t)}{t} \, dt \), where \(\text{li}_1(x) = -\log(1 - x) \). Macsyma uses \(\text{li}[n](x) \) to represent \(\text{li}_n(x) \).

Simplification to closed forms is provided for \(x = 1 \) or \(-1 \) when \(n \) is an integer. The result involves zeta functions. A closed form is also available for \(\text{li}[2](1/2) \). The derivative of this function is also provided. There is a numerical routine for \(\text{li}[2](x) \) and special fast numeric routines are available for \(\text{li}[2](x) \) and \(\text{li}[3](x) \). Chebyshev expansions are used in the numerical approximations.

The extension for large real values of \(x \) also follows Lewin, namely, when \(\exp \) is greater than unity \(\text{Li}[2](x) \) has \(-i\pi \log x \) as its imaginary part. Currently, this only concerns the numerical routine.

\(\text{li}_2 \text{reflect}(x) \)

The function \(\text{li}_2 \text{reflect} \) implements the reflection formula (A&S, 27.7.3)

\[\text{li}_2(x) = -\log(1 - x) \ast \log(x) - \text{li}_2(1 - x) + \pi^2/6 \]

3.6 Combinatorial and Number-Theoretic Functions

3.6.1 Permutations

\(\text{permutations}(\text{list-of-elements}) \)

This function returns a list consisting of all the permutations of the elements in the list \(\text{list-of-elements} \). The order of the permutations in the returned list is not defined.

\(\text{permutations}_\text{lex}(\text{list-of-elements}) \)

This function returns a list consisting of all the permutations of the elements in the list \(\text{list-of-elements} \). The order of the permutations in the returned list is in lexicographic order.

Examples

(c1) \(\text{permutations([a,b,c])} \);
(d1) \([[a, c, b], [c, a, b], [c, b, a], [a, b, c], [b, a, c], [b, c, a]] \)

(c2) \(\text{permutations}_\text{lex([a,b,c])} \);
(d2) \([[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]] \)

\(\text{permutation_decomp}(\text{permlist}) \)

Decomposes permutation \(\text{permlist} \) into a product of cycles. The permutation provided as input is represented as a list of all the integers from 1 through \(n \). As input, the list \([i_1, i_2, \ldots, i_n] \) represents the permutation \(1 \rightarrow i_1, 2 \rightarrow i_2, \ldots, n \rightarrow i_n \). The output is a list of lists, where each of the inner lists is a cycle. In the output, the list \([i_1, i_2, \ldots, i_k] \) represents the cycle \(i_1 \) goes to \(i_2, i_2 \) goes to \(i_3, \ldots, i_k \) goes to \(i_1 \). The cyclic decomposition is in canonical form, with the lowest integer in each cycle in the first position, and the cycles ordered by their first elements.

The following variables are assigned values by \(\text{permutation_decomp} \):

- \(\text{permutation_index} \) is set equal to the index of the permutation, which is the number of transpositions in the permutation.
- \(\text{permutation_parity} \) is set to \(\text{even} \) or \(\text{odd} \), if the permutation is even or odd.

\(\text{apply_permutation}(\text{permlist}, \text{list1}) \)

Applies the permutation represented by the list \(\text{permlist} \) to the list \(\text{list1} \).
3.6. COMBINATORIAL AND NUMBER–THEORETIC FUNCTIONS

apply_cycles(cycleslist, list1)

Applies the permutation represented by the list of cycles cycleslist to the list list1.

invert_permutation(permlist)

Returns the inverse of the permutation represented by the list permlist.

permult(permlist1, permlist2, \ldots)

Multiplies the permutations represented by the lists permlist1, permlist2, \ldots. The right-most permutations are applied to a list first.

permutation_undecomp(cycleslist)

Converts a list of cycles in normal form back to the undecomposed permutation. This function is the inverse of permutation_decomp.

3.6.2 Gamma Functions

gamma(exp)

The \texttt{gamma} function \(\Gamma(\text{exp})\). For \(n\) a positive integer, \texttt{gamma}(n) = \(\Gamma(n) = (n-1)!\). The simplification of expressions involving \texttt{gamma} is controlled by the option variables \texttt{factorial_limit} and \texttt{gammalim}, described below. For other routines related to factorials, see Section 3.6.

gamma_reflect(z)

The function \texttt{gamma_reflect} implements the reflection formula
\[
\Gamma(z) = \pi / (\Gamma(1-z) * \sin(\pi z)).
\]

fact_reflect(z)

The function \texttt{fact_reflect} implements the reflection formula (A&S, 6.1.17)
\[
z! = -\pi / ((-z-1)! * \sin(\pi z)).
\]

gamma(arg1, arg2)

\texttt{gamma}(a,x) is one variant of the incomplete Gamma function and is defined as \(\int_a^\infty e^{-t} t^{a-1} dt\). It is related to the Gamma function by \texttt{gamma}(a) = \texttt{gamma}(a,0).

gammalim default: 1000000

Controls simplification of the \texttt{gamma} function for integral and rational number arguments. If the absolute value of the argument is not greater than \texttt{gammalim}, then simplification occurs.

Note: \texttt{factorial_limit} controls simplification of the result of \texttt{gamma} of an integer argument as well.

Name of Package: cgamma

Description: Type \texttt{load(cgamma)}; to load the complex Gamma functions. The functions \texttt{cgamma}, \texttt{cgamma2}, and \texttt{logcgamma2} evaluate the Gamma function in the complex plane using the Kuki algorithm (CACM Algorithm 421). The algorithm provides for an error estimate, but the implementation does not currently use it. Calculations are performed in single precision and the relative error is typically around 1.0e-7.

cgamma(arg)

Returns the value of Gamma function in the complex plane, at \texttt{arg}. The expression \texttt{arg} can be symbolic or numeric. With symbolic arguments, it returns as is; with real floating or rational arguments, it uses the function \texttt{gamma}; and with complex numeric arguments, it uses the Kuki algorithm.
\textbf{cgamma2}(\texttt{real, imag}) \quad \text{Function}

Evaluates the Gamma function somewhat more efficiently than \texttt{cgamma}. It takes two arguments, \texttt{real} and \texttt{imag}, which must be numeric.

\textbf{log_cgamma2}(\texttt{real, imag}) \quad \text{Function}

Calculates the log-gamma function in the complex plane. It takes two arguments, \texttt{real} and \texttt{imag}, which must be numeric.

\textit{Examples}

(c1) \texttt{cgamma(1)};
(d1) 1

(c2) \texttt{cgamma(4)};
(d2) 6

(c3) \texttt{cgamma(3/2)};
(d3) \texttt{sqrt(\%pi)}

(c4) \texttt{cgamma(x)};
(d4) \texttt{cgamma(1+\%i)};
(d5) 0.4980156681183561d0 - 0.1549482830181062d0 \%i

\subsection{3.6.3 Factorial and Related Functions}

\textbf{factorial}(\texttt{exp}) \quad \text{Function}

The factorial function, \texttt{factorial(exp) = exp!}.

Factorials of numbers are expanded automatically, subject to \texttt{factorial_limit}. When the factorial of a rational number is expanded, it is written in terms of the factorial of a number between zero and one.

\textbf{Note} \quad (1/2)! is expanded to $\sqrt{\pi}$.

(c1) \texttt{10!};
(d1) 3628800

(c2) \texttt{(10+1/2)!};
(d2) \texttt{13749310575 sqrt(\%pi)}

(c3) \texttt{(10+1/3)!};
(d3) \texttt{528271744000 (-)!}

\texttt{factorial_limit} default: \texttt{false} \quad \text{Option Variable}

If numeric, inhibits the automatic expansion of $x!$, when x is integer or rational, and $|x| > \texttt{factorial_limit}$. Thus, a negative value disables all rational factorials. This also allows \texttt{block([factorial_limit:69, minfactorial(999999!/1000001!)])} to obtain 1/1000001 “the easy way”.

\texttt{gamma2}(\texttt{real, imag})

\texttt{log_gamma2}(\texttt{real, imag})

\texttt{factorial}(\texttt{exp})

\texttt{factorial_limit} default: \texttt{false}
3.6. COMBINATORIAL AND NUMBER–THEORETIC FUNCTIONS

genfact(x, y, z)
Function

Is the generalized factorial of x which is: \(x(x - z)(x - 2z) \cdots (x - (y - 1)z)\). Thus, for integral n, \(\text{genfact}(n, n, 1) = n!\) and \(\text{genfact}(n, n/2, 2) = n!!\).

binomial(x, y)
Function

The binomial coefficient \(\binom{x}{y} = x! / ((x - y)!y!) = x(x - 1) \cdots (x - y + 1)/y!\). If x and y are integers, then the numerical value of the binomial coefficient is computed. If y, or the value x - y, is an integer, the binomial coefficient is expressed as a polynomial.

binomial_modulus
Option Variable

If set to a positive integer, will serve as the modulus by which the results of \text{binomial}(\text{integer}, \text{positive_integer})\ are reduced. For large integers, this is dramatically faster than taking \text{mod} of a large intermediate binomial coefficient. It also differs from \text{mod} by returning a nonnegative residue, instead of the residue nearest 0.

combination(n, r)
Function

The number of combinations of r objects taken from a population of n objects. combination(n, r) = \(\binom{n}{r} = n! / r! / (n - r)!\).

permutation(n, r)
Function

The number of permutations of r objects taken from a population of n objects. permutation(n, r) = \((n)_r = n! / (n - r)!\).

beta(x, y)
Function

This is the same as \(\Gamma(x) \Gamma(y)/\Gamma(x + y)\). When \text{beta.args.sum.to.integer} is set to \text{true}, then simplification of the beta function with integer arguments is performed.

Name of package: \text{bffac}

Original Author: R. W. Gosper

bffac(exp \{,n\})
Function

\text{bffac} version of the factorial (shifted Gamma) function. The second argument n [default: \text{bfprecision}] gives the number of digits to retain and return. It is best to request a few extra digits beyond what you desire.

cbffac(z \{,n\})
Function

\text{cbffac} version of the factorial (shifted Gamma) function for complex expressions. The second argument n (bound to \text{bfprecision}) gives the number of digits to retain and return. It is best to request a couple of extra digits.

stirling(expr \{,vars\})
Function

Use Stirling’s formula for z! and \text{gamma}(z), which are approximately equal for large z. Function \text{stirling} uses only the first term in Stirling’s asymptotic series (see [AbrSte, page 257]), \(z! \sim \sqrt{2\pi z} z^z e^{-z} S(z)\), where

\[
S(z) = 1 + \frac{1}{12z} + \frac{1}{288z^2} - \frac{139}{51840z^3} - \frac{571}{2488320z^4} + \ldots
\]

For example, the input \text{stirling}(z!,z);\ becomes \text{sqrt(2)}*\text{sqrt(\%pi)}* %e^((z+1/2) * \text{log(\%z)}-z) and \text{stirling}('\text{gamma}(z),z);\ becomes \text{sqrt(2)}*\text{sqrt(\%pi)}* %e^((z-1/2)*\text{log(\%z)}-z). Each of these can be converted to the \(z^{z+1/2}\) form by doing \text{block}([\text{ratexpand:true}, \text{radcan(stirling(expr, z))}];\).

The function \text{stirling} takes any expression and, if called on one argument, converts all factorials and gammas of one argument appearing in that expression as shown above. If given more than one argument, only such factorials and gammas which contain any of the auxiliary arguments (variables) are converted.
3.6.4 Simplification of Factorials

\texttt{factcomb}(\textit{exp}) \quad \textit{Function}

Tries to combine the coefficients of factorials in \textit{exp} with the factorials themselves by converting, for example, \((n+1)!n!\) into \((n+1)!\).

\texttt{sumsplitfact} \quad \textit{default: true} \quad \textit{Option Variable}

If set to \texttt{false}, this option variable causes \texttt{minfactorial} to be applied after a \texttt{factcomb}.

\texttt{Examples}
\begin{verbatim}
(c1) (n+1)\^2*\texttt{n!}\^2;
 \hline
 \hline
 2 2
 \hline
 (d1) \hspace{1cm} (n + 1) \texttt{n!}
 \hline
 (c2) \texttt{factcomb}(%);
 \hline
 2
 \hline
 (d1) \hspace{1cm} (n + 1)!
 \hline
\end{verbatim}

\texttt{makefact}(\textit{exp}) \quad \textit{Function}

Transforms occurrences of \texttt{binomial}, \texttt{gamma}, and \texttt{beta} functions in \textit{exp} to factorials.

\texttt{makegamma}(\textit{exp}) \quad \textit{Function}

Transforms occurrences of \texttt{binomial}, \texttt{factorial}, and \texttt{beta} functions in \textit{exp} to \texttt{Gamma} functions.

\texttt{minfactorial}(\textit{exp}) \quad \textit{Function}

Examines \textit{exp} for occurrences of two factorials which differ by an integer. It then turns one into a polynomial times the other.

\texttt{Examples}
\begin{verbatim}
(c1) \texttt{n!/(n+1)!};
 \hline
 \hline
 \texttt{n!}
 \hline
 (d1) \hspace{1cm} \texttt{(n + 1)!}
 \hline
 (c2) \texttt{minfactorial}(%);
 \hline
 1
 \hline
 (d2) \hspace{1cm} \texttt{n + 1}
 \hline
\end{verbatim}

3.6.5 Riemann Zeta and Related Functions

\texttt{zeta}(\textit{exp}) \quad \textit{Function}

Returns the Riemann Zeta function for \textit{exp}. If \texttt{zeta}\%\texttt{pi} is \texttt{true}, then the simplifications shown in Table 3.6 occur.

\texttt{zeta}\%\texttt{pi} \quad \textit{default: true} \quad \textit{Option Variable}

If \texttt{false}, this option variable inhibits the automatic simplification of \texttt{zeta}(\textit{n}) for \textit{n} even. See Table 3.6.

\texttt{zeta_reflect}(\textit{z}) \quad \textit{Function}

The function \texttt{zeta_reflect} implements the reflection formula (A&S, 23.2.6)
\[
zeta(s)! = 2^s \pi^{s-1} \sin(\pi s/2) \Gamma(1 - s) \Gamma(1 - s)
\]
zeta\text{deriv}(x\{,n\})

The function \text{zeta\text{deriv}} returns the derivative of the Riemann Zeta function of order \(n\) at the point \(x\). The argument \(x\) is a real or complex single float, double float, or bigfloat number, and \(n\) is a non-negative integer. If \(n\) is not specified, it defaults to 1.

Do \text{example}(\text{zeta}); for an example.

\text{bfzeta}(\text{exp}, n)

The function \text{bfzeta} is the \text{bf\text{float}} version of the Riemann Zeta function. The first argument to \text{bfzeta} must be a bigfloat real or complex number. The second argument, \(n\), bound to \text{bf\text{precision}}, indicates the number of digits to retain and return. It is best to request a couple of extra digits.

\text{bfpsi}(order, z, n)

Gives polygammas of real argument \(z\) and integer \(order\) and precision \(n\), (bound to \text{bf\text{precision}}). For digamma, \text{bfpsi}(0,z,n) is more direct.

\text{bfhzeta}(s, h, n)

The Hurwitz Zeta function. It gives \(n\) (bound to \text{bf\text{precision}}) digits \(\sum((k+h)^{-s}, k, 0, \text{inf})\).

\text{harmonic}(\text{nterms}, \{\text{power}, \text{start}\})

Equivalent to \(\sum_{k=1}^{\text{nterms}} \frac{1}{(\text{start} + k - 1)^{\text{power}}}\), except capable of invoking polygammas and Bernoulli polynomials in case of (possibly unknown) integer powers of known sign. The default value for each of the optional parameters \text{power} and \text{start} is 1.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\text{s} & \text{zeta}(s) \\
\hline
2n & \((-1)^{n+1}(2\pi)^{2n}|B_{2n}|/2(2n)!\) \\
0 & \(-\frac{1}{2}\) \\
-2n & 0 \\
1 - 2n & \(-B_{2n}/2n\) \\
\hline
\end{tabular}
\caption{Automatic simplification of Riemann's Zeta function (\(n\) must be an explicit integer).}
\end{table}
(c4) harmonic(3, x, 4);
 1 1 1
(d4) -- + -- + --
 x x x
 6 5 4
(c5) harmonic(x, 1-abs(odd), 0);
 bernpoly(x, abs(odd)) - bern(abs(odd))
(d5) --
 abs(odd)
(because abs(odd) is a positive integer)
(c7) harmonic(1/2, 3, 1/4);
(d7) 3
This last computation is the same\(^1\) as \(\sum (k^{1/3}, k, 1/4, \text{inf}) - \sum (k^{1/3}, k, 3/4, \text{inf})\).

3.6.6 Number–Theoretic Functions

3.6.6.1 Prime Numbers

prime(n)
Function

Gives the \(n\)th prime. We have \(\text{prime}(1) = 2\) and \(\text{prime}(10^{-13}) = 323780508946309\). For large \(n\) (e.g. \(x > 10^9\)) \text{prime} can consume \(O(n^{1/3})\) time and \(O(n^{1/2})\) space. Closely spaced (or repeated) primes, however, come cheaply, after the first.

prime_pi(x)
Function

This is the \(\pi(x)\) function from number theory, which counts the number of primes less than or equal to \(x\). We have \(\text{prime}_\pi(1) = 0\), \(\text{prime}_\pi(\pi) = 2\) and \(\text{prime}_\pi(323780508946309) = 10^{-13}\). That is, \(\text{prime}_\pi(\text{prime}(n))\) returns \(n\), and \(\text{prime}(\text{prime}_\pi(n))\) is the largest prime less than or equal to \(n\). For large \(x\) (e.g. \(x > 10^{10}\)) \(\text{prime}_\pi(x)\) can consume \(O(x^{1/3})\) time and \(O(x^{1/2})\) space, but closely spaced (or repeated) \(x\) come cheaply, after the first.

3.6.6.2 Bernoulli and Euler Functions

bernpoly(v, n)
Function

Returns the \(n\)th Bernoulli polynomial in the variable \(v\). The input \(v\) need not be atomic. See also bern, page 58.

eulerpoly(v, n)
Function

Returns the \(n\)th Euler polynomial in the variable \(v\). The input \(v\) need not be atomic. See also euler, page 59.

bern(n)
Function

Returns the \(n\)th Bernoulli number for integer \(n\). The method of counting the Bernoulli numbers is determined by the option variable zerobern, described below. See also bernpoly, page 58.

\[^1\]If \(I = \sum_{k=1}^{1/2} \frac{1}{(k - \frac{3}{4})^3}\), then, by a linear shift, \(I = \sum_{h=1/4}^{-1/4} \frac{1}{h^3}\). Using the rule that \(\sum_{h=a}^{c} \sum_{b+1}^{c} = \sum_{a}^{c} \sum_{a}^{c}\) we can then show that

\[
I = \sum_{h=1/4}^{c} \frac{1}{h^3} - \sum_{k=-3/4}^{c} \frac{1}{h^3}.
\]
burn\((n) \)

Finds isolated Bernoulli numbers faster than \(\text{bern}(n) \); when \(n > 105 \) or so.

\(\text{eu} ler(n) \)

Returns the \(n^{th} \) Euler number for integer \(n \). The method of counting the Euler numbers is determined by the option variable \texttt{zerobern}, described below. See also \texttt{eu} ler\texttt{poly}, page 58.

\texttt{zerobern} \hspace{1em} \texttt{default: true} \hspace{1em} \texttt{Option Variable}

If this option variable is set to \texttt{false}, Macsyma excludes the zero Bernoulli and Euler numbers.

3.6.6.3 Fibonacci Numbers

\(\text{fib}(n) \)

The \(n^{th} \) Fibonacci number, \(F_n \). As usual, \(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} \), and \(F_{-n} = (-1)^{n+1}F_n \).

\texttt{prevfib} \hspace{1em} \texttt{default: prevfib} \hspace{1em} \texttt{Option Variable}

\texttt{prevfib} is the Fibonacci number preceding the last one computed.

\(\text{fibto} \phi(n) \)

Converts \(\text{fib}(n) \) to its closed form definition. This involves the constant \(\%\phi \). See Section 2.2.5, page 27.

3.6.6.4 Other Number-Theoretic Functions

\(\text{divsum}(n, \{k\}) \)

Adds up all the factors of \(n \) raised to the \(k^{th} \) power where \(k \) is a nonnegative integer. If only one argument is given, then \(k \) is assumed to be 1.

\(\text{totient}(n) \)

Is the number of integers less than or equal to \(n \) that are relatively prime to \(n \).

\(\text{jacobi}(p, q) \)

Is the Jacobi symbol of \(p \) and \(q \).

\(\text{numpartitions}(n) \)

The number of ways to partition a positive integer.

\(\text{numpartitions}[n] \)

The number of ways to partition a positive integer.

\(\text{qunit}(n) \)

Returns the principal unit of the real quadratic number field \(\sqrt{n} \), where \(n \) is an integer. This is the element whose norm is unity. This amounts to solving Pell’s equation \(a^2 - nb^2 = 1 \).

\textit{Example}

\[
\begin{align*}
(\text{c1}) & \quad \text{qunit}(17); \\
(\text{d1}) & \quad \sqrt{17} + 4 \\
(\text{c2}) & \quad \text{expand}(%*(\sqrt{17} - 4)); \\
(\text{d2}) & \quad 1
\end{align*}
\]
3.7 Statistical and Probability Functions

Macsyma provides several types of statistics and probability functions:

1. Functions for random numbers. See Section 3.7.1, page 60.
2. Functions which provide elementary descriptive statistics of data sets. See Section 4.1, page 75.

Do `demo(stats);` for a demonstration of statistics functions.
For fitting numerical data to functions, see Section 4.2, page 77.

3.7.1 Random Numbers and Error Functions

`random(n)`

Function

Returns a random number between zero inclusive and `n` exclusive. A uniform distribution is used. The input `n` must be a positive integer or floating point number. If `n` is an integer, then `n` can be no larger than `most_positive_fixnum`.

If no input argument is given, `random()`, returns a random integer between `most_negative_fixnum/2` and `most_positive_fixnum/2`.

`random_array(x, N)`

Function

Computes `N` random numbers between 0 and 1 using a universal random number generator which returns uniformly distributed numbers in the array `x`. The universal random number generator used here passes all of the tests for random number generators and has a period of 2^{144}, is completely portable (gives bit identical results on all machines with at least 24-bit mantissas in the floating point representation). The algorithm is a combination of a Fibonacci sequence (with lags of 97 and 33, and operation “subtraction plus one, modulo one”) and an “arithmetic sequence” (using subtraction). The number generator must be initialized by calling `random_array_init` with an optional list of length 2 for seeds.

`random_array_init({seedlist})`

Function

Initializes the universal random number generator `random_array`. The optional argument seedlist (default: [1802, 9373]) can be used to initialize the random number generator. The first element `IJ` must be such that $0 \leq IJ \leq 31328$ while the second element `KL` must be such that $0 \leq KL \leq 30081$.

`erf(x)`

Function

The error function, whose derivative is $2e^{-x^2}/\sqrt{\pi}$. Function `erf` can be used with complex arguments, with a numerical procedure available for complex single-float arguments.

`inv_erf(x)`

Function

The inverse function of the error function `erf(x)`.

`werf(z)`

Function

The definition of `werf`, the error function of complex argument, is: $\text{werf}(z) = e^{-z^2}(1 - \text{erf}(-iz))$.

Note: The functions `erf` and `werf` do not take `dfloat` or `bigfloat` arguments.
gauss(mean, sd)

Returns a random floating-point number from a normal distribution with mean mean and standard deviation sd.

3.7.2 Probability Functions for Discrete Distributions

beta_binomial_density(x,n,α,β)

The function `beta_binomial_density` is defined for \(x \geq 0, \alpha \geq 0, \beta \geq 0 \) and is equal to \(\binom{n}{x} \frac{\Gamma(\beta + \alpha) \Gamma(n + \beta - x) \Gamma(x + \alpha)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(n + \alpha + \beta)} \).

beta_binomial_distrib(x,n,α,β)

The function `binomial_distrib` is the cumulative beta-binomial distribution function, equal to \(\sum(\text{beta_binomial_density}(i,n,\alpha,\beta),i,0,x) \).

binomial_density(x,n,p)

The function `binomial_density` is the binomial density function, sometimes called the Bernoulli density function. The probability that an event will occur \(x \) times in \(n \) tries, where \(p \) is the probability that an event will occur in a single try. The probability density function is given by \(f(x) = \binom{n}{x} (1 - p)^{n-x} p^x \).

binomial_distrib(x,n,p)

The function `binomial_distrib` is the cumulative binomial distribution function, equal to \(\sum(\text{binomial_density}(i,n,p),i,0,x) \).

geometric_density(x,p)

The geometric density function is defined for \(x > 0 \) and \(0 < p \leq 1 \) and is equal to \((1 - p)^x p \).

geometric_distrib(x,p)

The cumulative distribution function for the geometric density is equal to \(\sum(\text{geometric_density}(i,p),i,0,x) \).

hypergeometric_density(x,m,k,n)

The hypergeometric density function. For \(0 < x \leq n, m > 0, 0 \leq k \leq m, 0 < n \leq m \), all integers, this equals \(\frac{\binom{k}{x} \binom{m-k}{n-x}}{\binom{m}{n}} \).

hypergeometric_distrib(x,m,k,n)

The cumulative distribution function for the hypergeometric density, equal to \(\sum(\text{hypergeometric_density}(i,m,k,n),i,0,x) \).

logarithmic_density(x,p)

The logarithmic density function is defined for integer \(x > 0 \), and \(0 < p < 1 \), It equals \(\frac{(1 - p)^x}{x \log(p)} \).
\texttt{logarithmic_distrib}(x,p) \quad \text{Function}

The cumulative distribution function for the logarithmic density, equal to
\(\text{sum(logarithmic_density}(i,p), i, 0, x) \).

\texttt{negative_binomial_density}(x,r,p) \quad \text{Function}

The negative binomial density function. For \(x \geq 0 \), \(r > 0 \) and \(0 < p < 1 \) all integers, this equals
\((1-p)^x p^r \left(\frac{x+r-1}{x} \right) \).

\texttt{negative_binomial_distrib}(x,r,p) \quad \text{Function}

The cumulative distribution function for the negative binomial density, equal to
\(\text{sum(negative_binomial_density}(i,r,p), i, 0, x) \).

\texttt{poisson_density}(x,\lambda) \quad \text{Function}

The function \texttt{poisson_density} is the Poisson density function, equal to
\(f(x) = \frac{\lambda^x e^{-\lambda}}{x!} \)

where \(\lambda > 0 \).

\texttt{poisson_distrib}(x,\lambda) \quad \text{Function}

The function \texttt{poisson_distrib} is the cumulative Poisson distribution function, equal to
\(\text{sum(poisson_density}(1,\lambda), i, 0, x) \).

\texttt{discrete_moment}(\texttt{name_distrib}(\texttt{args}), \texttt{order}) \quad \text{Function}

Returns moments of the discrete probability distribution indicated by \texttt{name_distrib}. \texttt{args} are the arguments of the distribution. \texttt{order} indicates the moment desired. Table 3.7 summarizes the results for returned for different combinations of arguments.

<table>
<thead>
<tr>
<th>Order</th>
<th>Expected Value</th>
<th>Equals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>E(1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>E(x)</td>
<td>mean</td>
</tr>
<tr>
<td>2</td>
<td>E((x - mean)^2)</td>
<td>variance</td>
</tr>
<tr>
<td>(\geq 3)</td>
<td>E((x - mean)^{\text{order}})</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>E(exp(x * symbol))</td>
<td>Moment Generating Function</td>
</tr>
</tbody>
</table>

Table 3.7: Results from \texttt{discrete_moment}

If the requested moment is unknown or does not exist, then the value \texttt{false} is returned.
Do \texttt{example(discrete_moment)}; for an example.

3.7.3 Probability Functions for Continuous Distributions

\texttt{beta_density}(x, \alpha, \beta) \quad \text{Function}

The function \texttt{beta_density} is the beta density function, equal to
\[
 f(x) = \begin{cases}
 \frac{(1-x)\beta \alpha^{\alpha-1}}{B(\alpha, \beta)} & \text{when } 0 < x < 1 \\
 0 & \text{otherwise}
\end{cases}
\]
The function **beta** distrib is the cumulative beta probability distribution, equal to \(\text{integrate}(\text{beta density}(z, \alpha, \beta), z, 0, x) \).

The Cauchy density function. For \(\beta > 0 \), this equals
\[
\frac{1}{\pi \beta} \frac{1}{1 + \left(\frac{x - \alpha}{\beta} \right)^2}.
\]

The cumulative Cauchy probability distribution, equal to \(\text{integrate}(\text{cauchy density}(z, \alpha, \beta), z, 0, x) \).

The function **chi_square** density is the chi-square density function, equal to
\[
f(x) = \begin{cases}
\frac{x^{df/2-1}e^{-x/2}}{2^{df/2}\Gamma\left(\frac{df}{2}\right)} & \text{when } x > 0 \\
0 & \text{when } x \leq 0
\end{cases}
\]
where \(df \) represents the number of degrees of freedom.

The function **chi_square** distrib is the cumulative chi-square probability distribution, equal to \(\text{integrate}(\text{chi_square density}(z), z, 0, x) \).

The exponential probability density function. For \(x \geq 0 \) and \(\lambda \geq 0 \), this equals
\[
\lambda \exp(-\lambda x).
\]

The cumulative exponential probability distribution, equal to \(\text{integrate}(\text{exponential density}(z, \lambda), z, 0, x) \).

The function **f** density is the F probability density function, equal (for \(x > 0 \)) to
\[
f(x) = \frac{df1^{df1/2} \Gamma \left(\frac{df1}{2} + \frac{df2}{2} \right) df2^{df2/2} x^{df1/2 - 1} (df1 x + df2)^{-df1/2 - df2/2}}{\Gamma \left(\frac{df1}{2} \right) \Gamma \left(\frac{df2}{2} \right)}
\]
For \(x \leq 0 \), \(f(x) = 0 \).

The function **f** distrib is the cumulative F probability distribution, equal to \(\text{integrate}(\text{f density}(z), z, 0, x) \).
The function **gamma_density** is the gamma density function, equal to

\[
 f(x) = \begin{cases}
 \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^\alpha} & \text{when } x > 0 \\
 0 & \text{when } x \leq 0.
 \end{cases}
\]

The function **gamma_distrib** is the cumulative gamma probability distribution, equal to

\[
 \text{integrate}(\text{gamma_density}(z, \alpha, \beta), z, 0, x).
\]

The Gumbel probability density function. For \(\beta > 0 \), this equals

\[
 \frac{1}{\beta} e^{\left(-\left(\frac{z - \alpha}{\beta}\right) - \frac{z}{\beta}\right)}.
\]

The cumulative Gumbel probability distribution, is equal to

\[
 \text{integrate}(\text{gumbel_density}(z, \alpha, \beta), z, 0, x).
\]

The Laplace probability density function. For \(\beta > 0 \), this equals

\[
 \frac{e^{\left(-\frac{\beta}{z - \alpha}\right)}}{2\beta}.
\]

The cumulative Laplace probability distribution, equal to

\[
 \text{integrate}(\text{laplace_density}(z, \alpha, \beta), z, 0, x).
\]

The logistic probability density function. For \(\beta > 0 \), this equals

\[
 \frac{e^{\left(\frac{z - \alpha}{\beta}\right)}}{\beta \left(1 + e^{\left(-\frac{z - \alpha}{\beta}\right)}\right)}.
\]

The cumulative logistic probability distribution, equal to

\[
 \text{integrate}(\text{logistic_density}(z, \alpha, \beta), z, 0, x).
\]

The lognormal probability density function. For \(x > 0 \) this equals

\[
 \frac{1}{x\sigma\sqrt{2\pi x^2}} e^{\left(\log(x) - \mu\right)^2 / (2\sigma^2)}.
\]

The cumulative lognormal probability distribution, equal to

\[
 \text{integrate}(\text{lognormal_density}(z, \mu, \sigma^2), z, 0, x).
\]
maxwell_density(x, β)

The Maxwell probability density function is defined for $\beta > 0$ and equals

$$
\frac{4}{\sqrt{\pi}\beta^3}x^2 \exp\left(-\left(\frac{x}{\beta}\right)^2\right).
$$

maxwell_distrib(x, β)

The Maxwell cumulative distribution function is defined for $\beta > 0$, and is equal to

$$
\text{erf}\left(\frac{x}{\beta}\right) = 2\exp\left(-\left(\frac{x}{\beta}\right)^2\right).
$$

normal_density$(x, \text{mean}, \text{variance})$

The function normal_density is the normal density function equal to

$$
f(x) = \frac{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi}\sigma}
$$

where μ represents mean, σ^2 represents variance, $-\infty < x < \infty$ and $\sigma^2 > 0$.

normal_distrib$(x, \text{mean}, \text{variance})$

The function normal_distrib is the cumulative normal probability distribution function equal to

$$
\text{integrate}\left(\text{normal_density}(z, \text{mean}, \text{variance}), z, \min f, x\right).
$$

pareto_density(x, x_0, θ)

The Pareto probability density function. For $x_0 > 0$, $x > x_0$ and $\theta > 0$, this equals

$$
\frac{\theta x_0^\theta}{x^{1+\theta}}
$$

pareto_distrib(x, x_0, θ)

The cumulative Pareto probability distribution function, equal to

$$
\text{integrate}\left(\text{pareto_density}(z, x_0, \theta), z, x_0, x\right).
$$

rayleigh_density(x, β)

The Rayleigh probability density function is defined for $x, \beta > 0$ and equals

$$
\frac{x^3}{\beta^2} \exp\left(-\frac{x^2}{2\beta^2}\right).
$$

rayleigh_distrib(x, β)

The Rayleigh cumulative distribution function is defined for $\beta > 0$ and equals

$$
1 - \exp\left(-\frac{x^2}{2\beta^2}\right).
$$

standard_normal_density(x)

The function standard_normal_density is the standard normal density function equal to

$$
f(x) = \frac{\exp\left(-x^2/2\right)}{\sqrt{2\pi}}.
$$
standard_normal_distrib(x)

The function **standard_normal_distrib** is the cumulative standard normal probability distribution equal to \(\text{integrate(standard_normal_density(z),z,minf,x)} \).

students_t_density(x,dof)

The function **students_t_density** is the Student’s t density function, equal to

\[
f(x) = \frac{\Gamma\left(\frac{\text{dof}+1}{2}\right)}{\sqrt{\pi \text{dof}}} \left(\frac{x^2}{\text{dof}} + 1\right)^{(\text{dof}+1)/2}
\]

students_t_distrib(x,dof)

The function **students_t_distrib** is the cumulative Student’s t probability distribution, equal to \(\text{integrate(students_t_density(z),z,0,x)} \).

uniform_density(x,a,b)

The uniform (continuous) probability density function. For \(a < x < b \), this equals \(1/b - a \).

uniform_distrib(x,a,b)

The cumulative uniform (continuous) probability distribution, for \(a \leq x \leq b \) is equal to \(\text{integrate(uniform_density(z,a,b),z,a,x)} \). This equals \(x - a/b - a \).

weibull_density(x,a,b)

The Weibull probability density function. For \(x > 0, a > 0 \) and \(b > 0 \), this equals

\[a b x^{b-1} \exp(-ax^b) \]

weibull_distrib(x,a,b)

The cumulative Weibull probability distribution, equal to \(\text{integrate(weibull_density(z,a,b),z,0,x)} \).

continuous_moment(‘name_distrib(args), order)

Returns moments of the continuous probability distribution indicated by ‘name_distrib. args are the arguments of the distribution. order indicates the moment desired.

<table>
<thead>
<tr>
<th>Order</th>
<th>Expected Value</th>
<th>Equals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>E(1)</td>
<td>= 1</td>
</tr>
<tr>
<td>1</td>
<td>E(x)</td>
<td>= mean</td>
</tr>
<tr>
<td>2</td>
<td>E((x - mean)^2)</td>
<td>= variance</td>
</tr>
<tr>
<td>(\geq 3)</td>
<td>E((x - mean)^{order})</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>E(exp(x * symbol))</td>
<td>Moment Generating Function</td>
</tr>
</tbody>
</table>

Table 3.8: Results from **continuous_moment**

If the requested moment is unknown or does not exist, then the value **false** is returned.

Do **example(continuous_moment)**; for an example.
3.7.4 Continuous Multivariate Probability Distributions

normal_mdf(z, v \{, vdet\})

The multivariate normal density function of the stochastic variables z with zero mean value, PDS matrix v and optional argument \(v_{det}\) determinant of v. If \(v_{det}\) is not supplied, it will be computed.

students_mdf(z, v, nu \{, vdet\})

The multivariate Students t density function of the stochastic variables z with zero mean value, PDS matrix v and \(nu\) degrees of freedom. If \(v_{det}\) is not supplied, it will be computed as the determinant of v.

gen_students_mdf(z, p, q \{, p\det, q\det\})

The multivariate generalized Students t density function of the stochastic variables z with zero mean value, and PDS matrices p and q. If \(p\det\) and \(q\det\) are not supplied, they will be computed as the determinants of p and q.

wishart_mdf(z, v, nu \{, vdet\})

The multivariate Wishart density function of the stochastic variables z with zero mean value, PDS matrix v, degrees of freedom \(nu\). If \(v_{det}\) is not supplied, it will be computed as the determinant of v.

inv_wishart_mdf(z, v, nu \{, vdet\})

The multivariate inverted Wishart density function of the stochastic variables z with zero mean value, PDS matrix v, degrees of freedom \(nu\). If \(v_{det}\) is not supplied, it will be computed as the determinant of v.

3.8 Geometric Functions

3.8.1 Formulas for Lengths, Areas and Volumes

Name of Package: geofuncs

The geofuncs package contains a collection of formulas from elementary geometry for finding lengths (circumferences), areas, and volumes of common geometric figures—circles, ellipses, rectangles, regular solids, etc.

Do `demo(geofuncs);` for a demonstration. For more information on this package type `usage(geofuncs);`. See also `functs`, page 73.

3.8.1.1 Linear Dimensions of 2-Dimensional Figures

solve_triangle(arg1, arg2, arg3, problem_type)

Returns all three sides and all three angles of a plane triangle, given any three of these six quantities. Each expression arg1, arg2, arg3 represents either an angle or the length of a side of the triangle. The fourth argument, `problem_type`, is a three-character symbol or string composed of the letters “a” and “s,” where the ith letter indicates whether argi is an “angle” or a “side.” For example, `solve_triangle (a, gamma, b, ’sas’)` means that a and b are sides and gamma is an angle.

arg1, arg2, and arg3 are located consecutively around the triangle. The first side in the argument list is labeled side #1, and the second (if any) is side #2. The angles #1,2,3 are those opposite to sides #1,2,3 respectively.

This diagram summarizes the positions of the angles and sides.
Do example(solve_triangle); for an example.

apothem_regular_polygon(numsides,edge-length)
>Determines the apothem of a regular polygon defined by the number of edges, and the length of a single edge.

radius_regular_polygon(numsides,edge-length)
>Determines the radius of a regular polygon defined by the number of edges, and the length of a single edge.

circumference_circle(radius)
>Determines the circumference of a circle, given its radius.

circumference_ellipse(major, minor)
>Determines the circumference of an ellipse, when specified by its minor and major axes.

Examples

(c1) apothem_regular_polygon(5,1);

\[
\frac{\pi}{10} \left(\sqrt{5} + 5 \right) \cos\left(\frac{-\pi}{10}\right)
\]

(d1)

\[
\frac{\pi}{10}
\]

(c2) radius_regular_polygon(numsides,lengthside);

\[
\frac{\pi}{2 \cos\left(\frac{\pi}{2} - 1\right)}
\]

(d2)

\[
\frac{\pi}{2 \cos\left(\frac{\pi}{2} - 1\right)}
\]

3.8.1.2 Areas of 2-Dimensional Figures

area_circle(radius)
>Determines the area of a circle, given its radius.

area_ellipse(major, minor)
>Determines the area of an ellipse, when specified by its minor and major axes.

area_equitriangle(edge)
>Determines the area of an equilateral triangle, given the length of a single edge.

area_triangle(a, b, c)
>Determines the area of a triangle, when the lengths of the 3 sides are input. If there does not exist a physical triangle with those lengths, then the area is imaginary.
area_square(\textit{edge}) \quad Function

Determines the area of a square, given the length of an edge.

area_trapezoid(\textit{base1}, \textit{base2}, \textit{height}) \quad Function

Determines the area of a trapezoid, given its two base dimensions, and its height.

area_regular_polygon(\textit{numsides}, \textit{edge-length}) \quad Function

Determines the area of a regular polygon, when given the number of edges and the length of a single edge.

Examples

\begin{enumerate}
 \item[(c1)] \texttt{area_ellipse(major,minor)};
 \item[(d1)] $\%\pi \text{ major minor}$
 \item[(c2)] \texttt{area_regular_polygon(numsides,edge)};
 \item[(d2)] $\frac{2}{\%\pi}$ \texttt{edge cot(------) numsides}
 \item[(c3)] \texttt{area_triangle(a,b,c)};
 \item[(d3)] $\sqrt{(c + b + a \ (\ (\ -\ -\ -\ -\ -\ -\ -\ -\ /\ -\ a\) \ (\ -\ -\ -\ -\ -\ -\ /\ -\ b) \ (\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ /\ -\ c))}$
\end{enumerate}

\begin{align*}
 \frac{2}{\%\pi} & \texttt{edge cot(------) numsides} \\
 \texttt{numsides} & \\
 \texttt{numsides} & \\
 \texttt{4} & \\
 \frac{2}{\%\pi} & \texttt{edge cot(------) numsides} \\
 \texttt{numsides} & \\
 \texttt{numsides} & \\
 \texttt{4} & \\
 \texttt{sqrt(2)} & \\
\end{align*}

3.8.1.3 Linear Dimensions of 3-Dimensional Figures

height_pyramid3(\textit{edge}) \quad Function

Determines the height of a \texttt{pyramid3} object, given the length of a single edge. A \texttt{pyramid3} object is a pyramid with a equilateral triangle for a base and all edges having the same length.

height_pyramid4(\textit{edge}) \quad Function

Determines the height of a \texttt{pyramid4} object, given the length of a single edge. A \texttt{pyramid4} object is a pyramid with a square for a base, and all edges having the same length.

3.8.1.4 Areas of 3-Dimensional Figures

area_right_cone(\textit{radius}, \textit{height}) \quad Function

Determines the surface area of a right circular cone.

area_right_cylinder(\textit{radius}, \textit{height}) \quad Function

Determines the surface area of a right circular cylinder.

area_cube(\textit{edge}) \quad Function

Determines the surface area of a cube.

area_pyramid3(\textit{edge}) \quad Function

Determines the surface area of a \texttt{pyramid3} object.
area_pyramid4(edge) \hfill \textit{Function}

Determines the surface area of a \texttt{pyramid4} object.

area_rectanguloid(a, b, c) \hfill \textit{Function}

Determines the surface area of a rectangular parallelepiped, with edges of length a, b, and c.

area_sphere(radius) \hfill \textit{Function}

Determines the surface area of a sphere of a given radius.

\textit{Examples}

\begin{verbatim}
(c1) area_pyramid3(edge);

(d1) 2 sqrt(3) edge
\end{verbatim}

\section*{3.8.1.5 Volumes of 3-Dimensional Figures}

vol_right_cone(radius, height) \hfill \textit{Function}

Determines the volume of a right circular cone.

vol_right_cylinder(radius, height) \hfill \textit{Function}

Determines the volume of a right circular cylinder.

vol_cube(edge) \hfill \textit{Function}

Determines the volume of a cube.

vol_pyramid(base_area, height) \hfill \textit{Function}

Determines the volume of a pyramid of height $height$ in which the base has an area of $base_area$.

vol_pyramid3(edge) \hfill \textit{Function}

Determines the volume of a \texttt{pyramid3} object.

vol_pyramid4(edge) \hfill \textit{Function}

Determines the volume area of a \texttt{pyramid4} object.

vol_rectanguloid(a, b, c) \hfill \textit{Function}

Determines the volume of a rectangular parallelepiped, with edges of length a, b, and c.

vol_sphere(radius) \hfill \textit{Function}

Determines the volume of a sphere of a given radius.

\textit{Examples}

\begin{verbatim}
(c1) vol_right_cone(radius,height);
\begin{example}
\begin{verbatim}
 ^2 %pi height radius

 3
\end{verbatim}
\end{example}

(d1) %pi height radius

(c2) vol_pyramid4(edge);
\begin{example}
\begin{verbatim}
 ^3 sqrt(2) edge

 6
\end{verbatim}
\end{example}

(d2) sqrrt(2) edge
3.8. GEOMETRIC FUNCTIONS

3.8.1.6 Spherical Trigonometry

\textbf{area_spherical_triangle}(\textit{radius, angle1, angle2, angle3}) \quad \text{Function}

Determines the area of a spherical triangle, with angles of \textit{angle1}, \textit{angle2}, and \textit{angle3}. Note that the sum of the angles does not need to total 180 degrees. The input \textit{radius} is the radius of the sphere on which the spherical triangle exists.

\textbf{area_spherical_polygon}(\textit{radius, number-edges, anglesum}) \quad \text{Function}

Given a spherical regular polygon with \textit{number-edges} edges, on a sphere of radius \textit{radius}, the area is determined by the sum of the interior angles \textit{anglesum}.

\textbf{Examples}

\begin{itemize}
 \item (c1) \textbf{area_spherical_triangle}(\textit{radius, angle1, angle2, angle3});\ 2
 \item (d1) \quad (\textit{angle3 + angle2 + angle1 - \pi}) \textit{radius}
 \item (c2) \textbf{area_spherical_polygon}(\textit{radius, num_sides, anglesum});\ 2
 \item (d2) \quad (\textit{anglesum - \pi (num_sides - 2)}) \textit{radius}
\end{itemize}

3.8.1.7 Points and Lines in N Dimensions

\textbf{intersect_line_hyperplane}(\textit{line1, hplane1}) \quad \text{Function}

Finds the point of intersection of the line \textit{line1} with an N-1 dimensional hyperplane \textit{hplane1} in an N-dimensional space.

\textit{line1} is a list specifying the line. It can have one of two forms:

\begin{itemize}
 \item [\textit{P, A}] where \textit{P} is a N-tuple of numbers or expressions and represents a point on the line. \textit{A} is an n-tuple of numbers or expressions and represents a vector in N-space.
 \item [\textit{P, R, 'points}], where \textit{P} and \textit{R} and N-tuples representing two distinct points on the line, and the symbol 'points indicates that \textit{R} is a point and not a direction vector. In this case, \textit{A} is calculated as \textit{R-P}.
\end{itemize}

\textit{hplane1} is a list of length \textit{N+1} specifying the hyperplane. If the equation of the hyperplane is \textit{b1*x1 + ... bn*xN = b0}, then \textit{hplane1} = [\textit{b1}, ..., \textit{bn}, \textit{b0}].

This function returns a list of length \textit{N} which represents the coordinates of the point of intersection of the line and plane. If there is no point of intersection, it returns the empty list \[]. If the line lies in the hyperplane, the line is returned as the solution.

\textbf{perp_line_line}(\textit{line1, line2}) \quad \text{Function}

Finds the line segment from the line \textit{P + s*A}, for \textit{s} real, to the line \textit{Q + t*B}, for \textit{t} real, which is perpendicular to both lines, where \textit{line1} = [\textit{P},\textit{A}] and \textit{line2} = [\textit{Q},\textit{B}].

\textit{line1} is a list specifying the line. It can have one of two forms:

\begin{itemize}
 \item [\textit{P, A}] where \textit{P} is a N-tuple of numbers or expressions and represents a point on the line. \textit{A} is an n-tuple of numbers or expressions and represents a vector in N-space.
 \item [\textit{P, R, 'points}], where \textit{P} and \textit{R} and N-tuples representing two distinct points on the line, and the symbol 'points indicates that \textit{R} is a point and not a direction vector. In this case, \textit{A} is calculated as \textit{R-P}.
\end{itemize}

\textit{line2} is a list specifying the second line. It has the same structure as \textit{line1} with [\textit{Q},\textit{B}) or [\textit{Q},\textit{S'), 'points}].
The function returns a list of length 3. The first two elements are each a list of length N. Each list of length n represents the intersection of the perpendicular line section with each line originally specified in the input. The third element is the symbol 'points which indicates that the lists in the first two positions are points.

Do example(perp_line_line); for an example.

\[\text{perp_point_line}(P, \text{line1}) \]

Finds the line segment from the a point \(P \) which is perpendicular to the line \(Q + t \cdot A \), for real \(t \).

\(P \) is an \(n \)-tuple (list) of numbers or expressions and represents a point not on the line.

\(\text{line1} \) is a list specifying the line. It can have one of two forms:

- \([Q, A] \) where \(Q \) is a \(N \)-tuple of numbers or expressions and represents a point on the line. \(A \) is an \(n \)-tuple of numbers or expressions and represents a vector in \(N \)-space.

- \([Q, R, 'points'] \), where \(P \) and \(R \) and \(N \)-tuples representing two distinct points on the line, and the symbol 'points indicates that \(R \) is a point and not a direction vector. In this case, \(A \) is calculated as \(R - Q \).

The function returns a list of length \(N \), which represents the point where the perpendicular segment intersects the line \(Q + t \cdot A \), for real \(t \) which was specified in the input.

Do example(perp_point_line); for an example.

3.8.1.8 Figures in N Dimensions

\[\text{sphere_surface}(\text{dimen}, \text{radius}) \]

Determines the surface area of a \(\text{dimen} \)-dimensional sphere with a radius of \(\text{radius} \).

\[\text{sphere_volume}(\text{dimen}, \text{radius}) \]

Determines the volume of a \(\text{dimen} \)-dimensional sphere with a radius of \(\text{radius} \).

Examples

(c1) \([\text{sphere_surface}(1,r), \text{sphere_surface}(2,r), \text{sphere_surface}(3,r), \text{sphere_surface}(4,r)]\);

\(2 \quad 2 \quad 3 \)

(d1) \([2, 2 \ %\pi \ r, 4 \ %\pi \ r, 2 \ %\pi \ r] \)

(c2) \([\text{sphere_volume}(1,r), \text{sphere_volume}(2,r), \text{sphere_volume}(3,r), \text{sphere_volume}(4,r)]\);

\(3 \quad 2 \quad 4 \)

\(2 \ 4 \ %\pi \ r \ %\pi \ r \)

(d2) \([2 \ r, \ %\pi \ r, \ --------, \ -------]\)

\(3 \quad 2 \)

3.8.2 Curvature of Two-Dimensional Surfaces

\[\text{curvsurf}(\text{exprlist}, \text{varlist}, \{\text{arg}\}) \]

Computes symbolic expressions for the intrinsic (Gaussian) and extrinsic curvatures of 2-dimensional surfaces embedded in flat Cartesian 3-dimensional space. The inputs to the function are:
• **exprlist** is a list of three expressions for the \((x, y, z)\) coordinates which define the surface embedding.

• **varlist** is a list of the two independent parameters which define the surface. For example, if a surface is defined by \((x(s, t), y(s, t), z(s, t))\), then **varlist** is \([s, t]\).

• **arg** is an optional argument, which may be either **true** or **all**. If **arg** is **true**, **curvsurf** prints the covariant metric tensor intrinsic to the surface, induced from the embedding in the 3-space. If **arg** is **all**, then **curvsurf** prints the metric tensor and the second fundamental curvature 2-form of the surface.

curvsurf always returns the value of the intrinsic Gaussian curvature of the surface.

The mean extrinsic curvature can be derived as the trace of the matrix \(\text{surfmetric}^\sim (\cdot 1) \cdot \text{surf-form2}\).

curvsurf applies simplifications on intermediate and final results. The simplification commands are specified in the list **curvsurfsimps** (default \([\text{ratsimp}, \text{trigsimp}]\)). You can change the option variable **curvsurfsimps** to be any list of Macsyma commands or user-written Macsyma functions.

Do example(curvsurf); for an executable example.

3.9 Miscellaneous Functions

Name of Package: functs

Original Author: Martin Cole

To use this package, type `load(functs);`

The **functs** package contains a collection of miscellaneous functions. Most of them can be written fairly easily by users and are provided as a convenience. For more information, see the usage file by typing `usage(functs);`. See also **geofuncs**, page 67.

3.9.1 Logical Bitwise Operations

logand \((x, y)\)

Function

`logand(x, y)` implements logical (bitwise) "and."

logor \((x, y)\)

Function

`logor(x, y)` implements logical (bitwise) "or."

logxor \((x, y)\)

Function

`logxor(x, y)` implements logical (bitwise) "xor."

3.9.2 Other Miscellaneous Functions

rational \(z\)

Function

`rational(z)` finds a rational expression with (real or complex) rational coefficients which is close to the expression \(z\), and returns it in general representation. Similar to **rat**, which returns its result in CRE form.
Chapter 4

Data Analysis

This chapter describes the functions Macsyma has for analysis of experimental data. These include simple utilities like computing summary statistical descriptions of data sets. They also include more sophisticated linear and nonlinear least square and curve fitting as well as regression. Finally, Macsyma has capabilities for converting physical units and performing dimensional analysis.

4.1 Summary Statistics for Data Samples

4.1.1 Summary Statistics for Lists of Data

Macsyma knows the density and distribution function for many types of discrete and continuous random variables, including: Bernoulli, beta, Chi-square (χ^2), gamma, normal, Poisson, Student’s t, F, Weibull, and Pareto. See Section 3.7.2, page 61. See Section 3.7.3, page 62. Summary statistical descriptions of experimental data are provided by functions for samples and populations.

sample_mean($sample$)

The function **sample_mean** returns the arithmetic mean of the list $sample$. The input $sample$ may contain symbolic entries.

sample_median($sample$)

The function **sample_median** returns the central value of elements of the list $sample$. The input $sample$ may contain symbolic entries.

sample_variance($sample$)

The function **sample_variance** returns the variance of the list $sample$. The input $sample$ may contain symbolic entries.

\[
\text{sample_variance} := \frac{\text{sum}(\text{sample}[i]^2 - \text{sample_mean}^2)}{\text{sample_size}}
\]

population_variance($sample$)

The function **population_variance** returns the population variance of the list $sample$. The argument $sample$ may contain symbolic entries.

\[
\text{population_variance} := \frac{\text{sum}(\text{sample}[i]^2 - \text{sample_mean}^2)}{(\text{sample_size} - 1)}
\]

sample_standard_deviation($sample$)

The function **sample_standard_deviation** returns the positive square root of the sample variance of the list $sample$. The input $sample$ may contain symbolic entries.
\texttt{population_standard_deviation}(\textit{sample}) \quad \textit{Function}

The function \texttt{population_standard_deviation} returns the positive square root of the population variance of the list \textit{sample}. The input \textit{sample} may contain symbolic entries.

\texttt{univariate_statistics}(\textit{data_list},[\textit{switch}]) \quad \textit{Function}

The function \texttt{univariate_statistics} computes elementary population statistics for the univariate data in \textit{data_list}. The input \textit{data_list} is a list of single or double precision floating point sample data. If the value of the optional argument \textit{switch} is \texttt{all}, then \texttt{univariate_statistics} first prints on an intermediate line, the list of values [coefficient of variation, \texttt{mean_deviation}, \texttt{sample_standard_deviation}].

The function \texttt{univariate_statistics} returns the list of values [mean, std. error, population variance, pop. skewness, pop. kurtosis].

\textbf{Note}: Excess kurtosis := (kurtosis - 3) is not explicitly returned.

See also \texttt{mat_std} (Section 4.1.2, page 77), \texttt{mat_var} (Section 4.1.2, page 76), \texttt{mat_mean} (Section 4.1.2, page 76).

\subsection*{4.1.2 Summary Statistics for Bivariate Matrix Data}

\texttt{multivariate_statistics}(\textit{data_matrix},[\textit{switch}]) \quad \textit{Function}

The function \texttt{multivariate_statistics} computes elementary population statistics for a square or non-square matrix of data. The input \textit{data_matrix} is matrix of single or double precision floating point sample data. The function \texttt{multivariate_statistics} calculates row means, variances and row-row and column-column correlations. The optional \textit{switch} (default: \texttt{rows}) can have the value \texttt{rows}, \texttt{cols} or \texttt{all}. The function \texttt{multivariate_statistics} stores the row and column statistics in option variables as follows:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Stored Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{row_means}</td>
<td>List of means of each row</td>
</tr>
<tr>
<td>\texttt{row_std_devs}</td>
<td>List of standard deviations of each row</td>
</tr>
<tr>
<td>\texttt{col_means}</td>
<td>List of means of each column</td>
</tr>
<tr>
<td>\texttt{col_std_devs}</td>
<td>List of standard deviations of each column</td>
</tr>
<tr>
<td>\texttt{row_row_corr}</td>
<td>The row-row correlation matrix</td>
</tr>
<tr>
<td>\texttt{col_col_corr}</td>
<td>The column-column correlation matrix</td>
</tr>
</tbody>
</table>

Table 4.1: Values of Option Variables for \texttt{multivariate_statistics}

See also \texttt{mat_corrcoef} (Section 4.1.2, page 77) and \texttt{mat_cov} (Section 4.1.2, page 77).

\texttt{mat_mean}(\textit{list} or \textit{or}) \quad \textit{Function}

The function \texttt{mat_mean} averages the elements of a list or a vector. \texttt{mat_mean} applies on each column of a matrix and returns a list. It also averages multiple inputs as in \texttt{mat_mean}(1, 2, 3, 4);. Do example(\texttt{mat_mean}); for an example.

\texttt{mat_var}(\textit{list} or \textit{or}) \quad \textit{Function}

The function \texttt{mat_var} returns the variance of the elements of a list or vector. It applies columnwise on matrices, returning a list. It also accepts multiple inputs as in \texttt{mat_var}(1, 2, 3, 4);. See also \texttt{sample_variance}, \texttt{mat_std}, and \texttt{sample_standard_deviation}.

Do example(\texttt{mat_var}); for an example.

See also \texttt{univariate_statistics} (Section 4.1.1, page 76).
mat_median(list_or)

The function **mat_median** returns the median of the elements of a list or vector. If the number of items is odd, the middle item of the list is returned; otherwise, the middle two items are averaged. It applies columnwise on matrices, returning a list. It also accepts multiple inputs as in `mat_sum(1, 2, 3, 4)`. The function **mat_median** assumes ordering by *orderless*. See *orderless* on page 357.

Do example(mat_median); for an example.

mat_std(list_or)

The function **mat_std** returns standard deviation of the elements of a list or vector. It applies columnwise on matrices, returning a list. It also accepts multiple inputs as in `mat_std(1, 2, 3, 4)`. See also `sample_standard_deviation`, `mat_var`, and `sample_variance`.

Do example(mat_std); for an example.

See also *univariate_statistics* (Section 4.1.1, page 76).

mat_cov(list_or)

The function **mat_cov** finds the covariance of a vector, matrix, or list. The calculations for a matrix are performed columnwise. Multiple lists can be entered, and each list is treated as a column.

Do example(mat_cov); for an example.

See also *multivariate_statistics* (Section 4.1.2, page 76).

mat_corrcoef(list_or)

The function **mat_corrcoef** finds the correlation coefficients of a vector, matrix, or list. The calculations for a matrix are performed columnwise. Multiple lists can be entered and each list is treated as a column.

Do example(mat_corrcoef); for an example.

See also *multivariate_statistics* (Section 4.1.2, page 76).

4.2 Least Squares and Curve Fitting

4.2.1 Fitting Curves to Numerical Data

Name of package: lsq

Description: The **lsq** package contains a collection of functions for performing multivariate nonlinear least squares fits to data, using arbitrary shape functions with an arbitrary number of independent variables. Least squares fits avoid the well-known difficulties which arise in the form of round-off error. The method implemented can generate single float (the default), double float, bigfloat, or exact algebraic results.

lsq1(abscissas, data, degree, {indepvar})

Function

Perform linear least squares fits with polynomial shape functions up to a specified degree with one independent variable. The function **lsq1**:

- returns the fitted polynomial,
- stores the values of fit parameters in a list as the value of the option variable **lsq_paramvals**,
- stores the list of residuals between actual and fitted data as the value of the option variable **lsq_error**,
- stores the Chi-squared error measure as the value of the option variable **lsq_chi2**.

The function **lsq1** accepts the following arguments:
• abscissa is a list of the values of the independent variable;
• data is a list of the values of the trial data to be fit;
• degree is the maximum polynomial degree to be used in the fit;
• indepvar is the name of the optional independent variable to be used in expressing the best-fitting function; if no variable is specified, then t is used.

Do example(lsq1); for an executable example. For a longer demonstration do demo(lsq1).

The function lsq1 provides the more efficient way to solve the most common type of problem, namely univariate polynomial fitting. The function lsq_linear provides a more general algorithm which solves problems with general multivariate shape functions. lsq_linear also allows you to include symbolic expressions in the abscissa and data lists.

lsq_linear(abscissas, data, functions, indepvars)

Function
Performs linear least square fits with arbitrary shape functions with an arbitrary number of independent variables. The function lsq_linear:
• returns the fitted function,
• stores the values of fit parameters in a list as the value of the option variable lsq_paramvals,
• stores the list of residuals between actual and fitted data as the value of the option variable lsq_error,
• stores the Chi-squared (χ^2) error measure as the value of the option variable lsq_chisq.

The function lsq_linear accepts the following arguments:
• abscissa is a list of the values of the independent variables; if the independent variables are x, y, z, then it is of the form [[x1, y1, z1], [x2, y2, z2], ..., [xlast, ylast, zlast]].
• data is a list of the values of the trial data to be fit;
• functions is a list of the shape functions to be used;
• indepvars is a list of the names of the independent variables, in the same order in which they are specified in the abscissa list.

lsq_nonlinear(abscissas, data, function, indepvars, params, {paramguess})

Function
Performs nonlinear least squares fits with one arbitrary fit function with fit parameters inside the fit function. You can use fit parameters inside the fit function in nonlinear ways. The function lsq_nonlinear uses the Marquardt algorithm for least squares fit. When called, lsq_nonlinear:
• returns the fitted function,
• stores the values of the fit parameters as a list in the option variable lsq_paramvals, and as a list of equations in the variable lsq_parameqs,
• stores the number of iterations performed in the option variable lsq_iteration_counter,
• stores the list of residuals between actual and fitted data as the value of the option variable lsq_error,
• stores the χ^2 (Chi-squared) error measure as the value of the option variable lsq_chisq,
• if the option variable verbose is set to true, the function lsq_nonlinear prints on each iteration the values of lsq_chisq and the current estimates for the fit coefficients.

The function lsq_nonlinear accepts the following arguments:
4.2. LEAST SQUARES AND CURVE FITTING

- **abscissa** is a list of the values of the independent variables; if the independent variables are \(x, y, z \), then it is of the form \([x_1, y_1, z_1], [x_2, y_2, z_2], \ldots, [x_{\text{last}}, y_{\text{last}}, z_{\text{last}}] \);

- **data** is a list of the values of the trial data to be fit;

- **function** is a single functional form for the fit, which contains the independent variables and the fit coefficients which are determined by the method of least squares;

- **indepvars** is a list of the symbolic names of the independent variables, in the same order in which they are specified in the abscissa;

- **params** is a list of the symbols used for the fit parameters in the fit function,

- **paramguess** is a list of initial guesses for the fit parameters.

There are several halting conditions for \texttt{lsq_nonlinear}. If the change in \texttt{lsq_chi2} is less than the value of \texttt{lsq_dchi2_tol}, then the function will halt; or if \texttt{lsq_iteration_counter} exceeds the value of \texttt{lsq_iteration_max}, then the function will halt.

Do \texttt{example(lsq_nonlinear)}; for an executable example of this command. Do \texttt{demo(lsq1)}; for a longer demonstration.

The following option variables control the main \texttt{lsq} commands.

There are two flags which control the conversion between exact rational arithmetic and floating point arithmetic:

\begin{verbatim}
lsq_refloat default: false
\end{verbatim}

Determines how the final data will be presented by \texttt{lsq1}, \texttt{lsq_linear}, and \texttt{lsq_nonlinear}. The value of \texttt{lsq_refloat} can be the name of any univariate function, such as \texttt{sfloat}, \texttt{dfloat}, or \texttt{bfloat}, or it can be the value \texttt{false}. If the value of \texttt{lsq_refloat} is \texttt{false}, then no transformation of the final results is performed. In Macsyma 419, this variable is named \texttt{refloat}.

\begin{verbatim}
lsq_infloat default: 'float
\end{verbatim}

Determines whether the numerical arguments to \texttt{lsq1}, \texttt{lsq_linear}, and \texttt{lsq_nonlinear} are converted to floating point before intermediate computations are performed. The value of \texttt{lsq_infloat} can be the name of any univariate function, such as \texttt{sfloat}, \texttt{dfloat}, and \texttt{bfloat}, as well as \texttt{rational} and \texttt{false}. If the value of \texttt{lsq_infloat} is \texttt{rational}, then all internal arithmetic is performed with rational numbers. If the value of \texttt{lsq_infloat} is \texttt{'float}, then the types of the input data determine the types used in internal computations. In Macsyma 419, this variable is named \texttt{infloat}.

\begin{verbatim}
lsq_deviations default: []
\end{verbatim}

Can be assigned a list of standard deviations of the data points as a value. The length of the list must equal the number of data points. The \texttt{lsq_error} terms are divided by their respective deviations in the computation of the Chi-squared measure of goodness of fit, \texttt{lsq_chi2}. When \texttt{lsq_deviations} has its default value, [], the deviations are assumed to be 1.

\begin{verbatim}
lsq_error default: []
\end{verbatim}

Can be assigned a list of residuals between actual and fitted data in \texttt{lsq1}, \texttt{lsq_linear}, and \texttt{lsq_nonlinear}.

\begin{verbatim}
lsq_chi2
\end{verbatim}

Is assigned the Chi-squared error measure.

\begin{verbatim}
lsq_paramvals default: []
\end{verbatim}

Is a list of the values of fit parameters assigned by \texttt{lsq_linear} or \texttt{lsq_nonlinear}.

lsq_parameqs default: []

Is a list of the equations for fit parameters assigned by lsq_linear or lsq_nonlinear.
The following option variables control the behavior of the function lsq_nonlinear.

lsq_dchi2_tol default: 0.01

If the change in lsq_chi2 is greater than lsq_dchi2_tol, then iterate again, unless the iteration
limit has been reached.

lsq_iteration_counter default: 0

Holds the number of iterations which have been performed.

lsq_iteration_max default: 25

The maximum allowed number of iterations by lsq_nonlinear.

lsq_lambda_init default: 1/100

The initial value of the λ parameter in the Marquardt algorithm. If λ = 0, then the Marquardt
algorithm uses a pure gradient method.

lsq_lambda_factor default: 10

If lsq_chi2 increases (decreases) from the previous iteration, then lambda is multiplied (divided)
by this factor for the next iteration.

4.2.2 Solving Linear Equations by Least Squares

lsq_linsolve(list-of-equations,[list-of-variables])

Function

Computes the Moore-Penrose inverse and uses it to compute the least-squares solution to the set of
equations specified by list-of-equations. The second argument, list-of-variables, specifies the variables to
be solved for. If this argument is not given, then lsq_linsolve solves for the list given by listofvars(list-
of-equations). See also matsolve_by_svd (see page 243).

matsolve_by_svd(A, B {,tol})

Function

Solves the numerical matrix equation $A X = B$ for X using the Singular Value Decomposition of A. The
matrix A may be singular, or stiff (large condition number). Also, A need not be square. A and B must
have numbers only (not bfloats). tol (default: dfloat_epsilon * mat_norms(A)) is an optional argument
to specify when a singular value of A should be treated as 0. When A is invertible, matsolve_by_svd
(see page 242) can produce equivalent answers. When A is not invertible, see also lsq_linsolve (see
page 232) which uses the Moore-Penrose inverse to compute an alternative least square solution.

4.2.3 Interpolation of Curves

Do demo(interp1); and demo(interp11); for executable demonstrations of these functions.

poly_interpolate(x,xa,ya,n)

Function

Given n points specified by pairs of real numbers $(x[i],y[i])$ where $i = 0,\ldots,n-1$ (xa and ya
is arrays), and given a real number x, this function returns a value $y(x)$ which is determined by
interpolation on using a polynomial of degree $n-1$. The variable poly_int_error_est contains an
estimate of the interpolation error after exiting poly_interpolate.
4.2. LEAST SQUARES AND CURVE FITTING

\texttt{poly_interpolate2}(x1, x2, xla, x2a, ya, n1, n2) \quad \text{Function}

Given \(n1 \times n2 \) points specified by real numbers \((x1a[i], x2a[i], ya[i])\) where \(i = 0, \ldots, n1 - 1 \) and \(j = 0, \ldots, n2 - 1 \) (\(x1a, x2a, \) and \(ya \) are arrays), and given real numbers \(x1 \) and \(x2 \), this function returns a value \(y(x) \). This value is determined by interpolation using a polynomial of degree \(n2 - 1 \) in the \(x2 \) direction, followed by a polynomial of degree \(n1 - 1 \) in the \(x1 \) direction.

\texttt{rat_interpolate}(x, xa, ya, n) \quad \text{Function}

Given \(n \) points specified by pairs of real numbers \((xa[i], ya[i])\) where \(i = 0, \ldots, n - 1 \) (\(xa \) and \(ya \) are arrays), and given a real number \(x \), this function returns a value \(y(x) \) which is determined by interpolation using a rational function with \(n \) coefficients, which are divided between the numerator and denominator as evenly as possible. After exiting, the variable \texttt{rat_int_error_est} \(\) contains an estimate of the interpolation error.

\texttt{spline_coeff}(x, y, yacf, n, \{dy0, dylast\}) \quad \text{Function}

Given a value \(x \) and arrays \(xa \) and \(ya \) of length \(n \) (running from \(0 \) to \(n - 1 \)), this will compute an array \(yacf \) of spline coefficients of \(y \) with respect to \(x \) using cubic spline methods and \(n \) data points. The array \(xa \) must be monotonic. This function prepares the spline coefficients needed by the command \texttt{spline_interpolate}. The values \(dy0 \) and \(dylast \) are estimates of the derivative of \(y \) at the left and right endpoints of the interval. If they are not supplied or have the value ’natural’, then natural spline boundary conditions are used. A natural spline condition is the second derivative of \(y \) equals zero.

\texttt{spline_interpolate}(x, xa, ya, yacf, n) \quad \text{Function}

Given a value \(x \) and arrays \(xa \) and \(ya \) of length \(n \) (running from \(0 \) to \(n - 1 \)), and given array (of length \(n \)) \(yacf \) with the spline coefficients of \(y \) with respect to \(x \), interpolate a value \(y(x) \) using cubic spline methods and \(n \) data points. The array \(xa \) must be monotonic. The spline coefficients needed by \texttt{spline_interpolate} can be produced using the command \texttt{spline_coeff}.

\texttt{table_hunt}(x, xa, n, \{j1\}) \quad \text{Function}

Given a monotonic 1-dimensional floating point array \(xa \) of length \(n \), (having indices from \(0 \) through \(n - 1 \)) and given a real number \(x \), this function returns the integer \(j \) such that \(xa[j] \) and \(xa[j+1] \) bracket the value \(x \). If the value of \(x \) lies beyond either end of the monotonic table, then \texttt{table_hunt} returns \(-1 \) or \(n \).

You can save execution time if you can specify a reasonably accurate guess \(j1 \) which is near the answer \(j \). Specifying \(j1 \) is optional.

\texttt{table_locate}(x, xa, n, \{j1, j2\}) \quad \text{Function}

Given a monotonic 1-dimensional floating point array \(xa \) of length \(n \), (having indices from \(0 \) through \(n - 1 \)) and given a real number \(x \), this function returns the integer \(j \) such that \(xa[j] \) and \(xa[j+1] \) bracket the value \(x \). If the value of \(x \) lies beyond either end of the monotonic table, then \texttt{table_locate} returns \(-1 \) or \(n \).

You can save execution time if you can specify integers \(j1 \) and \(j2 \) such that \(xa[j1] \) and \(xa[j2] \) bracket the value \(x \). You may also specify only \(j1 \), so that \(xa[j1] \) and \(xa[n-1] \) bracket the value \(x \). Specifying \(j1 \) and \(j2 \) is optional. If you can approximate the answer \(J \), but you cannot bracket it with certainty, then use \texttt{table_hunt}.

\texttt{table_lookup}(x, xa, ya, n, \{ni\}) \quad \text{Function}

Given \(N \) pairs of floating point numbers \((xa[i], ya[i])\), and given a floating point number \(x \), interpolate a value \(y(x) \). \(xa \) and \(ya \) must be arrays. The array \(xa \) must be monotonic. \(ni \) controls the number of coefficients in the interpolation functions. If \(ni \) is not specified, it defaults to the value of \texttt{interpol_default_num} (whose default is 4).

\texttt{interpol_default_method} (which defaults to ’polynomial’) determines what method of interpolation is used.
After calling `table_lookup`, the variable `jtable` contains the integer index of the nearest lower table entry below `x`.

Note that `table_lookup` performs a piecewise polynomial fit, using only a few data points near the abscissa value `X`, whereas `poly_interpolate`, `rat_interpolate` and `spline_interpolate` use all the data points in the input arrays.

```lisp
interpol_default_num default: 4
```

Option Variable

Controls the number of coefficients used by `table_lookup` and `table_lookup2` in the interpolation functions. Its value can be any integer \(\leq 2 \) or a list of two such integers.

```lisp
interpol_method default: 'polynomial
```

Option Variable

Controls the interpolation method used by `table_lookup`. Possible values are 'polynomial and 'rational. At present, `table_lookup2` always uses polynomial interpolation.

```lisp
table_lookup2(x1,x2,x1a,x2a,ya,n1,n2 \{,ni\})
```

Function

Given \(n1 \times n2 \) triples \((x1a[i], x2a[j], ya[i,j])\) of floating point numbers, and given a pair of floating point numbers \((x1, x2)\), interpolate a value \(y(x1,x2) \). \(x1, x2 \) and \(y \) must be arrays. The arrays \(x1a \) and \(x2a \) must be monotonic. \(n1 \) and \(n2 \) control the number of coefficients in the interpolation polynomials in the \(x1 \) and \(x2 \) directions: interpolate with polynomials with \(n1 \) and \(n2 \) free coefficients in directions \(x1 \) and \(x2 \). If \(n1 \) and \(n2 \) are not specified, they default to the value of `interpol_default_num` (default:\[3\]).

After calling `table_lookup2`, the variables `jtable1` and `jtable2` contain the integer index of the nearest lower table entry below `x` and `y` respectively.

Note that `table_lookup2` performs a piecewise polynomial fit using only a few data points near the point \((x1, x2)\), whereas `poly_interpolate2` uses all the data points in the input arrays.

4.3 Physical Units and Atomic Properties

4.3.1 Physical Constants

Name of Package: `phycon`

Description: Do `load(phycon);` to load the physical units package. Standard (1986) values of several physical constants then become available in Macsyma.

```lisp
init_physical_constants()
```

Function

makes the physical units accessible.

```lisp
%physical_constants default: [']
```

Option Variable

is a list of the names of the physical constants in the `phycon` package. The current list is described in Table 4.2.

```lisp
expunge_physical_constants()
```

Function

removes them.

Also, the dimensional values of the physical units are available to the units conversion package. See `unit_convert`, page 84.
4.3. PHYSICAL UNITS AND ATOMIC PROPERTIES

<table>
<thead>
<tr>
<th>Macsyma Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>%alpha</td>
<td>Fine structure constant</td>
</tr>
<tr>
<td>%c</td>
<td>speed of light in vacuum</td>
</tr>
<tr>
<td>%c0</td>
<td>Bohr radius</td>
</tr>
<tr>
<td>%c1</td>
<td>First radiation constant</td>
</tr>
<tr>
<td>%c2</td>
<td>Second radiation constant</td>
</tr>
<tr>
<td>%epsilon_0</td>
<td>vacuum permittivity</td>
</tr>
<tr>
<td>%E_b</td>
<td>Hartree Energy</td>
</tr>
<tr>
<td>%G</td>
<td>gravitational constant</td>
</tr>
<tr>
<td>%h</td>
<td>Planck's constant</td>
</tr>
<tr>
<td>%h_bar</td>
<td>$\frac{\hbar}{(2\pi)}$</td>
</tr>
<tr>
<td>%k</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>%l_planck</td>
<td>Planck length</td>
</tr>
<tr>
<td>%m_0</td>
<td>vacuum permeability</td>
</tr>
<tr>
<td>%m_e</td>
<td>Electron mass</td>
</tr>
<tr>
<td>%m_n</td>
<td>Neutron mass</td>
</tr>
<tr>
<td>%m_p</td>
<td>Proton mass</td>
</tr>
<tr>
<td>%m_planck</td>
<td>Planck mass</td>
</tr>
<tr>
<td>%N_a</td>
<td>Avagadro's Number mol^{-1}</td>
</tr>
<tr>
<td>%Phi_0</td>
<td>Magnetic Flux quantum</td>
</tr>
<tr>
<td>%R_inf</td>
<td>Rydberg constant</td>
</tr>
<tr>
<td>%sigma</td>
<td>Stefan-Boltzmann constant</td>
</tr>
<tr>
<td>%T_p</td>
<td>Planck time</td>
</tr>
</tbody>
</table>

Table 4.2: Physical Constants in the **phycon** package
4.3.2 Units Conversion

Name of Package: **units**
Original Author: D. Stoutemyer

The **units** package provides automatic conversion of units of measure to MKS, SI, CGS or English units. The conversions supplied in the package comprise a rather complete set of time, length, area, volume, speed, frequency, mass, energy, power, force, pressure, temperature, and electromagnetic units. General physical constants in SI units are adopted from 1986 recommended values.

use_units(system)
Function

Use the **use_units** command to initiate automatic conversion to MKS, SI, CGS or English units.

(c1) **use_units**(‘si)$
(c2) 5*ft*+meter*+cm;
(d2) 2.534*+meter

Erroneously dimensioned inhomogeneous expressions are revealed by uncollected terms. For example, 5*ft*+second; does not simplify to one term.

unit_convert(expr1, expr2)
Function

The quantities defined by **expr1** and **expr2** are evaluated in the current system, and **expr1** is converted to **expr2**. Also, **expr1** and **expr2** are checked to see if they are consistent.

(c3) **unit_convert**(10*volt/((5*amps),’ohms);
(d3) 10 volt/ 5 amp = 2 ohms
(c4) **unit_convert**(10*volt/((5*amps),’joules);
Also, **expr1** and **expr2** are checked to see if they are consistent.

(c3) **unit_convert**(10*volt/((5*amps),’ohms);
(d3) 10 volt/ 5 amp = 2 ohms
(c4) **unit_convert**(10*volt/((5*amps),’joules);

temp_convert(expr1, expr2)
Function

The quantities defined by **expr1** and **expr2** are evaluated in the current system, and **expr1** is converted to **expr2**. Both **expr1** and **expr2** must explicitly depend on temperature (e.g., 10 * kelvin). You can optionally use a list for **expr1** for non-zero temperatures. For temperatures involving zero, **expr1** must be specified as a list [0, ’celsius_degree].

(c1) **temp_convert**(212*’fahrenheit_degree,’celsius_degree);
(d1) 100 * ’degree_celsius
(c2) **temp_convert**([32,’deg_f],’deg_c);
(d2) [0 , ’celsius_degree]

Do **demo(units)**; or **demo(units1)**; for a longer demonstration.
Do **demo(units2)**; for a demonstration of doing order of magnitude estimates for engineering or scientific calculations, including chemical elements.
Do **demo(units3)**; for a demonstration of unit conversions involving temperature.

4.3.3 Database of Atomic Properties

Name of Package: **uchem**

Description: Do **load(uchem)**; to load the chemical database. Standard values of several properties of known elements become available in Macsyma.

atomic_mass(atomic_symbol)
Function

Returns the atomic mass of **atomic_symbol** in atomic mass units.
Do example(atomic_mass); for an example.

molecular_mass(formula)

Returns the molecular mass of formula, which expresses the number of atoms in the molecule. For example for water H2O, the formula is 2\(^*\)h+'0.

Do example(molecular_mass); for an example.

periodic_table()

Displays a periodic table of the chemical elements.

The mass values of the chemical database are in atomic mass units. To convert to other mass units, see unit_convert, page 84.

4.3.4 Dimensional Analysis

Name of Package: dimen

Description: Type load(dimen) \$ to load functions for automatic dimensional analysis.

nondimensionalize(list-of-physical-quantities)

The returned value is a sufficient list of nondimensional products of powers of the physical quantities. A physical relation between only the given physical quantities must be expressible as a relation between the nondimensional quantities. There are usually fewer nondimensional than physical quantities. This reduces the number of experiments or numerical computations necessary to establish the physical relation to a specified resolution, in comparison with the number if all but one dependent physical variable were independently varied. Also, the absence of any given physical quantity in the output reveals that either the quantity is irrelevant or others are necessary to describe the relation.

The program already knows an extensive number of relations between physical quantities, such as \(velocity=\text{length}/\text{time}\). The action of this function is controlled by the function dimension and the option variable %pure.

dimen_list_of_equations default: `[]`

Is a list of pre-defined expressions and equations used in the automatic dimensional analysis package dimen. Table 4.3 contains definitions for:

dimension(equation or list of equations)

Overrides or supplements prespecified relations (in dimen_list_of_equations), where each equation is of the form indeterminate = expression, where expression is a product or quotient of powers of none or more of the indeterminates charge, temperature, length, time, or mass. To see if a relation is already established, evaluate get(indeterminate, 'dimension);

%pure default: [electric_permittivity_of_a_vacuum,boltzmanns_constant]

Governs the result of nondimensionalize. It is set to a list of none or more of the indeterminates electric_permittivity_of_a_vacuum, boltzmanns_constant, speed_of_light, plancks_constant, or gravity_constant, corresponding to the relation between charge and force, temperature and energy, length and time, length and momentum, and the inverse-square law of gravitation respectively. Each included relation is used to eliminate one of charge, temperature, length, time, or mass from the dimensional basis.

To avoid omission of a possibly relevant nondimensional grouping, either include the relevant constant in %pure or in the argument of nondimensionalize if the corresponding physical effect is thought to be relevant to the problem. However, the inclusion of unnecessary constants, especially the latter three, tends to produce irrelevant or misleading dimensionless groupings, defeating the purpose of dimensional analysis. As an extreme example, if all five constants are included in %pure, all physical quantities
<table>
<thead>
<tr>
<th>action</th>
<th>activity</th>
<th>acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle</td>
<td>angular_acceleration</td>
<td>angular_momentum</td>
</tr>
<tr>
<td>angular_velocity</td>
<td>area</td>
<td>boltzmanns_constant</td>
</tr>
<tr>
<td>capacitance</td>
<td>charge</td>
<td>conductance</td>
</tr>
<tr>
<td>current</td>
<td>current_density</td>
<td>density</td>
</tr>
<tr>
<td>distance</td>
<td>dose</td>
<td>electric_field</td>
</tr>
<tr>
<td>electric_permittivity</td>
<td>electric_permittivity_of_a_vacuum</td>
<td>energy</td>
</tr>
<tr>
<td>enthalpy</td>
<td>entropy</td>
<td>exposure</td>
</tr>
<tr>
<td>frequency</td>
<td>film_coefficient</td>
<td>flow</td>
</tr>
<tr>
<td>force</td>
<td>gravity_constant</td>
<td>heat</td>
</tr>
<tr>
<td>heat_capacity</td>
<td>heat_transfer_coefficient</td>
<td>inductance</td>
</tr>
<tr>
<td>internal_energy</td>
<td>kinematic_viscosity</td>
<td>length</td>
</tr>
<tr>
<td>magnetic_field_strength</td>
<td>magnetic_flux</td>
<td>magnetic_flux_density</td>
</tr>
<tr>
<td>mass</td>
<td>magnetic_permittivity</td>
<td>momentum</td>
</tr>
<tr>
<td>magnetic_induction</td>
<td>magnetic_permittivity</td>
<td>permittivity</td>
</tr>
<tr>
<td>permeability</td>
<td>plancks_constant</td>
<td>poissons_ratio</td>
</tr>
<tr>
<td>power</td>
<td>pressure</td>
<td>resistance</td>
</tr>
<tr>
<td>specific_heat</td>
<td>speed_of_light</td>
<td>specific_entropy</td>
</tr>
<tr>
<td>shear_modulus</td>
<td>surface_tension</td>
<td>stefan_boltzmanns_constant</td>
</tr>
<tr>
<td>stress</td>
<td>strain</td>
<td>surface_tension</td>
</tr>
<tr>
<td>temperature</td>
<td>thermal_conductivity</td>
<td>thermal_expansion_coefficient</td>
</tr>
<tr>
<td>thermal_diffusivity</td>
<td>tyme</td>
<td>velocity</td>
</tr>
<tr>
<td>volume</td>
<td>voltage</td>
<td>vorticity</td>
</tr>
<tr>
<td>viscosity</td>
<td>work</td>
<td>younghs_modulus.</td>
</tr>
</tbody>
</table>

Table 4.3: Predefined Expressions in dimen Package
are already dimensionless. \%pure is by default set to \{electric_permittivity_of_a_vacuum, boltzmanns_constant\}, which is best for most engineering work. \%pure must not include any of the other three constants without also including these two.
Chapter 5

Basic Algebraic Operations

This chapter describes functions and option variables needed in performing basic algebraic operations. The option variables are described with the functions which they influence.

5.1 Algebraic Integers

An algebraic integer is a solution of a univariate monic polynomial equation with integer coefficients. Examples of algebraic integers are 2•3•%i, sqrt(7), and 6•(1/3)•5•(1/7). In addition to the factorization of polynomials over the ring of integers with an algebraic integer adjoined, Macsyma can simplify expressions involving algebraic integers by representing them in a canonically simplified form, in which there are no radicals in the denominators of fractions.

\texttt{tellrat(polyj, ..., poly_n)}

Function

Add elements to the ring of known algebraic integers. The elements added are the solutions of the polynomials \texttt{polyj}, which must have integer coefficients. By default Macsyma knows about \%i and all roots of integers. To \texttt{save} or \texttt{kill} all \texttt{tellrats}, just do \texttt{save (...}, \texttt{tellrats}, ...) or \texttt{kill(...}, \texttt{tellrats}, ...). The special case \texttt{tellrat(x)} means: substitute 0 for \texttt{x} in rational functions. When invoked, \texttt{tellrat} returns the list of current \texttt{tellrat} extensions.

When \texttt{tellrat}ing a multivariate polynomial, for example, \texttt{tellrat(x^2-y^2);}, there is an ambiguity as to whether to substitute \texttt{y^2} for \texttt{x^2} or vice versa. The system picks a particular ordering, but if you want to specify which one, use the syntax \texttt{tellrat(y^2=x^2);}, which says replace \texttt{y^2} by \texttt{x^2}.

\texttt{tellrat()}

Function

Returns a list of the current \texttt{tellrat} extensions.

\texttt{untellrat(kernel_1, ..., kernel_n)}

Function

Removes \texttt{tellrat} properties from the given kernels and returns the list of the current \texttt{tellrat} extensions. For example, \texttt{untellrat(x, cos(y));}.

\texttt{algebraic default: false}

Option Variable

Must be set to \texttt{true} in order for the simplification of algebraic functions (\textit{e.g.} \texttt{sqrt(x)}) and algebraic integers to take effect in the rational function package. Algebraic integers are defined with the command \texttt{tellrat}, and the simplification is performed by the command \texttt{rat}.

\texttt{algebraicp(expr)}

Function

Returns \texttt{true} if, and only if, \texttt{expr} is considered to be algebraic relative to the rational function package. That is, \texttt{sqrt(x)}, \%i, and \texttt{sqrt(2)} are expressions for which \texttt{algebraicp} returns \texttt{true}. For example,
this is one way to determine if you want to set \texttt{algebraic} to \texttt{true} when you are planning to do calculations involving the rational function package.

\textbf{ratalgdenom} \textit{default: true} \textit{Option Variable}

If \texttt{true}, this option variable allows rationalization of denominators with respect to radicals to take effect. Use CRE form with the \texttt{algebraic} option variable set to \texttt{true} to do this.

\textbf{Examples}
\begin{verbatim}
(c1) algebraic: true$
(c2) ratdis(e):=ratdisrep(rat(e))$
(c3) 10*(1+\%i)/(3*(1/3)+\%i);
 10 (\%i + 1)

 1/3
 \%i + 3
(d3)
(c4) ratdis(\%);
 2/3 1/3 2/3 1/3
(d4) (4 3 - 2 3 - 4) \%i + 2 3 + 4 3 - 2
(c5) tellrat(a^2+a+1)$
(c6) rat(a^2);
(d6) - a - 1
(c7) a/(sqrt(2)+sqrt(3)+1)/(a*sqrt(2)-1);
 1 a
 --------- + ---------------
 sqrt(2) a - 1 sqrt(3) + sqrt(2)
(d7)
(c8) ratdis(\%);
 (7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1
(d8) --------- -------------------
 7
(c9) untellrat(a);
(d9) \]

\section{5.2 Polynomial Algebra}

\textbf{polyomialp}(\texttt{expr, var, or _vars, _preds}) \textit{Function}

Tests whether \texttt{expr} is a polynomial in the given \texttt{var_or_vars}. The function \texttt{polyomialp} uses the global variables \texttt{poly_coeffp} and \texttt{poly_exponentp}.

\textbf{fasttimes}(\texttt{p1, p2}) \textit{Function}

Multipplies the polynomials \texttt{p1} and \texttt{p2} by using a special algorithm for multiplication of polynomials. They should be multivariate, dense, nearly the same size, have the same variable list, and be in CRE form. Classical multiplication is of order nm where n and m are the degrees. Routine \texttt{fasttimes} is of order $n^2m^1.585$.

The rest of the functions in this section return their results in general representation only if all of their principal arguments are in that form. If any of their principal arguments are in CRE form, then the result is returned in CRE form.

\textbf{divide}(\texttt{p1, p2, var1, \ldots, varn}) \textit{Function}

Computes the quotient and remainder of the polynomial \texttt{p1} divided by the polynomial \texttt{p2}, in a main polynomial variable, \texttt{var1}. The optional variables control mainness of the variables in the quotient and remainder as in the function \texttt{ratvars}. The result is a list whose first element is the quotient and whose second element is the remainder.
The ordering of the optional variables can affect the computational speed.

Examples

(c1) \(\text{divide}(x+y, x-y); \)

\(\text{[-1, 2 x]} \)

(c2) \(\text{divide}(x+y, x-y, x); \)

\([1, 2 y] \)

\textbf{Note:} \(y \) is the main variable in (c1).

\texttt{gcd\texttt{divide}(poly1, poly2)}

Divides \(poly1 \) by \(poly2 \), but removes common factors of \(poly1 \) and \(poly2 \) first.

\texttt{quotient(p1, p2, var1, \ldots, varn)}

Computes the quotient of the polynomial \(p1 \), divided by the polynomial \(p2 \), in a main variable \(varn \). The other \(vari \) control the form of the result as in \texttt{divide}.

\texttt{remainder(p1, p2, \{var1, \ldots, varn\})}

Computes the remainder of the polynomial \(p1 \), divided by the polynomial \(p2 \), in a main variable \(varn \). The optional \(vari \) control the form of the result as in \texttt{divide}.

\texttt{content(polyomial, var1, \ldots, varn, content-var)}

Returns a list whose first element is the greatest common divisor of the coefficients of the terms of the polynomial \(polyomial \) in the variable \(content-var \). This is the content. The second element is the polynomial \(polyomial \) divided by the content, and \texttt{ratsimp}ed with respect to the \texttt{ratvars} \(var1, \ldots, varn \). Any other previously declared \texttt{ratvars} are ignored.

Example

(c1) \(\text{content}(2*x*y+4*x^2*y^2, y); \)

\(2 \)

\([2 \ x, 2 \ x \ y + y] \)

\texttt{gcd(p1, p2, \{var1, \ldots, varn\})}

Computes the greatest common divisor of \(p1 \) and \(p2 \). The option variable \texttt{gcd} (default: \texttt{spmod}) determines which algorithm is employed. The optional \(vari \) control the form of the result as in \texttt{divide}.

\texttt{ezgcd(p1, \ldots, p_n)}

Returns a list whose first element is the greatest common divisor of the polynomials \(p1, \ldots, p_n \) and whose remaining elements are the polynomials divided by the greatest common divisor. This always uses the \texttt{ezgcd} algorithm, which is not recommended for homogeneous polynomials.

\texttt{extgcd(poly_or, integer, poly_or, integer)}

Computes the extended Euclidean algorithm for the integers and/or univariate polynomials with integer coefficients. Returns the list \([p(x), a(x), b(x)] \) where \(q(x) \) and \(r(x) \) are the arguments to \texttt{extgcd}, \(p(x) \) is their greatest common divisor, and \(a(x) \) and \(b(x) \) satisfy Bezout’s identity \(p(x) = a(x)q(x) + b(x)r(x) \).

\texttt{syntactic_gcd(sum_of_term)}

Finds the syntactic gcd of the \textit{term} explicitly appearing in \textit{expr}.

For example,

\[\text{syntactic_gcd}(\frac{ab}{c}, \frac{1}{c}) = \frac{1}{c} \text{syntactic_gcd}(\frac{ab}{c}, \frac{ab}{c}) = \frac{ab}{c}. \]

See also \texttt{undistrib}, page 108.
\textbf{CHAPTER 5. BASIC ALGEBRAIC OPERATIONS}

\texttt{lcm(poly1,poly2, \ldots, poly)}

Function

Returns the least common multiple of the numbers or polynomials \texttt{poly1}, \texttt{poly2}, \ldots, \texttt{poly}.

\texttt{mod(poly)}

Function

Converts the polynomial \texttt{poly} to a modular representation with respect to the current modulus which is the value of the option variable \texttt{modulus}.

\texttt{mod(poly, m)} specifies a modulus \texttt{m} to be used for converting \texttt{poly}, if you want to override the current global value of \texttt{modulus}.

See \texttt{nummod}, Section 3.1.4, page 34, for numerical modular arithmetic.

\texttt{modulus default: false}

Option Variable

If set to a positive prime \(p \), then all arithmetic in the rational function routines are done modulo \(p \). That is, all integers are reduced to less than \(p/2 \) in absolute value. If \(p = 2 \), then all integers are reduced to 1 or 0. This is the so-called “balanced” modulus system. For example, \(n \mod 5 = -2, -1, 0, 1, \) or 2. If \texttt{modulus} is set to a positive non-prime integer, this setting is accepted, but a warning is given. An error is generated if \texttt{modulus} is set to 1, 0, a negative integer, or a non-integer.

\textbf{Note:} If \texttt{exp} is already in CRE form when you reset \texttt{modulus}, then you may need to \texttt{re-rat exp}. For example, type \texttt{exp:rat(ratdisrep(exp))}; to achieve correct results. If \texttt{modulus} is set to an even number, then \texttt{rat(n)}; gives a value in \(\{-n/2+1, \ldots, n/2\} \) for \(n \) an integer. For example, when \texttt{modulus} is 4, \texttt{rat(n)}; can give one of \(\{-1, 0, 1, 2\} \).

\textit{Example}

\begin{verbatim}
(c1) exp:(4*x^3+10*x+11)/(x^5+5);
 3
 4 x + 10 x - 11

 5
 x + 5

(c2) modulus:3$

(c3) factor(num(exp));
 2
 (x - 1) (x + x - 1)

(c4) factor(denom(exp));
 4 3 2
 (x - 1) (x + x + x + x + 1)

(c5) mod(exp);
 2
 x + x - 1

 4 3 2
 x + x + x + x + 1

(modulus_warn default: true)

Option Variable

If \texttt{false}, suppresses the warning about setting \texttt{modulus} to a non-prime.

\texttt{resultant(p1, p2, var)}

Function

Computes the resultant of the two polynomials \texttt{p1} and \texttt{p2}, eliminating the variable \texttt{var}. The resultant is a determinant of the coefficients of \texttt{var} in \texttt{p1} and \texttt{p2} which equals zero if, and only if, \texttt{p1} and \texttt{p2} have a nonconstant factor (\textit{i.e.} a root) in common, or if they have a common root at infinity (\textit{i.e.}, simultaneously vanishing leading coefficients). If \texttt{p1} or \texttt{p2} can be factored, it may be desirable to call \texttt{factor} before calling \texttt{resultant}.
resultant default: subres

Option Variable

Controls which algorithm is used to compute the resultant. The algorithms available are: subres for subresultant polynomial remainder sequence (PRS) (the default), mod for modular resultant algorithm, and red for reduced PRS. On most problems, subres should be best. On some large degree univariate or bivariate problems, mod may be better.

Example

\[(\text{c1}) \text{resultant}(a^2x^2+1,y^2+x+y+b,x); \]
\[
\begin{array}{ccc}
4 & 3 & 2 \\
2 & 2 & \end{array}
\]
\[
\begin{array}{ccc}
y & + & a \\
2 & 3 & \end{array}
\]
\[
\begin{array}{ccc}
y & + & (2b+1) \\
2 & 2 & \end{array}
\]
\[
x & + & b
\]

bezout\((p_1, p_2, \text{var})\)

Function

An alternative to the resultant command. It returns a matrix. The determinant of this matrix is the desired resultant.

poly_determinant\((poly, \text{var})\)

Function

Computes the determinant of the polynomial \(poly\), with respect to \(\text{var}\). The determinant is the square of the product of the differences of all pairs of roots. It is an invariant of the algebraic number field generated by the roots of the polynomial. One feature of the determinant is that it vanishes when the polynomial has multiple roots. For example:

Example

\[(\text{c1}) \text{factor}(\text{poly_determinant}((x-a)*(x-b)*(x-c),x)); \]
\[
\begin{array}{ccc}
2 & 2 & 2 \\
(b & - & a) & (c & - & a) & (c & - & b)
\end{array}
\]

powers\((expr, \text{var})\)

Function

Returns a list of all the powers of \(\text{var}\) occurring at the top level of \(expr\).

Note: You need to expand \(expr\) before applying \powers\ to avoid an incorrect answer.

This function has many uses. For example, to find all the coefficients of \(x\) in a polynomial \(poly\), do the following:

\[
\text{map}(\lambda([\text{pow}], \text{coeff}(\text{poly}, x, \text{pow})), \text{powers}(\text{poly}, x));
\]

This function was written by A. D. Kennedy.

5.3 Factoring and Related Capabilities

For an on-line demonstration of basic factoring, do \text{demo(factor)};. For a demonstration of finely controlled factoring, do \text{demo(facexp)};. Also try \text{demo(algfac)};

factor\((exp)\)

Function

Factors the expression \(exp\), containing any number of variables or functions, into factors irreducible over the integers. The behavior of this function is affected by \dontfactor. See Section 5.3, page 95.

Examples
\[(\text{c1}) \text{factor}(2^63-1); \]
\[
\begin{array}{ccc}
2 & 2 \end{array}
\]
\[
\begin{array}{ccc}
7 & 3 & 127 & 337 & 92737 & 649657
\end{array}
\]
\[(\text{c2}) \text{factor}(z^2*(x+2*y)-4*x-8*y); \]
\[
\begin{array}{ccc}
2 & 2 \end{array}
\]
\[
\begin{array}{ccc}
(2 & y & + & x) & (z & - & 2) & (z & + & 2)
\end{array}
\]
\[(\text{c3}) x^2*y^2+2*x*y^2+y^2-2*x-2*x-1; \]
\[
\begin{array}{ccc}
2 & 2 & 2 & 2
\end{array}
\]
\[
\begin{array}{ccc}
x & y & + & 2 & x & y & + & y & - & x & - & 2 & x & - & 1
\end{array}
\]
CHAPTER 5. BASIC ALGEBRAIC OPERATIONS

(c4) don'tfactor:[x]$
(c5) factor(d3/(y^2+2*y+1));
\[\frac{2}{(x + 2 \cdot x + 1) (y - 1)} \]
\[\frac{-----------}{(y + 1)} \]
(d5)
(c6) factor(%e^-(3*x)+1);
\[\frac{x}{(\%e + 1) (\%e - \%e + 1)} \]
(d6)
(c7) don'tfactor:[]$
(c8) factor(x^-4+1,a^-2-2);
\[\frac{2}{(x - a \cdot x + 1) (x + a \cdot x + 1)} \]

Note: When factor is applied to integers, the value returned by factor when used in other computations may not lead to a simplified result. Using (d1) above, you can check that d1 + 1; does not return 2^63. It is often necessary to resimplify an expression after applying factor to it if you want to use the expression in further computations.

factor(exp, p) \hspace{1cm} Function

This factors exp over the field of integers with an element adjoined whose minimal polynomial is p. See also the function factor on page 127.

factor_number(number, {intfaclim, winfun, losefun}) \hspace{1cm} Function

The function factor_number provides an alternative to factor for prime factorization of integers and rational numbers. The underlying algorithm for factor_number (actually, a combination of methods due to Pollard, the Chudnovskys, and Schroepel) is the same as factor, but factor_number makes it easier to elect and detect partial factorizations, and for users' programs to manipulate the resulting primes and powers.

Given one argument, factor_number undertakes complete factorization and returns a list of each prime to its corresponding power, even when this power is 1. Note that the primes are returned in increasing order.

(c9) factor_number(99);
\[\frac{2 \hspace{1cm} 1}{\hspace{1cm} [3 \hspace{1cm} 11 \hspace{1cm}]} \]
(d9)
(c10) factor_number(100/99);
\[\frac{2 \hspace{1cm} -2 \hspace{1cm} 2 \hspace{1cm} -1}{\hspace{1cm} [2 \hspace{1cm} 3 \hspace{1cm} 5 \hspace{1cm} 11 \hspace{1cm}]} \]
(d10)

The list returned in the last example can be converted to a list of pairs by subst("[","-",";",")", or it can be converted back to 100/99 by typing resimplify(apply("*",%));.

The optional second argument is intfaclim (see intfaclim, page 96), permitting partial factorization, in case full factorization might take too long. If this argument is not used, the value of the option variable intfaclim is false.

(c11) factor_number(100/99,3);
\[\frac{2 \hspace{1cm} -2 \hspace{1cm} -1}{\hspace{1cm} [25 \hspace{1cm} 2 \hspace{1cm} 3 \hspace{1cm} 11 \hspace{1cm}]} \]
(d11)

That is, binding intfaclim to 3 abandoned the factorization of 25. All factors not known to be prime are combined into the first element of the answer list. The larger the value of intfaclim, the more time will be spent looking for factors larger than intfaclim. For example, despite an intfaclim of 3, factor_number(100/99,3); was able to certify the primality of 11, else it would have returned [25/11,2^2,3^-2].
For the casual user, the absence of an exponent on the first answer element indicates incomplete factorization. For example:

```
(c12) factor_number(((10^23-1)/9,999);
(d12) [111111111111111111111]
(c13) factor_number(((10^23-1)/9,999);
(d13) [1111111111111111111111]
```

In the first example, `factor_number` failed to find any factor or to certify primality, while in the second example, it succeeded in proving the argument was prime.

The third argument to `factor_number`, if supplied, is applied to the answer. For example:

```
smallest_prime_factor(n) := factor_number(n, false, lambda([first, rest], first(first)));
```

But this could waste much time by continuing the factorization after finding the smallest factor. The fourth argument to `factor_number`, if supplied, is applied instead of the third in the case of incomplete factorization.

For example:

```
any_prime_factor(n):=
factor_number(n,69,lambda([first,rest],first(first)),
lambda([undone,done],
  if done=[] then smallest_prime_factor(n)
  else first(first(done))));
```

The fourth argument can also disambiguate a rare mishap when incompletely factoring nonintegers: Since Maxima stores $1/x$ as x^{-1}, there is no way (after the fact) to tell whether $[1/1111111111-1111111111]$ is completely factored or completely unfactored.

Another way to disambiguate this case is to negate the factorand:

```
(c14) factor_number(9/(1-10^23),999);
(d14) [-1/111111111111111111]
(c15) factor_number(9/(1-10^23),999)
(d15) [-(-1)^1/111111111111111111]
```

The first example fails, while the second succeeds. That is, complete factorizations of negative numbers start with $(-1)^1$, while incomplete factorizations lump the minus sign with the unfactored first element.

A floating point factorand is regarded as the rational to which it is exactly equal, rather than some rational approximation. Thus, `factor_number(1/3.0)` will never return $[3^{-1}]$.

`factor Uses ratsimp default: true`

If true, `factor` calls on `ratsimp` to prepare the expression for factoring.

`factorflag default: false`

If false, this option variable suppresses the factoring of integer factors of rational expressions.

`don tfactor default: []`

Contains a list of variables for which factoring is disabled. Factoring with respect to any variables that are inferior to those on the list `dontfactor` is also inhibited. The notion of order here is the same as the ordering assumed for CRE form. See Section 5.4.1, page 98.

`facexpand default: true`

Controls whether the irreducible factors returned by `factor` are in expanded (the default) or recursive (normal CRE) form.
savefactors default: false

Option Variable

If true, this option variable causes the factors of an expression that is a product of factors to be saved by certain functions in order to speed up later factorizations of expressions containing some of the same factors.

intfaclim default: 1000

Option Variable

is the largest divisor that is tried when factoring a bignum integer. If set to false, which is the case when the factor is called explicitly, or if the integer is a fixnum, complete factorization of the integer is attempted. The setting of intfaclim is used for internal calls to factor. Thus, intfaclim can be reset to reduce the time spent factoring large integers.

\texttt{gcfactor(n)}

Function

Factors the Gaussian integer \(n\) over the Gaussians, which are numbers of the form \(a + bi\), where \(a\) and \(b\) are integers. Factors are normalized by making \(a\) and \(b\) nonnegative. See also the function \texttt{cfactor} on page 127.

\texttt{factorsum(exp)}

Function

Tries to group terms in factors of \(exp\) that are sums into groups of terms such that their sum is factorable. It can recover the result of \texttt{expand((x+y)^2 + (z+w)^2)} but it cannot recover \texttt{expand((x+1)^2 + (x+y)^2)} because the terms have variables in common. The behavior of this function is affected by don'tfactor. See Section 5.3, page 95.

Example
\begin{verbatim}
(c1) (x+1)*((u+v)^2+a*(w+z)^2), expand;
 2 2 2
 2 2 2
 2 2 2
 + 2 u v x + u x + a w + v + 2 u v + u

(d1) a x z + a z + 2 a w x z + 2 a w z + a w x + v x

(c2) factorsum(%);

 2
 2

(d2) (x + 1) (a (z + w) + (v + u))
\end{verbatim}

\texttt{factorout(exp, var_1, \ldots, var_n)}

Function

Rearranges the sum \(exp\) into a sum of terms of the form \(f(var_1, \ldots, var_n) g\) where \(g\) is a product of expressions not containing the \(var_i\)'s and \(f\) is factored.

Another technique of factoring complex expressions uses the function \texttt{scanmap}.

\texttt{sqfr(exp)}

Function

Is similar to \texttt{factor} except that the polynomial factors are ‘square-free.’ That is, they have factors of degree one only. This algorithm, which is also used by the first stage of \texttt{factor}, utilizes the fact that a polynomial has in common with its \(n^{th}\) derivative all its factors of degree greater than \(n\). Thus, by taking GCDs with the polynomial of the derivatives with respect to each variable in the polynomial, all factors of degree greater than 1 can be found. The behavior of this function is affected by don'tfactor. See Section 5.3, page 95.

Example
\begin{verbatim}
(c1) sqfr(4*x^4+4*x^3-3*x^2-4*x-1);
 2

(d1) 2 x + 1 (x - 1)
\end{verbatim}

\texttt{gfactor(exp)}

Function

Factors the polynomial \(exp\) over the Gaussian integers, which are the ordinary integers with \(\sqrt{-1} = i = \%i\) adjoined. This is like performing \texttt{factor(exp, a^2+1)}, and then substituting \(\%i\) for \(a\). The behavior of this function is affected by don'tfactor. See Section 5.3, page 95.
Example
(c1) gfactor(x^4-1);
(d1) (x - 1) (x + 1) (x - %i) (x + %i)
gfactorsum(exp) Function
Is similar to factorsum but applies gfactor instead of factor. The behavior of this function is affected by dontfactor. See Section 5.3, page 95.
algfac(polynomial, algebraic) Function
Factors polynomial over algebraic. For example:
(c1) algfac(a^2+b^2,%i);
(d1) (b - %i a) (b + %i a)
nthroot(polynomial, n) Function
Where polynomial is a polynomial with integer coefficients and n is a positive integer, nthroot returns q, a polynomial over the integers, such that q^n = polynomial. Otherwise, it signals the error Not an nth power - NTHROOT. This routine is much faster than either factor or sqfr.

5.4 Rational Expressions

A rational expression is the quotient of two polynomials. A special internal representation called Canonical Rational Expression form, or CRE form, can be used for rational expressions, and polynomials as special cases. CRE form requires less storage than the general representation. Since CRE manipulations are usually faster, it may be desirable to use them whenever the problem of interest can be expressed largely in terms of polynomials or rational expressions. The symbol /R/ following the line label in the display of an expression indicates that either the expression is in CRE form or that some subexpression of it is.

CRE form is “contagious” in the following sense. When a CRE expression is added to or multiplied by another compatible expression, the result is in CRE form. Thus, by first multiplying by rat(1) you can force the entire calculation to be done in CRE form. However, if CRE forms are mixed into an expression containing general forms such as sin(rat(x^2)), such that the result is not entirely in CRE form, then the result is automatically converted into general representation.

Some functions, such as ratsimp and factor, use CRE form internally in the implementation of their algorithms. This is usually transparent to the user.

5.4.1 Rational Functions

ratvars(var_1, ..., var_n) Function
Forms its n arguments into a list in which the rightmost variable var_n is the main variable of future rational expressions in which it occurs, and the other variables follow in sequence. If a variable is missing from the ratvars list, it is given lower priority than the leftmost variable var_1. The arguments to ratvars can be either variables or nonrational functions such as sin(x).

ratvars default: [] Option Variable
Is a list of the arguments that have been given to the function ratvars.

listratvars(exp) Function
Returns a list of the ratvars (CRE variables) of exp.
Function

\(\text{rat}(\text{exp}, \text{var}_1, \ldots, \text{var}_n) \)

Converts \(\text{exp} \) to CRE form by expanding and combining all terms over a common denominator and canceling out the greatest common divisor of the numerator and denominator, as well as converting floating-point numbers to rational numbers within a tolerance of \(\text{ratepsilon} \), described below. The variables are ordered according to the \(\text{var}_1, \ldots, \text{var}_n \) as in \(\text{ratvars} \), if these are specified. The function \(\text{rat} \) does not generally simplify operations other than \(+, -, *, /, \) and exponentiation to an integer power. The function \(\text{ratsimp} \) does handle more complicated cases (see page 103).

Note: Atoms in CRE form are not the same as they are in the general form. Thus, \(\text{rat}(x) - x \); results in \(\text{rat}(0) \) which has an internal representation different from 0.

Example

\[
\begin{align*}
(c1) & \quad ((x-2*y)^4/(x^2-4*y^2)^2+2+1)*(y+a)*(2*y+x)/(4*y^2+2*x^2); \\
& \quad \frac{4}{(x - 2 \ y)} \\
& \quad \frac{(y + a) (2 \ y + x) (-\text{--------} + 1)}{2 \ 2} \\
& \quad \frac{(x - 4 \ y)}{2 \ 2} \\
(d1) & \quad \frac{\text{--------}}{2 \ 2} \\
& \quad \frac{4 \ y + x}{2 \ y + x} \\
(c2) & \quad \text{rat}(\%, y, a, x); \\
& \quad 2 \ a + 2 \ y \\
(d2)/R/ & \quad \text{--------} \\
& \quad x + 2 \ y
\end{align*}
\]

Option Variable

\(\text{ratepsilon} \)

When \(\text{rat} \) converts floating-point numbers to rational numbers, the error is assured to be smaller than \(\text{ratepsilon} \).

\(\text{ratfac} \)

When \(\text{true} \), invokes a partially factored form for CRE rational expressions. During rational operations the expression is maintained as fully factored as possible without an actual call to the factor package. This should always save space and may save some time in some computations. The numerator and denominator are still made relatively prime; for example \(\text{rat}((x^2-1)^4/(x+1)^2); \) returns \((x-1)^4*(x+1)^2, \) but the factors within each part may not be relatively prime.

Note: The \(\text{ratfac} \) and \(\text{ratweight} \) schemes are incompatible and may not both be used at the same time.

\(\text{ratprint} \)

If \(\text{false} \), this option variable suppresses the display of the warning message informing you of the conversion of floating-point numbers to rational numbers. The message is \(\text{RAT replaced flonum by ratnum = approximate value.} \)

\(\text{bftorat} \)

Controls the conversion of bfloats to rational numbers. If \(\text{bftorat} \) is set to \(\text{false} \), then \(\text{ratepsilon} \) is used to control the conversion. (This results in relatively small rational numbers.) If \(\text{bftorat: true} \), the default, the rational number generated accurately represents the bfloat. See also Section 5.5.1, page 102 and Section 5.5.2, page 103.

\(\text{ratdisrep}(\text{exp}) \)

Returns the general representation of its argument, which may be in CRE form. This is sometimes convenient for stopping the “contagion” of CRE form, or for using rational functions in nonrational
contexts. Most CRE functions work on either CRE or non-CRE expressions, but the answers may take different forms. If \texttt{ratdisrep} is given a non-CRE argument, it returns its argument unchanged.

\texttt{totaldisrep}(\texttt{exp}) \hspace{1cm} \textit{Function}

Converts every subexpression of \texttt{exp} from CRE to general form. If \texttt{exp} is itself in CRE form, then this is identical to \texttt{ratdisrep}, but if not, then \texttt{ratdisrep} would return \texttt{exp} unchanged while \texttt{totaldisrep} would “totally disrep” it. This is useful for \texttt{ratdisrepping} expressions that have some subexpressions in CRE form, such as equations, lists, and matrices.

\texttt{num}(\texttt{exp}) \hspace{1cm} \textit{Function}

Returns the numerator of the rational expression \texttt{exp}.

\texttt{denom}(\texttt{exp}) \hspace{1cm} \textit{Function}

Returns the denominator of the rational expression \texttt{exp}.

\textbf{Note:} \texttt{num} and \texttt{denom} do not alter the internal representations of expressions and have the desirable property that for all expressions \texttt{num}(\texttt{exp})/\texttt{denom}(\texttt{exp}) is the same as \texttt{exp}. This is not true of the next two functions which return expressions in CRE form.

\texttt{ratnum}(\texttt{exp}) \hspace{1cm} \textit{Function}

Obtains the numerator of the rational expression \texttt{exp}. If \texttt{exp} is in general form, then the function \texttt{num} should be used instead, unless you want a CRE result.

Another name for \texttt{ratnum} is \texttt{ratnum}.

\texttt{ratdenom}(\texttt{exp}) \hspace{1cm} \textit{Function}

Obtains the denominator of the rational expression \texttt{exp}. If \texttt{exp} is in general form then the \texttt{denom} function should be used instead, unless you want a CRE result.

\texttt{ratweight}(\texttt{var}_1, \texttt{w}_1, \ldots, \texttt{var}_n, \texttt{w}_n) \hspace{1cm} \textit{Function}

Assigns a weight of \texttt{w}_i to the variable \texttt{var}_i. This causes a monomial to be replaced by zero if its weight exceeds the value of the option variable \texttt{ratwtlvl}, described below. The weight of a monomial is the sum of the products of the weight of each variable in the term, times its power. Thus the weight of \texttt{3var}_1\texttt{var}_2 is \texttt{2w}_1 + \texttt{w}_2. This truncation occurs only when multiplying or exponentiating CRE forms of expressions. The \texttt{ratfac} and \texttt{ratweight} schemes are incompatible and may not be used at the same time.

\texttt{ratwtlvl} \texttt{default: false} \hspace{1cm} \textit{Option Variable}

Controls the automatic truncation scheme using the option variable \texttt{ratweights}. For the default value \texttt{false} no truncation occurs. If set to an integer, terms whose weight exceeds the value of \texttt{ratwtlvl} are replaced by zero.

\texttt{ratweights} \texttt{default: []} \hspace{1cm} \textit{Option Variable}

This is the current list of weight assignments. Entering \texttt{ratweight()}; returns the value of \texttt{ratweights}. The commands \texttt{kill(...,ratweights)}; and \texttt{save(...,ratweights)}; will eliminate and save weight assignments.

\textbf{Example}

\begin{verbatim}
(c1) ratweight(a,1,b,1);
(d1) [a, 1, b, 1]
(c2) expr1:rat(a+b+1)$
(c3) %**2;
 2 2
(d3)/R/ b + (2 a + 2) b + a + 2 a + 1
(c4) ratwtlvl:1$
\end{verbatim}
\((c5) \text{ exp}1^2; \)
\((d5)/R/ \quad 2 \ b + 2 \ a + 1 \)

Function

\text{ratdiff}(\text{exp}, \text{var})

Differentiates the rational expression \(\text{exp} \), which must be a ratio of polynomials or a polynomial in the variable \(\text{var} \). The differentiation is performed with respect to \(\text{var} \). For rational expressions this is much faster than \text{diff}. The result is returned in CRE form if the argument is in CRE form; otherwise it is returned in general representation. However, \text{ratdiff} should not be used on factored CRE forms; use \text{diff} instead for such expressions.

Example

\((c1) \text{ exp}:(4* \text{x}^3+10* \text{x}-11)/(\text{x}^5+5); \)
\[4 \ x + 10 \ x - 11 \]
\((d1) \]
\[5 \]
\(5 \ x + 5 \)

\((c2) \text{ratdiff}(\text{exp}, \text{x}); \)
\[8 \ x + 40 \ x - 55 \ x - 60 \ x - 50 \]
\((d2) \]
\[10 \]
\[5 \]
\[5 \ x + 10 \ x + 25 \]

\((c3) \text{modulus:} 3 \$ \)
\((c4) \text{ratdiff}(\text{exp}, \text{x}); \)
\[5 \ x - x - x + x - 1 \]
\((d5) \]
\[8 \]
\[7 \]
\[5 \]
\[4 \]
\[3 \]
\[x - x + x - x + x - x + 1 \]

5.4.2 Extended Rational Expressions

An extended rational expression is a truncated power series with rational functions for coefficients, as generated by \text{taylor}. The truncation capability implemented by \text{ratweights} is utilized by extended CRE forms as well as by CRE forms. For more details see Section 5.4.1, page 99.

Function

\text{taylor}(\text{exp}, [\text{var}_1, \text{pt}_1, \text{ord}_1], \ldots, [\text{var}_n, \text{pt}_n, \text{ord}_n])

Returns a truncated power series in the variables \(\text{var}_i \) about the points \(\text{pt}_i \), truncated at \(\text{ord}_i \). The symbol /\text{T}/ follows the line label of expressions in the extended CRE form. (See also CRE page 506, or page 507.) For further details see Section 6.1.4.1, page 153.

Option Variable

\text{psexpand} \quad \text{default: false}

If \text{true}, this option variable causes extended rational function expressions to display fully expanded. Invoking \text{ratexpand} also causes this. If \text{false}, multivariate expressions are displayed just as in the rational function package. If \text{psexpand:multi}, then terms with the same total degree in the variables are grouped together.

Function

\text{taytorat}(\text{exp})

Converts \text{exp} from \text{taylor} form to CRE form. Although much faster, it is similar to \text{rat(ratdisrep(exp))}.

Examples

\((c1) \text{ taylor}(1 + \text{x}, [\text{x}, 0, 3]); \)
5.5. Simplifying Polynomials and Rational Functions

5.5.1 The Expanding Functions

\texttt{expand(\textit{exp})}

\textit{Function}

Causes products of sums and exponentiated sums to be multiplied out, numerators of rational expressions that are sums to be split into their respective terms, and multiplication, both commutative and noncommutative, to be distributed over addition at all levels of \textit{exp}. For polynomials and rational functions you might prefer to use \texttt{ratexpand}, which uses a more efficient algorithm. See Section 5.5.1, page 102. Expansion occurs only for terms with internal representation exponents \(e \) such that \(\text{maxnegex} \leq e \leq \text{maxposex} \). These option variables are described below.

\texttt{expand(\textit{exp}, \textit{p}, \textit{n})} expands \textit{exp}, using \textit{p} for \texttt{maxposex} and \textit{n} for \texttt{maxnegex}. This helps you control how much and what kinds of expansion are to take place.

\texttt{maxnegex} \hspace{1em} \textit{default: 1000} \hspace{1em} \textit{Option Variable}

Controls the action of \texttt{expand}. If a term has an internal representation exponent more negative than \(-\text{maxnegex}\), expansion is inhibited.

\texttt{maxposex} \hspace{1em} \textit{default: 1000} \hspace{1em} \textit{Option Variable}
Controls the action of \texttt{expand}. If a term has an internal representation exponent more positive than \texttt{maxposex}, expansion is inhibited.

\texttt{expon default: 0} \hfill \textit{Option Variable}

The exponent of the largest negative power that is automatically expanded, independent of calls to \texttt{expand}. For example, if \texttt{expon} is 4, then \((x+1)^{-5}\) is not automatically expanded.

\texttt{expop default: 0} \hfill \textit{Option Variable}

The highest positive exponent that is automatically expanded. Thus \((x+1)^3\), when typed, is automatically expanded only if \texttt{expop} is greater than or equal to 3. If you want to have \((x+1)^n\) expanded where \(n\) is greater than \texttt{expop} then executing \texttt{expand}((\(x+1\)^n\)) works only if \texttt{maxposex} is not less than \(n\).

\texttt{ratexpand (exp)} \hfill \textit{Function}

Expands \texttt{exp} by multiplying out products of sums and exponentiated sums, combining fractions over a common denominator, canceling the greatest common divisor of the numerator and denominator, then splitting the numerator, if it is a sum, into its respective terms divided by the denominator. This is accomplished by converting \texttt{exp} to CRE form and then back to general form. \texttt{ratexpand} is affected by the option variables \texttt{ratexpand} and \texttt{ratdenomdivide}.

\texttt{Examples}
\begin{verbatim}
c1) 1/(x+y)*4-3/(y+z)^3)^2;
 4 3
 (---------- - ----------)
 6 9
 (y + x) (z + y)

d1) expand(%), 2, 0);
 2
 (---------- + ----------- + -----------)
 2 3
 (y + x) (z + y) (y + x)

c2) expand(a.(b+c.(d+e)+f));
 a . f + a . c . e + a . c . d + a . b

d2) a . f + a . c . e + a . c . d + a . b

c3) ratexpand((x+1)^n);
 x - 1
 2 x - 1
 (x + 1)

d3) expand(d2);
 2
 (---------- + ----------- + -----------)
 2 3
 x + 2 x + 1 x + 2 x + 1

c4) ratexpand(d2);
 2
 (---------- + ----------- + -----------)
 3 2
 x + x - x - 1 x + x - x - 1

d4) (x+y)^n => (x+y)^n
 2
 (---------- + ----------- + -----------)
 3 2
 x + x - x - 1 x + x - x - 1
\end{verbatim}
5.5. SIMPLIFYING POLYNOMIALS AND RATIONAL FUNCTIONS

ratexpand default: false

Option Variable

If true, this option variable causes CRE expressions to be fully expanded when they are converted back to general form or displayed, while if it is false, they are put into a recursive form. See Section 5.5.2, page 103.

ratdenomdivide default: true

Option Variable

If false, this option variable inhibits the splitting of the terms of the numerator of ratexpanded expressions.

keepfloat default: false

Option Variable

If set to true, this option variable prevents floating-point numbers from being rationalized when expressions that contain them are converted to CRE form. As with all other option variables, various algorithms may override the setting of this option variable if they are unable to operate in that mode.

gcd default: spmod

Option Variable

This option variable determines which algorithm is employed by the function gcd.

<table>
<thead>
<tr>
<th>Setting gcd to ...</th>
<th>Selects the ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ez</td>
<td>EZGCD [Moses6] algorithm</td>
</tr>
<tr>
<td>eez</td>
<td>new EEZ GCD algorithm</td>
</tr>
<tr>
<td>subres</td>
<td>subresultant PRS algorithm</td>
</tr>
<tr>
<td>red</td>
<td>reduced PRS algorithm</td>
</tr>
<tr>
<td>spmod</td>
<td>modular algorithm (See [Brown] and [Zippel79])</td>
</tr>
</tbody>
</table>

If gcd: false, then gcd(p1, p2, var) always returns 1 for all var. Many functions such as ratsimp and factor, cause GCDs to be taken implicitly. For homogeneous polynomials it is recommended that gcd:subres be used. To take the GCD when an algebraic is present, as in gcd(x^2-2*sqrt(2)*x+2, x-sqrt(2));, algebraic must be true and gcd must be either algebraic or subres. If you set gcd:’algebraic§ then Macsyma will select the subres algorithm if algebraics are present, and the spmod algorithm if algebraics are not present. (This is an example of a polyalgorithmic approach in Macsyma. It may take a little time for Macsyma to check whether algebraics are present, but that time spent may be worth it.)

If false, this option variable prevents the greatest common divisor from being taken when expressions are converted to CRE form. This sometimes speeds the calculation if GCDs are not required. (See Section 5.2, page 91).

5.5.2 Simplification of Rational Functions

ratsimp(exp)

Function

Rationally simplifies the expression exp and all of its subexpressions, including the arguments to nonrational functions, in a manner similar to ratexpand. The result is returned as the quotient of two polynomials in a recursive form, where the coefficients of the main variable are polynomials in the other variables. As in ratexpand, variables can include nonrational functions such as sin(x^2)+1 but with ratsimp, the arguments to nonrational functions are rationally simplified. ratsimp is affected by some of the option variables that affect ratexpand.

ratsimpexpons default: false

Option Variable

If true, this option variable causes exponents of expressions to be ratsimped automatically during general simplification.
ratsimp(exp, var₁, ..., varₙ)** Function**

Enables rational simplification with the specification of variable ordering as in **ratvars**.

See Section 5.4.1, page 97.

Examples

(c1) \(\sin(x/(x^2+x))=\%e^((\log(x)+1)^2-\log(x)^2)/x \)

(d1) \(\sin(------) = \%e^2 \)

(c2) ratsimp(%);

(d2) \(\sin(-----) = \%e^2 \)

(c3) \((x-1)^{(3/2)}-(x+1)*\text{sqrt}(x-1))/\text{sqrt}((x-1)*(x+1))\)

(d3) \((x - 1) - \text{sqrt}(x - 1) (x + 1) \)

(c4) ratsimp(%);

(d4) \(2 \text{sqrt}(x-1) \)

(c5) \(x^{(a+1/a)}, \text{ratsimpexpons: true}; \)

(d5) \(x \)

fullratsimp(exp)** Function**

When nonrational expressions are involved, one call to **ratsimp** followed, as is usual, by nonrational ("general") simplification is not sufficient to return a simplified result. Sometimes, more than one such call may be necessary. The command **fullratsimp** makes this process convenient. **fullratsimp** repeatedly applies **ratsimp** followed by nonrational simplification to an expression until no further change occurs. For example, consider the following:

Example

(c1) \(\exp: (x^{(a/2)+1})^2*(x^{(a/2)-1})^2/(x^a-1); \)

(d1) \(a/2 \)

(c2) ratsimp(exp);

(d2) \(a \)
(c3) \texttt{fullratsimp(exp);} \\
\hspace{1cm} \texttt{a} \\
\hspace{1.5cm} \texttt{x - 1} \\
The problem can be seen by looking at \texttt{rat(exp);} \\
(c4) \texttt{rat(exp);} \\
\hspace{1cm} \texttt{a/2} 4 \hspace{1cm} \texttt{a/2} 2 \\
\hspace{2.5cm} \texttt{(x \hspace{.2cm} - \hspace{.2cm} 2 \hspace{.2cm} (x \hspace{.2cm}) \hspace{.2cm} + \hspace{.2cm} 1} \\
\hspace{3.5cm} \texttt{-------------------} \\
\hspace{4.5cm} \texttt{a} \\
\hspace{5.5cm} \texttt{x - 1} \\
\texttt{fullratsimp} also takes one or more arguments similar to \texttt{ratsimp} as in this example: \\
\texttt{fullratsimp(exp, var1, ..., var_n).} \\

\texttt{scsimp(exp, rule1, ..., rule_n)} \\
Function \\
This function implements Sequential Comparative Simplification. It takes an expression as its first argument, and a set of identities, or rules as its other arguments. It then applies the identities. If a smaller expression is obtained, the process repeats. Otherwise, after all simplifications are tried, it returns the smallest expression found. \\
\textbf{Examples} \\
(c1) \texttt{exp:k^2*n^2+k^2*m^2-n^2-k^2*1^2*n^2-k^2*1^2*m^2*k^2/2;} \\
\hspace{1cm} 2 \hsspace{(c1)} \hspace{(c2)} \hspace{(c3)} \hspace{(c4)} \hspace{(c5)} \hspace{(c6)} \hspace{(c7)} \hspace{(c8)} \\
\hspace{1cm} \texttt{xthru(exp)} \\
\hspace{1cm} Function \\
Combines all terms of \texttt{exp}, which should be a sum, over a common denominator, without expanding products and exponentiated sums as \texttt{ratsimp} does. If any sums in \texttt{exp} contain embedded sums, then use \texttt{scanmap(’xthru, exp)}; to get all the sums \texttt{xthru}. \\
\texttt{xthru} does cross multiplication of sums. \texttt{xthru} cancels common factors in the numerator and denominator of rational expressions, but only if the factors are explicit. Sometimes it is better to use \texttt{xthru}
before applying \texttt{ratsimp} to an expression in order to cause explicit factors of the GCD of the numerator and denominator to be canceled, thus simplifying the expression to be \texttt{ratsimped}.

\textit{Example}

\begin{verbatim}
(c1) \((x+2)^2-20/(x+y)^2+20/(x+y)^2-19-x/(x+y)^20;
1
(x + 2) - 2 y x
----------- + --------------- - -----------
19 20 20
(y + x) (y + x) (y + x)
\end{verbatim}

\begin{verbatim}
(d1) xthru(\%);
20
(x + 2) - y

20
(y + x)
\end{verbatim}

\texttt{partfrac}(exp, var)

\textit{Function}

Expands the expression \texttt{exp} in partial fractions with respect to the main variable, \texttt{var}. \texttt{partfrac} does a complete partial fraction decomposition. The algorithm employed is based on the fact that the denominators of the partial fraction expansion (the factors of the original denominator) are relatively prime. The numerators can be written as linear combinations of denominators, and the expansion is determined by matching coefficients.

\textit{Example}

\begin{verbatim}
(c1) 2/(x+2)-1/(x+1)-x/(x+1)^2$;
(c2) ratsimp(\%);
\end{verbatim}

\begin{verbatim}
(x)

3 2
x + 4 x + 5 x + 2
\end{verbatim}

\begin{verbatim}
(d2) partfrac\%; x;
2 2 1
----- - ----- + -------
x + 2 x + 1 2
\end{verbatim}

\begin{verbatim}
(c3)
(d3)
\end{verbatim}

\subsection{5.5.3 Applying the Distributive Law of Multiplication over Addition}

The distributive law of multiplication over addition says that

\[a \times (b + c) = a \times b + a \times c. \]

In conjunction with other properties for real numbers, symbolic sums of terms, factors, products and ratios can be combined and simplified.

\texttt{combine}(exp)

\textit{Function}

Simplifies the sum \texttt{exp} by combining terms with the same denominator into a single term.

\texttt{rncombine}(exp)

\textit{Function}

Like \texttt{combine} but can deal with rational numbers. It transforms \texttt{exp} by combining all terms of \texttt{exp} that have identical denominators or denominators that differ from each other by numerical factors.
only. This is slightly different from the behavior of \texttt{combine}, which collects terms that have identical denominators. Setting \texttt{preformat:true} and using \texttt{combine} achieves results similar to those that can be obtained with \texttt{rnccombine}, but \texttt{rnccombine} takes the additional step of cross-multiplying numerical denominator factors. This results in neater forms, and the possibility of recognizing some cancellations. For example:

\begin{verbatim}
(c1) combine(x/2/(x-1)+x^2/4/(x-1));
 2
 x x
---------- + ----------
 4 (x - 1) 2 (x - 1)
(d1)
(c2) rnccombine(x/2/(x-1)+x^2/4/(x-1));
 2 x + 2 x

 4 (x - 1)
(d2)
\end{verbatim}

\textbf{\texttt{multthru}(exp)} \textit{Function}

Multiplies a factor of \texttt{exp}, which should be a sum, by the other factors of \texttt{exp}. That is \texttt{exp} is \(f_1 \times f_2 \times \ldots \times f_n \), where at least one factor, say \(f_i \), is a sum of terms. Each term in that sum is multiplied by the other factors in the product, namely all the factors except \(f_i \). \texttt{multthru} does not expand exponentiated sums. This function is the fastest way to distribute products, commutative or noncommutative, over sums. Since quotients are represented as products, \texttt{multthru} can be used to divide sums by products as well. See Section 10.1, page 321.

\texttt{multthru(exp1, exp2)} multiplies each term in \texttt{exp2}, which should be a sum or an equation, by \texttt{exp1}.

\textbf{Examples}

\begin{verbatim}
(c1) x/(x-y)^2-1/(x-y)-f(x)/(x-y)^3;
 1
 x
- ------- + ------- - -------
 x - y 2 3
 (x - y) (x - y)
(d1)
(c2) multthru((x-y)^3,%);
 2 2
 (b + a) a b s + a b

a b s
(d2)
(c3) ratexpand(d2);
 2 2
 y + x y - f(x)
(d3)
(c4) ((a+b)^10*s^2+2*a*b*s+(a+b)^2)/(a*b*s^2);
 10 2 2 2
 (b + a) s + 2 a b s + a b

 a b s
(d4)
(c5) multthru(%,);
 10 2 2
 a b (b + a)

 s 2 a b
(d5)
\end{verbatim}

Notice that \((b+a)^{10}\) is not expanded.

\begin{verbatim}
(c6) multthru(a.(b+c).(d+e)+f));
(d6) a . f + a . c . (e + d) + a . b
\end{verbatim}

Compare with similar example under \texttt{expand} (see page 102).
distrib(exp)

Distributes sums over products. This function differs from \texttt{expand} in that it works at only the toplevel of an expression. It does not recurse, and it is faster than \texttt{expand}. It differs from \texttt{multthru} in that it expands all sums at that level. This is illustrated in Table 5.1.

<table>
<thead>
<tr>
<th>((a + b)(c + d))</th>
<th>(\text{distrib}(exp))</th>
<th>(\text{multthru}(exp))</th>
<th>(\text{expand}(exp))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a + b)(c + d))</td>
<td>(bd + ad + bc + ac)</td>
<td>((b + a)(d + c))</td>
<td>(bd + ad + bc + ac)</td>
</tr>
<tr>
<td>((d + c)(f + a))</td>
<td>(b(d + c)f + f +)</td>
<td>(a(b(d + c) + 1))</td>
<td>(ab(d + c) + a)</td>
</tr>
</tbody>
</table>

Table 5.1: A Comparison of \texttt{distrib}, \texttt{multthru} and \texttt{expand}

undistrib(sum_of_terms)

\texttt{undistrib} is analogous to an inverse of \texttt{distrib}. It works by obtaining the syntactic gcd of the term in the sum, e.g. the gcd of what is explicit syntactically in the expression. The syntactic gcd is found with \texttt{syntactic_gcd}. See also \texttt{syntactic_gcd}, page 91.

(c1) \texttt{exp:a*b/c+a*b^2/c+a*b^3/c+a*b^4/c;}
\begin{verbatim}
4 3 2
a b a b a b a b
---- + ---- + ---- + ----
c c c c c
\end{verbatim}
(d1)

(c2) \texttt{undistrib(\%);}
\begin{verbatim}
3 2
a b (b + b + b + 1)

c
\end{verbatim}
(d2)

(c3) \texttt{args(exp);}
\begin{verbatim}
4 3 2
a b a b a b a b
[----, ----, ----, ----]
c c c c c
\end{verbatim}
(d3)

(c4) \texttt{apply(\texttt{\textquoteleft{}syntactic_gcd,\%});}
\begin{verbatim}
a b

c
\end{verbatim}
(d4)

negdistrib \texttt{default: true}

Option Variable

Controls the distribution of \(-1\) over an expression. When this option variable is set to \texttt{true}, Macsyma distributes \(-1\) over an expression. Thus, \(- (y + x)\) results in \(-y - x\). Setting it to \texttt{false} allows \(- (y + x)\) to remain like that.

\textbf{Note:} Like the option variable \texttt{simp}, this is one option variable you do not want to set to \texttt{false} as a matter of course or for anything other than local use.
5.5. SIMPLIFYING POLYNOMIALS AND RATIONAL FUNCTIONS

5.5.4 Isolating Variables

\texttt{isolate(exp, var)} \textit{Function}

Returns \textit{exp} with those subexpressions that are sums and which do not contain \textit{var} replaced by intermediate expression labels, such as \((e1), (e2), \ldots\). This is often useful to avoid unnecessary expansion of subexpressions that do not contain the variable of interest. Since the intermediate labels are bound to the subexpressions, they can all be substituted back by evaluating the expression in which they occur. See Section 5.5.4, page 109.

\texttt{exptisolate default: false} \textit{Option Variable}

If \texttt{true}, this option variable causes \texttt{isolate} to examine exponents of atoms such as \(\%e\).

\textit{Examples}
\begin{verbatim}
(c1) (a+b)^4*(1+x*(2*x+(c+d)^2));
 (d1) (b + a) (x (2 x + (d + c)) + 1)
(c2) isolate(%e, x);
 (e2) (d + c)
(c3) (b + a)
(d3) e3 (x (2 x + e2) + 1)
(c4) ratsimp(d3)$
(c5) ev(%e);
(d5) 2 (b + a) x + (b + a) (d + c) x + (b + a)
(c6) (a+b)*(x+a+b)^2*exp(x^2+a*x+b);
 (d6) 2 x + a x + b
(c7) isolate(%e,x),exptisolate:true;
(c8) b + a
(e8) b
(c9) x + a x
(d8) e7 e8 (x + e7) %e
\end{verbatim}

\texttt{isolate_wrt_times default: false} \textit{Option Variable}

If set to \texttt{true}, then \texttt{isolate} also isolates with respect to products. Compare both settings of the option variable on \texttt{isolate(expand((a+b+c)^2),c);}.

\texttt{disolate(exp, var1, \ldots, var_n)} \textit{Function}

Enables you to \texttt{isolate} more than one variable at a time. See Section 5.5.4, page 109. This might be useful, for example, if you are trying to change variables in a multiple integration, and that variable change involved two or more of the integration variables. This function was written by R. L. Brenner.

5.5.5 Controlled Expansion of Rational Expressions

Name of Package: \texttt{facexp}

Original Author: R. L. Brenner
\textbf{Description: } This package contains several related functions that provide the ability to structure expressions by controlled expansion.

This capability is especially useful when the expression contains variables that have physical meaning, because it is often true that the most economical form of such an expression can be obtained by fully expanding the expression with respect to those variables and then factoring their coefficients. While it is true that this procedure is not difficult to carry out using standard functions, additional fine-tuning may also be desirable, and these finishing touches can be more difficult to apply. The function \texttt{facsum} and its related forms provide a convenient means of controlling the structure of expressions in this way. Another function, \texttt{collectterms}, can be used to add two or more expressions that have already been simplified to this form, without resimplifying the whole expression again. This function is particularly useful when the expressions are large and address space or cpu time is in short supply.

\texttt{facsum}(exp, arg_1, \ldots, arg_n) \quad \textbf{Function}

Returns a form of \texttt{exp} that depends on the \texttt{arg}_i. The \texttt{arg}_i can be any form suitable for \texttt{ratvars} or lists of such forms. If the \texttt{arg}_i are not lists, the form returned is fully expanded with respect to the \texttt{arg}_i, and the coefficients of the \texttt{arg}_i are factored. These coefficients are free of the \texttt{arg}_i, except perhaps in a nonrational sense. If any of the \texttt{arg}_i are lists, all such lists are combined into a single list, and instead of calling \texttt{factor} on the coefficients of the \texttt{arg}_i, \texttt{facsum} calls itself on these coefficients, using this newly constructed single list as the new \texttt{arg}_i for this recursive call. This process can be repeated to arbitrary depth by nesting the desired elements in lists.

You might want to \texttt{facsum} with respect to more complicated subexpressions, such as \texttt{log(x+y)}. Such arguments are also permissible. With no variable specification, for example \texttt{facsum(exp)}, the result returned is the same as that returned by \texttt{ratsimp(exp)}.

Occasionally, you may need any of the above forms for expressions that are specified only by their leading operators. For example, you might like to \texttt{facsum} with respect to all \texttt{log}'s. In this situation, you can include among the \texttt{arg}_i either the specific \texttt{log}'s which are to be treated in this way, or alternatively, either the expression \texttt{operator}(\texttt{log}) or \texttt{operator}(\texttt{log}). To \texttt{facsum} the expression \texttt{exp} with respect to the operators \texttt{op1, op2, \ldots, opn}, it is necessary to evaluate \texttt{facsum(exp, operator(op1,op2,\ldots,opn))}. The form \texttt{operator} can also appear inside list arguments.

In addition, the setting of the option variables \texttt{nextlayerfactor} and \texttt{facsum_combine} can affect the result of \texttt{facsum}.

\texttt{nextlayerfactor defualt: false} \quad \textbf{Option Variable}

If \texttt{true}, forces the recursive calls of \texttt{facsum} to be applied to the factors of the factored form of the coefficients of the \texttt{arg}_i. If \texttt{false}, \texttt{facsum} is applied to each coefficient as a whole whenever recursive calls to \texttt{facsum} occur as described above. In addition, inclusion of the atom \texttt{nextlayerfactor} in the argument list of \texttt{facsum} has the effect of \texttt{nextlayerfactor:true}, but for the next level of the expression only. Since \texttt{nextlayerfactor} is always bound to either \texttt{true} or \texttt{false}, it must be presented single-quoted whenever it is used in this way.

\texttt{facsum_combine defualt: true} \quad \textbf{Option Variable}

Controls the form of the final result returned by \texttt{facsum} when its argument is a quotient of polynomials. If \texttt{facsum_combine is false}, the form is returned as a fully expanded sum as described above, but if \texttt{true}, the form returned is a ratio of polynomials, with each polynomial in the form described above. The \texttt{true} setting of this option variable is useful when you want to \texttt{facsum} both the numerator and denominator of a rational expression, but don't want the denominator to be multiplied through by the terms of the numerator.

\texttt{factorfacsum}(exp, arg_1, \ldots, arg_n) \quad \textbf{Function}

Returns a form of \texttt{exp} which is obtained by calling \texttt{facsum} on the factors of \texttt{exp} with the \texttt{arg}_i as arguments. If any of the factors of \texttt{exp} is raised to a power, both the factor and the exponent are processed in this way.
5.5. SIMPLIFYING POLYNOMIALS AND RATIONAL FUNCTIONS

\texttt{collectterms(\texttt{arg}_1, \ldots, \texttt{arg}_n)} \quad \text{Function}

Combines several expressions that have been simplified with \texttt{facsum} or \texttt{factorfacsum} and added together. \texttt{collectterms} can take as arguments all of the arguments that can be given to these other associated functions with the exception of \texttt{nextlayerfactor}, which has no effect on \texttt{collectterms}. The advantage of \texttt{collectterms} is that it returns a form similar to \texttt{facsum}, but since it is adding forms that have already been processed by \texttt{facsum}, it does not need to repeat that effort. This capability is especially useful when the expressions to be summed are very large.

Name of Package: \texttt{stopex}

Original Author: R. L. Brenner

\textbf{Description:} This package contains two functions that are useful for performing expansions with respect to specified variables or operators.

\texttt{expandwrt(\texttt{exp}, \texttt{var}_1, \ldots, \texttt{var}_n)} \quad \text{Function}

Expands \texttt{exp} with respect to the \texttt{var}_i. All products involving the \texttt{var}_i appear explicitly. The form returned is free of products of sums of expressions that are not free of the \texttt{var}_i. The \texttt{var}_i can be variables, operators, or expressions. By default, denominators are not expanded, but this can be controlled by means of the option variable \texttt{expandwrt_denom}.

\texttt{expandwrt_denom default: false} \quad \text{Option Variable}

Controls the treatment of rational expressions by \texttt{expandwrt}. If \texttt{true}, both the numerator and denominator of the expression are expanded according to the arguments of \texttt{expandwrt}, but if \texttt{expandwrt_denom} is \texttt{false}, only the numerator is expanded in that way.

\texttt{expandwrt_nonrat default: true} \quad \text{Option Variable}

Controls the treatment of nonrational expressions, such as the arguments of nonrational functions, by \texttt{expandwrt}. If \texttt{true}, then such expressions are expanded by \texttt{expandwrt}, but if \texttt{false}, they are not expanded.

\texttt{expandwrt_factored(\texttt{exp}, \texttt{var}_1, \ldots, \texttt{var}_n)} \quad \text{Function}

Is similar to \texttt{expandwrt}, but treats expressions that are products somewhat differently. \texttt{expandwrt_factored} performs the required expansion only on those factors of \texttt{exp} that contain the variables in the argument list of \texttt{expandwrt_factored}.

5.5.6 Optimization of Symbolic Expressions for Numerical Evaluation

5.5.6.1 Minimizing Floating Point Operations

\texttt{horner(\texttt{exp}, \texttt{var})} \quad \text{Function}

Converts \texttt{exp} into a rearranged representation as in Horner's rule, using \texttt{var} as the main variable if it is specified. \texttt{var} can also be omitted, in which case the main variable of the CRE form of \texttt{exp} is used. Sometimes \texttt{horner} improves stability if \texttt{exp} is to be numerically evaluated. It is also useful if you are generating programs to be run in FORTRAN. See also \texttt{fortran}, \texttt{stringout}, and \texttt{count_ops}.

\textit{Examples}

\begin{verbatim}
(c1) 1.0e-20*x^2-5.5*x+5.2e20;
 2
 1.0e-20 x - 5.5 x + 5.2e20
(c2) horner(%x),keepfloat:true;
\end{verbatim}
(d2) \((1.0e-20 \times -5.5) \times +5.2e20\)
(c3) \(d1, x=1.0e20\);
Lisp error: sys:%float-operation-multiply produced a result too large
In magnitude to be representable as a single-precision floating-point
Number.
(c4) \(d2, x=1.0e20\);
(d4) \(6.9999977e19\)

5.5.6.2 Finding Common Subexpressions

To make sure that the Macsyma code is reasonably efficient, the following two functions are useful:

\textbf{optimize}(\textit{exp}) \hspace{1cm} \textit{Function}

Returns an expression that produces the same value and side effects as \textit{exp} but does so more efficiently by
avoiding the recomputation of common subexpressions. \textbf{optimize} also has the side effect of “collapsing”
its argument so that all common subexpressions are shared.

\textbf{Note}: \textbf{optimize} does not return a fully simplified result, as illustrated below:

\begin{verbatim}
(c1) optimize([%1+2*(a+b)+2*(a-b),3*(a-b)+2*(a+b)]);
(d1) block([%1, %2], [%1: a - b, %2: 2*(b+a), [%2 + 2 %1 + a, %2 + 3 %1])
(c2) lastform: last(%);
(d2) [%2 + 2 %1 + a, %2 + 3 %1]
(c3) simplified_lastform:'%;
(d3) [a + %2 + 2 %1, %2 + 3 %1]
\end{verbatim}

\textit{lastform} and \textit{simplified_lastform} are not identical, because \textbf{optimize} does not simplify the result
it returns inside the \textbf{block}. This is a necessary characteristic, as illustrated by the following example.
\textbf{optimize(integrate((x+y)*f(x+y),x))}; returns a form in which the integration variable is optimized
away, and the simplifications on \textbf{integrate} would lead to wrong answers.

\textbf{optimwarn default: true} \hspace{1cm} \textit{Option Variable}

When \textbf{optimwarn} is set to \textbf{false}, warnings given out by the \textbf{optimize} function are suppressed.

\textit{Example}

\begin{verbatim}
(c1) (print(i),for i thru 3 do print(i));
1
1
2
3
(d1) done
(c2) optimize(c1);
Optimize has met up with a special form - answer may be wrong.
(d2) block([%1], %1 : print(i), (%1, for i thru 3 do %1))
(c3) 'd2;
1
(d3) done
\end{verbatim}

\textbf{optimprefix default: %} \hspace{1cm} \textit{Option Variable}

The prefix used for symbols generated by \textbf{optimize}.
5.6. **SUMMATIONS AND PRODUCTS**

(c1) \(%e^{(y+x^2)/(y+x)}; \)

\[
\frac{2}{\begin{array}{c}
\frac{y+x}{%e} \\
\end{array}}
\]

(d1)

\[
\frac{y+x}{%e}
\]

(c2) \(\text{diff}(%,x,2); \)

\[
\begin{array}{l}
\frac{y+x}{%e} \\
\frac{y+x}{%e}
\end{array}
\]

(d2)

\[
\frac{y+x}{%e} + \frac{y+x}{%e} = \frac{y+x}{%e} + \frac{y+x}{%e}
\]

(c3) \(\text{optimize}(%); \)

(d3) \(\text{block}([%1, %2, %3, %4], %1 : y + x, %2 : x, %3 : %e, 1, \frac{4 \times %3}{%4} \times %3 + \frac{2 \times %3}{%4} - \frac{2 \times %3}{%4} + \frac{2 \times %3}{%4}) \)

\[
\frac{y + %2}{%1} + \frac{y + %2}{%1} + \frac{y + %2}{%1} + \frac{y + %2}{%1}
\]

\(\text{collapse}(\text{exp}) \)

Collapses the argument \(\text{exp} \) by causing all of its common subexpressions to share memory, thereby saving space. The function \(\text{collapse} \) is used by \(\text{optimize} \). Thus, calling \(\text{collapse} \) can be useful after loading in a \(\text{save} \) file. You can collapse several expressions together by typing \(\text{collapse}([\text{exp}_1, \ldots, \text{exp}_n]) \). Similarly, you can \(\text{collapse} \) the elements of the array \(a \) by doing \(\text{collapse}(\text{listarray}(a)) \).

5.6 \textbf{SUMMATIONS and Products}

5.6.1 Arithmetic, Geometric and Harmonic Series

\(\text{arithmetic_term}(a,d,n) \) \(\text{Function} \)

Returns \(n \)th term in the arithmetic progression \(a, a+d, \ldots, a+kd, \ldots \)

\(\text{arithsum}(a,d,n) \) \(\text{Function} \)

Sum of the first \(n \) terms in the arithmetic progression \(a, a+d, a+2d, \ldots \).

\(\text{geometric_term}(a,r,n) \) \(\text{Function} \)

Returns the \(n \)th term in the geometric progression \(a, a^\cdot d, \ldots, a^{*(k-1)}^\cdot d, \ldots \)

\(\text{geosum}(a,r,n) \) \(\text{Function} \)

Sum of the first \(n \) terms in the geometric progression \(a, a^\cdot r, a^\cdot r^\cdot 2, \ldots \). \(n \) can be \(\text{inf} \).

\(\text{harmonic_term}(a,b,c,n) \) \(\text{Function} \)

Returns the \(n \)th term of the harmonic series \(a/b, a/(b+c), \ldots, a/(b+kc), \ldots \).

5.6.2 Basic Operations on Summations and Products

Do \(\text{demo}(\text{sum}); \) \(\text{and} \) \(\text{demo}(\text{nusum}); \) \(\text{and} \) \(\text{demo}(\text{nusum1}); \) for on-line demonstrations of Macsyma’s main summation commands.
The function \texttt{sum} is recommended for definite summation while \texttt{nusum} is designed for indefinite summation.

\texttt{sum} \texttt{(exp, ind, lo, hi)} \hspace{1cm} \textit{Special Form}

Performs a summation of the values of \texttt{exp} as the index \texttt{ind} varies from \texttt{lo} to \texttt{hi}. If the upper and lower limits differ by an integer, then each term in the sum is evaluated and added together. Otherwise, the behavior of \texttt{sum} is controlled by \texttt{simpsum}, described below.

If \texttt{hi} is one less than \texttt{lo}, you have an "empty sum" and \texttt{sum} returns 0 rather than signaling an error. Sums can be differentiated, added, subtracted, or multiplied with some automatic simplification being performed.

\texttt{simpsum} \texttt{default: false} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, and the lower and upper limits of a \texttt{sum} do not differ by an integer, the sum is simplified. This simplification sometimes is able to produce a closed form. If \texttt{simpsum} is \texttt{false} or if 'sum is used, the value returned is a sum noun form.

Examples
\begin{verbatim}
(c1) simpsum:true$
(c2) sum(i^2+2*i, i, 0, n);
 3 2
 n + 1 2 n + 3 n + n
 2 + ------------------ - 1
 6
(c3) sum(3^(-i), i, 1, inf);
 1
 2
(c4) sum(i^2,i,1,inf)*sum(1/i^2,i,1,inf);
 5 %pi
\end{verbatim}

\texttt{cauchysum} \texttt{default: false} \hspace{1cm} \textit{Option Variable}

When multiplying together sums with \texttt{inf} as their upper limit, if set to \texttt{true}, then the Cauchy product is used rather than the usual product. In the Cauchy product the index of the inner summation is a function of the index of the outer one rather than varying independently.

\texttt{change_sum_limits} \texttt{(expr,lim,incr)} \hspace{1cm} \textit{Function}

Changes the lower and/or upper limits of a summation \texttt{expr}. Substitutes \texttt{lim} and \texttt{incr} in the upper and lower limits of the summation \texttt{expr} and expresses explicitly the terms which are necessary so that the final result is equivalent to the initial expression \texttt{expression}.

\texttt{genindex} \texttt{default: i} \hspace{1cm} \textit{Option Variable}

Is the alphabetic prefix used to generate the next variable of summation when necessary.

\texttt{gensumnun} \texttt{default: 0} \hspace{1cm} \textit{Option Variable}

Is the numeric suffix used to generate the next variable of summation. If it is set to \texttt{false}, then the index consists only of \texttt{genindex} with no numeric suffix.

\texttt{sumhack} \texttt{default: false} \hspace{1cm} \textit{Option Variable}

If set to \texttt{true}, this option variable allows \texttt{sum(i, i, 3, 1)}; to give -2, based on the identity \texttt{sum(f(i), i, a, b) = - sum(f(i), i, b+1, a-1)}, when \texttt{a>b}.

\texttt{sumexpand} \texttt{default: false} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, this option variable causes products of sums and exponentiated sums to be converted into nested sums. If \texttt{false}, they are left alone.
Examples

\((c1) \) \text{sumexpand: true}\$

\((c2) \) \text{sum}(f(i), i, 0, m) \ast \text{sum}(g(j), j, 0, n);

\[=\]

\[
\begin{array}{cc}
\text{m} & \text{n} \\
\text{\backslash} & \text{\backslash} \\
\text{\textgreater} & \text{\textgreater} \\
\text{f(i1)} & \text{g(i2)} \\
\text{\textbackslash} & \text{\textbackslash} \\
\text{i1} = 0 & \text{i2} = 0
\end{array}
\]

\((d2)\)

\[(c3) \) \text{sum}(f(i), i, 0, m)^2;

\[=\]

\[
\begin{array}{cc}
\text{m} & \text{m} \\
\text{\backslash} & \text{\backslash} \\
\text{\textgreater} & \text{\textgreater} \\
\text{f(i3)} & \text{f(i4)} \\
\text{\textbackslash} & \text{\textbackslash} \\
\text{i3} = 0 & \text{i4} = 0
\end{array}
\]

\((d3)\)

\text{sumexpand}(expr) \hspace{1cm} \text{Function}

Expand summations whose summands are themselves sums. For example:

\[
\text{sumexpand}\left(\sum_{i=1}^{n}(a_i + b_i)\right) = \sum_{i=1}^{n}a_i + \sum_{i=1}^{n}b_i
\]

\text{sumcontract}(expr) \hspace{1cm} \text{Function}

Combines all sums of an addition that have upper and lower bounds that differ by constants. The result is an expression that contains one summation for each set of such summations added to all appropriate extra terms that had to be extracted to form this sum. \text{sumcontract} combines all compatible sums and uses one of the indices from one of the sums if it can; it then tries to form a reasonable index if it cannot use any of those supplied. It may be necessary to use \text{intosum}(expr) before the \text{sumcontract}.

\text{intosum}(expr) \hspace{1cm} \text{Function}

Takes all factors that a summation is multiplied by, and puts them inside the summation. If the index is used in the outside expression, then \text{intosum} tries to find a reasonable index, as it does for \text{sumcontract}. This is the reverse of the \text{outative} property of summations. It does not remove this property; it only bypasses it. In some cases, a \text{scarmap(multthru, expr)}; may be necessary before the \text{intosum}.

\text{bashindices}(expr) \hspace{1cm} \text{Function}

Transforms the expression \text{expr} by giving each summation and product a unique index. This gives \text{changevar} greater precision when it is working with summations or products. The form of the unique index is \text{jnumber}. The quantity \text{number} is determined by referring to \text{gensumnum}, which you can change. For example, \text{gensumnum: 0} resets it.

\text{niceindices}(expr) \hspace{1cm} \text{Function}

Changes all the indices of sums and products in \text{expr} to something easily understandable. Unless \text{i} is in the internal expression, it converts the index of the sum or product to \text{i}. If \text{i} is in the internal expression, it sequentially tries \text{j}, \text{k}, \text{l}, \text{m}, \text{n}, \text{i0}, \text{i1}, \text{i2}, \text{i3}, \text{i4}, \ldots until it finds a satisfactory index. The set of alternatives can be controlled by means of the option variable \text{niceindicespref}, described below.
You can set the option variable \texttt{niceindicespref} to the list that \texttt{niceindices} uses to find its nice indices. This provides a way to set an order of preference for the nice indices. For example, \texttt{niceindicespref[\{q,r,s,t\}]} causes \texttt{niceindices} to use \texttt{q} in a particular summation, if it finds that \texttt{I} cannot be used. If \texttt{q} cannot be used, it tries \texttt{r}, and so on. Here, if the list is exhausted, \texttt{q0}, then \texttt{q1}, and so on, is tried.

Indices of sums or products can be changed using the function \texttt{changevar}, but the change must be a shift, such as \(i = j + \ldots \), not a higher degree function. See Section 6.2.2.1, page 165\footnote{functionsolve (eqn, g(t)) \hspace{1cm} Function

Returns either a list of a single equation, or the empty list, depending on whether or not there exists a rational function \(g(t) \) satisfying \(eqn \), which must be a first order, linear polynomial in (for this case)}
5.6. SUMMATIONS AND PRODUCTS

\[g(t) \text{ and } g(t+1). \]
\[\text{(c1) funsolve((n+1)*f(n)-(n+3)*f(n+1)/(n+1)=(n-1)/(n+2), f(n));} \]
\[n \]
\[\text{(d1) } f(n) = \frac{n}{(n + 1) (n + 2)} \]

product (exp, 'ind, lo, hi) \hspace{1cm} \text{Special Form}

Returns the product of the values of exp as the index ind varies from lo to hi. The evaluation is similar to that of sum. No simplification of products is available. If hi is one less than lo, you have an “empty product,” and product returns 1 rather than signaling an error.

An alternative name for product is prod.

Example
\[\text{(c1) product(x+i*(i+1)/2, i, 1, 4);} \]
\[\text{(d1) } (x + 1) (x + 3) (x + 6) (x + 10) \]

prodhack \hspace{1cm} \text{Option Variable}

If set to true, product(f(i), i, 3, 1); becomes 1/f(2), by the identity product(f(i), i, a, b) = 1/product(f(i), i, b+1, a-1) when a>b.

5.6.3 Advanced Summation Capabilities

Package *nusum1* contains functions which attempt to find closed-form representations of series and products. It also contains a program which solves first-order linear inhomogeneous difference equations. This enhanced version was contributed by R. W. Gosper. Type *demo(nusum1)*; for some examples of how the program works. Type *usage(nusum1)*; for more information.

The whole package views *sum* and *prod*, like *integrate*, as permitting fractional or even complex upper and lower limits. Thus, it sets *sumhack* and *prodhack* to true. See *sumhack*, page 114 and *prodhack*, page 117.

closedform(expr) \hspace{1cm} Function

This is the main function for simplifying expressions. The function closedform scans its argument for *sums*, *prods*, *indefsums*, and *indefprods* to simplify. The user should call closedform for this purpose, rather than calling *nusum* directly. In particular, this will attack definite (infinite) sums of rational functions, using a mechanism distinct from *nusum*, which is for indefinite sums.

nusum(exp, var, low, hi) \hspace{1cm} Function

This is an enhancement of the old *nusum* which has been extended to handle cases where exp is the sum of several hypergeometric terms\(^1\), instead of just one.

makeprod(expr, [args]) \hspace{1cm} Function

This is like *makefact* and *makegamma* but, when given optional args, only prodicizes those expressions not freeof the args. (Actually, for lack of *makefact* extending this same extra arg courtesy, *makeprod* converts everything else to factorials.)

indefsum(expr, var) \hspace{1cm} Function

This means *sum*(*expr, var, <unknown>, var*). *indefsum* is the inverse of the *unsum* operator. That is, *unsum*(*indefsum*(*g*(n), n), n) = *g*(n). This function has the alias *undifference*.

\(^1\)Definition (Knuth): *g*(n) is a hypergeometric term with respect to *n* if, and only if, \(g(n+1)/g(n) \) is a rational function of *n*. Thus *g*(1) is a simple product of rational functions, factorials, binomials, \(\sin(n+\pi) \), gammas, \(n^{th} \) powers of constants, and (the general case) explicit *prods* (to upper limit *n*) of rational functions. Thus *sum*(*g*(n)) is the generalized hypergeometric function.
indefprod($expr, var$) \hspace{1cm} \text{Function}

This means $prod(expr, var, <unknown>, var)$. \textit{indefprod} is the inverse of the \textit{unprod} operator. That is, $unprod(indefprod(g(n), n), n) = g(n)$.

Like \textit{integrate}, \textit{indefsum} and \textit{indefprod} try for closed forms when called. If you don’t want to try for closed form, quote it or use \textit{funmake}.

\textbf{prodcontract($expr$)} \hspace{1cm} \text{Function}

This is analogous to \textit{sumcontract}, except that it works for \textit{products}. Currently, it is more vigorous than \textit{sumcontract}, being willing to change variables if it leads to compatible limits.

\textbf{intoproduct($expr$)} \hspace{1cm} \text{Function}

This is analogous to \textit{intosum}, except that it works for \textit{products}.

\textbf{prodcontract($expr$)} \hspace{1cm} \text{Function}

This contracts products of similar \textit{prod}ands. This function is different from \textit{prodcontract}, which looks for similar ranges. For example, $prodcontract(prod(i+1, i, 0, 2*n) * prod(1/(i+1), i, 0, n))$; produces $prod(i+1, i, n+1, 2*n)$. Currently, there is no \textit{sumcontract}.

\textbf{prodfudge($expr, fudge)$} \hspace{1cm} \text{Function}

This throws a factor of $fudge(n+1)/fudge(n)$ into each \textit{prod}and(n) and scales the affected \textit{prods} to compensate. Useful for removing factors of, say, $g(k+2)/g(k)$, by using $fudge = 1/(g(k) * g(k+1))$.

Or you can replace a factor of $g(k)$ by $g(k-1)$ via $fudge = 1/g(k-1)$.

\textbf{prodgunch($expr, var, k$)} \hspace{1cm} \text{Function}

This replaces var by $var+k$ in factorials, binomials, \textit{prods}, etc., scaling each so as to restore the original value. Thus, to compute a hypergeometric term ratio, $subst(var+1, var, term)/prodgunch(term, var, 1)$ should cancel out the nonrational part.

\textbf{prodflip($expr$)} \hspace{1cm} \text{Function}

This simply reciprocates the \textit{prods} and \textit{prod}ands in $expr$.

\textbf{termratio($term, var$)} \hspace{1cm} \text{Function}

This does just that (only with a more careful subst).

\textbf{unsum($expr, var$)} \hspace{1cm} \text{Function}

This returns the first backward difference, analogous to \textit{diff} for sums. \textit{unsum} is the inverse of the \textit{indefsum} operator. That is, $unsum(f(n), n) = f(n) - f(n-1)$.

\textbf{unprod($expr, var$)} \hspace{1cm} \text{Function}

This returns the first backward quotient, analogous to \textit{diff} for \textit{products}. \textit{unprod} is the inverse of the \textit{indefprod} operator. That is $unprod(f(n), n) = f(n)/f(n-1)$.

\textbf{hyperratsimp($expr, var$)} \hspace{1cm} \text{Function}

This canonicalizes polynomials in hyperrationals.

\textbf{hyperrationalcontract($expr, var$)} \hspace{1cm} \text{Function}

This returns a list of minimal length, with each element a hypergeometric term, with the sum of the elements being equal to $expr$.

\textbf{sumswap($expr$)} \hspace{1cm} \text{Function}

This interchanges double sums in $expr$ where syntactically plausible. Does not check legality (uniformity) in the infinite case.
SUMMATIONS AND PRODUCTS

sumbyparts(expr, dv, {vars})

This does a sums by parts. Reexpresses 'sum(u*dv, ...) in terms of 'sum(v*du, ...), when u*dv depends on any of vars. du means unsum(u, ...). Useful for denesting triangular sums, i.e., where u is itself a sum with the outer summation variable in its limits. In the latter case, it is crucial to supply this outer variable as an optional arg, to avoid attacking the inner sum as well.

sumst(new, old, exp)

This is like subst, but avoids destructively modifying the dummy vars of sums, prods, and integrates.

myat(exp, eqs)

This is equivalent to at(expr, [eqs]), but is cleverer with sums, prods, and integrates. To extend myat to yourownform,

```
put('yourownform,
    lambda([exp, eq], <specialize exp, assuming eq>),
    'at_method)
```

You may, of course, use a function name instead of an explicit lambda. After executing the above code, inpart(exp, 0) will be yourownform, and the method will be called for each eq in eqs. Alternatively, to get all the eqs at once, use [eqs] instead of eq in the lambda arglist.

Eventually, myat's functionality will be subsumed into at.

linchange(expr, trans)

untuple(expr, k)

linchangevar(expr, eqn, new, old)

These all change variables in sums and prods. That is, linchange(expr, -n) will reverse the direction of sums and prods over n, and linchange(expr, 2*n) will clump terms pairwise. untuple(expr, 2) or linchange(expr, n/2) will attempt to unclump them.

matuntuple(matrix, var, k)

This tries to recover M(var) from upper triangular matrix = M(k*var).M(k*var + 1)...M(k*var + k - 1).

prodfy(expr)

sumify(expr)

These two functions change one into the other via logs and exps. Thus to attack 'sum(log(ratfn(n))), use closedform(prodfy(%)).

funcsolve(eqn, var, [initial_conditions])

This solves first order, linear, inhomogeneous difference equation. It permits more general arguments to the unknown function, and includes the homogeneous solution as a hypergeometric term, upon finding a rational particular solution. funcsolve will attempt to use the initial_conditions equation, if supplied, to eliminate the arbitrary constant, %rx (as from solve).

Note: Should funcsolve return an error message Improper index to list or matrix: 2 then try kill(%r); at toplevel.)

The following are a list of option variables for this package

sumconstprefix default: %sumconst

This holds the symbol from which indefsum generates arbitrary “constants of summation” by concatenation.
CHAPTER 5. BASIC ALGEBRAIC OPERATIONS

summation_constant_counter \hspace{1em} default: 0 \hspace{1em} Option Variable

This is the number which is concatenated onto the value of sumconstprefix to generate parameters for indefinite sum.

prodconstprefix \hspace{1em} default: %prodconst \hspace{1em} Option Variable

This holds the symbol from which indefprod generates arbitrary “constants of production” by concatenation.

prod_constant_counter \hspace{1em} default: 0 \hspace{1em} Option Variable

This is the number which is concatenated onto the value of prodconstprefix to generate parameters for indefinite product.

lowerlimitprefix \hspace{1em} default: %lowerlimit \hspace{1em} Option Variable

This holds the symbol from which myat generates arbitrary lower limit names (in integrals, sums, and products) by concatenation.

lowerlimit_constant_counter \hspace{1em} default: 0 \hspace{1em} Option Variable

This is the number which is concatenated onto the value of lowerlimitprefix to generate parameters for indefinite lower limit.

dummyvarprefix \hspace{1em} default: %dummy \hspace{1em} Option Variable

This holds the symbol from which myat generates arbitrary dummy variable names (in integrals, sums, and products) by concatenation.

dummy_var_counter \hspace{1em} default: 0 \hspace{1em} Option Variable

This is the number which is concatenated onto the value of dummyvarprefix to generate parameters for indefinite summation, indefinite product, indefinite lower limit, indefinite integral, and indefinite dummy. gensumconst(), genprodconst(), genlowerlimitconst(), genintconst(), and gendummy() are the respective “generating” functions.

constrainables \hspace{1em} default: [] \hspace{1em} Option Variable

This holds parameter names which you are willing to constrain in order to get a closed form.

%constraints \hspace{1em} default: [] \hspace{1em} Option Variable

This contains the constraint equations for parameters contained in constrainables, plus variables generated by indefinite sum. Multiple solutions are currently missed.

5.7 Solving Equations and Inequalities

For demonstrations of Macsyma’s ability to solve equations, do

- (for linear equations):
 example(linsolve); example(matsolve_by_lu);
 example(matsolve_by_lu_symb); and demo(matsolve);

- (for linear inequalities):
 example(ineq_linsolve); and demo(ineqsol);

- (for nonlinear equations):
 demo(solve); and demo(algsys);

- (for approximate solutions of algebraic and transcendental equations):
 demo(taysolve);
5.7. SOLVING EQUATIONS AND INEQUALITIES

- (for numerical solutions of algebraic and transcendental equations):
 demo(bisect); demo(newton); demo(roots); example(realroots);
 and example(allroots);

- (for solving linear or nonlinear parametric equations):
 demo(solver);

5.7.1 Solving Linear Equations and Inequalities

Note: systems of linear equations in matrix form can also be solved with the functions matsolve (see page 233), matsolve_by.lu (see page 242), and matsolve_by.lu_symb (see page 242).

\texttt{linsolve([exp_1, \ldots, exp_n], [var_1, \ldots, var_n]/[rhs_1, \ldots, rhs_n])}

\textit{Function}\n
Solves the list of simultaneous linear equations for the list of variables. The \texttt{exp_i} must each be linear in the variables and may be equations. Optionally, \texttt{linsolve} can be provided with a list of right hand sides (RHS) as the third argument. This will be a list of lists with each sublist corresponding to one right hand side (RHS). In this case, the \texttt{exp_i} should just be expressions which are homogeneous in the \texttt{var_i} (i.e., all constants should be contained in the RHSs). A list of solution vectors will then be returned. If any of the RHSs is inconsistent, the corresponding solution that is returned will be the list \texttt{[inconsistent]}. The function \texttt{linsolve} does no error checking to assure linearity. See matlinsolve, page 232 and matsolve, page 233. Also, see lsqilinsolve, page 232.

Do example(linsolve); for an example and demo(linsolve2); for a longer demonstration.

\texttt{globalsolve \ default: false}

\textit{Option Variable}\n
If set to \texttt{true}, then variables that are solved for with \texttt{linsolve} are set to the solution of the set of simultaneous equations.

\texttt{Example}\n
\texttt{(c1) x + z = y}\n
\texttt{(c2) 2*a*x - y = 2*a^2 x}\n
\texttt{(c3) y - 2*z = 2 x}\n
\texttt{(c4) linsolve([d1, d2, d3], [x, y, z], globalsolve: true);}\n
\texttt{(d4) [x : a + 1, y : 2 a, z : a - 1]}\n
\texttt{(c5) x;}\n
\texttt{(d5) a + 1}\n
\texttt{backsubst \ default: true}

\textit{Option Variable}\n
If set to \texttt{false}, back substitution is prevented after the equations have been triangularized. This may be necessary in very big problems where back substitution would cause the generation of extremely large expressions.

\texttt{linsolvewarn \ default: true}

\textit{Option Variable}\n
If this option variable is set to \texttt{false}, the message \texttt{Dependent equations eliminated} is suppressed.

\texttt{lin solve_params \ default: true}

\textit{Option Variable}\n
If this option variable is \texttt{true}, \texttt{linsolve} also generates the \texttt{%ri} symbols used to represent arbitrary parameters described under \texttt{algsys}. If \texttt{lin solve_params} is \texttt{false}, then whenever \texttt{linsolve} encounters an under-determined system of equations, it solves for some of the variables in terms of others.

\texttt{ineq lin solve(ineqs, vars)}

\textit{Function}\n
Tries to solve a system of simultaneous real linear equations and inequalities for the variables \texttt{vars}.

The argument \texttt{ineqs} is a list of linear equations and linear inequalities, whose main operators are "=" , "<", ">", "\leq", and "\geq". The inequalities can contain symbolic coefficients and symbolic constants. For example \texttt{a * x + 2 * y < c} is an acceptable inequality in the variables \texttt{[x, y]}. The variable
\textit{vars} is a list of symbolic variables \([\text{var}1, \text{var}2, \ldots]\) which appear in the system of inequalities, and which are to be solved for.

\texttt{ineq_lin_solve} returns a list with two elements, each of which is itself a list. The first element is a list of equations of the form \([\text{var}1=\ldots, \text{var}2=\ldots]\) which are parametric solutions for the variables which appear in the list \texttt{vars}. The solution is presented in parametric form, so that the right-hand sides of the equations contain arbitrary real parameters

- \%RI1, \%RI2, \ldots are arbitrary real numbers;
- \%POS1, \%POS2, \ldots are arbitrary positive numbers; and
- \%PZ1, \%PZ2, \ldots are arbitrary non-negative numbers.

The second element is a list of the constraint expressions which must be zero in order that the equations above satisfy the equations and inequalities \texttt{ineqs}. When \texttt{ineq_lin_solve} can find a complete solution, this list is empty.

The counters which control the indexing of the names of the parameters \%RI, \%POSi and \%PZi are \%RNUM, \%POSNUM and \%PZNUM respectively, each of which has default value 0.

Do \texttt{example(ineq_lin_solve)}; for an example, and \texttt{demo(ineq_sol)}; for a longer demonstration.

See also \texttt{ineqsimp} and \texttt{ineq_reverse}.

5.7.2 Roots of Polynomials

5.7.2.1 Exact Roots of Polynomials

The following functions obtain the roots of equations or yield information concerning the roots.

\textbf{Function}

\texttt{nroots(poly, low, high)}

Finds the number of real roots of the real univariate polynomial \texttt{poly} in the half-open interval \((\text{low}, \text{high}]\). The end points of the interval can also be \texttt{minf, inf} respectively for minus infinity and plus infinity. \texttt{nroots(poly)}; is equivalent to \texttt{nroots(poly, minf, inf)}; The method of Sturm sequences is used. See Heindel in [A1].

\textbf{Example}

\begin{verbatim}
(c1) poly1:x^10-2*x^4+1/2$
(c2) nroots(poly1,-6,9.1);
(d2) 4
\end{verbatim}

\textbf{Name of Package: \texttt{polsol}}

\textbf{Original Author: A. D. Kennedy}

\textbf{Description:} This package contains facilities for finding the roots of polynomials. We begin with an example. First we will define a quadratic form in the variable \(x\):

\begin{verbatim}
(c1) quadratic:a*x^2+b*x+c$
\end{verbatim}

which we solve by calling the function \texttt{polysolve}.

\begin{verbatim}
(c2) polysolve(quadratic, x);
\%dex2 2
(- 1) sqrt(b - 4 a c) - b
\end{verbatim}

\begin{verbatim}
(d2) [([-------------------------, 1, 2]),
 [2 a]
\end{verbatim}

The output is in a form convenient for use by other programs.
polysolve(expr, var)

Function

Returns a list of “rootlists”, each “rootlist” of the form

\[\text{root}([%dex_2, %dex_3, \ldots, %dex_n], \text{bound}_1, \text{bound}_2, \ldots, \text{bound}_n) \]

where \text{root} is an expression for the root in terms of the parameters %dex_i, with \(i \) running from 2 to some value \(n \). The solutions are the values of \text{root} for every value of \%dex_i from 1 through \text{bound_i}. That is, there are \text{bound}_1*\text{bound}_2*\ldots*\text{bound}_n roots of the expression. Notice the special role played by %dex_1; it does not appear in the root expression because polysolve attempts to make \text{bound}_1 into the multiplicity of the root. (That is, it tries to ensure that \text{root} is not a trivial function of any other of the %dex_i.) It is possible for different “rootlists” to contain the same root, though this will eventually be checked by polysolve, to the extent possible heuristically. This is really an undecidable problem.

The following function makes the output more readable.

factorform(list-of-rootlists, var)

Function

Reconstructs the expression originally given to polysolve. It returns a form factored over the complex plane. There is no need for \text{var} to be the same as in the expression being polysolved. Continuing with the example above:

\[
\begin{align*}
(c3) & \quad \text{factorform}(\%_i, x); \\
& \quad 2 \\
& \quad - \sqrt{b - 4 a c} - b \\
& \quad \sqrt{b - 4 a c} - b \\
& \quad (x - \frac{b}{2 a}) (x - \frac{b}{2 a}) \\
(d3) & \quad 2 a \\

(c4) & \quad \text{ratsimp}(\%); \\
& \quad \frac{2}{a} x + b x + c
\end{align*}
\]

Calling the function ratsimp returns the expression in a form similar to the one we began with.

\[
\begin{align*}
& \quad 2 a x + b x + c \\
& \quad \frac{b}{2 a}
\end{align*}
\]

leadingcoeff default: leadingcoeff

System Variable

The overall factor in the expression originally given to polysolve is stored by polysolve in the variable leadingcoeff. Continuing with the example above:

\[
\begin{align*}
(c5) & \quad \text{leadingcoeff}; \\
& \quad a \\
(d5) & \quad a
\end{align*}
\]

Similarly polysolve attacks cubics.

\[
\begin{align*}
& \quad \text{cubic:}\ a t^3 + b t^2 + c t + d; \\
& \quad 3 \\
& \quad a t^3 + b t^2 + c t + d \\
(d6) & \quad \text{polysolve(cubic, t)};
\end{align*}
\]
There is a small degree of control over how `polysolve` generates intermediate expressions on E-LINES; it uses an E-LINE if the expression is longer than `elength`. Similarly, if `elength:0`; then expressions will be displayed with a maximal number of intermediate results, if `elength:inf`; there will be no intermediate results.

We can regain the cubic again using `factorform`.

```
(c12) leadingcoeff*factorform(%ct, t);

sqrt(3) %i 1
(- --------- - ) e9
e9 %i 2 b

(d12) a (t + --- - e11 + ---) (t + -----------------------)
     e11 3 a e11
```
We can even solve quartic equations.

\[
\text{quartic} := a s^4 + b s^3 + c s^2 + d s + e;
\]

\[
\text{quad}(a s + b + c s + d s + e)
\]

\[
\text{ev}(\text{polysolve}(\text{quartic}, s), \text{e}\text{length} = 5);
\]

\[
\frac{8 a c - 3 b}{16 a}
\]

\[
\frac{b c b}{d - 3} + \frac{b}{2 a} + \frac{3}{2}
\]

\[
\frac{4 a}{2 d} + \frac{2}{4} + \frac{b c 3 b}{4 a} + \frac{e - 3}{2} - \frac{16 a}{256 a}
\]

\[
\frac{a}{9}
\]

\[
\frac{2 e 15 e 17}{- 3} - \frac{e 15}{e 17}
\]

\[
\frac{3}{2 e 15} - \frac{2 e 16}{e 15} - \frac{3}{27}
\]

\[
\frac{2 e 19}{2} - \frac{3}{1/3}
\]

\[
\text{sqrt}(\text{e} 19 + \text{e} 18) - \text{e} 19
\]
CHAPTER 5. BASIC ALGEBRAIC OPERATIONS

\[(e21) \quad \begin{array}{c} e_{18} \quad e_{15} \\ e_{20} - \quad + \quad - \\ e_{20} \quad 3 \end{array}\]

\[(e22) \quad \begin{array}{c} e_{16} \\ \hline \quad e_{21} - e_{15} \end{array}\]

\[
\sqrt{e_{21} - e_{15}}
\]

\[(e23) \quad \begin{array}{c} \sqrt{2} \\ \hline \quad \frac{1}{n} \end{array}\]

\[
(d23) \quad \begin{array}{c} [\frac{-1}{4} \quad 1 \quad 2 \quad 2] \\ \sqrt{e_{23} - 2} \quad (-1) \quad e_{22} \quad e_{23} - e_{21} \quad + \quad (-1) \quad e_{23} \quad - \quad - \quad - \quad - \quad - \end{array}
\]

\[
(b) \quad 4 \quad a
\]

\[
(d24) \quad \begin{array}{c} \text{leadingcoeff*factor}(%, x); \\ 2 \quad b \quad 4 \quad a \end{array}
\]

\[
\begin{array}{c} \text{a} \quad (x - \sqrt{e_{23} - 2} \quad e_{22} \quad e_{23} - e_{21} \quad - \quad e_{23} + \quad - \quad - \\ 2 \quad b \quad 4 \quad a \end{array}
\]

\[
\begin{array}{c} \text{a} \quad (x + \sqrt{e_{23} + 2} \quad e_{22} \quad e_{23} - e_{21} \quad + \quad e_{23} \quad + \quad - \quad - \quad - \quad - \quad - \\ 2 \quad b \quad 4 \quad a \end{array}
\]

\[
\begin{array}{c} \text{a} \quad (x + \sqrt{e_{23} + 2} \quad e_{22} \quad e_{23} - e_{21} \quad + \quad e_{23} \quad + \quad - \quad - \quad - \quad - \quad - \\ 2 \quad b \quad 4 \quad a \end{array}
\]

But it becomes difficult to simplify the factorform result back to the original expression again in a reasonable time. The solution has been checked numerically, but even that is tedious.

If we try a quintic,

\[
(c25) \quad \text{quintic:} f \text{*s}^5\text{+quartic;} \\ \begin{array}{c} 5 \quad 4 \quad 3 \quad 2 \end{array}
\]

\[
\begin{array}{c} f \quad s \quad a \quad s \quad b \quad s \quad c \quad s \quad d \quad s \quad e \end{array}
\]

\[
(c26) \quad \text{errcatch}(\text{polysolve}(\text{quintic, s}));
\]

Cannot solve equation of order 5

it fails for obvious reasons. However, \text{polysolve} has no difficulty with symbolic problems of the form:

\[
(c27) \quad \text{symbolic:} (x^n - a)^m;
\]

\[
\begin{array}{c} n \quad m \end{array}
\]

\[
\begin{array}{c} (x - a) \
\end{array}
\]

\[
\begin{array}{c} \text{polysolve(symbolic, x);} \\ 2 \quad %i \quad %pi \quad %dex2 \quad \hline \quad \frac{1}{n} \quad \frac{n}{\text{m, n}} \end{array}
\]

\[
\begin{array}{c} [\frac{\text{a} \quad %e \quad \text{m, n}}{\text{m, n}}] \
\end{array}
\]
5.7. SOLVING EQUATIONS AND INEQUALITIES

(c29) \texttt{factorform}(\%, x);
\begin{verbatim}
 n 2 \%i \%pi \%dex2
 /====\
 ! ! 1/n n m
 ! !
 \%dex2 = 1
\end{verbatim}

But some are too difficult. The symbolic answer to the following example would become too complicated if it were attempted.

(c30) \texttt{hardersymbolic}:x^n+a*x^m;
\begin{verbatim}
 n m
(d30) x + a x
(c31) \texttt{errcatch}(\texttt{polysolve}(\texttt{hardersymbolic}, x));
Cannot solve equation of order m
\end{verbatim}

\texttt{polysolve} is able to solve some higher order equations by using \texttt{factor} or \texttt{gfactor} internally.

(c32) \texttt{factorizable}:\texttt{expand}((x-a)^3*\texttt{quadratic});
\begin{verbatim}
 5 4 2 4 3 3 3 2
(d32) a x + b x - 3 a x + c x - 3 a b x + 3 a x - 3 a c x
 2 2 4 2 3 3
 + 3 a b x - a x + 3 a c x - a b x - a c
\end{verbatim}

(c33) \texttt{polysolve}(\texttt{factorizable}, x);
\begin{verbatim}
 \%dex2 2
 (d33) \[[a, 3], [--------------------------------, 1, 2]]
 2 a
\end{verbatim}

(c34) \texttt{leadingcoeff}+%\texttt{factorform}(\%, x);
\begin{verbatim}
 3 - sqrt(b - 4 a c) - b
(d34) a (x - a) (x - ---------------------------------) (x - ---------------------------------)
 2 a 2 a
\end{verbatim}

(c35) \texttt{octic}:\texttt{z}^8+5*\texttt{z}^4-b;
\begin{verbatim}
 8 4
(d35) z + 5 z - b
(c36) \texttt{polysolve}(\texttt{octic}, z);
\begin{verbatim}
 \%i \%pi \%dex3
 (d36) \[--, 1, 2, 4]]
 1/4
\end{verbatim}

If you make a mistake and forget to specify the variable to solve for, \texttt{polysolve} behaves quite logically and tells you that constants have no roots.

(c37) \texttt{polysolve}(\texttt{quadratic}, t);
\begin{verbatim}
\end{verbatim}

The following function is provided to make it easier to use \texttt{polysolve} directly.

\texttt{cfactor}(\texttt{exp}, \texttt{var}) \hspace{1cm} Function

Combines the actions of \texttt{polysolve} and \texttt{factorform}. \texttt{cfactor} behaves like \texttt{factor} in many ways except that it factors into linear factors over the complex plane whenever \texttt{polysolve} is able to find the roots, and fails otherwise.
Example
(c38) cfactor(-(x-a)^n*(x^n-a)^m,x);
 n 2 %i %pi %dex2

 n 1/n n m
(d38) - (x - a) %e (x - a %e)
 %dex2 = 1

5.7.2.2 Floating Point Roots of Polynomials

roots(poly{, method})

Finds the real and complex roots of the real or complex polynomial poly, which must be univariate
and may be an equation, e.g. poly = 0. roots will find single precision, double precision or bigfloat
roots. The coefficients of poly may be real or complex, sfloat, dfloat or bfloat. The default method is
'matrix', where roots are found by calculating the eigenvalues of the companion matrix of poly. If the
optional argument is 'laguerre', Laguerre's method is used. If the optional argument method is 'jt'
or 'jenkins_trijub', then allroots is called. In addition, if the flag polyfactor (default false) is true,
roots are found by first factoring poly.

roots is implemented using single or double precision or big floating point numbers. roots may give
inaccurate results in case of multiple roots if the polynomial is unfactored. Accuracy may be improved
by changing algorithms, or using rational numbers as coefficients as well as factoring.

roots will reject input which is not a polynomial.

In many practical cases, the numerical behavior roots using both 'matrix' and 'laguerre' algorithms
is preferred over allroots, or realroots or other root solvers.

Do example(roots); for an example.

Do demo(roots); for more detailed examples.

See also algsys, eliminate, grobner, nroots, nthroot, realroots, solve, and allroots.

roots_tol default: 1.d-7

A positive real number used to establish confidence intervals for the root found by roots. A
complex root z will be considered real if abs(imagpart(z)) < tiny * abs(realpart(z)). If the option variable relaxedroots is true,
then tiny = roots_tol (the default). Otherwise, tiny = 3.d-16 for dfloat numbers and 30.d0*1-bfprecision) for bfloat numbers.

relaxedroots default: false

realroots(poly, bound)

Finds all of the real roots of the real univariate polynomial poly within a tolerance of bound which, if less
than 1, causes all integral roots to be found exactly. The parameter bound can be arbitrarily small in
order to achieve any desired accuracy. The first argument may also be an equation. Calling realroots
sets multiplicities, useful in case of multiple roots. Note that realroots(poly); is equivalent to
realroots(poly, rootsepsilon);

Examples
(c1) realroots(x^5+x+1.5*10^-6);
 356773
 [x = - -----]
524288
(d1)
(c2) realroots(x^5+x+1.5.0e-6);
 356773
 [x = - 0.7548771]
5.7. SOLVING EQUATIONS AND INEQUALITIES

\[(c3) \ \text{part}(c1,1);\]
\[(d3) \quad x + x + 1\]
\[(c4) \ %d2;\]
\[(d4) \quad 0.000015199184\]

rootsepsilon default: \(1.0e-7\) \hspace{1cm} **Option Variable**

Is a real number used to establish the confidence interval for the roots. Any real number is acceptable, including doubles and bigfloats. The type of **rootsepsilon** (float, bfloat, etc.) controls the type of the answer returned by **realroots**.

multiplicities default: **not_set_yet** \hspace{1cm} **System Variable**

Is set to a list of the multiplicities of the individual solutions returned by **solve** or **realroots**.

allroots(poly) \hspace{1cm} **Function**

Finds all the real and complex roots of the real or complex polynomial **poly** which must be univariate and may be an equation, such as \(poly=0\). For complex polynomials, an algorithm by Jenkins and Traub [JenTraub] is used; for real polynomials, the algorithm used is due to Jenkins [Jenkins]. **allroots** is implemented using single precision floating numbers. Note that **allroots** may give inaccurate results in case of multiple roots. **allroots** rejects non-polynomials. It requires that the numerator should be a polynomial after using **rat**, and it requires that the denominator be at most a complex number. As a result, **allroots** always returns an equivalent but factored expression, if **polyfactor** is **true**.

polyfactor default: **false** \hspace{1cm} **Option Variable**

If **true**, this option variable causes **roots** or **allroots** to factor its argument over the real numbers, if the polynomial is real, or over the complex numbers, if the polynomial is complex.

Example
\[(c1) \ (2*x+1)^3=13.5*(x^5+1);\]
\[(d1) \quad (2 \ x + 1) = 13.5 \ (x + 1)\]
\[(c2) \ \text{allroots}(\%);\]
\[(d2) \quad [x = 0.829675, x = -1.0157557, x = 0.9659626 \ \pm i - 0.4069597, x = -0.9659626 \ \pm i - 0.4069597, x = 1.0000001]\]

5.7.3 Solving Recurrence Equations

To see demonstrations of Macsyma’s packages for solving linear recurrence equations, do **demo(differ)**; and **demo(recur)**.

Name of Package: **differ**

Description: **differ** is a program which solves linear constant-coefficient ordinary difference equations. **differ** can solve first-order and second-order equations. **char** (page 130) can be used for higher order equations and systems. **differ** can also fit the solution to specified initial conditions. When solving recurrence equations, users should generally try the command **differenceq** first.

differenceq(equation, nth-term, [initial-conditions]) \hspace{1cm} **Function**

Solves **equation** for **nth-term**. **nth-term** is a subscripted variable, like **f[n]**. **equation** and **nth-term** may be lists. Initial conditions can be supplied by setting the appropriate term to the needed value, as in: **f[0]:1**. They can also be supplied as an optional argument to **differenceq**, in which case they should
be specified as a list of initial conditions of the form \(f[0] = 1 \). The second method of specifying initial conditions is the preferred method, but the first is retained for compatibility with earlier versions of this program.

\textbf{differverbose} \text{ default: false} \quad \text{Option Variable}

If \textbf{differverbose} is set to \texttt{true}, it displays information about its arguments as intermediate expressions.

Name of Package: recur

Description: \texttt{recur} is a Macsyma program which solves linear recurrence relations and linear difference equations. It implements four separate solution methods. Type \texttt{demo(recur)}; to run the demo file.

The difference equation must be specified as a linear combination of functions, that is, expressions of the form \(u(n+i) \), where \(i \) is a non-negative integer. The difference equation must contain a term of the form \(u(n) \). The largest value \(i \) in the expression is defined to be the order of the equation. The solution is given in the form \(u(n) = (\ldots) \), and the initial conditions (if given) are used only if they specify terms in the sequence \(u(n) \) satisfying \(0 \leq n \leq \text{order} - 1 \).

\textbf{char} \((\text{lhs, rhs, dep_var, indep_var, order, initial_value_list})\)

Implements the characteristic polynomial method. This method is applicable only to linear constant-coefficient difference equations. \(\text{rhs} \) is the inhomogeneous part of the expression, or zero. \(\text{dep_var} \) is the name of the dependent variable. \(\text{indep_var} \) is the independent variable. \(\text{order} \) is the order of the equation. \(\text{initial_value_list} \), if given, is a list of assignments specifying the initial conditions. See the demo file for examples of the command syntax.

\textbf{genf} \((\text{lhs, rhs, dep_var, indep_var, order, initial_value_list})\)

Implements the generating function method. This method is applicable only to linear constant-coefficient difference equations. It might give incorrect answers when applied to variable-coefficient difference equations. \(\text{rhs} \) is the inhomogeneous part of the expression, or zero. \(\text{dep_var} \) is the name of the dependent variable. \(\text{indep_var} \) is the independent variable. \(\text{order} \) is the order of the equation. \(\text{initial_value_list} \), if given, is a list of assignments specifying the initial conditions. See the demo file for examples of the command syntax.

\textbf{varc1} \((\text{lhs, rhs, dep_var, indep_var, order, initial_value_list})\)

Solves the difference equation by solving an associated ordinary differential equation first. This works on linear first- and second-order variable-coefficient difference equations. \(\text{rhs} \) is the inhomogeneous part of the expression, or zero. \(\text{dep_var} \) is the name of the dependent variable. \(\text{indep_var} \) is the independent variable. \(\text{order} \) is the order of the equation. \(\text{initial_value_list} \), if given, is a list of assignments specifying the initial conditions. See the demo file for examples of the command syntax.

\textbf{varc2} \((\text{lhs, rhs, dep_var, indep_var, order, initial_value_list})\)

\textbf{varc2} is like \textbf{varc1}, except it only works on linear first-order variable-coefficient difference equations. \(\text{rhs} \) is the inhomogeneous part of the expression, or zero. \(\text{dep_var} \) is the name of the dependent variable. \(\text{indep_var} \) is the independent variable. \(\text{order} \) is the order of the equation. \(\text{initial_value_list} \), if given, is a list of assignments specifying the initial conditions. See the demo file for examples of the command syntax.

5.7.4 Exact Solutions of Equations

\textbf{algsys} \((\text{exp1, \ldots, exp}_n, [\text{var}_1, \ldots, \text{var}_n])\)

Solves the list of simultaneous polynomials or polynomial equations (which can be nonlinear) for the list of variables. The symbols \(\%r1, \%r2 \), etc. are used to represent arbitrary parameters when needed for the solution.

In the process described below, \texttt{algsys} is entered recursively if necessary. The method is as follows:
1. If `use_grobner` is set to true, `algsys` first calls `grobner`. (See Section 5.7.4, page 131.)

What `grobner` does is to transform the equations into a possibly simpler form by a “triangulation” process that makes the solution procedure used by `algsys` much more effective.

2. For each subsystem $S[i]$, an equation E and a variable var are selected (the var is chosen to have lowest nonzero degree). Then the resultant of E and $E[j]$ with respect to var is computed for each of the remaining equations $E[j]$ in the subsystem $S[i]$. This yields a new subsystem $S'[i]$ in one fewer variables (var has been eliminated). The process now returns to (1).

3. Eventually, a subsystem consisting of a single equation is obtained. If the equation is multivariate and no approximations in the form of floating-point numbers have been introduced, then `solve` is called to find an exact solution. `solve` may not be able to produce a solution, or, if it does, the solution may be a very large expression.

If the equation is univariate and is either linear, quadratic, or bi-quadratic, then again `solve` is called if no approximations have been introduced. If approximations have been introduced or the equation is not univariate and neither linear, quadratic, or bi-quadratic, then if the option variable `realonly` (default: false) is true, the function `realroots` is called to find the real-valued solutions. If `realonly` is false, then `allroots` is called. `allroots` then looks for real and complex-valued solutions. The behavior of `algsys` is also affected by `algexact`, described below.

4. Finally, the solutions obtained in step (4) are reinserted into previous levels and the solution process returns to (1).

Note: When `algsys` encounters a multivariate equation that contains floating-point approximations, usually due to its failing to find exact solutions at an earlier stage, then it does not attempt to apply exact methods to such equations and instead signals the error: `ALGSYS cannot solve - system too complicated`.

`use_grobner` **Option Variable**

When set to true, `algsys` uses Gröbner first. This method of solving systems of polynomial equations is contained in the Gröbner library, which is an in-core package that implements the Speyer/Buchberger Gröbner basis algorithm and some applications (see Section 5.7.7, page 139)

`realonly` **Option Variable**

You can reset `realonly` to true to obtain only real solutions. `realonly` only affects `algsys`, and not `solve` in general.

`algepsilon` **Option Variable**

If `algsys` produces a solution that has fewer significant digits than required, you can change the value of `algepsilon` to a higher value.

`%rnum_list` **System Variable**

When `%r` variables are introduced in solutions by `algsys` or `linsolve`, they are added to `%rnum_list` in the order they are created. This is convenient for doing substitutions into the solution later on.

`%rnum` **Option Variable**

When `%r` variables are introduced in solutions by `algsys` or `linsolve`, they are named by concatenating “%r” with the number held in `%rnum`. Resetting this option variable restarts the sequence. `%rnum` must be a nonnegative integer.
algexact default: false

Affects the behavior of \texttt{algsys} as follows: If \texttt{algexact} is \texttt{true}, then \texttt{algsys} always calls \texttt{solve} and then uses \texttt{realroots} on \texttt{solve}'s failures. If \texttt{algexact} is \texttt{false}, \texttt{solve} is called only if the eliminant was not univariate, or if it was a quadratic or biquadratic. Thus \texttt{algexact: true} doesn't guarantee only exact solutions. It simply ensures that \texttt{algsys} first tries to give exact solutions, and yields approximations only when all else fails.

\textit{Examples}

\begin{itemize}
 \item (c1) \texttt{f1:2*x*(1-11)-2*(x-1)*12}$
 \item (c2) \texttt{f2:12-11}$
 \item (c3) \texttt{f3:11*(1-x^2-y)$
 \item (c4) \texttt{f4:12*y-(x-1)^2}$
 \item (c5) \texttt{algsys([f1,f2,f3,f4],[x,y,11,12]);}
 \item (d5) \texttt{[[x = 0, y = %r1, 11 = 0, 12 = 0],}
 \qquad \texttt{[x = 1, y = 0, 11 = 1, 12 = 1]]}$
 \item (c6) \texttt{f1:x^2-y^2}$
 \item (c7) \texttt{f2:x^2-x+2*y^2-y-1}$
 \item (c8) \texttt{algsys([f1,f2],[x,y]);}
 \qquad \texttt{[1 1 1 1]}
 \item (d8) \texttt{[[x = - -------, y = -------], [x = -------, y = - -------],}
 \qquad \texttt{sqrt(3) sqrt(3) sqrt(3) sqrt(3)}
 \qquad \texttt{1 1}
 \qquad \texttt{[x = 1, y = 1], [x = - -, y = - -]}\}$
\end{itemize}

\texttt{solve}([\texttt{eq1}, \ldots, \texttt{eqn}], \texttt{[var1, \ldots, varn]})

\texttt{solve}([\texttt{eq1}, \ldots, \texttt{eqn}], \texttt{[var1, \ldots, varn]}) \textit{Function}

Solves a system of simultaneous linear or nonlinear polynomial equations by calling \texttt{linsolve} or \texttt{algsys} and returns a list of the solution lists in the variables. In the case of \texttt{linsolve}, the result is a list containing a single list of solutions. \texttt{solve} takes two lists as arguments. The first list, \texttt{[eqi, i=1, \ldots, n]}, represents the equations to be solved; the second list is a list of the unknowns to be determined. If the total number of variables in the equations is equal to the number of equations, the second argument list can be omitted. For linear systems, if the given equations are not compatible, the message \texttt{Inconsistent Equations} is displayed; if no unique solution exists, then \texttt{Singular} is displayed. The variable \texttt{dispflag} (default: \texttt{true}), when set to \texttt{false} within a \texttt{block}, inhibits the display of output generated by the solve functions called from within the \texttt{block}.

\texttt{solve}([\texttt{exp}, \texttt{var}])

\texttt{solve}([\texttt{exp}, \texttt{var}]) \textit{Function}

\texttt{solve}([\texttt{exp}, \texttt{var}]) solves the algebraic equation \texttt{exp} for the variable \texttt{var} and returns a list of solution equations in \texttt{var}. If \texttt{exp} is not an equation, it is assumed to be an expression to be set equal to zero. \texttt{var} can be a function such as \texttt{F(x)}, or other nonatomic expression except a sum or product. It may be omitted if \texttt{exp} contains only one variable. \texttt{Exp} can be a rational expression containing trigonometric functions and exponentials. \texttt{solve} does not directly solve equations involving radicals. But such equations can often be solved “manually” using techniques such as squaring both sides of an equation.

The following method is used:

Let \(e\) be the expression and \(x\) be the variable. If \(e\) is linear in \(x\), then it is trivially solved for \(x\). Otherwise, if \(e\) is of the form \(ax^n + b\), then the result is \((-b/a)^{1/n}\) times the \(n^{th}\) roots of unity.

If \(e\) is not linear in \(x\), then the GCD of the exponents of \(x\) in \(e\), say \(n\), is divided into the exponents and the multiplicity of the roots is multiplied by \(n\). Then \texttt{solve} is called again on the result.

If \(e\) factors, then \texttt{solve} is called on each of the factors. Finally, \texttt{solve} uses the quadratic, cubic, or quartic formulas where necessary.

In the case where \(e\) is a polynomial in some function of the variable to be solved for, say \(F(x)\), then it is first solved for \(F(x)\). Call the result \(c\). Then the equation \(F(x) = c\) can be solved for \(x\) provided the
inverse of the function F is known.

When \texttt{solve} cannot directly solve equations involving radicals, you can get a solution manually using techniques such as squaring both sides of the equation:

(c1) eqn: $x + \sqrt{x} = 1$
(c2) solve(eqn, x, solveexplicit: true);
(d2) []
(c3) solve(eqn, sqrt(x));
(d3) $\sqrt{x} = 1 - x$
(c4) answer: solve(%, 2, x);
(d4) $\sqrt{5} - 3 \quad \sqrt{5} + 3$

\(x = \frac{-3}{2}, \ x = \frac{3}{2}\)

(c5) /* We must check the proposed solutions returned for validity. */
/* The first proposed solution is ok: */
expand(sqrtdenest(subst(answer[1], eqn)));
(d5) 1 = 1
(c6) sfloor(subst(answer[1], eqn));
(d6) 0.99999994 = 1.0
(c7) /* The second proposed solution is invalid: */
expand(sqrtdenest(subst(answer[2], eqn)));
(d7) $\sqrt{5} + 2 = 1$
(c8) sfloor(subst(answer[2], eqn));
(d8) 4.236068 = 1.0

\texttt{breakup} \hspace{1em} \texttt{default: true} \hspace{1em} \textit{Option Variable}

If \texttt{false}, this option variable causes \texttt{solve} to express the solutions of cubic or quartic equations as single expressions rather than as made up of several common subexpressions which is the default. \texttt{breakup: true} works only when \texttt{programmode} \ (default: \texttt{true}) is \texttt{false}.

\texttt{solvefactors} \hspace{1em} \texttt{default: true} \hspace{1em} \textit{Option Variable}

If \texttt{false}, this option variable inhibits \texttt{solve} from trying to factor the expression. The \texttt{false} setting may be desired in some cases where factoring is not necessary.

\texttt{solveradcan} \hspace{1em} \texttt{default: false} \hspace{1em} \textit{Option Variable}

If \texttt{true}, then \texttt{solve} uses \texttt{radcan} which makes \texttt{solve} slower but allows certain problems containing exponentials and logs to be solved.

\texttt{solve} binds \texttt{keepfloat} \ (default: \texttt{false}) to \texttt{false}. If you want to retain floating-point numbers and are solving a system of linear equations, set \texttt{keepfloat} to \texttt{true} and use \texttt{linsolve}.

When solving polynomials with large integer coefficients, it may be useful to reset \texttt{intfaclim} \ (default: \texttt{1000}). see Section 5.3, page 96.

\texttt{solvetrigwarn} \hspace{1em} \texttt{default: true} \hspace{1em} \textit{Option Variable}

If set to \texttt{false}, this option variable prevents \texttt{solve} from printing the warning message saying that it is using inverse trigonometric functions to solve the equation, and thereby losing solutions. The message is: \texttt{SOLVE is using arc-trig functions to get a solution. Some solutions may be lost.}

\texttt{solvedecomposes} \hspace{1em} \texttt{default: true} \hspace{1em} \textit{Option Variable}

If \texttt{true}, \texttt{solve} uses \texttt{polydecomp} \ (see below) to solve polynomials. Under certain circumstances the implicit “solution” may be quite complex. This may happen, for example, when there is an unknown in an exponent.
solve inconsistent error default: true

Option Variable

If true, solve and linsolve give an error if they encounter a set of inconsistent linear equations, such as `solve([a+b=1,a+b=2])`. If it is set to false, they return `[]` in this case.

programmode default: true

Option Variable

When false, this option variable causes solve, realroots, allroots, and linsolve (but not algsys) to assign solutions to labeled intermediate lines and to return a list of the `LINES` generated. When true, solve, realroots, allroots, and linsolve return answers as elements in a list.

Example
```
(c1) programmode:false$
(c2) allroots(x^2-1);
    (e2) x = 1.0
    (e3) x = -1.0
(d3) [e2, e3]
```

solveexplicit default: false

Option Variable

If true, this option variable prevents solve from returning implicit solutions of the form f(x)=0.

solvenullwarn default: true

Option Variable

If true, you are warned if you call solve with either a null equation list or a null variable list. The messages are: Got a null equation list, continuing - SOLVE, and Got a null variable list, continuing - SOLVE. For example, `solve([],[])`; prints two warning messages and returns `[]`.

Examples
```
(c1) solve(asin(cos(3*x))*f(x)-1,x);
Solve is using arc/-trig functions to get a solution.
Some solutions may be lost.
    %pi
(d1) [x = -- -, f(x) = 1]
    6
(c2) solveradcan:true$
(c3) solve(5^f(x)=125,f(x));
    (d3) [f(x) = 3]
(c4) realonly:true$
(c5) [4*x^2-y^2=12,x*y=x-2];
    2 2
    (d5) [4 x - y = 12, x y - x = 2]
(c6) solve(%,[x,y]);
(c7) [[y = 2, x = 2], [y = -0.15356755, x = -1.733752]]
```

polydecomp(poly, var)

Function

Returns a list of polynomials `[f1(var), f2(var), ..., fn(var)]` such that `poly = f1(f2(...fn(var)...))`.

Examples
```
(c1) polydecomp(a*(b*x+c)^5+d,x);
    (d1) [a x + d, b x + c]
(c2) f(x):=x^3+x-3$
(c3) polydecomp(f(f(x)),x);
    3 2 3
    (d3) [x - 9 x + 28 x - 33, x + x]
```

There is no other decomposition that involves more polynomials excepting linear fi.
eliminate([eq1, ..., eqn], [var1, ..., vark])

Eliminates variables from equations (or expressions assumed equal to zero) by taking successive resultants. This returns a list of \(n-k \) expressions with the \(k \) variables \(\text{var}_1, \ldots, \text{var}_k \) eliminated. First \(\text{var}_1 \) is eliminated yielding \(n-1 \) expressions, then \(\text{var}_2 \) is, etc. If \(k = n \), then a single expression in a list is returned free of the variables \(\text{var}_1, \ldots, \text{var}_k \). In this case, \texttt{solve} is called to solve the last resultant for the last variable.

Example
(c1) \[\text{exp1:2}\times^2+2y+x+z; \]
 \[z + x y + 2 x \]
(d1) \[\text{exp2:3}\times^5+y-z-1; \]
 \[- z + 5 y + 3 x - 1 \]
(c2) \[\text{exp3:z}^2+x-y^2+5; \]
 \[2 - 2 \]
(d2) \[\text{z} - y + x + 5 \]
(c3) \[\text{eliminate}([\text{exp3, exp2, exp1}], [y, z]); \]
 \[8 \]
 \[7 \]
 \[6 \]
 \[5 \]
 \[4 \]
(d3) \[\text{[7425 x - 1170 x + 1299 x + 12076 x + 22887 x} \]
 \[3 \]
 \[2 \]
 \[- 5154 x - 1291 x + 7688 x + 15376] \]

5.7.5 Approximate Symbolic Solutions of Equations

Name of Package: \texttt{taylsolve}

Description: The \texttt{taylsolve} computes the series solution \(y \): \texttt{dep_var} to the functional equation \(e(y, x) \): \texttt{equation}, where every solution \(y \) returned is a CRE series at \(p \): point in \(x \): \texttt{indep_var} truncated to order \(t \): \texttt{trunc}. The input \(e(y, x) \) can be any algebraic or transcendental equation analytic in \(x \) at the point \(p \) (in the sense that \texttt{taylor} is able to compute its series expansion at \(p \)). Thus, infinite points \(p \) are handled. Both algebraic and transcendental equations are acceptable.

Note: Differential equations and multivariate systems of equations are not currently handled, but the algorithm will be extended for these cases in the future.

taylsolve(equation, dep_var, indep_var, pt, trunc, orders) Function

Computes series solutions to a functional equation by employing the classical Newton–Puiseaux algorithm (described below) combined with the method of undetermined coefficients.

taylsolve takes the following arguments:

- \texttt{equation} An algebraic or transcendental equation that implicitly defines the dependent variable \texttt{dep_var} in terms of the independent variable \texttt{indep_var}.
- \texttt{dep_var} The dependent variable in the equation \texttt{equation} for which the series solutions are computed (in CRE form).
- \texttt{indep_var} The independent variable in the equation \texttt{equation}.
- \texttt{pt} The point at which the series solutions are computed.
- \texttt{trunc} Either an integer specifying the degree to truncate solutions or a one element list that specifies the number of terms of the series expansion to be computed for the series solution.
- \texttt{orders} A list of rational numbers specifying the orders of all solutions desired. (Optional)
taylor_solve returns, when successful, a list of all solutions obtained (the empty list [] indicates unsolvability). taylor_solve returns false if it is unable to find series solutions. Each solution is a list whose first element is a CRE series and whose remaining elements are any equations constraining symbolic coefficients in the series. The origin of the coefficient equations is explained further in the description of the algorithm below.

There are two methods for selecting only certain solutions: coefficient selection and order selection. Coefficient selection can be interactively controlled by setting the option variable taylor_solve_choose_coef (default: false) to true. If solve returns multiple solutions for a coefficient equation, you are then asked which solution you want. Otherwise, the equation is adjoined to the coefficient equation list, and subsequent computation of this solution proceeds modulo the new coefficient equations list. (That is, the equations are used as a simplification rules).

Order selection is controlled as follows: If the optional argument orders is supplied, then only those solutions with order (in x) an element of the list orders are returned. Otherwise, if the option variable taylor_solve_choose_order (default: false) is true, then you are asked to supply the order of the particular solution you want. In the remaining case, all solutions are returned, regardless of their order.

Note: Completeness of the Newton–Puiseaux algorithm is guaranteed for an algebraic equation. All solutions sought will be obtained. For a transcendental equation, it is possible that some solutions will be missed due to the current implementation being incomplete in this case.

The algorithmic method of Newton–Puiseaux is employed as follows:

- A Newton polygon is constructed to determine the possible orders of a candidate solution y.
- If the order is not uniquely determined, then a unique order s is selected as above and $y = c \times x^s$ is substituted into e. An equation constraining the possible values of the undetermined coefficient c is then determined by expanding $e(c \times x^s, x)$ and equating the coefficient of its lowest order term to zero. Higher-order terms are computed by proceeding recursively using the new equation $e(y - c \times x^s, x)$.
- If the order is uniquely determined, then the lowest order term $Y[0]$ is determined as above via the method of undetermined coefficients. Newton iteration is then employed to compute higher order terms via $y[n+1] = y[n] - taylor(at(e(y, x)/diff(e(y, x), y), y=y[n], x, p, t))$.

Note: taylor_solve autoloads.

Examples

We investigate the branches of a fifth degree algebraic curve:

\begin{verbatim}(c1) (taylor_solve_choose_coef:false, taylor_solve_choose_order:true, curve5:=-x^3+x^4-2*x^2*y+x*y^2+2*x*y^4+y^5)$
\end{verbatim}

\begin{verbatim}(c2) taylor_solve(curve5, y, x, [0], [5]);
\end{verbatim}

\begin{verbatim} Possible choices for the order of a series solution are: [-, 1] Please enter your choice: 1/3; 5/3 7/3 8/3
\end{verbatim}

\begin{verbatim} (d2)/T/ [y = k0 x + ----- - ------- - ----- + x + . . . , k0 = 1]
\end{verbatim}

\begin{verbatim} 3 k0 2 3 k0 3 k0
\end{verbatim}

Note the coefficient equations following the solution: [k0^3=1]. Similarly,

\begin{verbatim}(c3) taylor_solve(curve5, y, x, [0], [5]);
\end{verbatim}
Possible choices for the order of a series solution are: \([1, 1]\)

Please enter your choice: 1;

\[\begin{array}{ccc}
\frac{5}{2} & \frac{3}{2} & 7/2 \\
3/2 & x & 3x & 7x \\
2 & k0 & 2 & 8k0
\end{array}\]

\((d3)/T/\] \[y = -x + k0 x + \ldots + \ldots + \ldots + \ldots, k0 = 1\]

Finally, let us consider a transcendental equation:

\((c4)/taylor_solution(exp(y+x)=a*y, y, x, 0, 1),\text{ratfac}\;true;\)

\((d4)/T/\] \[y = k0 - \ldots + \ldots \ldots + \ldots, \%e = a k0\]

\(k0 - 1\)

Note that the coefficient equation is transcendental: \([\%e^k0=a*k0]\).

5.7.6 Floating Point Numerical Solutions of Equations

5.7.6.1 Roots by Bisection

Name of Package: **bisection**

Description: This file finds the roots of transcendental equations. You can run a demo with the command `demo(bisection);`

`root_by_bisection(exp, var, lo, hi)`

Function

Searches for a root of a univariate expression `exp` as the variable `var` varies between limits `lo` and `hi` using a weighted bisection method.

`root_by_bisection(fun, lo, hi)`

Function

A variant of `root_by_bisection` that searches for the root of a function `fun`.

bisection_indep_toler default: 0.0

Option Variable

The tolerance in the independent variable for `root_by_bisection`. The root search terminates when the bounds on the root differ by less than this amount.

bisection_dep_toler default: 0.0

Option Variable

The tolerance in the expression value for `root_by_bisection`. The root search terminates when the value of the expression is less than this amount.

bisection_iter_limit default: 1000

Option Variable

The maximum number of iterations that `root_by_bisection` will perform.

bisection_error default: true

Option Variable

Controls what happens when the function `root_by_bisection` is called with limit arguments that yield values of the same sign for the expression evaluated at those points. Possible values are `true` (the default), which means signal an error, or a floating-point number, which is a value to return.

Examples:

\((c1)/(bisection_dep_toler:1.0e-7, bisection_indep_toler:1.0e-7)\)$

\((c2)/root_by_bisection(x^5-5,x,1,2);\)

\((d2)/1.3797296\)

\((c3)/eqn:\cos(x)=x;\)

\((d3)/\cos(x) = x\)
5.7.6.2 Newton’s Method

Name of Package: newton

Description: Implements Newton’s method for scalar-valued functions. Do demo(newton); for a demonstration. The package defines the following user-accessible functions and options:

newton(fun, vars, start, {itmax})

Applies Newton’s method to the function fun in variables vars from initial starting point start. The number of iterations, itmax, is optional, and defaults to 25. If the residual is less than the tolerance specified by the option variable newton_tol (see below), then the point is returned; otherwise, an error is generated. The computations are done in the data type specified by the starting point start (single float, double float, bigfloat). Any non-floating components of start are floated prior to iteration. If verbose:true, then the current estimate of the solution is displayed after each iteration. This function autoloads.

You can help newton to solve complex problems more quickly by simplifying equations and expressions before giving them to newton. For example, multiplying an equation by a term which eliminates the VARS from the denominators simplifies the expressions for the Jacobian, which is obtained by symbolic differentiation.

Note that newton will not accept a translated first argument since it needs to compute the symbolic derivative of the function.

newton_tol default: 1.0e−6

Iteration terminates when the residual is less than this value. The residual is computed via the Euclidean norm.

newton_iteration_counter

When the function newton is finished, newton_iteration_counter stores the number of iterations which were used by newton.

newton_eval_jacobian default: 1

When 0, the Jacobian matrix obtained from a multivariate function is evaluated at the initial point and the resulting matrix is used in the iteration. When 1, the Jacobian matrix is reevaluated numerically at the start of each iteration. When greater than 1, the Jacobian matrix is reevaluated numerically every newton_eval_jacobian number of iterations.

Iteration schemes: (all have x[0] as the initial point for the iteration)

- \(x[n + 1] := x[n] - f(x[n])/f'(x[n]) \) (univariate and newton_eval_jacobian = 0)
- \(x[n + 1] := x[n] - f(x[n])/f'(x[n]) \) (univariate and newton_eval_jacobian ≥ 1)
- \(x[n + 1] := x[n] - Df(x[n])^{-1}.f(x[n]) \) (multivariate and newton_eval_jacobian = 0)
- \(x[n + 1] := x[n] - Df(x[n])^{-1}.f(x[n]) \) (multivariate and newton_eval_jacobian ≥ 1)
5.7. SOLVING EQUATIONS AND INEQUALITIES

newton_optimize default: false

Option Variable

When true, then newton applies ratsimp, and then optimize, to the iteration function in an attempt to speed up floating point evaluation. Setting this variable to true is more likely to help for problems which take many iterations and which use complicated functions.

Examples
(c1) eq:tan(x)-1/x;

(d1) newton(eq,x,1.0);

(c2) newton(eq,x,1.0d0);

(d2) [x = 0.86033356]

(c3) newton(eq,x,1.0d0);

(d3) [x = 0.8603335904117901d0]

(c4) newton(eq,x,1.0b0);

(d4) [x = 8.603335904117902b-1]

5.7.7 Gröbner Bases

The grobner library implements the Spear/Buchberger Gröbner basis algorithm and some applications. The main use of Gröbner bases is for deciding equivalence of (polynomial) expressions under side relations. They can also be used for solving systems of polynomial equations, and for finding polynomial relations among equations.

In all of the following functions, an “ideal” means a list of polynomials which generate the ideal. Most of the functions will also accept an equation in place of a polynomial, replacing it with lhs–rhs. However, poly_relations is an exception, since it assigns its own meaning to equations.

This library was contributed by Gail Zacharias. For more information, type usage(grobner)$.

grobner(ideal, {vars})

Function

Computes the Gröbner basis of the ideal ideal. The input vars are the polynomial ring variables; any other symbols occurring in the ideal are then taken to be in the coefficient field. If vars are not specified, all the symbols occurring in the ideal are used. For example, if [grobner([x^2*y-y*x, y^3-x^2])]; becomes the Gröbner basis over K[x,y] then grobner([x^2*y-y*x, y^3-x^2], [y]); becomes the Gröbner basis over k[x][y].

By default, the Gröbner basis is taken with the lexicographical order (but see the variable grobner_tot_order). The variables are ordered as specified by the optional vars. If vars is not given, the grobner package determines an ordering. For example, g(x, y, z); becomes the Gröbner basis over K(...)[x, y, z] with the lexicographic order x<y<z.

grob_reduce(poly, ideal, {vars})

Function

Returns a polynomial which is equal to poly modulo the ideal ideal but is “reduced”. In particular, if ideal is a Gröbner basis, grob_reduce returns 0 if, and only if, poly is equivalent to 0 under the “side relations” given by the ideal. The optional vars is used to specify the ring and the ordering as in grobner.

id_member(poly, ideal, {vars})

Function

Returns true if, and only if, poly is a member of ideal. Same as is(grob_reduce(poly, grobner(ideal, vars))=0);. The optional vars is used to specify the ring and the ordering as in grobner.
CHAPTER 5. BASIC ALGEBRAIC OPERATIONS

radical_member(poly, ideal, {vars})
Function

Returns true if, and only if, some power of poly is a member of the ideal ideal. Same as id_member(1, append(T*poly-1, ideal), append(vars, [T])) where T is a new variable. The optional vars is used to specify the ring and the ordering as in grobner.

id_reduce(ideal1, ideal2, {vars})
Function

The same as delete(0, map(lambda([pl,grob_reduce(p,ideal2,vars),ideal1])) but saves some overhead since ideal2 needs to be converted to internal representation only once. The optional vars is used to specify the ring and the ordering as in grobner.

grob_tot_reduce(poly, ideal, {vars})
Function

Like grob_reduce but reduces all terms of poly, not just the leading term. When ideal is a Gröbner basis, the total reduction of any polynomial is unique up to multiplication by a constant. The optional vars is used to specify the ring and the ordering as in grobner.

id_tot_reduce(ideal1, ideal2, {vars})
Function

This is to grob_tot_reduce as id_reduce is to grob_reduce.

grob_s_poly(ideal1, ideal2, {vars})
Function

Returns the “s-polynomial” of poly1 and poly2. The optional vars is used to specify the ring and the ordering as in grobner.

id_contract(ideal, subvars, {vars})
Function

Returns the contraction of ideal to the subring generated by subvars. E.g. id_contract([x^3*y-y^2, x^2*y], [y]); returns the intersection of (x^3y - y^2, x^2y)K[x,y] and K[y]. Vars may specify all the variables or just the ones not already occurring in subvars (or anything in between), whichever is most convenient.

id_intersect(ideal1, ideal2, {vars})
Function

Returns the intersection of the two ideals ideal1 and ideal2. The optional vars is used to specify the ring and the ordering as in grobner.

poly_relations(poly_list, {vars})
Function

Returns generators for the ideal of polynomial relations among elements of poly_list. Here, poly_list is a list [p_1, ..., p_n] where each p_i can be either a polynomial or an equation of the form “name = polynomial.” For example, poly_relations([f=x*y, g=x^2*y^2]); returns [f^2-g]. When a p_i is just a polynomial, the system will make up a name for it, of the form %Gn. E.g. poly_relations([x*y, x^2*y^2]); will return [%g2 = x*y, %g1 = x^2*y^2] and then [%g2^2-%g1].

grobner_union(ideal1, ideal2, ..., idealn, vars)
Function

Finds a Gröbner basis for the union of the input ideals, assuming that each ideal is already a Gröbner basis in the order specified by vars and the current setting of grobner_t_order. Note that vars is a required argument, unlike the other functions. Using grobner_union is more efficient than performing grobner(append(ideal1, ..., idealn), vars), but the latter works even if some subideal is not a Gröbner basis in the given order.

grob_lt(poly, {vars})
Function

Returns the leading term of poly. The optional vars is used to specify the ring and the ordering as in grobner.

grob_ldeg(poly, {vars})
Function

Returns the leading degree (exponent of the leading term) of poly. The optional vars is used to specify the ring and the ordering as in grobner.

\texttt{grob_lc(poly, \{vars\})} \quad \textit{Function}

Returns the leading coefficient of \textit{poly}. The optional \textit{vars} is used to specify the ring and the ordering as in \texttt{grobner}.

\texttt{grob_trace default: false} \quad \textit{Option Variable}

If \texttt{true}, prints certain trace information on the progress of a Gröbner basis computation.

\texttt{grob_rat default: true} \quad \textit{Option Variable}

If \texttt{false}, Gröbner results are converted to standard representation. By default, all results are left in CRE form.

\texttt{grob_primitive default: true} \quad \textit{Option Variable}

If \texttt{true}, an attempt is made to keep polynomials primitive. This helps reduce coefficient growth, but slows down the computation when the content does not get large. If \texttt{numeric}, only numeric content will be divided out.

\texttt{grob_tot_reduce default: true} \quad \textit{Option Variable}

If \texttt{true}, all steps in Gröbner computation use total reduction rather than just leading-term reduction. It is not clear at this point which is more efficient. If you have trouble with space, try it with the switch set both ways.

\texttt{grobner_coef_divide default: false} \quad \textit{Option Variable}

If \texttt{true}, allow division in the coefficient ring, \textit{i.e.} allow the result to explicitly appear in the field generated by the coefficients. Note that even when \texttt{false}, the result is only valid over the coefficient field, but the generators will be chosen over the coefficient ring. \texttt{(grob_reduce} and \texttt{grob_tot_reduce} bind this to \texttt{true} so that the reduction corresponds to the “intuitive” one.

\texttt{grobner_tot_order default: false} \quad \textit{Option Variable}

If \texttt{false}, use strict lexicographical ordering. If \texttt{true}, use total-degree order, with ties broken by reverse lexicographical order. If \texttt{lex}, use total-degree order, with ties broken by normal lexicographical order. Note that \texttt{poly_relations}, \texttt{id_contract}, and \texttt{id_intersect} ignore this flag because the algorithms they use depend on lexicographical order. \texttt{grob_lt}, \texttt{grob_lc}, and \texttt{grob_ldeg} also ignore this flag.

\texttt{grobner_genvar_prefix default: \%G} \quad \textit{Option Variable}

The prefix for variable names generated in Gröbner functions such as \texttt{poly_relations}.

\texttt{grobner_genvar_index default: 0} \quad \textit{Option Variable}

The index of the last variable generated in this session.

\texttt{grobner_functions} \quad \textit{System Variable}

A list of all the \texttt{grobner} library functions which have been loaded, \textit{i.e.} those listed above.

\textit{Example}

\begin{verbatim}
(c1) eqns: [x^2+y^2=9, (x-2)^2+(y-1)^2=16];
 2 2 2 2
 2 2
(d1) [y + x = 9, (y - 1) + (x - 2) = 16]
(c2) trace(grobner)$
(c3) algsys(eqns, [x,y]);
 2 2
1 enter grobner [y + x = 9, (y - 1) + (x - 2) = 16], [x, y]
 2
1 exit grobner [5 x + 4 x - 8, y + 2 x + 1]
 2 sqrt(11) + 2
 4 sqrt(11) - 1
(d3) [{x = -----------------, y = --------------},
 5 5
\end{verbatim}
5.7.8 Solving Parametric Equations

Name of package: solver
Original Author: Eckhard Hennig and Ralf Sommer

Description: This package tries to find solutions of linear or nonlinear parametric equations.

Function

\[
\text{solver}\left(\text{eq1}, \ldots, \text{eqn}, [v1, \ldots, vm], [p1, \ldots, pk]\right)
\]

tries to solve arbitrary systems of simultaneous linear or non-linear parametric equations by employing heuristic search and valuation strategies in combination with the solve and linsolve commands. If the equations cannot be solved explicitly – either because there exists no analytic solution or because the symbolic solution is too complex – the solver attempts to solve a subset and returns the nonlinear kernel that could not be solved. These kernel equations can then be solved with numerical techniques.

solver takes three lists as arguments. The first list \([eq_i], i=1,\ldots,n\) represents the equations to be solved. The second \([v_i], i=1,\ldots,m\) is a list of the unknowns to be determined. The third list \([p_i], i=1,\ldots,k\) holds the parameter symbols of the system. It may be omitted if there are no parameters.

The solver attempts to solve \([eq_1, \ldots, eq_n]\) for \([v_1, \ldots, v_m]\) in terms of the parameters \([p_1, \ldots, p_k]\). If the list of unknowns does not contain all symbols which appear in the system, then solver tries to eliminate all variables which are neither specified as a variable \(v_i\) or a parameter \(p_j\).

Do example(solver); for an example, and demo(solver); for a longer demonstration.

solver_verbose default: false

The amount of output generated by solver can be controlled with variablesolver_verbose. If false, no messages are printed to the screen; true causes a short protocol of the solution process to be printed, whereas all displays very detailed information.

solver_immed_assign default: true

If solver_immed_assign is true, then the solver first searches the equations for immediate assignments of the form \(v_i = \text{constant}\) and immediately inserts these constraints into the remaining equations. In many cases of sparse systems, this procedure greatly reduces the time consumption of the linear solver.

dsolver_repeat_immed default: true

solver_repeat_immed controls whether the search for immediate assignments is performed repeatedly until no more of them are found.

solver_incons_params default: ask

solver_incons_params controls whether the solver terminates when a non-trivial equation containing only parameters is encountered during the elimination process. For example, if \(A\) and \(B\) are defined as parameters and the solution process yields \(A = B^2\), then the solver stops if solver_incons_params is set to break. If it set to ask, the solver asks "Is \(A - B^2\) is zero or nonzero?" and continues only if the expression is zero. If set to ignore, the solver quietly assumes that the expression is zero if it does not directly contradict any of the assumptions made previously.

solver_linear default: true

solver_linear controls whether the solver tries to find and solve blocks of linear equations before submitting the remaining equations to the heuristic valuation solver. This is useful if the equations to be solved are known to contain a large linear part.
5.7. SOLVING EQUATIONS AND INEQUALITIES

solver_repeat_linear default: true

If solver_repeat_linear is true, then the linear solver will be called repeatedly until no more linear equations are found. If the option variable is false, then the linear solver will be called only once.

solver_find_all_linear_vars default: true

If solver_find_all_linear_vars is true, then the linear solver will try to find linear equations with respect to all available variables and solve these equations simultaneously. If false, then the linear solver will only search for linear equations with respect to variables whose solutions are currently needed in the elimination process. In the case of underconstrained largely linear equations, the recommended setting is false.

solver_transforms default: []

solver_transforms is a list containing the names of user-defined functions which can be applied to an equation after a call to the solve function has failed. These functions can either transform the equations such that a second solve call will be successful, or they determine a solution by themselves and return it to solve. The transformation functions must take three arguments in the following order: the expression to be transformed, the variable to be solved for, and a list of (probably implicit) partial solutions the solve has already found for the equation. The latter information may sometimes help avoid repeated symbolic manipulations:

TransformFunction(Expression, Variable, PartialSolutions) := (...)

There are three possible kinds of return values for a transformation function: The function must return an empty list ([][]) if the attempt to transform the expression has failed. If the return value has the form [expression], then solve will be called again on the transformed expression. If the return value has the form [Variable = Solution], or [Variable = Solution1, Variable = Solution2, ...], then the solve uses the solutions provided by the transformation function.

solver_backsubst default: true

solver_backsubst controls the output format of solve. If is true, then the result will be displayed with fully evaluated right-hand sides for each variable. If the option variable is set to false, then the right-hand sides of the solutions may still contain references to some of the other variables which have been solved for.

solver_ratsimp_sols default: true

If solver_ratsimp_sols is true, the solve postprocessor will apply fullratsimp to any solutions before returning them to the user.

solver_assumptions default: []

solver_assumptions contains constraints on the parameters which should be checked by the user after the termination of solve. These constraints result from the parameter consistency check, the behavior of which is controlled by the setting of the option variable solver_incons_params. Any numerical solution of the equations obtained by assigning numerical values to symbolic parameters should be checked for consistency with all expressions in solver_assumptions.

Do demo(solve); demo(solve1); and demo(solve2); for executable demonstrations of the solve package.
Chapter 6

Basic Calculus Operations

Macsyma performs symbolic computations relating to all branches of the calculus. The following sections describe the routines available for:

- taking limits (See Section 6.1.1.)
- differentiating expressions and finding partial derivatives (See Sections 6.1.2 and 6.1.3.)
- finding Taylor series (See Section 6.1.4.)
- asymptotic analysis (See Section 6.1.4.4.)
- integrating expressions (whether definite or indefinite) (See Section 6.2.)
- finding Laplace transforms (See Section 6.3.)
- solving ordinary differential equations (See Section 6.5.)
- solving partial differential equations (See Section 6.7.)
- solving integral equations (See Section 6.8.)
- solving optimization problems (See Section 6.6.)
- working with an operator algebra (See Section 6.9.)

Note: Macsyma also contains a tensor package that performs calculus on tensors (see Chapter 8).

6.1 Differential Calculus

6.1.1 Limits

\[
\text{limit}(\text{exp}, \text{var}, \text{val}, \{\text{direction}\})
\]

Function

Finds the limit of \(\text{exp} \) as the real variable \(\text{var} \) approaches the value \(\text{val} \) from the direction \(\text{direction} \). The \text{direction} argument is optional. See \text{plus} and \text{minus} below. \text{limit} uses the following special symbols: \text{inf}, \text{minf}, \text{plus}, \text{minus}, \text{ind}, \text{und}, \text{and infinity}. The symbols \text{inf}, \text{minf}, \text{and infinity}, are positive real infinity, negative real infinity and complex infinity, respectively. (See Section 2.2.5, page 27.) The others are described below. For the method see [Wang2].

If limit is called on \(\text{fib}(n) \), it converts this to the closed form definition, involving the constant \%phi. See \%phi, Section 2.2.5, page 27.
The `limit` function is often called upon to simplify constant expressions like `inf`–1, so for such expressions `limit` accepts only one argument.

The precise behavior of `limit` is controlled by the option variables `lhopitalim`, `tlimswitch`, and `limsubst`, described below.

plus
Keyword

Keyword for: `limit`

The `limit` function normally computes a bidirectional limit, but by giving an optional fourth argument of `plus`, you can force it to return a limit from above.

minus
Keyword

Keyword for: `limit`

The `limit` function normally computes a bidirectional limit, but by giving an optional fourth argument of `minus`, you can force it to return a limit from below.

und
Special Symbol

This stands for “undefined.” Let \(\lim^+ \) have the value \(\lim(f(x), x, a, \text{plus}) \) and let \(\lim^- \) have the value \(\lim(f(x), x, a, \text{minus}) \), for \(f(x) \) some expression in \(x \), and a finite. Macsyma returns \(\text{und} \) for \(\lim(f(x), x, a) \) whenever \(\lim^+ \) and \(\lim^- \) both exist and are real, at least one of \(\lim^+ \), \(\lim^- \) is finite, and \(\lim^+ \) is not equal to \(\lim^- \). One example is:

\[
\text{limit}(\cot(x), x, 0);
\]

Macsyma also returns \(\text{und} \) for any unbounded indefinite limit. One example is:

\[
\text{limit}(1/\sin(x), x, \text{inf});
\]

ind
Special Symbol

\(\text{limit} \) might return \(\text{ind} \) as a result if the limit is indefinite but bounded.

lhopitalim
Option Variable

Is the maximum number of times l’Hôpital’s rule is used in `limit`. This prevents infinite looping in cases like `limit(cot(x)/csc(x), x, 0)`.

tlimswitch
Option Variable

If `true`, this option variable causes the limit package to use Taylor series when possible.

limsubst
Option Variable

Prevents `limit` from attempting substitutions on unknown forms. This is used to avoid bugs like `limit(f(n)/f(n+1), n, \text{inf})`; giving 1. Setting `limsubst` to `true` allows such substitutions.

Examples

- `(c1) limit(tan(x), x, %pi/2);`
 `infinity`
- `(c2) limit(tan(x), x, %pi/2, minus);`
 `inf`
- `(c3) limit(tan(x), x, %pi/2, plus);`
 `minf`

Examples

- `(c1) limit(x*log(x), x, 0, plus);`
 `0`
- `(c2) limit((1+x)^(1/x), x, 0);`
 `%e`
- `(c3) limit(%e^-x/x, x, \text{inf});`
 `inf`
- `(c4) limit(sin(1/x), x, 0);`
6.1. DIFFERENTIAL CALCULUS

\[
\begin{align*}
\text{(d4)} & \quad \text{ind} \\
\text{(c5)} & \quad \text{limit(\text{inf}-1)}; \\
\text{(d5)} & \quad \text{inf} \\
\end{align*}
\]

tlimit(\text{exp, var, val, direction})

Function

Represents the function \text{limit} with \text{tlimswitch} set to \text{true}.

6.1.2 Differentiation

\text{diff(\text{exp, var}_1, n_1, \ldots, var_k, n_k)}

Function

Differentiates \text{exp} with respect to each \text{var}_i, \text{n}_i times. If you want the first derivative with respect to one variable, use the form \text{diff(\text{exp, var})}. If the noun form of the function is required (as, for example, when writing a differential equation), \text{'diff} should be used. The noun form displays in a two-dimensional format. See \text{eval} and \text{diff} for a method of converting \text{'diff}, the “derivative” into \text{diff}, “differentiate,” via the \text{ev} command.

When simplifying \text{'diff} forms, Macsyma assumes that mixed partial derivatives are equal. The option variable \text{diff_cannonicalize} removes this assumption when set to \text{false}. See \text{diff_cannonicalize}, Section 6.9, page 213.

\text{derivabbrev default: false}

Option Variable

If \text{true}, this option variable causes derivatives to be displayed as subscripts.

\text{del}

Special Symbol

This symbol is produced when \text{diff} is called with a single argument. The command \text{diff(\text{exp})} returns the total differential of \text{exp}, that is, the sum of the derivatives of \text{exp} with respect to each of its variables times the function \text{del} of the variable. No further simplification of \text{del} is offered.

\text{Examples}

\[
\begin{align*}
\text{(c1)} & \quad \text{diff(\text{exp(\text{f}(x)),x,2});} \\
\text{(d1)} & \quad \frac{\text{d}}{\text{dx}} \left(\text{\exp} \left(\text{-f(x)} \right) \right) + \frac{\text{d}}{\text{dx}} \left(\text{\exp} \left(\text{-f(x)} \right) \right) \\
\text{(c2)} & \quad \text{derivabbrev:}\text{true}\$ \\
\text{(c3)} & \quad \text{diff(}\text{f(x}); \\
\text{(d3)} & \quad \text{f(x)} \text{ del}(x) \\
\text{(c4)} & \quad \text{'integrate(}\text{f(x,y),y,g(x),h(x));} \\
\text{(d4)} & \quad \int f(x, y) \text{ dy} \\
\text{(c5)} & \quad \text{diff(\%x});
\end{align*}
\]

\[
\begin{align*}
\text{(d5)} & \quad \text{inf} \\
\end{align*}
\]
\[h(x) \]

\[
(d5) \begin{array}{l}
\int f(x, y) \, dy + f(x, h(x)) \, h(x) - f(x, g(x)) \, g(x) \\
\end{array}
\]

\[g(x) \]

\textbf{depends}([\text{funlist}_1], [\text{varlist}_1], \ldots, [\text{funlist}_n], [\text{varlist}_n])

Declares functional dependencies for variables to be used by \texttt{diff}. If the argument is \([\{f, g\}, \{x, y\}, \{r, s\}, \{u, v, w\}, u, t]\); then \texttt{diff} knows that \(f\) and \(g\) depend on \(x\) and \(y\), that \(r\) and \(s\) depend on \(u, v,\) and \(w\), and that \(u\) depends on \(t\). The arguments to \texttt{depends} are evaluated. The variables in each \texttt{funlist} are declared to depend on all the variables in the next \texttt{varlist}. If an argument to \texttt{depends} is list of length one, you can choose to enter directly as an atom. A \texttt{funlist} can contain the names of special symbols or arrays. In the latter case, it is assumed that all the elements of the array depend on all the variables in the succeeding \texttt{varlist}. Initially, \texttt{diff(f,x)}; returns 0. Executing \texttt{depends(f,x)}; causes future differentiations of \(f\) with respect to \(x\) to give \(df/dx\) if \texttt{derivabbrev} is \texttt{false} or \(f_x\) if \texttt{derivabbrev} is \texttt{true}. Declared dependencies are added to the \texttt{dependencies} list. See page 149.

\textbf{Examples}

\begin{itemize}
 \item \texttt{(c1) depends([f,g],[x,y],[r,s],[u,v,w],u,t);}
 \item \texttt{(d1) [f(x,y), g(x,y), r(u,v,w), s(u,v,w), u(t)]}
 \item \texttt{(c2) dependencies;}
 \item \texttt{(d2) [f(x,y), g(x,y), r(u,v,w), s(u,v,w), u(t)]}
 \item \texttt{(c3) diff(r.s,u);}
 \item \texttt{(d3) dr \quad ds}
 \item \texttt{-- \ . s + r \ . --}
 \item \texttt{du \quad du}
\end{itemize}

Since Macsyma knows the chain rule for symbolic derivatives, it takes advantage of the given dependencies as follows:

\begin{itemize}
 \item \texttt{(c4) diff(r.s,t);}
 \item \texttt{(d4) dr \quad du \quad ds \quad du}
 \item \texttt{-- \ . s + r \ . -- \ --}
 \item \texttt{du \quad dt \quad du \quad dt}
\end{itemize}

If you set

\begin{itemize}
 \item \texttt{(c5) derivabbrev:true;}
 \item \texttt{(d5) true}
\end{itemize}

then re-executing the command (c4), you obtain

\begin{itemize}
 \item \texttt{(c6) 'c4;}
 \item \texttt{(d6) r \ u \ . s + r \ . s \ u}
 \item \texttt{u \ t \ u \ t}
\end{itemize}

Dependency information can be listed with the command \texttt{getprop(dependency)}; To eliminate a previously declared dependency, the \texttt{remove} command can be used. For example, to say that \(r\) no longer depends on \(u\) as declared in (c1), you can type \texttt{remove(r,dependency)}; This eliminates all dependencies that may have been declared for \(r\).

\begin{itemize}
 \item \texttt{(c7) remove(r,dependency);}
 \item \texttt{(d7) done}
 \item \texttt{(c8) 'c4;}
 \item \texttt{(d8) r \ . s \ u}
 \item \texttt{u \ t}
\end{itemize}

\textbf{Note:} \texttt{diff} is the only command that uses \texttt{dependencies} information. The arguments to \texttt{integrate} and \texttt{laplace} must be given their dependencies explicitly in the command, as in this example:
dependenc\sys{\textit{dependencies}}

This is a list of all declared dependencies, installed by means of the command \sys{\textit{depends}}. The variable \textit{\texttt{dependencies}} is one of the \textit{infolists}.

\texttt{gradef}(f_1, \ldots, f_n, g_1, \ldots, g_n)

\textit{Special Form}

Defines the gradients for each derivative of a function with respect to the function's arguments. It is necessary to define gradients when you know only the first derivative of a function, and you want to obtain higher order derivatives. This special form also adds the function to the list maintained by the system variable \sys{\textit{gradef}}. See Section 6.1.2, page 150.

The arguments of \texttt{gradef} are understood as follows: \(f(x_1, \ldots, x_n)\) is a function containing the variables \(x_1, \ldots, x_n\) and \(g_1, \ldots, g_n\) are the gradients assigned to each derivative. In other words, for all \(i\) from 1 to \(n\), \(\frac{df}{dx_i} = g_i\).

\textit{Note:} If you state fewer gradients than arguments in the function, these gradients correspond to the arguments as they are listed from left to right.

Macsyma evaluates all arguments to \texttt{gradef} except the first so that if any gradients are defined functions, these functions are invoked and their results are used.

You can use this special form to redefine the derivatives of predefined functions. For example, the command \texttt{gradef(sin(x), sqrt(1-sin(x)^2));} would correctly define the derivative of the sin function.

You can also define gradients for subscripted functions. For example, to define a gradient for the Hermite polynomials, you could implement formula 22.8.7 of [AbrSte], \(\frac{\partial}{\partial x} H_n(x) = 2n H_{n-1}(x)\), as follows:

\begin{verbatim}
(c1) gradef(h(n,x),hermite_error(n,x),2*n*h[n-1](x))$
(c2) hermite_error(n,x):=error("illegal attempt to differentiate with respect to a subscript:",h[n](x))$
\end{verbatim}

The procedure provides gradients for each argument, subscripted or not. In the example above, an error trap has also been included.

Another acceptable form for \texttt{gradef} is described below.

\texttt{gradef}(a, v, \textit{exp})

\textit{Special Form}

An alternative form of \texttt{gradef}, above. The first argument, \(a\), must be a symbol. This form states that the derivative of \(a\) with respect to \(v\) is \textit{exp}. This form causes Macsyma to automatically declare a functional dependency using the form \texttt{depends(a, v)} as well as to assign the properties of \textit{atomgrad} and \textit{dependency} to \(a\). The \textit{atomgrad} and \texttt{gradef} properties can be displayed using \texttt{printprops}.

These properties can be removed using \texttt{remove}.

The example below shows how the Laplacian in cartesian coordinates can be converted to polar coordinates (using \(t\) as the angle).

\textit{Examples}
\begin{verbatim}
(c2) derivabbrev:true$
(c3) orderless(z, y, x)$
(c4) depends(u, [x, t, z])$
(c5) gradef(x, x, x/r)$
(c6) gradef(x, y, y/r)$
(c7) gradef(t, x, -y/r^2)$
(c8) gradef(t, y, x/r^2)$
(c9) expop:1$
\end{verbatim}
(c10) \[\text{diff}(u, x, 2) + \text{diff}(u, y, 2) + \text{diff}(u, z, 2); \]
\[\begin{align*}
x & \quad u \\
y & \quad u \\
z & \quad u \\
2 & \quad 2 \\
2 & \quad 2 \\
2 & \quad 2 \\
\end{align*} \]

(d10) \[\begin{align*}
\text{------------------} + \text{------------------}
4 & \quad 4 \\
2 & \quad 2 \\
r & \quad r \\
r & \quad r \\
r & \quad r \\
3 & \quad 3 \\
z & \quad z \\
z & \quad z \\
\end{align*} \]

(c11) \[\text{subst}(x^2 - y^2, z^2, 2); \]
\[\begin{align*}
u & \quad u \\
t & \quad t \\
2 & \quad r \\
r & \quad r \\
n & \quad r \\
z & \quad z \\
z & \quad z \\
\end{align*} \]

The example below computes the second derivative of a Bessel function of order two.

Examples

(c1) \[\text{depends}(y, x); \]

(c2) \[\text{gradef}(f(x, y), x^2, g(x, y)); \]

(c3) \[\text{diff}(f(x, y), x); \]

(d3) \[\begin{align*}
\text{dy} & \quad 2 \\
g(x, y) & \quad \text{-- + x} \\
\text{dx} & \\
\end{align*} \]

(c4) \[\text{gradef}(j(n, z), \text{''diff}(j(n, z), n), j(n-1, z) - n/z \times j(n, z)); \]

(c5) \[\text{ratsimp}(\text{diff}(j(2, x), x, 2)); \]

(d5) \[\begin{align*}
\frac{j(0, x) \times 3 j(1, x) x + 6 j(2, x)}{2} \\
\frac{x}{x} \\
\end{align*} \]

gradeff

Is a list of the functions that have been given gradients by means of the **gradef** command. The variable **gradeff** is one of the **infolists**.

Sometimes \[\text{diff}(e, x, n) \] can be reduced even though \(n \) is “symbolic”.

gendiff(exp, var, n)

Differentiates \(\text{exp} \) with respect to \(\text{var} \) \(n \) times, where \(n \) may be “symbolic”.

For example, the input \[\text{gendiff}(\exp(a \times x), x, n) \] returns \(a^n \times \exp(a \times x) \) but the input \[\text{diff}(\exp(a \times x), x, n) \] returns \(\text{'diff}(\exp(a \times x), x, n) \). The Leibnitz rule for differentiation is used when \(\text{exp} \) contains a product of terms containing \(\text{var} \). Unevaluated items are returned in noun form.

Some items are returned in terms of the function **genfact** (see page 55).

gendiff can return derivatives of rational expressions such as \((ax^2 + bx + c)^n \) or \(\exp(a \times x + b) \). The numerator of the rational expressions can include factors of \(\log, \cos, \sin, \cosh, \sinh, \text{ etc.} \) applied to \(ax + b \). **gendiff** can also return expressions for the derivative of a product \(f_1(x) \times \ldots \times f_n(x) \) where the \(n \) functions \(f_i(x) \) are unspecified.

jacobian(funclist, varlist)

Computes the Jacobian matrix of the list of functions \(\text{funclist} \) in the list of variables \(\text{varlist} \). For example, the command \[\text{jacobian}([f(x, y), g(x, y)], [x, y]) \] returns the following matrix:

\[
\begin{pmatrix}
 f_x & f_y \\
 g_x & g_y
\end{pmatrix}
\]

The Jacobian actually is the determinant of this matrix and is sometimes denoted
\[\frac{\partial(f, g, \ldots, h)}{\partial(x, y, \ldots, z)} \]

wronskian(funclist, var)
Function

Computes the Wronskian matrix of the list of functions funclist in the variable var. For example, the command `wronskian([f(x), g(x), h(x)], x)` returns the following matrix:

\[
\begin{pmatrix}
 f & g & h \\
 f_x & g_x & h_x \\
 f_{xx} & g_{xx} & h_{xx}
\end{pmatrix}
\]

The Wronskian usually refers to the determinant of this matrix.

6.1.3 Partial Differentiation

Name of package: ndiff

The ndiff package performs partial differentiation of unknown functions, returning the noun form for the derivative. For example, ordinarily Macsyma will produce the following:

```macsyma
c1) diff(f(x^2), x);
(1) 2
(d1) -- (f(x))

dx
```

With the new command described below, Macsyma returns instead

```macsyma
c2) convert_to_de(%);
(1) 2
(d2) 2 x f (x)
```

\(d2\) can be read as “2 times \(x\) times the derivative of \(f\) with respect to its (first) argument (once) where the argument is evaluated at \(x^2\)”. The display of the result avoids confusion with existing Macsyma display for exponentiation, hence, the parentheses around the 1 in \(d2\).

At this time, the new code does not support the differentiation of unknown subscripted functions, for example, \(\text{diff}(f[i](x), x)\) will not be simplified.

To use the partial differentiation package, first load the package by typing `load(ndiff);`. If you want to use the operator algebra code as well, load those packages with the command `load(opalg);`.

To run the demo file, type `demo(ndiff);`. The partial differentiation package contains the following commands:

convert_to_de(exp)
Function

Converts an expression \(exp\) from the new partial differentiation representation to Macsyma’s more usual noun-derivative notation. Situations for using `convert_to_de` may arise when solving ordinary differential equations or otherwise interacting with code that assumes Macsyma’s usual derivative notation.

Example

```macsyma
c1) diff(f(x,y), x);
(1, 0)
(d1) f (x, y)
(c2) convert_to_de(%%);
(d2) -- (f(x, y))
```

\(d2\) can be read as “2 times \(x\) times the derivative of \(f\) with respect to its (first) argument (once) where the argument is evaluated at \(x^2\)”. The display of the result avoids confusion with existing Macsyma display for exponentiation, hence, the parentheses around the 1 in \(d2\).

At this time, the new code does not support the differentiation of unknown subscripted functions, for example, `\text{diff}(f[i](x), x)` will not be simplified.

To use the partial differentiation package, first load the package by typing `load(ndiff);`. If you want to use the operator algebra code as well, load those packages with the command `load(opalg);`.

To run the demo file, type `demo(ndiff);`. The partial differentiation package contains the following commands:

convert_to_de(exp)
Function

Converts an expression \(exp\) from the new partial differentiation representation to Macsyma’s more usual noun-derivative notation. Situations for using `convert_to_de` may arise when solving ordinary differential equations or otherwise interacting with code that assumes Macsyma’s usual derivative notation.

Example

```macsyma
c1) diff(f(x,y), x);
(1, 0)
(d1) f (x, y)
(c2) convert_to_de(%%);
(d2) -- (f(x, y))
```
newdiff default: true

The new partial differentiation code is used if, and only if, newdiff is set to true.

\textbf{pderivop(\textit{arg}_1, \textit{arg}_2, \ldots, \textit{arg}_n)}

This is the partial or positional derivative operator. This operator allows the new partial differentiation code to represent partial differentiation positionally, as in “the derivative of \(f \) with respect to its first argument,” rather than symbolically as in “the derivative of \(f \) with respect to \(x \).”

\textit{Example}

\begin{verbatim}
(c1) pderivop(f, 1);
 (d1) f
 (c2) \%((x^2));
 (d2) \%
 (c3) diff(f(x), x, 5);
 (d3) \%
 (c4) integrate(\%, x);
 (d4) \%
\end{verbatim}

The following is an extended example of the partial differentiation capabilities. In this example, the solution of the one-dimensional heat equation is found by the similarity method. The setup here follows that of Wester and Steinberg [WesSte].

First, we assume a similarity form of the solution:

\begin{verbatim}
(c1) s:\(f(x/sqrt(t))/sqrt(t)\);
 (d1)
 \[
 f \left(\frac{-}{\frac{x}{\sqrt{t}}} \right) \cdot \frac{1}{\sqrt{t}}
 \]
\end{verbatim}

This is the heat equation:

\begin{verbatim}
(c2) diff(s, t) - diff(s, x, 2) = 0;
 (d2)
 \[
 \frac{\frac{\partial}{\partial t} f \left(\frac{-}{\sqrt{t}} \right) - \frac{\partial^2}{\partial x^2} f \left(\frac{-}{\sqrt{t}} \right)}{\sqrt{t}} = 0
 \]
\end{verbatim}

Change to the similarity variable \(z = \frac{x}{\sqrt{t}} \):

\begin{verbatim}
(c3) subst(z*sqrt(t), x, \%);
 (d3)
 \[
 \frac{\frac{\partial}{\partial t} f \left(\frac{-}{z} \right) - \frac{\partial^2}{\partial z^2} f \left(\frac{-}{z} \right)}{z} = 0
 \]
\end{verbatim}

Combine over a common denominator:

\begin{verbatim}
(c4) ratsimp(\%);
 (d4)
 \[
 \frac{2 f \left(\frac{-}{z} \right) + z f \left(\frac{-}{z} \right) + f(z)}{z} = 0
 \]
\end{verbatim}
Eliminate the denominator:
\[(c5) \text{ multthru}(\%\text{denom}(\text{lhs}(\%)));
\]
\[(d5) \quad (2) \quad (1) \quad - \quad 2 \quad f \quad (z) \quad - \quad z \quad f \quad (z) \quad - \quad f(z) = 0\]

Rewrite the differential equation in Macsyma’s normal notation:
\[(c6) \text{ convert_to_de}(\%);
\]
\[2 \quad \frac{d}{dz} \quad f(z) = - \quad 2 \quad (\quad - \quad 2 \quad f(z)) \quad - \quad z \quad (\quad - \quad 2 \quad f(z)) \quad - \quad f(z) = 0\]

Now solve the ordinary differential equation:
\[(c7) \text{ ode2}(\%\text{,} f(z)\text{,} z);\]
\[2 \quad z \quad - \quad -- \quad z \quad 4 \quad \%i \quad z \quad - \quad -- \quad \text{sqrt}(\%pi) \quad \%i \quad \%k1 \quad \%e \quad \text{erf}(--\quad) \quad 4 \quad 2 \quad f(z) = \%k2 \quad \%e \quad - \quad \text{------------------------} \quad 2\]

Finally, transform back to the original variables:
\[(c8) \quad 's = \text{subst}(x/\text{sqrt}(t)\text{,} \quad z/\text{sqrt}(t)\text{,} \quad \text{rhs}(\%));\]
\[2 \quad x \quad - \quad -- \quad x \quad 4 \quad t \quad \%i \quad x \quad - \quad -- \quad \text{sqrt}(\%pi) \quad \%i \quad \%k1 \quad \%e \quad \text{erf}(--------) \quad 4 \quad t \quad 2 \quad \text{sqrt}(t) \quad \%k2 \quad \%e \quad - \quad \text{------------------------} \quad 2 \quad \text{sqrt}(t)\]

If we set \%k1=0 and \%k2=1/(2*sqrt(\%pi)) in the previous expression, we will obtain the usual fundamental solution of the heat equation.

6.1.4 Taylor and Laurent Series

This section contains the functions needed for computing Taylor and Laurent Series.

6.1.4.1 Univariate Taylor Series

\textbf{taylor}(exp, var, pt, pow)

\textit{Function}

Expands the expression \text{exp} in a truncated Taylor or Laurent series in the variable \text{var} around the point \text{pt}. Terms through order \((\text{var} - \text{pt})^{\text{pow}}\) are generated. If \text{exp} has no nonzero terms in this range, then the behavior of \text{taylor} is governed by the setting of \text{taylordepth}, described below.

When displaying an expression that is a truncated Taylor series, a /T/ is inserted just after the D-LINE.

\textbf{Note:} The function \text{ratdisrep} will convert a Taylor series representation back to “regular” form.
\textbf{taylordepth default: 3}

Option Variable

Controls the behavior of \texttt{taylor} when it is asked to expand an expression to order less than the order of the first nontrivial term. Let \texttt{exp} be the expression, \texttt{var} be the expansion variable, and \texttt{pow} be the required order of the expansion. If \texttt{exp} is of the form \(f(var)/g(var) \) and \(g(var) \) has no terms up to degree \(pow \) then \texttt{taylor} tries to expand \(g(var) \) up to degree \(2 \cdot pow \). If there are still no nonzero terms, \texttt{taylor} keeps doubling the degree of the expansion of \(g(var) \) until reaching \(pow \cdot 2^n \) where \(n \) is the value of \texttt{taylordepth}.

\textbf{taylor_logexpand default: false}

Option Variable

Controls expansions of logarithms in Taylor series. When \texttt{true}, all logarithms are expanded fully so that zero-recognition problems involving logarithmic identities do not disturb the expansion process. However, this scheme is not always mathematically correct since it ignores branch information. If \texttt{taylor_logexpand} is \texttt{false}, then the only expansion of logs which occurs is that necessary to obtain a formal power series. See also \texttt{logexpand}, page 35.

\textbf{taylor_truncate_polynomials default: true}

Option Variable

If \texttt{false}, polynomials input to \texttt{taylor} are considered to have infinite precision; otherwise, they are truncated based upon the input truncation levels.

\textbf{taylor_order_coefficients default: true}

Option Variable

Controls the ordering of coefficients in the expression. When set to the default, \texttt{true}, then the coefficients of Taylor series are ordered canonically.

\textbf{mmaxtayorder default: true}

Option Variable

If \texttt{true}, then during algebraic manipulation of (truncated) Taylor series, \texttt{taylor} tries to retain as many terms as are certain to be correct.

\textbf{taylor_simplifier default: 'simplify}

Option Variable

Determines the simplification function that \texttt{taylor} uses to simplify coefficients of power series. Its value is the name of a simplification function of one argument.

\textbf{taylor_zero_warn default: true}

Option Variable

Controls the warnings \texttt{taylor} issues when it assumes an expression to be zero. If it is reset to \texttt{false}, \texttt{taylor} doesn’t warn at all.

\textbf{Examples}

\begin{verbatim}
 (c1) taylor(sqrt(1+a*x+sin(x)), x, 0, 3);
 2 2
 (a + 1) x (a + 2 a + 1) x
 2 8
 3 2 3
 (3 a + 9 a + 9 a - 1) x + ---------- + ... + 48
 2

 (d1)/T/ 1 + ------------ - ------------
 2
 8

 (c2) x^2;
 3
 x

 (d2)/T/ 1 + (a + 1) x - ---- + ...
 6
\end{verbatim}
(c3) product((x^i+1)^2.5, i, 1, inf)/(x^2+1);
inf
=====
 ! ! i 2.5
 ! ! (x + 1)
 ! !
i = 1

 2
 x + 1
(d3)

(c4) taylor(z, x, 0, 3), keepfloat: true;
 2 3
(d4)/T/ 1.0 + 2.5 x + 3.375 x + 6.5625 x + ...
(c5) taylor(1/log(1+x), x, 0, 3);
 2 3
 1 1 x x 19 x
(d5)/T/ - + - - -- + -- ------ + ...
 x 2 12 24 720

6.1.4.2 Multivariate Taylor Series

There are several ways of obtaining Taylor series expansions for multivariate functions. If the variables are
truly independent and all singularities involve only one variable at a time, then the expansion may be done
as follows:

- taylor(exp, var1, pt1, ord1, var2, pt2, ord2, ...); or
- taylor(exp, [var1, pt1, ord1], [var2, pt2, ord2], ...)

Naturally, the two techniques may be intermixed, but if the variables are interdependent, or singularities
involving some of the variables together can occur, then you should use the following scheme:

taylor(exp, [var1, ..., var_n], pt, ord)

where each of pt and ord can be replaced by a list which corresponds to the list of variables. That is,
the nth items on each of the lists are associated together.

Note: This scheme uses the ratwvl scheme implicitly whenever the variables are expanded to
different orders. In this case you must not use ratwvl simultaneously.

Internally this is done in the following manner: each x\textsubscript{i} is replaced with w\textsubscript{i}tn. Then a term like x\textsubscript{i}x\textsubscript{j}x\textsubscript{k} becomes w\textsubscript{i}w\textsubscript{j}w\textsubscript{k}t\textsuperscript{3n\textsubscript{i}+3n\textsubscript{j}+3n\textsubscript{k}}. Expansion is done with respect to the variable t, and then the variables
are converted back. You will see neither the w\textsubscript{i} nor the t. Below are examples of the various modes of
Taylor expansions.

Examples

(c1) taylor(sin(x+y), x, 0, 3, y, 0, 3);
 3 2
(y)
(d1)/T/ y - - - + ... + (1 - -- + ...) x
 6 2
 3 2
 y y 2 1 y 3
 + (- - + -- + ...) x + (- - + -- + ...) x + ...
 2 12 6 12
6.1.4.3 Reversion of a Taylor Series

The `taylor_revert` function takes as its first argument a series, expression, or equation to be reverted. The second argument, if present and non-numeric, is the variable to be (approximately) “solved for”. If absent, it is guessed, e.g., from the `taylorinfo` of the first argument. Instead of the variable, you can even supply an equation of the form variable = point, to specify the pre-reversion expansion point. Otherwise, this point is deduced from `taylorinfo`, or defaulted to 0, as before. A numeric second or third argument determines the order of expansion of the solution, when reverting an equation, or inverse function when reverting a simple expression or series. I.e., `taylor_revert` figures out for you how many input terms it needs for your specified output degree.

However, if your “revertand” is already expanded in a series, and you neglect to specify an output degree, `taylor_revert` will automatically find the maximum number of valid terms, in keeping with the usual behavior of `taylor` expansions.

Consider the following example of a simple quintic:

```plaintext
(c1) quintic: y = x^5 - x;
(d1)
(c2) taylor_revert(y, 15);
```

Notice that we found a different root (for small y) by expanding at x=1 instead of the default 0.

6.1.4.4 Laurent Series

Taylor-Laurent series of an expression `exp` in the variable `x` can be produced with `taylor`.

```plaintext
(c2) taylor(sin(x+y), [x,y], 0, 3);
  x + 3 y x + 3 y x + y
(d2) /T/
      x + y - --------------------- + . . .
      6
(c3) taylor(1/sin(x+y), [x,y], 0, 3);
  1 x + y 7 x + 21 y x + 21 y x + 7 y
(d3) /T/
      ----- + ----- + --------------------- + . . .
      x + y 6 360
```
taylor\(\)\((exp, \ [x, pt, ord, asymp])\) \quad Function

Returns an expansion of \(\exp \) in negative powers of \((x - pt)\). The input \(pt \) may be infinite, and the following infinite values are allowed: \texttt{inf} for real positive infinity, \texttt{minf} for real minus infinity, or \texttt{infinity} for complex infinity. \texttt{ord} can be \texttt{inf}. The highest order term is \((x - pt)^{-ord}\).

The \texttt{asymp} is a syntactic device. If you have assigned a value to it, it is necessary to present it to \texttt{taylor} preceded by a single quote to prevent evaluation.

Example
\begin{verbatim}
(c1) taylor(1/(1-x), [x, 0, 5], 'asymp);
 1 1 1 1 1
(d1)/T/ 1 + - + --- + --- + --- + . . .
 x 2 3 4 5
 x x x x
\end{verbatim}

If you are expanding polynomials, you can specify a truncation level of \texttt{inf}, in which case the expansion never truncates.

6.1.4.5 Infinite Power Series

\texttt{powerseries}(\(exp, \ var, pt\)) \quad Function

Generates the general form of the power series expansion for \(\exp \) in the variable \(var \) about the point \(pt \) (which may be \texttt{inf} for infinity). If \texttt{powerseries} is unable to expand \(\exp \), the function \texttt{taylor} may give the first few terms of the series.

\texttt{verbose default: false} \quad Option Variable

If \texttt{true}, this option variable causes comments about the progress of \texttt{powerseries} to be printed as execution proceeds.

Example
\begin{verbatim}
(c1) verbose:true$
(c2) powerseries(log(sin(x)/x), x, 0);
Can't expand
 log(sin(x))
So we'll try again after applying the rule:

\begin{equation}
\log(\sin(x)) = \int \frac{d\sin(x)}{\sin(x)} \, dx
\end{equation}

In the first simplification we have returned:
\begin{verbatim}
 /
I cot(x) dx - log(x)
\end{verbatim}

=\(\)= \inf
\begin{verbatim}
 i1 2 i1 2 i1 \
\end{verbatim}
\begin{verbatim}
 (- 1) 2 bern(2 i1) x > -------------------------------
\end{verbatim}
\begin{verbatim}
 / i1 (2 i1)!
\end{verbatim}
\begin{verbatim}
 === i1 = 1
\end{verbatim}
\begin{verbatim}
(d2) -------------------------------
\end{verbatim}

deftaylor('function, 'exp) \textit{Special Form}

Allows you to define the Taylor series of an arbitrary \textit{function} about zero in one variable. The series is specified by \textit{exp} which can be a polynomial in that variable or which can be given implicitly as a power series using the function \textit{sum}.

To display the information given to \texttt{deftaylor} use \texttt{powerseries(f(x),x,0)} (See page 157).

\textit{Example}
\begin{verbatim}
(c1) deftaylor(f(x), x^2+sum(x^-i/(2^-i*i^-2),i,1,inf));
(d1) [f]
(c2) taylor(%e^sqrt(f(x)), x, 0, 4);
\end{verbatim}
\begin{verbatim}
\[
\begin{array}{llll}
2 & 3 & 4 \\
\hline
x & 3073 x & 12817 x \\
\end{array}
\]
\end{verbatim}
\begin{verbatim}
(d2)/T/ 1 + x + - - + --- + --- + ... \\
2 18432 307200
\end{verbatim}

taylorinfo(exp) \textit{Function}

Returns \texttt{false} if \textit{exp} is not a Taylor series. Otherwise, a list of lists describing the particulars of the Taylor expansion is returned. If any option variables are given in the expansion, such as \texttt{asym}, the value of the option variable is given in the result.

\textit{Example}
\begin{verbatim}
(c3) taylor((1-y^2)/(1-x), x, 0, 3, [y,a,inf]);
(d3)/T/ - a + 1 - 2 a (y - a) - (y - a) \\
2 2
+ (- a + 1 - 2 a (y - a) - (y - a)) x \\
2 2 2
+ (- a + 1 - 2 a (y - a) - (y - a)) x \\
2 2 3
+ (- a + 1 - 2 a (y - a) - (y - a)) x + ...
(c4) taylorinfo(d3);
(d4) [[y, a, inf], [x, 0, 3]]
\end{verbatim}

6.1.4.6 Pade Approximants

pade\texttt{(taylor-series, num-deg-bound, denom-deg-bound)} \textit{Function}

Returns a list of all rational functions which have the given expansion \texttt{taylor-series} where the sum of the degrees of the numerator and the denominator is less than or equal to the truncation level of the power series, and which additionally satisfy the specified degree bounds. These functions are among the best approximations. Its first argument must be a univariate Taylor series. The second and third are positive integers specifying degree bounds on the numerator and denominator.

\texttt{pade}'s first argument can also be a Laurent series, and the degree bounds can be \texttt{inf}, which causes all rational functions whose total degree is less than or equal to the length of the power series to be returned. Here, total degree is defined to be \texttt{deg(numerator)} + \texttt{deg(denominator)}, and the length of a power series is defined to be (the truncation level of that series) +1 minimum(0, order of that series).

\textit{Examples}
\begin{verbatim}
(c1) tan(x);
(d1) tan(x)
(c2) taylor(%i,x,0,5);
\end{verbatim}
\begin{verbatim}
\[
\begin{array}{llll}
3 & 5 \\
\hline
x & 2 x \\
\end{array}
\]
\end{verbatim}
\begin{verbatim}
(d2)/T/ x + - - + ----- + ... \\
3 15
\end{verbatim}
6.1. DIFERENTIAlle CALCULUS

(c3) pade(d2, 3, 3);
\[\frac{3}{x - 15} x \]
(d3) \[\frac{2}{6 x - 15} \]
(c4) pade(d2, 4, 4);
\[\frac{3}{45 x} x - 15 \]
(d5) \[\frac{2}{x + 15} x - 45 \]
\[\frac{6 x - 15}{2} \]

6.1.5 Asymptotic Analysis

Name of package: asymp

Description: Type \texttt{load(asymp)} ; to load simplification functions for asymptotic analysis, including the big-O (\texttt{O}) and little-o (\texttt{o}) functions that are widely used in complexity analysis and numerical analysis.

To use this package, you must establish the asymptotic values of any independent variables that are not to be regarded as constants. Do this by means of the appropriate set of commands of the form \texttt{put(indeterminant, limitvalue, limit)}; For complexity analysis, \texttt{limitvalue} is usually \texttt{inf}, and for numerical analysis it is usually zero. However, any symbolic or numeric value can be used.

It is easier to use this package by trying the function \texttt{asymp} first. This will help keep accuracy and maximize information. If the constants in the result are incomprehensibly complicated, try \texttt{theta} next. If the result still contains too many terms, try \texttt{o} and \texttt{omega} to get a bound pair.

\texttt{asymp(expression1)} \hspace{1cm} Function

Returns \texttt{asymp(expression2)}, where \texttt{expression2} is the simplest expression that \texttt{asymp} could determine that is asymptotically equal to \texttt{expression1}. That is, the limit of the ratio of \texttt{expression2} to \texttt{expression1} as the indeterminates approach their limitvalues is 1.

\texttt{theta(expression1)} \hspace{1cm} Function

Returns \texttt{theta(expression2)}, where \texttt{expression2} is the simplest expression that \texttt{theta} could determine that is of the exact same order as \texttt{expression1}.

\texttt{o(expression1)} \hspace{1cm} Function

Returns \texttt{o(expression2)}, where \texttt{expression2} is the simplest expression that \texttt{o} could determine that is big-O of every expression that \texttt{expression1} is big-O of.

\texttt{lo(expression1)} \hspace{1cm} Function

Returns \texttt{lo(expression2)}, where \texttt{expression2} is the simplest expression that \texttt{lo} could determine that is little-o of every expression that \texttt{expression1} is little-o of.

\texttt{omega(expression1)} \hspace{1cm} Function

Returns \texttt{omega(expression2)}, where \texttt{expression2} is the simplest expression that \texttt{omega} could determine is at least of the same order as \texttt{expression1}. \texttt{omega} specifies a lower bound on the order, in the same way \texttt{o} specifies an upper bound.

\texttt{lomega(expression1)} \hspace{1cm} Function

Returns \texttt{lomega(expression2)}, where \texttt{expression2} is the simplest expression that \texttt{lomega} could determine that is of lesser order than every expression that \texttt{expression1} is of lesser order than. \texttt{lomega}
specifies a strict lower bound on the order, in the same way \texttt{lo} specifies a strict upper bound on the order.

\texttt{asympsimp(expression3)} \hfill Function

Returns a simplified form of \texttt{expression3}, where \texttt{expression3} contains one or more subexpressions which themselves contain the results of the above functions. Input expressions can contain the functional form named \texttt{log2}, the logarithm to the base 2, which is converted to the natural \texttt{log} appropriately.

Example

\begin{verbatim}
(c1) put(n,'inf,'limit)$
(c2) asympsimp(n^3+6*theta(n)*asymp(%e*n*log(n))+theta(log(log(n))));
 3 2
n + theta(n) log(n)
\end{verbatim}

\texttt{baseconvert default: false} \hfill Option Variable

If \texttt{true}, this option variable causes exponentials to be converted to the base \%e, which can permit greater simplification.

\texttt{asymptaylor default: false} \hfill Option Variable

If \texttt{true}, this option variable causes application of Taylor series before any other techniques, which can lead to a simpler answer or can lead to an error interrupt that produces baffling messages beyond the control of \texttt{errcatch}.

\texttt{taylormax default: 1} \hfill Option Variable

The maximum number of iterations in a computation by means of the Taylor series technique. This number determines the effectiveness and interrupt-proneness of the technique.

\section{6.2 Integral Calculus}

\subsection{6.2.1 Indefinite Integration}

\subsection{6.2.1.1 The Main Command for Indefinite Integration}

\texttt{integrate} \hfill Function

Integrates \texttt{exp} with respect to \texttt{var} or returns the noun form of an integral expression if it cannot perform the integration. Generally, Macsyma handles only integrals that are integrable in terms of the ‘elementary functions’: rational functions, trigonometric functions, logarithms, exponentials, radicals, and a few extensions, including the error function and dilogarithm. It does not handle integrals in terms of unknown functions such as \(g(x)\) and \(h(x)\). See stage (1) below.

Three stages are used:

1. \texttt{integrate} determines whether the integrand is of the form \(f(g(x))\texttt{diff}(g(x),x)\) by testing whether the derivative of some subexpression divides the integrand. In the above case, such a subexpression might be \(g(x)\). If so, it looks up \(f\) in a table of integrals and substitutes \(g(x)\) for \(x\) in the integral of \(f\). This may make use of gradients in taking the derivative. If an unknown function appears in the integrand, it must be eliminated in this stage, or \texttt{integrate} returns the noun form of the integrand.

2. \texttt{integrate} tries to match the integrand to a form for which a specific method can be used.

3. If the first two stages fail, then it uses the Risch algorithm. See [Moses2] and [Moses4].
Note: integrate knows only about explicit dependencies. It is not affected by dependencies set up with the depends command.

The fact that certain integrals are not performed does not always imply that the integral does not exist in closed form. In an example in this section, the integration call returns the noun form, but the integral can be found fairly easily. For example, you can compute the roots of \(x^3 + x + 1 = 0\) to rewrite the integrand in the form \(1/(x-a) * (x-b) * (x-c)\) where \(a, b, c\) are the roots. Macsyma integrates this equivalent form although the integral is quite complicated.

6.2.1.2 The Risch Algorithm

risch(\(exp, \text{var}\))

Integrates \(exp\) with respect to \(\text{var}\) using the transcendental case of the Risch algorithm. It currently handles the cases of nested exponentials and logarithms. integrate automatically applies risch if given these cases. risch sometimes introduces the error function, erf, into the result. This behavior is controlled by erfflag, described below.

The algebraic case of the Risch algorithm has not been implemented.

erfflag default: true

If false, this option variable prevents risch from introducing the erf function in the answer if there was none in the integrand.

Examples

\[(c1) \quad \text{risch}(x^2*\text{erf}(x), x); \]

\[\frac{3}{\sqrt{\pi}} x \text{ erf}(x) + \frac{2}{\sqrt{\pi}} x + \frac{\text{sqrt}(\pi)}{\text{sqrt}(\pi)} \text{ erf}(x)\]

\[(d1) \quad \frac{3}{\sqrt{\pi}} \text{ erf}(x)\]

\[(c2) \quad \text{diff}(%, x), \text{ratsimp}; \]

\[2 \frac{3}{\sqrt{\pi}} x \text{ erf}(x)\]

6.2.1.3 Integration of Trigonometric–Exponential Expressions

intsce(\(expr, \text{var}\))

Efficiently integrates expression \(expr\) which includes products of sines, cosines and exponentials: \(e^{ax+b} \cos^n(cx) \sin^m(cx)\). \(expr\) can be any expression, but if it is not in the above form, the regular integration program is invoked in accordance with the value of the option variable errintsce. Original Author: R. Bogen

errintsce default: false

If false, this option variable causes intsce to invoke the regular integration program for forms not specifically handled by it. If true, then intsce signals an error.

6.2.1.4 Integration by Parts

byparts(\(exp, u\))

The function byparts\((exp, u)\) evaluates the integral \(exp\), where \(exp\) must be an expression of the form \(\int \text{integrand}(var)\) or \(\int \text{integrand}(var, lower-limit, upper-limit)\). The variable \(u\) identifies the part of the expression used in the integration by parts formula:
\[\int u \, dv = uv - \int v \, du \]

The value \(dv \) is defined by \(dv := \text{integrand}/u \).

The function \texttt{byparts} takes an optional third argument which, for double integrals where the integration variable of the second (outer) integral is a limit of integration for the first integral, is set to the second integration variable.

Enter \texttt{example(byparts);} for an example, and \texttt{demo(byparts);} for a more involved demonstration.

6.2.1.5 Integration of Derivatives of Unspecified Functions

\texttt{antidiff(g, x, u(x))}

Returns the integral of \(g \) with respect to \(x \), which may involve arbitrary \(u(x) \) and its derivatives.

\begin{align*}
(c1) & \quad \sin(x) \cdot \text{diff}(u(x), x, 3) - u(x) \cdot \cos(x); \\
& \quad \int \sin(x) \, d(x) - u(x) \cos(x) \\
& \quad \int \sin(x) \, d(x) - u(x) \cos(x) \\
& \quad \int \sin(x) \, d(x) - u(x) \cos(x)
\end{align*}

\texttt{antid(g, x, u(x))}

Returns the integral of \(g \) with respect to \(x \), which may involve arbitrary \(u(x) \) and its derivatives. The result is returned as a list of two parts. The first part is the integrated part of the expression and the second part of the list is the nonintegrable remainder.

6.2.2 Definite Integration

6.2.2.1 Main Commands for Definite Integration

\texttt{integrate(exp, var, low, high)}

Finds the definite integral of \(exp \) with respect to \(var \) from \(low \) to \(high \). It returns the noun form if it cannot perform the integration or if \texttt{intanalysis} is \texttt{true} and it cannot determine whether there are poles in the interval of integration. In the latter case, if the integrand involves only known functions and \texttt{intanalysis} \texttt{warn} is \texttt{true} then a message is printed suggesting that you might want to try the integration with \texttt{intanalysis} set to \texttt{false}. Several methods are used, including direct substitution in the indefinite integral and contour integration. (See \cite{Wang2}.) Improper integrals can use the names \texttt{inf} for positive infinity and \texttt{minf} for negative infinity. If an integral “form” is desired for manipulation (for example, an integral that cannot be computed until some numbers are substituted for some parameters), the noun form \texttt{integrate} may be used. It displays with an integral sign.

For expressions \(exp \) with point discontinuities or discontinuous slopes, see \texttt{interval_integrate}.

\texttt{interval_integrate(expr, var, lo, \{mid1, \ldots, midk\}, hi)}

integrates the expression \(expr \) with respect to variable \(var \) between the limits \(lo \) and \(hi \). The optional arguments \(mid1 \ldots midk \) cause Macsyma to break up the integral into a sum of integrals over the intervals \([lo, mid1], [mid1, mid2], \ldots [midk, hi] \).
The limits of integration are explicitly assumed to be real and strictly monotonically increasing. If the data base routines determine that this is not so, an error is signalled.

This procedure enables Macsyma to evaluate integrals containing functions with point discontinuities or discontinuous slopes, such as \texttt{abs}, \texttt{signum}, \texttt{unit_step} and \texttt{unit_ramp}.

Do \texttt{example(interval_integrate)}; for an example.

\begin{verbatim}
defint\(\exp, \var, \text{low}, \text{high}\)

\end{verbatim}

\texttt{DEFinite INTEgration}, the same as \texttt{integrate(\exp, \var, \text{low}, \text{high})}.

The function \texttt{ldefint} uses \texttt{limit} to evaluate the indefinite integral at the lower and upper limits.

\begin{verbatim}
ldefint\(\exp, \var, \text{low}, \text{high}\)

\end{verbatim}

Returns the definite integral of \texttt{exp} by using \texttt{limit} to evaluate the indefinite integral of \texttt{exp} with respect to \texttt{var} at the upper limit \texttt{high} and at the lower limit \texttt{low}. Since it uses \texttt{limit}, it is affected by the settings of \texttt{tlimswitch, lhospitallim,} and \texttt{limsubst}.

\begin{verbatim}
tldefint\(\exp, \var, \text{low}, \text{high}\)

\end{verbatim}

Represents \texttt{ldefint} with \texttt{tlimswitch} set to \texttt{true}. That is, Taylor series are used whenever possible.

\begin{verbatim}
residue\(\exp, \var, \text{val}\)

\end{verbatim}

Computes the residue in the complex plane of the expression \texttt{exp} when the variable \texttt{var} assumes the value \texttt{val}. The residue is the coefficient of \((\var - \text{val})^{-1}\) in the Laurent series for \texttt{exp}.

\textbf{Examples}

\begin{verbatim}
(c1) residue\(s/(s^2+a^2), s, a*\%i\);
 1

(d1) -
 2

(c2) residue\(\sin(a*x)/x^4, x, 0\);
 3
 a

(d2) - ---
 6
\end{verbatim}

Sometimes during integration you are asked what the sign of an expression is. Suitable responses are \texttt{pos}, \texttt{neg}; or \texttt{zero}, but any unambiguous abbreviation is acceptable. These inquiries can be controlled by the option variable \texttt{assume_pos (default: false)}.

\texttt{laplace_call default: true}

\texttt{laplace_call} has three possible values: \texttt{true}, \texttt{false}, or \texttt{all}.

If \texttt{true}, this causes \texttt{defint} (that is, \texttt{integrate} of four arguments) to use the \texttt{laplace} command to compute Laplace transforms, which is problems of the form \texttt{integrate(exp(-s*t)*f(t), t, 0, inf)}; that it otherwise cannot easily handle (see page 174).

If \texttt{false}, the \texttt{laplace} command is not called by \texttt{defint}.

If \texttt{all}, certain integrands are transformed into the above-mentioned form by multiplying them by an appropriate exponential; the \texttt{laplace} command is then tried. (Obviously, the \texttt{all} mode trivially implies the \texttt{true} mode as well.)

\textbf{Example}

\begin{verbatim}
(c1) assume(s>0)$
(c2) /* laplace_call is true */
 integrate\(exp(-s*t)*\sin(t)/t, t, 0, \text{inf}\);
(d2) 2 atan(s) - \%pi
 - -------------------
\end{verbatim}
\[(c3) \text{laplace _ call: false}\$
\[(c4) ''c2;\]

\[
\text{inf} \\
\text{/} \\
\text{[} \\
\text{\(- s \text{ t}\)} \\
\text{]} \\
\text{-----------} \text{ dt} \\
\text{/} \\
\text{t} \\
\text{0}
\]

\text{intanalysis \ default: true} \quad \text{Option Variable}

If \text{true}, \text{defint} checks for poles in the interval of integration. If \text{false}, \text{defint} bypasses this time-consuming check, but this can lead to wrong answers if there are poles. The \text{false} setting should be used with caution.

\text{intanalysis _ warn \ default: true} \quad \text{Option Variable}

If \text{true}, \text{intanalysis _ warn} prints a message when \text{intanalysis} is \text{true}, if \text{defint} cannot determine whether there are poles in the interval of integration, and the integrand involves only known functions.

\text{logabs \ default: false} \quad \text{Option Variable}

Causes integration of an expression where logs are generated, such as \text{integrate}(1/x,x);, to return the answer in terms of \text{log}(\ldots). If \text{logabs} is set to \text{true}, the answer is given in terms of \text{log(abs}(\ldots)).

For definite integration, the \text{logabs: true} setting is used, because here ‘evaluation’ of the indefinite integral at the end points is often needed.

\text{Examples}
\[(c1) \text{integrate(sin(x)^3,x);} \\
\text{3} \\
\text{cos (x)} \\
\text{-------- - cos(x)} \\
\text{3} \\
\[(c2) \text{integrate(x^a/(x+1)^5/2,x,0,inf);} \]
\text{Is } a + 1 \text{ positive, negative, or zero?} \\
\text{Pos;} \\
\text{2 } a + 2 \\
\text{Is -------- an integer?} \\
\text{5} \\
\text{1. yes 2. no 3. unknown} \\
\text{Selection: 1;} \\
\text{Is } 2a - 3 \text{ positive, negative, or zero?} \\
\text{Neg;} \\
\text{3} \\
\text{beta(a + 1, - - a)} \\
\text{2} \\
\[(c3) \text{gradef(q(x),sin(x^2));} \\
\text{(d3)} \text{q(x)} \\
\[(c4) \text{diff(log(q(r(x)))),x);} \\
\text{d} \\
\text{2} \\
\text{(- (r(x))) sin(r(x))} \\
\text{dx} \\
\text{--} \\
\text{q(r(x))} \\
\[(d4) \]

\text{beta(a + 1, - - a)} \\
\text{2} \\
\text{(- (r(x))) sin(r(x))} \\
\text{dx} \\
\text{-----} \\
\text{q(r(x))} \]
(c5) integrate(%x,x);
(d5) log(q(x(x)))

(c6) integrate(1/(x^3+x+1),x);
 / 1
 [3]
 / x + x + 1

(c7) integrate(x*csch(x)*sech(x+a),x,minf,inf),intanalysis:true;
Integrate could not determine whether there are poles in the interval of
Integration. you might want to try the integration with intanalysis:false.
 inf
 /
 [inf
 / x csch(x) sech(x + a) dx]
 / minf

(c8) integrate(x*csch(x)*sech(x+a),x,minf,inf),intanalysis:false;
 2 2 2 8 %pi (4 a + %pi) %e

 2 a
 16 %pi %e + 16 %pi

changevar(exp, f(x,y), y, x) Function

Mak es the change of variable given by f(x,y) = 0 in all integrals occurring in exp with integration with respect to x; the new integration variable becomes y. changevar can also be used to make changes in the indices of a sum or product. However, when a change is made in a sum or product, this change must be a linear shift, such as i = j + ..., not a higher degree function.

Examples
(c1) assume(a>0)$
 (c2) 'integrate(%e^sqrt(a)*sqrt(y)), y, 0, 4);
 4
 /
 [sqrt(a) sqrt(y)]
 / dy
 / 0

 (c3) changevar(%, y-z^2/a, z, y);
 0
 /
 [abs(z)]
 2 I z %e dz
 /
 - 2 sqrt(a)
 a

 (c4) forget(a>0)$
\[(c5) \sum(a[i]*x^{i-2}, i, 0, \infty)\]
\[
\begin{array}{c}
\infty \\
\text{\textbackslash} \\
i - 2
\end{array}
\]
\[(d5) \quad > \quad a \times x \\
\text{\textbackslash} \\
i
\]
\[
i = 0
\]

\[(c6) \text{changevar}(\%i-2-n,n,i)\]
\[
\begin{array}{c}
\infty \\
\text{\textbackslash} \\
n
\end{array}
\]
\[(d6) \quad > \quad a \times x \\
\text{\textbackslash} \\
n + 2
\]
\[
n = -2
\]

\textbf{changevar_multiple_solutions default: warn}

Option Variable

Handles the problem of \texttt{changevar} finding multiple solutions via four possible settings:

When multiple solutions are found:

1. \texttt{no_warn}: \texttt{changevar} just selects the last solution returned by \texttt{solve} with no warning message being printed. This solution is usually the one most likely to be the desired one.

2. \texttt{warn}: (the default) The same as above except a warning message is printed.

3. \texttt{err}: \texttt{changevar} signals an error.

4. \texttt{ask}: \texttt{changevar} uses the \texttt{select_one_of} interface to allow the user to select the desired solution.

\textit{Example}

\[(c1) \text{int:'integrate(f(x),x,1,inf)}\]

\[(c2) \text{/* no multiple solutions: */} \\
\text{changevar(int,x=y+1,y,x)};
\]
\[
\begin{array}{c}
\text{inf} \\
\text{\textbackslash} \\
0
\end{array}
\]
\[(d2) \quad I \quad f(y + 1) \ dy \\
\text{\textbackslash} \\
0
\]

\[(c3) \text{/* multiple solutions: */} \\
\text{Changevar(int,x=y^2+1,y,x)};
\]

Changevar has found multiple solutions while solving
\[\frac{2}{2} - y + x - 1\] for \(y\) and might choose an undesired solution.
\[
\begin{array}{c}
\text{inf} \\
\text{\textbackslash} \\
2
\end{array}
\]
\[(d3) \quad 2 I \quad y f(y + 1) \ dy \\
\text{\textbackslash} \\
0\]
Unable to solve \(x - 2 \) for \(y \). - changevar
Returned to Macsyma toplevel.

complex_integrate
*default: false
Option Variable

If set to **true**, **complex_integrate** enables the definite integration of some integrands that contain \(\%i \).

For example:

\[
\text{integrate}(1/(x^2 + 1), x, -1, 1); \rightarrow \%pi/2, \text{ which is correct.}
\]

While entering the following form, which is equivalent, will generate an incorrect answer.

\[
\text{integrate}(1/(x - \%i)/(x + \%i); x, -1, 1); \rightarrow 0
\]

If **complex_integrate** is set to **true** the same command will produce the correct result.

\[
\text{block}[[\text{complex_integrate} \Rightarrow \text{true}], \text{integrate}(1/(x - \%i)/(x + \%i); x, -1, 1); \rightarrow \%pi/2
\]

This option variable works by overriding **logabs:**true mode, which is necessary for doing real integration, the usual case for definite integration.

6.2.2.2 Elliptic Integrals

The following are routines for Jacobian elliptic functions and elliptic integrals. These are numeric as well as symbolic routines. Also there are complete and incomplete elliptic integrals. The notation of [AbrSte, Chapters 16 and 17] is used. Do **demo(ellipint)**; which contains many examples.

jacobi_am(\(u, m \))
Amplitude with modulus \(m \).

jacobi_am1(\(u, ml \))
Amplitude with complementary modulus \(ml \). \(\text{Jacobi_am}(u,m):=\text{Jacobi_am1}(u,1-m); \) so use \text{Jacobi_am1} if \(m \) is of order 1.

jacobi_cn(\(u, m \))
The Jacobian elliptic function \(cn \), it is defined by \(\text{jacobi_sn}(u,m):=\cos(\text{Jacobi_am}(u,m)); \)

jacobi_dn(\(u, m \))
The Jacobian elliptic function \(dn \), it is defined by \(\text{Jacobi_dn}(u,m) := \sqrt{(1-m*\text{Jacobi_sn}(u,m)^2}; \)

jacobi_sn(\(u, m \))
The Jacobian elliptic function \(sn \), it is defined by \(\text{Jacobi_sn}(u,m):=\sin(\text{Jacobi_am}(u,m)); \)

Other functions given in Abramowitz and Stegun [AbrSte], such as **jacobi_cd** and **jacobi_ns**, can be easily defined.

elliptk(\(m \))
Computes the complete elliptic integral of the first kind according to the definition used by Abramowitz and Stegun: \(k(m) := \text{integrate}(1/\sqrt{1-m*\sin^2(\theta)}), \theta, 0, \%pi/2). \)

elliptk1(\(ml \))
Computes the complete elliptic integral of the first kind but with complementary modulus. \(\text{elliptk}(m) := \text{elliptk}(1-m); \) so use \text{elliptk1} if \(m \) is of order 1.

ellipte(\(m \))
Computes the complete elliptic integral of the second kind according to the definition used by Abramowitz and Stegun: \(e(m) := \text{integrate}(\sqrt{1-m*\sin^2(\theta)}), \theta, 0, \%pi/2). \)

ellipte1(\(ml \))
Computes the complete elliptic integral of the second kind but with complementary modulus. As \(\text{ellipte}(m) := \text{ellipte1}(1-m); \) it is preferred to use **ellipte1** if \(m \) is of order 1.
elliptic_ec(m)
Function
The complete elliptic integral of the second kind, it is defined by
\(E(m) = \text{elliptic_ec}(m) = \text{elliptic_e}(\pi/2, m). \)

elliptic_e(\phi, m)
Function
The incomplete elliptic integral of the second kind, it is defined by
\(\text{elliptic_e}(\phi, m) = \int_0^{\phi} \sqrt{1 - m \sin^2 t} \sqrt{1 - t^2} \, dt. \)

elliptic_kc(m)
Function
The complete elliptic integral of the first kind, it is defined by
\(K(m) = \text{elliptic_kc}(m) = \text{elliptic_f}(\pi/2, m). \)

elliptic_f(\phi, m)
Function
The incomplete elliptic integral of the first kind, it is defined by
\(\text{elliptic_f}(\phi, m) = \int_0^{\phi} \frac{1}{\sqrt{(1-t^2)(1-m t^2)}} \, dt. \)

6.2.2.3 Exponential Integrals

See Section 3.5.4 for information on exponential integrals including \texttt{exp_int}, \texttt{sin_int}, \texttt{cos_int}, etc.

6.2.3 Numerical Integration

6.2.3.1 Romberg Method

There are two special forms for doing numerical integration using the Romberg method. The floating point form is \texttt{romberg}. For bigfloats, the form is \texttt{bromberg}.

There are two ways of calling \texttt{romberg}:

1) An inefficient way that resembles a call to \texttt{integrate} (the definite integral version):

\begin{verbatim}
romberg(integrand, variable, lower-limit, upper-limit)
\end{verbatim}

`Special Form`

Accepts the same arguments as \texttt{integrate}, but determines a numerical evaluation of the integral.

Examples

\begin{verbatim}
(c1) showtime:true$
Time= 128 msecs
(c2) romberg(sin(y),y,1,%pi);
Time= 186 msecs
(d2) 1.5403025
(c3) f(x):=1/(x^5+x+1)$
Time= 31 msecs
(c4) romberg(f(x),x,1.5,0);
Time= 320 msecs
(d4) -0.7529385
\end{verbatim}

2) A more efficient way:

\begin{verbatim}
romberg(expression, lower-limit, upper-limit)
\end{verbatim}

`Function`

The first argument must be a translated or compiled function. If it is compiled it must be declared to return a fomnum. If the first argument is not already \texttt{translated} (See Section 17.2.1, page 434.), \texttt{romberg} does not attempt to \texttt{translate} it.
Note: The \texttt{romberg} function as currently written cannot double evaluate, so indirect references to \textit{expression} do not work. For example, \texttt{romberg(\%, variable, lower-limit, upper-limit)}; gives an error. You must say \texttt{romberg(eval(\%), variable, lower-limit, upper-limit)};

As an example consider the function \textit{f} defined above:
\begin{verbatim}
(c5) f(x):=(mode_declare([function(f,x],float),1/(x^5-x+1));
Time= 3 msecs
1
(d5) f(x) := (mode_declare([function(f), x], float), -----------)
5
x + x + 1
\end{verbatim}
\begin{verbatim}
(c6) translate(f)$
Time= 964 msecs
(c7) romberg(f,1.5,0);
Time= 204 msecs
(d7) - 0.7529385
\end{verbatim}

The accuracy of the numerical integration performed by \texttt{romberg} is governed by the global variables \texttt{rombergtol}, \texttt{rombergit}, and \texttt{rombergabs}. The \texttt{romberg} function returns a result if the relative difference in successive approximations is less than \texttt{rombergtol} and the absolute difference is less than \texttt{rombergabs}. The routine will halve the step size \texttt{rombergit} times before it gives up.

Assuming that successive estimates produced by \texttt{romberg} are \texttt{Y[0]}, \texttt{Y[1]}, \texttt{Y[2]} etc., then \texttt{romberg} will return after \textit{n} iterations if either of the following is \textit{true}:

- \(\text{abs}(y[n]-y[n-1])\) is less than or equal to \texttt{rombergabs}
- \(\text{abs}(y[n]-y[n-1])/(\text{if } y[n]=0.0 \text{ then } 1.0 \text{ else } y[n])\) is less than or equal to \texttt{rombergtol}

(The condition on the number of iterations given by \texttt{rombergit} must also be satisfied.)

\texttt{rombergtol \ default: 1.e-4 \quad Option \ Variable}

The \texttt{romberg} function will return a result if the absolute value of the relative difference in successive approximations is less than \texttt{rombergtol}.

\texttt{rombergit \ default: 11 \quad Option \ Variable}

The \texttt{romberg} function will not return a result if it has to halve the step size more than \texttt{rombergit} times before it obtains the desired accuracy.

\texttt{rombergmin \ default: 0 \quad Option \ Variable}

Govern the minimum number of function evaluations that \texttt{romberg} will make.

\texttt{rombergabs \ default: 0.0 \quad Option \ Variable}

The \texttt{romberg} function returns a result if the absolute difference in successive approximations is less than \texttt{rombergabs}.

The \texttt{romberg} function can be called recursively to do double and triple integrals. In this case, it is even more important to \texttt{translate} the functions and to use the second way of calling \texttt{romberg}.
\begin{verbatim}
(c8) integrate(integrate(x*y/(x+y),y,0,x/2), x,1,3);
Is x positive or negative?
Pos;
Time= 305 msecs.
\end{verbatim}
bromberg(integrand, variable, lower-limit, upper-limit)

A bigfloat version of romberg. Its use is identical to romberg except that rombergtol is called brombergtol, rombergabs is called brombergabs, rombergit is called brombergit, and rombergmin is called brombergmin. See romberg, Section 6.2.3.1, page 168.

6.2.3.2 Newton–Cotes Quadrature

quanc8(function, lo, hi)

Computes the integral of function over the interval from lo to hi using Newton–Cotes eighth-order polynomial quadrature. The routine is adaptive. The function name must be quoted. The action of the special form is governed by the option variables quanc8_rellerr and quanc8_abserr.

quanc8(f(var) or expression in var, var, lo, hi)

Computes the integral of f(var) or an expression in var over the interval from lo to hi with respect to var using Newton–Cotes eighth-order polynomial quadrature. The routine is adaptive. The action of the function is governed by the option variables quanc8_rellerr and quanc8_abserr.

quanc8_abserr default: 1.0e-8

Option Variable

Specifies the maximum acceptable absolute error in the computation of an integral by means of quanc8, causing quanc8 to divide the interval only if necessary to achieve the error condition specified by the absolute error test:

$$|\text{integral(function)} - \text{computed value}| < \text{quanc8_abserr}$$

The error from each subinterval is estimated and the contribution from a subinterval is accepted only when the integral over the subinterval satisfies the error test over the subinterval.

quanc8_rellerr default: 1.0e-4

Option Variable

Specifies the maximum acceptable relative error in a computation of an integral by means of quanc8, causing quanc8 to divide the interval only if necessary to achieve the error condition specified by the relative error test

$$|\text{integral(function)} - \text{computed value}| < \text{quanc8_rellerr} \times |\text{integral(function)}|$$

The error from each subinterval is estimated and the contribution from a subinterval is accepted only when the integral over the subinterval satisfies the error test over the subinterval.

quanc8_erreur default: 0.0

Option Variable

Contains the total estimated error in a computation of an integral by means of quanc8.
quanc8_flag default: 0.0

If quanc8 fails to satisfy the error condition, quanc8_flag is set to a decimal number that contains valuable information. The integer part gives the number of subintervals that failed to converge; its fractional part returns where the singular behavior occurred according to the formula

\[\text{singular point} = \text{lo} + (1.0 - \text{fractional part}) \times (\text{hi} - \text{lo}). \]

Thus, quanc8(tan(x),x,1.57,1.6); gives quanc8_flag with a fractional part of 0.97. This means that the difficulty is at 1.57 + .03*.03 = 1.5709, or \(\pi/2\). If quanc8_flag is not 0.0, you should be cautious in using the return value and should try romberg or a Simpson method and see if the result checks. Analysis of possible singular behavior might be advisable. It is also possible to find that quanc8_flag is of the form \text{integer}.0, in which case an error message (such as division by 0) was probably produced when a singular point was hit in the interval. The singularity must be found and eliminated before quanc8 can get an answer. Functions that have very large derivatives can throw the error estimate off and cause the wrong points to be used, and a wrong answer returned. Try

\[\text{romberg}(\exp(-.002*x^2)\cos(X)^2, X, 0., 100.); \]

with the default tolerance, and

\[\text{quanc8}(\exp(-.002*x^2)\cos(X)^2, x, 0., 100.); \]

with quanc8_releerr=1.e-7 and 1.e-8. The last result is consistent with romberg while the previous one is off by a factor of 2 due to the bad behavior of the derivatives near \(x = 10.0\) which the adaptive routine cannot deal with. Use quanc8(’f,a,c)+quanc8(’f,c,b), where \(a < c < b\) instead.

The demo file gives comparisons with the romberg numerical integrator, which is not adaptive.

Note: romberg usually gives more accurate answers for comparable tolerances, while quanc8 gets the same answer faster, even with a smaller tolerance, because romberg subdivides the whole interval if the total result is not within error tolerance, while quanc8 improves only where needed, thus saving many function calls. romberg also fails to converge when oscillatory behavior is overwhelming, while quanc8 adapts in the regions as it sees fit. The option variable rombergmin is designed to allow you a minimum number of function calls in such cases, so that \(e^{-x^2}\sin(12x)\) can be integrated from 0 to \(4\pi\) without erroneously giving 0.

To use quanc8 efficiently, use mode_declarer and then translate and compile the function with translate. The speed of the computation can be increased by well over an order of magnitude when compilation is used. If you do multiple integrals, you should compile the function, since the computing time with interpreted functions is prohibitively expensive. The demo file contains a sample use of quanc8 for a double integral, and compilation reduces the execution time by a factor of 100.

(c1) quanc8(1/x, x, 0.1, 1);
(d1) 2.3025942
(c2) quanc8(1/x, x, 0.1d0, 1);
(d2) 2.302594247586115d0

6.2.3.3 Extrapolated Gaussian Quadrature

Name of package: Quadratrar

quadratrar attempts to calculate the integral of a function over a finite interval A to B with relative error not exceeding quadratrar. The result is obtained using a sequence of 1,3,7,15,31,63,127, and 255 point interfaced formulae (no integrand evaluations are wasted) of respective degree 1,5,11,23,47,95,191 and 383. The formulas are based on the optimal extension of the 3-point Gauss formula.

For problems with smooth, and slowly varying integrands, quadratrar is comparable to the other numerical integration methods in Macsyma. However, on problems that are highly oscillatory, or problems with integrable singularities at endpoints, or inside the interval of integration, quadratrar or its automatic interval subdivision cousins quadrat_sub_adapt or quadrat_sub_nonadapt, perform more robustly and accurately then romberg or quanc8. Do demo(quadratrar); for a demonstration.

quadratrar(expression, var, lower-limit, upper-limit) Function
The first argument must be an expression, or translated or a compiled function. If it is compiled it must be declared to return a float. If the first argument is not already translated, quadratr does not attempt to translate it. However, translation or compilation may be desirable for speed.

In both instances, the expression or function is integrated with respect to var from lower-limit to upper-limit.

quad_epsilon \textit{default: 1.d-10} \\
\textit{Option Variable}

The default relative accuracy for integration is \texttt{quad_epsilon}

quad_ichk \textit{default: 0} \\
\textit{Option Variable}

If \texttt{quadatr} is called, \texttt{quad_ichk} = 0 signals that the integration has converged.

If \texttt{quad_ichk} = 1, the integration may not have converged. An additional follow-up called to \texttt{quad_sub_adapt} or \texttt{quad_sub_nonadapt} should be performed.

quad_npts \textit{default: 0} \\
\textit{Option Variable}

The total number of function calls is returned in \texttt{quad_npts}.

quad_random_quadrature \textit{default: false} \\
\textit{Option Variable}

If \texttt{true}, \texttt{quadatr} chooses its quadrature points using a random algorithm. You can use this algorithm to avoid any singular behavior of the integrand coinciding with quadrature points.

quad_sub_adapt(\textit{expression, var, lower-limit, upper-limit}) \\
\textit{Function}

quad_sub_adapt(\textit{function, lower-limit, upper-limit}) \\
\textit{Function}

The function \texttt{quad_sub_adapt} performs automatic integration over a finite interval, using the basic integrator \texttt{quadratr} together with, if necessary, an adaptive subdivision process. It is generally more efficient than a non-adaptive strategy, but may be less reliable.

The subdivision process is as follows. At each stage of the process, an interval is presented for subdivision. Initially, the entire interval is presented. The interval is halved, and \texttt{quadatr} is applied to each subinterval. Should \texttt{quadatr} fail on the first subinterval, the subinterval is stacked and the second subinterval is immediately examined. Should \texttt{quadatr} fail on the second subinterval, it is immediately subdivided, and the whole process is continued until the stack is empty. Each time a converged result is obtained, it is accumulated as partial value of the integral over the original interval. When \texttt{quadatr} converges on both subintervals, the interval last computed is stacked, and the process repeated. A subinterval is not reexamined once a converged result is obtained. Thus, a spurious convergence may slip through.

quad_sub_a_stack_size \textit{default: 250} \\
\textit{Option Variable}

The maximum stack size for subdivision in the adaptive form of \texttt{quadatr}.

quad_ichk \textit{default: 0} \\
\textit{Option Variable}

If 0, convergence has been obtained through direct use of \texttt{quadatr}. If 1, the result has been obtained by using interval subdivision. If 2, the result has been obtained by using a relaxed convergence criterion.

quad_sub_nonadapt(\textit{expression, var, lower-limit, upper-limit}) \\
\textit{Function}

quad_sub_nonadapt(\textit{function, lower-limit, upper-limit}) \\
\textit{Function}

\texttt{quad_sub_nonadapt} performs automatic integration over a finite interval using the basic integrator \texttt{quadatr} together with, if necessary, a non-adaptive subdivision process. It is generally less efficient than a non-adaptive strategy, but may be more reliable (but perhaps not for highly oscillatory integrands.)
quad_icheck default: 0

If quad_icheck = 0, convergence has been obtained corresponding to direct use of quadratr.
If quad_icheck = 1, the result obtained by invoking interval subdivision. If quad_icheck = 2, the result obtained using relaxed convergence criteria. If quad_icheck is negative, an internal overflow of a stack of delinquent subintervals has occurred.

quad_nmax default: 2^{16}

is the maximum number of subdivisions for quadratr nonadaptive integration.

Do demo(quadratr); for a demonstration and comparision with other numerical integration methods.

quad_inf(expr, var, low, hi \{, method\})

Is a command for numerical integration for infinite limits of integration. low can be minf, hi can be inf or both. quad_inf converts an infinite interval of integration into the interval (0,1) by using changes of variable and other transformations.
The (optional) fifth argument method is the quadrature method to use. If not supplied, quadratr (page 171) is used. If method is supplied, it must support the four argument syntax method(expr, var, low, hi).

6.2.3.4 Trapezoidal and Simpson Rules

Description: This file contains functions which approximate the definite integral of a scalar-valued function of one variable by the composite trapezoid and Simpson rules. The functions defined in this file are:

traprule(f,a,b,n)

Numerically integrates the function f by the trapezoidal rule with limits of integration a and b, using n subintervals.

simpson(f,a,b,n)

Numerically integrates the function f by Simpson’s rule with limits of integration a and b, using n subintervals. For both simpson and traprule,

f is the name of the function to be integrated
a is the lower limit
b is the upper limit
n is the number of subintervals.

Examples
(c1) f(x):=1/x$
(c2) traprule(f,0.1,1,4);
(d2) 2.6292212
(c3) traprule(f,0.1,1,20);
(d3) 2.318977
(c4) simpson(f,0.1,1,4);
(d4) 2.407901
(c5) simpson(f,0.1,1,20);
(d5) 2.3035653
(c6) -log(0.1);
(d6) 2.3028581
6.2.4 Integration of Dirac Delta Functions

delint(expr, var, \{lower_limit, upper_limit\})

Function

Accepts an expression expr which may contain a Dirac delta function or a derivative of a Dirac delta function as a factor in one or more terms. The variable of integration is var. It returns the indefinite integral, or the definite integral if limits of integration are specified. The delta function is represented by delta(var) in expr; the step function (which results from indefinite integration of delta(var)) is represented by signum(var)/2.

If expr does not contain a delta function whose argument depends on var, then delint calls integrate.

See also delta, page 32.

Original Author: M. P. Schatz

Example

\[(c1)\ (assume(a>0),\ assume(a<1))\\]
\[(c2)\ delint(f(x)*delta(x-a),x,0,1);\]
\[(d2) f(a)\]
\[(c3)\ delint(f(x)*delta(x-a),x,1,2);\]
\[(d3) 0\]

Do demo(delint); for a demonstration.

6.3 Laplace Transforms

laplace(expr, ovar, lvar)

Function

Takes the Laplace transform of expr with respect to the variable ovar and transform parameter lvar. The expression expr may involve only the functions exp, log, sin, cos, sinh, cosh, and erf.

The expression expr may also be a linear, constant coefficient differential equation in which case atvalue of the dependent variable is used (see Section 10.3.3, page 336). These can be supplied either before or after the transform is taken. Since the initial conditions must be specified at zero, if there are boundary conditions imposed elsewhere, you can impose these on the general solution and eliminate the constants by solving the general solution for them and substituting their values back. expr may also involve convolution integrals.

Functional relationships must be explicitly represented in order for laplace to work properly. That is, if f depends on x and y, it must be written as f(x,y) wherever f occurs as in laplace('diff(f(x, y), x, x), x, s). laplace is not affected by dependencies set up with the depends command.

If f(x) is an unknown function, then laplace(f(x),x,s); returns the noun form. It is possible to define the transform of such functions yourself, and the laplace routines use your definition passing three arguments to your function. It is necessary only to tell Macsyma put(f,L,laplace); where L is the name of your function that takes the transform of F. In general, if the expression f(x)*u(x) is encountered by laplace (where u(x) represents a product of arbitrary functions multiplying f or simply 1), then the function L is invoked as L(f(x),x,s) where s is the transform parameter.

By using the functions laplace and lit together with the solve or linolve functions, you can solve a single differential or convolution integral equation or a set of them.

Example

\[(c1)\ \text{laplace}(\%e^{(2*t+a)}*\sin(t)*t,t,s);\]
\[(d1) \ %e \ (2 \ s - 4)\]
\[\frac{---------------------}{2} \ 2\]
\[\ (s - 4 \ s + 5)\]
Only \texttt{laplace}, \texttt{delint}, \texttt{deltasimp} and \texttt{fourier} and \texttt{delta} (see Section 3.1.2, page 32) know about the \texttt{delta} function.

(c2) \texttt{laplace(delta(t-a)*sin(b*t), t, s)};

Is a positive, negative, or zero?

\texttt{Pos};

\begin{verbatim}
(a) \texttt{sin(a b) s - a s}
\end{verbatim}

(d2)

\begin{verbatim}
ilt(exp, lvar, ovar)
\end{verbatim}

\begin{footnotesize}
\textit{Function}
\end{footnotesize}

Takes the inverse Laplace transform of \textit{exp} with respect to \textit{lvar} and parameter \textit{ovar}. The expression \textit{exp} must be a ratio of polynomials whose denominator has only linear and quadratic factors. By using the functions \texttt{laplace} and \texttt{ilt} together with the \texttt{solve} or \texttt{linsolve} functions, you can solve a single differential or convolution integral equation or a system of them.

\textit{Examples}

(c1) \texttt{integrate(sinh(a*x)*f(t-x),x,0,t)+b*f(t)=t^2;}

t

[d1] \texttt{If(t - x) sinh(a x) dx + b f(t) = t}

(d1) \texttt{/}

0

(c2) \texttt{laplace(% , t, s);}

\texttt{a laplace(f(t), t, s) 2}

(d2) \texttt{b laplace(f(t), t, s) + \frac{-}{2} \frac{2}{3} \frac{s - a}{s}}

(c3) \texttt{linsolve([%],[laplace(f(t), t, s)])};

\texttt{2}

(d3) \texttt{[laplace(f(t), t, s) = \frac{-}{5} \frac{2}{3} \frac{b s + (a - a b) s}{s}]

(c4) \texttt{ilt(d3[1], s, t)};

Is \texttt{a b (a b - 1)} positive, negative, or zero?

\texttt{Pos};

\begin{verbatim}
sqrt(a b (a b - 1)) t
2 \texttt{cosh(-a t)}
\end{verbatim}

(b)

(d4) \texttt{f(t) = \frac{-}{3} \frac{2}{a b - 1} \frac{a b - 2 a b + a}{a b - 2 a b + a}}

\begin{verbatim}
+ \frac{-}{3} \frac{2}{a b - 2 a b + a}
\end{verbatim}

The following function for taking Laplace transforms of special functions is available. It is called by \texttt{laplace}.

\texttt{specint(exp, ovar)}

\begin{footnotesize}
\textit{Function}
\end{footnotesize}

Takes the Laplace transform of \textit{exp} with respect to the variable \textit{ovar}. The expression \textit{exp} can involve

1. special functions of linear or quadratic argument multiplied by
(a) arbitrary powers of the argument, or
(b) trigonometric and exponential functions of linear argument

2. Products of two special functions of linear or quadratic argument taken from only one of the following groups:
 (a) any kind of Bessel, modified Bessel, or Hankel functions,
 (b) orthogonal polynomials,
 (c) confluent hypergeometric functions

In this second category, factors of type 1.a or 1.b are also permitted.

The basic method is to rewrite the expression in terms of generalized hypergeometric functions, apply a general formula for taking the Laplace transform of generalized hypergeometric functions, and then, if possible, present the result in terms of elementary functions or ‘common’ special functions. For further details, see [Av].

Examples
(c1) \(t^{(1/2)} * \text{gammaincomplete}(1/2, a * t) * \%e^{-(-p * t)}; \)

(d1) \(\text{gammaincomplete}(-, a * t) * \text{sqrt}(t) * \%e^{-(-p * t)}; \)

(c2) \(\text{specint}(% , t); \)

(d2) \(\%pi \\\n\text{-----------------------------} - \text{-----------------------------} \)
\(\frac{3/2}{3/2} \frac{a}{a} \frac{3/2}{3/2} \frac{a}{a} \frac{3/2}{3/2} \frac{a}{a} \)
\(\frac{2}{2} \frac{p + a}{p + a} \frac{1 - -----}{1 - -----} \frac{p + a}{p + a} \frac{1 - -----}{1 - -----} \)

(c3) \(t^{(1/2)} * \text{bessel}_j[1](2*a^{(1/2)}*t^{(1/2)}) * \%e^{-(-p * t)}; \)

(d3) \(\text{bessel}_j(2* \text{sqrt}(a) * \text{sqrt}(t)) * \text{sqrt}(t) * \%e^{-(-p * t)}; \)

(c4) \(\text{specint}(% , t); \)

(d4) \(\%e^{-(-a/p)} \\\n\frac{-------}{-------} \)
\(\frac{2}{2} \frac{p}{p} \)

6.4 Poisson and Fourier Series

6.4.1 Poisson Series

A Poisson series is a finite sum in which each term has the form \(p^{*\text{trig}(q)} \) where \(\text{trig} \) is either \(\sin \) or \(\cos \). Usually, \(p \) is a polynomial with rational number or floating point coefficients or a general expression. The argument \(q \) is a linear combination of the angle variables with integer coefficients. The default angles are \(u, v, w, x, y, z \). These variables can be changed by setting the variable \text{poisvars}, which is described below.

Conversion to a Poisson series expands all products or powers of sines and/or cosines into sums. To display the result, it is usually necessary to convert an expression in Poisson encoding into general representation, using the function \text{outofpois}, or to display it using \text{printpois}. When displaying an expression that is in Poisson representation, a /\text{P}/ is inserted after the D-LINE.
In general, the angle variables must not occur in the coefficients p. In order to provide for an efficient representation, it is necessary to have an a priori bound on the magnitude of the numerical coefficients in the q terms during the computation. This is not a problem in typical applications because it is usually possible to predict the maximum frequencies of the trigonometric terms of interest.

poissimp(e)

Returns a general Macsyma expression equivalent to the expression e, but which has been transformed into a Poisson series and then back. In general, it will have the effect of transforming the expression into a sum of trigonometric terms. The expression e may be in general representation, or it may be an expression which has Poisson series components. For example, e might be a product of two previously computed Poisson series, $|g \cdot h|$, or a sum $|g + h|$, or an integer power of a series $|g^3|$, etc. This function is in effect a fast canonical simplification algorithm, and also can be used to change a Poisson series into general form.

intopois(a)

Converts a into a Poisson encoding.

outofpois(a)

Converts a from Poisson encoding to general representation. If a is not in Poisson form, it makes the conversion, so that the result looks like the result of outofpois(intopois(a));. This function is a canonical simplifier for sums of powers of sin’s and cos’s of a particular type.

printpois(a)

Displays a Poisson series in a readable format. In common with outofpois, it converts a into a Poisson encoding first, if necessary.

poistimes(a, b)

Is functionally identical to intopois($a \cdot b$).

poistrim()

Is a reserved function name. If you define a function of this name, it gets applied during Poisson multiplication. poistrim is a function of n arguments where n is the length of the poisvars list (default 6). These arguments are the coefficients of the variables on poisvars in a term. Terms for which poistrim returns true are eliminated during multiplication. This function can be used, for example, to retain only those terms whose angular frequency is of interest.

poisplus(a, b)

Is functionally identical to intopois($a + b$);

poisexpt($base$, $exponent$)

poisexpt(a, b) is functionally identical to intopois(a^b); (However, $exponent$ must be a non-negative integer.)

poisdiff(a, b)

Differentiates a with respect to b. The variable b must occur only in the trigonometric arguments or only in the coefficients.

poisint(a, b)

Integrates a with respect to b, with the same restrictions on a and b as for poisdiff. Nonperiodic terms in b are dropped if b is in the trigonometric arguments.

poissubst(a, b, poisson-series)

poissubst(a, b, poisson-series) substitutes a for b in poisson-series, where poisson-series is a Poisson series.
1. If \(b \) is one of the variables \(u, v, w, x, y, \) or \(z, \) then \(a \) must be an expression linear in those variables, as for example, in \(6u+4v. \)

2. If \(b \) is other than those variables, then \(a \) must also be free of those variables, and furthermore, free of sines or cosines.

\texttt{poissubst} can also be supplied with 5 arguments. \texttt{poissubst(a, b, c, d, n)} invokes a special type of substitution which operates on \(a \) and \(b \) as in type (1) above, but if \(d \) is a Poisson series, it expands \(\cos(d) \) and \(\sin(d) \) to order \(n \) so as to provide the result of substituting \(a+d \) for \(b \) in \(c. \) The idea is that \(d \) is an expansion in terms of a small parameter. For example, \texttt{poissubst(u,v,cos(v),e,3)}; returns
\[
(e^3/6-e)*\sin(u) + (1-e^2/2)*\cos(u).
\]

\texttt{poissubst}\((series, \sinfn, \cosfn) \)

Will map the function \(\sinfn \) on the sine terms and \(\cosfn \) on the cosine terms of the Poisson series given, and return a new Poisson series with the transformed terms. The functions \(\sinfn \) and \(\cosfn \) each take two arguments: a coefficient and a trigonometric part of a term in \(series \) respectively. For example, if a term in the series is \(a*\sin(3*x+4*y), \) then the value of \(\sinfn(a,3*x+4*y) \) will be the coefficient of \(\sin(3*x+4*y) \) in the answer.

If we define \(f(p,q) := \text{ratsimp}(p); \) then \texttt{poismap(s,f,f)}; would return a new series equivalent to \(s, \) where \(s \) is a Poisson series, but where each coefficient is rationally simplified.

\texttt{poislim default: 30} \hspace{1cm} \textit{Option Variable}

The coefficients in the arguments of the trigonometric functions must fit in a pre-determined domain. That is, the highest acceptable harmonics of the basic trigonometric functions must fit in a given domain. The highest harmonic is determined by dividing \(\texttt{poislim} \) by the number of \texttt{poisvars}. Using the default value of 30 with the default value of 6 \texttt{poisvars}, the harmonic integer coefficients can be in the interval \([-2^2(30/6-1)+1, +2^2(30/6-1)], \) or \([-15, +15], \) but it can be set to \([-2^n-1, 2^n-1] \) for any positive integer \(n. \)

\texttt{poisvars default: [u,v,w,x,y,z]} \hspace{1cm} \textit{Option Variable}

This option variable is a list of allowed angle variables. This list cannot contain more than six variables. Ordinarily, the number of variables in \texttt{poisvars} times \texttt{poislim} should be kept under 31 if computation time and space is of concern.

\textit{Examples}
\begin{enumerate}
\item \texttt{preformat:true}$\$
\item \texttt{poissimp(sin(x)^2)};
\item \texttt{poisxpt(%,2)}$
\item \texttt{printpois(%,2)}$
\item \texttt{poisint(%,2)}$
\end{enumerate}
\texttt{done}$
6.4. POISSON AND FOURIER SERIES

\[(c7)\] poissimp(%)

\[(d7) \frac{1}{8} (2 a - b) \sin(4 y + 2 x) + \frac{1}{2} (2 a - b) (-a b - 5) \cos(2 y + 5 x - u) \]
\[- \frac{1}{2} (2 a - b) (-a b - 5) \cos(2 y - 3 x + u) \]

\[(c8)\] poissimp(sin(x)^5*cos(x)^5);

\[(d8) \]
\[1/16 \sin(5 x) + 1/16 \cos(5 x) - 5/16 \sin(3 x) \]
\[+ 5/16 \cos(3 x) + 5/8 \sin(x) + 5/8 \cos(x) \]

\[(c9)\] (sinfun(x,y):='a*x+'b*y, cosfun(x,y):='c*x+'d*y)$

\[(c10)\] poismap(sin(u)+cos(u),'sinfun,'cosfun);

\[(d10)/P/ \]
\[(b u + a) \sin(u) + (d u + c) \cos(u) \]

\[(c11)\] poisvars:[x];

\[(d11) \]

\[(c12)\] poistrim(tc):=is(tc>3);

\[(d12) \]

\[(c13)\] poissimp(sin(t)^6);

\[(d13) \]
\[5/16 - 7/16 \cos(2 t) \]

Remember that coefficients in the arguments of the trigonometric functions fit in a pre-arranged domain. If you change this domain by changing either poisvars or poislim, any previously calculated Poisson series will be invalid.

For further information on the techniques used in Macsyma for Poisson series calculations, see [Fate 7].

6.4.2 Fourier Integrals and Series

Name of package: fourier
Original Author: M. Wester

Description: The fourier package contains functions for finding symbolic Fourier series and Fourier integral coefficients on finite and infinite intervals. For numerical evaluation using fast Fourier transforms, see **fit** (Section 6.4.3, page 183).

Some command names in the current Fourier package differ from those in earlier versions of Macsyma. Table 6.1 summarizes the name changes.

<table>
<thead>
<tr>
<th>New Command Name</th>
<th>Old Command Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>fourier</td>
<td>-</td>
</tr>
<tr>
<td>inv_fourier</td>
<td>-</td>
</tr>
<tr>
<td>ift</td>
<td>-</td>
</tr>
<tr>
<td>fourier_series</td>
<td>totalfourier</td>
</tr>
<tr>
<td>fourier_coeffs</td>
<td>fourier</td>
</tr>
<tr>
<td>fourier_expand</td>
<td>fourexpand</td>
</tr>
<tr>
<td>fourier_cos_coeffs</td>
<td>fourcos</td>
</tr>
<tr>
<td>fourier_sin_coeffs</td>
<td>foursin</td>
</tr>
<tr>
<td>fourier_int_coeffs</td>
<td>fourint</td>
</tr>
<tr>
<td>fourier_cosint_coeffs</td>
<td>fourintcos</td>
</tr>
<tr>
<td>fourier_sinint_coeffs</td>
<td>fourintcos</td>
</tr>
</tbody>
</table>

Table 6.1: Summary of **fourier** Package Command Names
6.4.2.1 Fourier Integral Transforms

\texttt{fourier}(f, x, xi) \hfill \textit{Function}

The forward Fourier transform $F(xi)$ of $f(x)$ is defined as

$$F(xi) = \int_{-\infty}^{\infty} f(x) \exp(i \cdot xi \cdot x) \, dx.$$

Do \texttt{example(fourier)}; for an executable example.

\texttt{inv_fourier}(f, x, xi) \hfill \textit{Function}

The inverse Fourier transform of $f(x)$ is defined as

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) \exp(-i \cdot xi \cdot x) \, dx.$$

\texttt{ift} is an alternate name for \texttt{inv_fourier}.

Do \texttt{example(inv_fourier)}; for an executable example.

6.4.2.2 Fourier Integral Coefficients

\texttt{fourier_int_coeffs}(f, x) \hfill \textit{Function}

Creates a list of the Fourier integral coefficients of $f(x)$ defined on $[\text{minf}, \text{inf}]$

$$A[z] = \frac{1}{\pi} * ADEFINT(f * \cos(z * x), x, \text{MINF}, \text{INF})$$
$$B[z] = \frac{1}{\pi} * ADEFINT(f * \sin(z * x), x, \text{MINF}, \text{INF})$$

Do \texttt{example(fourier_int_coeffs)}; for an executable example.

See \texttt{a_defint}, page 181.

\texttt{fourier_cosint_coeffs}(f, x) \hfill \textit{Function}

Computes Fourier cosine integral coefficients for even functions $f(x)$ on $[0, \text{inf}]$.

$$A_z = \frac{2}{\pi} * ADEFINT(f * \cos(z * x), x, 0, \text{INF}).$$

Do \texttt{example(fourier_cosint_coeffs)}; for an executable example.

See \texttt{a_defint}, page 181.

\texttt{fourier_sinint_coeffs}(f, x) \hfill \textit{Function}

Computes Fourier sine integral coefficients for odd functions $f(x)$ on $[0, \text{inf}]$.

$$B_z = \frac{2}{\pi} * ADEFINT(f * \sin(z * x), x, 0, \text{INF}).$$

Do \texttt{example(fourier_sinint_coeffs)}; for an executable example.

See \texttt{a_defint}, page 181.
6.4.2.3 Fourier Series

\texttt{fourier_coeffs}(f, x, p) \quad \text{Function}

Produces a list of the Fourier coefficients of \(f(x) \) defined on the interval \([-p, p]\).

\[A_0 = \frac{1}{p} ADEFIN\text{T}(f, x, -p, p) \]
\[A_N = \frac{1}{p} ADEFIN\text{T}(\cos(N\pi x/p), x, -p, p) \]
\[B_N = \frac{1}{p} ADEFIN\text{T}(\sin(N\pi x/p), x, -p, p) \]

Do \texttt{example(fourier_coeffs)}; for an executable example.
See \texttt{adefint}, page 181.

\texttt{fourier_expand}(l, x, p, \text{limit}) \quad \text{Function}

Generates the Fourier series from the list of Fourier coefficients \(l \) up thru \(\text{limit} \) terms (\(\text{limit} \) can be \texttt{inf}). Thus, \texttt{fourier_expand} can produce truncated of infinite Fourier series from the general expressions for the Fourier coefficients.

The variables \(x \) and \(p \) have the same meaning as in \texttt{fourier_coeffs} and \texttt{fourier_series}.
Do \texttt{example(fourier_series)}; for an executable example.

\texttt{fourier_cos_coeffs}(f, x) \quad \text{Function}

Computes Fourier cosine integral coefficients for even functions \(f(x) \) on \([0, p]\).

\[A_0 = \frac{1}{p} ADEFIN\text{T}(f, x, 0, p) \]
\[A_z = \frac{2}{p} ADEFIN\text{T}(f \cdot \cos(z \cdot x), x, 0, p) \]

Do \texttt{example(fourier_cos_coeffs)}; for an executable example.
See \texttt{adefint}, page 181.

\texttt{fourier_sin_coeffs}(f, x) \quad \text{Function}

Computes Fourier sine integral coefficients for odd functions \(f(x) \) on \([0, p]\).

\[B_z = \frac{1}{p} ADEFIN\text{T}(f \cdot \sin(z \cdot x), x, 0, p) \]

Do \texttt{example(fourier_sin_coeffs)}; for an executable example.
See \texttt{adefint}, page 181.

6.4.2.4 Auxiliary Functions

\texttt{absint}(\text{fun}, \text{var}, \{\text{halfplane}\}) \quad \text{Function}

Computes the indefinite integral of \(\text{fun} \) with respect to \(\text{var} \) in the given \textit{halfplane}. \textit{halfplane} must be one of \texttt{pos, neg, or both}. If the \textit{halfplane} is omitted, positive is assumed as a default. The function \(\text{fun} \) can contain expressions of the form \(\text{abs}(x), \text{abs}(\sin(x)), \text{abs}(a)^{\text{exp}(-\text{abs}(b) \cdot \text{abs}(x))} \).

\texttt{absint}(\text{fun}, \text{var}, a, b) \quad \text{Function}

Computes the definite integral of \(\text{fun} \) with respect to \(\text{var} \) from \(a \) to \(b \). \(\text{fun} \) can include absolute values.

\texttt{adefint}(f, x, a, b) \quad \text{Function}

Is an function internal to the Fourier package that computes integral coefficients of functions \(f(x) \) over the interval \([a, b]\). The function \(f \) can include forms involving absolute values.
equalp(x, y)

Function

Returns true if x equals y otherwise false (it does not give an error message like equal(x, y) would in this case).

exp_even_in(f, x)

Function

Is defined as equalp(f, subst(-x, x, f))$.

exp_odd_in(f, x)

Function

Is defined as equalp(f, subst(-x, x, f))$.

funp(fun, exp)

Function

true if exp contains the function fun.

funp(fun, exp, var)

Function

true if exp contains the function fun and the variable var is somewhere in the argument of at least one of the occurrences of fun.

remfun(fun, exp, {optional-var})

Function

Replaces all occurrences of fun(arg) by arg in exp. If the optional third argument, optional-var, is present, remfun replaces all occurrences of fun(arg) by arg in exp only if arg contains the variable var.

Examples

(c1) fc:fourier_coeffs(abs(x), x, %pi)$%pi

(e1)

\[
a = \begin{array}{c}
0 \\
2 \\
2 (-1) \\
2 (\pi n) \\
\end{array}
\n\]

(e2)

\[
a = \begin{array}{cc}
\%nn & 2 \\
\%pi & \%nn \\
\end{array}
\n\]

(e3)

\[
b = 0 \\
\%nn
\n\]

(c4) /* generate a fourier series */

fourier_expand(fc, x, %pi, inf);

inf

\[
\begin{array}{c}
\%nn \\
(2 (-1) - 2) \cos (\%nn x) \\
\%nn = 1 \\
\%nn = \%nn \\
\%pi \\
\%pi
\end{array}
\n\]

(d4)

\[
\begin{array}{c}
\%nn = 1 \\
\%pi
\end{array} + \begin{array}{c}
%nn \\
2
\end{array}
\n\]

(c5) /* compute fourier coefficients of a monomial */

fourier_coeffs(x^3, x, %pi)$%nn

(e5)

\[
a = 0 \\
0
\n\]

(e6)

\[
a = 0 \\
\%nn
\n\]
6.4.3 Fast Fourier Transforms

```lisp
fft(flag, direction, array1, {optional-array})
```

The `fft` function computes the sum

\[f[k] = \sum_{i=0}^{N-1} array1[i] \omega_N^{direction \times i \times k} \]

(\(\omega_N = \exp(2 \times %pi \times %i/N) \)).

The arguments `array1` and `optional-array` (if present) must be the same length. The length of all arrays `N` must be a power of two. The input `direction`, which may be either 1 or -1, indicates whether the transform is from the time domain to the frequency domain (1) or the other way around (-1). The input `flag` can take one of the following values:

<table>
<thead>
<tr>
<th>Flag value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>'true</td>
<td>Takes a complex Fourier Transform. Let the complex values be ({a_0, \ldots, a_{n-1}}). If there is only one array argument, <code>array1[2i] = realpart(c_i)</code> and <code>array1[2i+1] = imagpart(c_i)</code>. If there are two array arguments, <code>array1[i] = realpart(c_i)</code> and <code>array1[2i] = imagpart(c_i)</code>. The entries of the arrays must be Lisp real (that is, non-complex) numbers. The output is returned in the same format.</td>
</tr>
<tr>
<td>'real</td>
<td>Transforms real data. If there is only one array argument, that is the data. If <code>direction</code> is 1, the data is not encoded. If <code>direction</code> is -1, the array is actually an encoded complex array (which is a Fourier transform of a real array). If the complex data is ({a_0, \ldots, a_{n-1}}) then for it to be the transform of a real array we must have (a_0) and (c_{n/2}) be real and (c_i = \overline{c_{n-i}}). That makes it possible to encode the data into a real array of length <code>n</code>. Namely, <code>array1[0] = a_0</code>, <code>array1[1] = c_{n/2}</code>, <code>array1[2i] = realpart(c_i)</code>, and <code>array1[2i+1] = imagpart(c_i)</code>. The last (n/2 \times 1) entries of the complex array are thrown out since they can be reproduced from the other elements. If there are two array arguments, and if <code>direction</code> is 1, then the arrays are assumed to be two real arrays being transformed in parallel by a clever algorithm. If <code>direction</code> is -1, the arrays are assumed to be two complex arrays being Fourier transforms of real arrays. The real and imaginary parts of the entries must be Lisp numbers.</td>
</tr>
<tr>
<td>'complex</td>
<td>Only one array argument is allowed, whose elements are Macsyma complex numbers.</td>
</tr>
</tbody>
</table>

For complex data in (real part in `aa`, imaginary part in `bb`), the inverse transform of `fft(true, -1, aa, bb)` is `fft(true, -1, aa, bb)`.

```lisp
sinfft(array1, direction)
```

`sinfft` takes the “fast sine transform” of real data. This and `cosfft` replace \(\omega_N^{jk} \) in the Fourier transform by \(\sin(\pi jk/N) \) and \(\cos(\pi jk/N) \). The entries of `array` must be floating (single or double) point numbers.

```lisp
cosfft(array1, direction)
```

`cosfft` takes the “fast cosine transform” of real data. This and `sinfft` replace \(\omega_N^{jk} \) in the Fourier transform by \(\sin(\pi jk/N) \) and \(\cos(\pi jk/N) \). The entries of `array` must be floating (single or double) point numbers.
modfft(array, direction)

`modfft` takes integer FFTs modulo $2^{16} + 1$.

fourier_dprec default: false

System Variable

This controls the precision of the computation. If true, much of the computation proceeds in double-floats.

fourier_scalep default: true

System Variable

If true, this makes sure that the inverse transform does not divide all terms by the length of the input. This variable is optional because sometimes this is not necessary and one wants to avoid the overhead.

Do usage(fft); for more information, and demo(fft); for a demonstration. Do example(fft); for an example.

See also `fourier` (Section 6.4.2.3, page 181) for symbolic Fourier transforms.

6.5 Ordinary Differential Equations

6.5.1 Systems of Linear Ordinary Differential Equations

Macsyma contains functions for solving systems of differential equations. (See also the `tran_mat` package on page 202.)

odelinsys([eq1, ..., eqn], [var1, ..., varn])

Function

The function `odelinsys` solves systems of linear ordinary differential equations, where the eq_i are differential equations in the dependent variables $var_1, ..., var_n$. The functional relationships must be explicitly indicated in both the equations and the variables. For example:

(c1) 'diff(f(x),x,2)=sin(x)+'diff(g(x),x)

(c2) 'diff(f(x),x)+x^2-f=2*'diff(g(x),x,2)

is not the proper format. The correct way is:

(c3) 'diff(f(x),x,2)=sin(x)+'diff(g(x),x)

(c4) 'diff(f(x),x)+x^2-f=2*'diff(g(x),x,2)

The quotes are not necessary since `diff` returns the noun forms anyway. The call is then `odelinsys([[d3, d4], [f(x), g(x)]]);

If initial conditions at 0 are known, they should be supplied before calling `odelinsys` by using `atvalue`. See Section 10.3.3, page 336.

Examples

(c5) 'diff(f(x),x)=`diff(g(x),x)+sin(x);

(d5) (f(x)) = (g(x)) + sin(x)

(c6) 'diff(g(x),x,2)=`diff(f(x),x)-cos(x);

(d6) (g(x)) = (f(x)) - cos(x)

(c7) atvalue('diff(g(x),x),x=0,a);

(d7) a

(c8) atvalue(f(x),x=0,1);

(d8) 1

(c9) odelinsys([[d5,d6],[f(x),g(x)]]);
Now we verify the above result:

\[
\begin{align*}
(d9) \quad & f(x) = a \%e - a + 1, \\
& g(x) = \cos(x) + a \%e - a + g(0) - 1
\end{align*}
\]

Now we verify the above result:

\[
\begin{align*}
(c10) \quad & [d5, d6, d9, diff; \\
& x \quad x \quad x \quad x
\end{align*}
\]

\[
(d10) \quad [a \%e = a \%e, \quad a \%e - \cos(x) = a \%e - \cos(x)]
\]

\text{odelinsys} \text{ can also solve two-by-two triangular linear systems with non-constant coefficients. If \text{odelinsys} cannot obtain a solution, it returns false.}

\text{odematsys}(\text{list of equations, list of variables}) \quad \text{Function}

This solves the list of equations in variables and derivatives in a manner analogous to \text{odelinsys}. Therefore, the equations must be differential equations with functional relations explicitly indicated. If initial conditions are known, they should be supplied before calling \text{odematsys} by using \text{atvalue}. Function \text{odematsys} returns a list of solution equations, with matrices in original form.

Do \text{example}(odematsys); \text{for an example}.

6.5.2 First and Second Order ODEs

6.5.2.1 The Main Command for Exact Solution of ODEs

\text{ode}(\text{diff eq, dependent-var, independent-var \{, optional-keywords\}}) \quad \text{Function}

\text{ode} is the main command for solving ordinary differential equations of first and second order, and some higher order equations. The first argument is an ordinary differential equation, which should be of the following form.

\[
\begin{align*}
\quad 2\text{diff(y,x,2)*f(x) + diff(y,x)*g(x) + y*h(x)} &= k(x,y)
\end{align*}
\]

If \(y \) is declared to depend on \(x \),

\[\text{depends}(y,x)\]

then the quote marks before \text{diff} (which suppress evaluation of the derivatives) can be omitted. If the right hand side of the equation is zero, then the left hand side can be used in place of the equation. The term \(k(x, y) \) is only permissible (for now) in first-order equations, such as \(\text{diff(y,x)} = k(x,y) \). If it is present in a second-order equation, \text{ode} returns false.

Starting with the simplest methods, \text{ode} tries increasingly complicated methods until it either finds a solution or exhausts all available methods in Macsyma.

1. \text{ode} begins by trying the basic solution methods used by the command \text{ode2}. The returned values and calling sequence are identical for commands \text{ode} and \text{ode2}. See \text{ode2}, Section 6.5.2.2, page 189.

2. \text{ode} next tries some more advanced methods. See the discussions below for a description of the methods tried and in what order for first and second order equations.

3. If the solution methods above cannot solve the equation, \text{ode} tries making transforms of the dependent and independent variables, finding the invariant in the normal form, Schwartzian derivative, and solving the adjoint equation.

4. You can teach \text{ode} specific solutions which it will try before giving up. See \text{trylist}, Section 4, page 187.

If \text{ode} finds an implicit solution which it cannot revert to a direct solution, it returns the implicit solution. If it cannot find a solution, it returns false.
ode normally tries successive methods until it finds a general solution, then stops trying methods and returns the solution. You can alter this behavior using the optional keyword any, so that ode continues through all available methods and reports all solutions found. See page 187.

ode remembers the solutions to all differential equations which it solves in a computation session until Macsyma is re-initialized. If you re-submit a differential equation, it returns the solution immediately, without your having to re-compute it.

odetutor default: false

Option Variable

When set to true, ode and other commands for solving differential equations, print messages which indicate the methods which are being tried and other information about the computation as it proceeds.

First Order Equations

Nearly all the known methods for solving first order equations are used by ode. It begins by calling ode2, which looks for equations of type Bernoulli, generalized homogeneous, linear, and separable. (See ode2, Section 6.5.2.2, page 189). If ode2 fails to solve the equation, then the following additional methods are applied.

diffsol This is the method of Laplace transforms, which converts a differential equation to the form
diff(y(x), x) + f(y(x), x) = 0, sets the atvalues for y(x) at 0 to %k1 and diff(y(x), x) at 0 to %k2, and then calls odelimys. See atvalue: function, Section 10.3.3, page 336 and odelimys, Section 6.5.1, page 184.

nonlin This method solves a nonlinear equation in y’ according to the method of Ince. The variable p is substituted for diff(y, x) and the resulting equation is solved for p. The two solutions thus obtained are then re-converted to ordinary differential equations in y and x and solved by a recursive call to ode. The two solutions are returned.

nonlin1 This method is used for the special case in which the coefficients of y’ and y are polynomials in x and y and are homogeneous (have the same powers of the variables). The transformation v = y/x is made and the resulting equation solved by ode2.

riccati Tries general methods for Riccati equations and the Schmidt algorithms for finding particular solutions.

euler multiplier Tries to find an integrating factor.

odefi Tries the Prelle–Singer algorithm, which also uses integrating factors.

Second Order Equations

ode begins by trying the methods in package ode2. If ode2 cannot solve the equation, ode tries **diffsol**.

diffsol(equation, dependent-var, independent-var)

Function

This is the method of Laplace transforms. Basically, it converts a differential equation to the form
diff(y(x), x) + f(y(x), x) = 0, sets the atvalues for y(x) at 0 to %k1 and diff(y(x), x) at 0 to %k2, and then calls odelimys. See atvalue: function, Section 10.3.3, page 336 and odelimys, Section 6.5.1, page 184. This function is in the ode directory in the file lapl.

If difbsol fails, the following methods are used in the solution and the variable **method** is set accordingly:

1. Invariant constant. If the invariant of the differential equation in normal form is a constant, then the substitution y(x) = v(x)e**-1/2 ∫** g(z) dz is made and the equation is solved by ode2 using the constant coefficients rule. The answer is re-transformed.

2. Solution of adjoint. If the adjoint of the equation is solvable, the answer is returned after re-transformation.
3. Change of independent variable. If the value of \((g' + 2hg)/g^{3/2}\) is a constant, then the equation is transformed into a new equation via \(z(x) = c \int_0^x \sqrt{g(z)} \, dz\), where \(c\) is a constant chosen to simplify the result. The resulting equation, which now has constant coefficients, is solved by \texttt{ode2} and the result is re-transformed.

4. Try a solution. \texttt{ode} checks to see if any of the expressions on the list \texttt{trylist}, \(y = r(x)\), solves the equation.

\texttt{trylist default: []}

\texttt{desol} can exploit the fact that \(y = r(x)\) can be a solution. It does this by scanning through \texttt{trylist} for trial functions \(r\), changing the dependent variable via \(y = r \, v\) and solving the resulting equation for \(v\) and re-transforming.

\textbf{Note:} You can \texttt{cons} a solution of your own into \texttt{trylist}, if you think you know of one.

5. At this point, \texttt{ode} tries some more advanced methods. It tries to factor the differential operator, so that it can reduce the problem to a first order equation. It next checks to see if the equation fits the Riccati form [La1].

6. \texttt{ode} checks to see if the equation is a hypergeometric or a Whittaker equation, by looking at the singularities of the equation.

(a) If it possesses three singularities and they are all regular, it is a hypergeometric equation and can solve by means of the Riemann P-symbol.

(b) If there are two singularities, one irregular and at infinity (or at zero with the regular one at infinity), we transform the equation such that the singularities are at 0 and \(\text{inf}\) and generate a Whittaker solution.

Both the Whittaker and hypergeometric solutions are fed to the hypergeometric series reduction routine to generate a closed-form solution, if possible. Otherwise, the program returns the series in the form \texttt{hyper_f(m, n | [a], [b], arg)} where \(a\) and \(b\) are lists of factorial function arguments and \(arg\) is an expression. See Section 6.5.2.3, page 191 for more information.

\texttt{closedform default: true}

\texttt{closedform} provides some control of \texttt{ode}'s approach to solving the hypergeometric or Whittaker equations. Setting this option variable to \texttt{false} suppresses the generation of the hypergeometric series.

\texttt{sumform default: false}

\texttt{sumform} provides some control of \texttt{ode}'s approach to solving the hypergeometric or Whittaker equations. Setting this option variable to \texttt{true} cause the result to display as a sum.

7. At this point, \texttt{ode} defaults to the \texttt{odeseries} solver [La2]. This seeks a recurrence relation among the power series coefficients of the solution. If it can solve the recurrence relations, it returns a summation in closed form. Otherwise, it returns a truncated Taylor form [Fa11].

The series solution can be obtained in any of the forms above, including closed, hypergeometric, or sum, by setting the various option variables.

\textbf{Keywords for the ode Command} Optional arguments can be given to \texttt{ode} following the third mandatory argument. These optional arguments are given in the list of recognized keywords below.
Chapter 6. Basic Calculus Operations

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Equivalent to specifying no optional keywords. Causes functionode to run the methods in default order until a solution is found.</td>
</tr>
<tr>
<td>all</td>
<td>Causes ode to try all methods (which are appropriate for the degree of the equation), and to continue trying more methods even after one or more solutions have been found. ode returns a list of all the solutions which were found.</td>
</tr>
<tr>
<td>diffsol</td>
<td>Attempts to solve the equation by Laplace transforms. See diffsol, Section 6.5.2.1, page 186.</td>
</tr>
<tr>
<td>nonlin</td>
<td>Tries to solve a nonlinear first-order equation by the method of Ince. See nonlin, Section 6.5.2.1, page 186.</td>
</tr>
<tr>
<td>nonlin1</td>
<td>Tries to solve a nonlinear first-order equation in a special case. See nonlin1, Section 6.5.2.1, page 186.</td>
</tr>
<tr>
<td>ode2</td>
<td>Tries the methods in the ode2 package on the equation. See ode2, Section 6.5.2.2, page 189.</td>
</tr>
<tr>
<td>odefi</td>
<td>Tries to solve a first order equation using the Prelle–Singer algorithm. See odefi, Section 6.5.2.2, page 191.</td>
</tr>
<tr>
<td>odelin2</td>
<td>Attempts to solve linear second-order equations using more advanced methods. See odelin2, Section 6.5.2.2, page 191.</td>
</tr>
<tr>
<td>odeseries</td>
<td>Tries to solve the equation with a power series. ode uses the package odeseries in closedform mode. See Section 6.5.2.3, page 191.</td>
</tr>
<tr>
<td>riccati</td>
<td>Tries the Riccati solver on the equation.</td>
</tr>
<tr>
<td>solfac</td>
<td>Tries to solve by factoring the operator.</td>
</tr>
<tr>
<td>solvehyper</td>
<td>Tries to solve the equation as a hypergeometric equation using Riemann P-symbols.</td>
</tr>
<tr>
<td>whittaker</td>
<td>Solves as a confluent hypergeometric function using tables of Kummer solutions.</td>
</tr>
</tbody>
</table>

These keywords can be applied in several different ways to control the solution methods attempted by ode.

- The command `ode('diff(y,x,2)+y=0,y,x, [odeseries,ode2]);` applies odeseries and ode2 in that order and returns a list of the two solutions obtained.

- `ode('diff(y,x,2)+y=0,y,x, deseries, odefi);` applies the methods specified in that order but returns the first solution that is found and exits immediately from ode.

- The command `ode('diff(y, x, 2) + y=0, y, x, allbut([odeseries, ode2]));` returns a list of solutions obtained by applying all the methods except odeseries and ode2.

- The command `ode('diff(y,x,2)+y=0,y,x, allbut(odeseries,ode2));` returns the first solution found by applying all the methods except odeseries and ode2.

You may have another method to include in the list. This can be done for the case of keyword all or for a specific call, but not for the case of keyword any.

Several demos are available. The demos also show how some of the variables and option variables can be used to help see what is happening.

<table>
<thead>
<tr>
<th>Demo Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ode</td>
<td>This shows the first-order capability, especially Riccati equations. This also shows some of the second-order capability for Legendre and Bessel equations.</td>
</tr>
<tr>
<td>ode1</td>
<td>Shows some more advanced problems.</td>
</tr>
<tr>
<td>ode2</td>
<td>This shows the basic solver ode2 in action.</td>
</tr>
</tbody>
</table>
6.5. ORDINARY DIFFERENTIAL EQUATIONS

6.5.2.2 Other Commands for Exact Solution of ODEs

There are three principal other commands for exact solutions of ODEs:

- **ode2**, page 189 for first or second order ODEs.
- **odefi**, page 191 for Prelle-Singer algorithm.
- **odelin2**, page 191 for solutions of based on hypergeometric equation.

The Basic Solver ODE2

The function **ode2** is a general solver for first or second order ordinary differential equations.

ode2(*diff eq*, *dependent-var*, *independent-var*)

Solves an ordinary differential equation, *diff eq*, of first or second order. The second and third arguments specify the dependent and independent variables respectively. When successful, **ode2** returns either an explicit or implicit general solution for the dependent variable.

The solution methods used by **ode2** and in the order in which they are tried are:

- For first order equations: linear, separable, exact (perhaps requiring an integrating factor), homogeneous, Bernoulli’s equation, and a generalized homogeneous method.
- For second order equations: constant coefficient, exact, linear homogeneous with nonconstant coefficients which can be transformed to constant coefficient, the Euler or equi-dimensional equation, the method of variation of parameters, and equations which are free of either the independent or of the dependent variable so that they can be reduced to two first order linear equations to be solved sequentially.

ode2 can recognize the Bessel equation

\[(x - x_0) \frac{dy}{dx} + (x - x_0) \frac{d^2 y}{dx^2} + ((x - x_0)^2 - \nu^2)y = 0\]

for which it returns solutions in terms of the functions **bessel_j**[nu] and **bessel_y**[nu] if nu is an integer, and otherwise in terms of the functions **bessel_j**[nu] and **bessel_j**[-nu], except that it treats nu=1/2 as a special case. See **bessel_j**, Section 3.5.2.1, page 48 and **bessel_y**, Section 3.5.2.4, page 49.

General solutions returned by **ode2** include arbitrary constants of integration, which are denoted as follows.

\%c

In solutions of first order equations returned by **ode2** and **ode**, the arbitrary constant of integration is denoted by the symbol **%c**.

\%k1

In solutions of second order equations returned by **ode2** and **ode**, the arbitrary constants of integration are denoted by the symbols **%k1** and **%k2**.

\%k2

In solutions of second order equations returned by **ode2** and **ode**, the arbitrary constants of integration are denoted by the symbols **%k1** and **%k2**.
Examples
(c1) \(x^2 \cdot \text{diff}(y, x) + 3x \cdot y = \sin(x)/x; \)
\[2 \frac{dy}{dx} \sin(x) \]
(d1) \(x \cdot + 3 \cdot x \cdot y = ------ \)
\[\frac{dy}{dx} \]
(c2) \text{ode2}(%y, x);
\[\%c - \cos(x) \]
(d2) \(y = \frac{1}{3} \frac{x}{x} \)
(c3) \text{ic1}(d2, x=\frac{\pi}{2}, y=0);
\[\cos(x) + 1 \]
(d3) \(y = \frac{1}{3} \frac{x}{x} \)
(c4) \(\text{diff}(y, x, 2) + y \cdot \text{diff}(y, x)^3 = 0; \)
\[2 \frac{d^2y}{dx^2} + 3 \frac{dy}{dx} \]
(d4) \(--- + y (--) = 0 \)
\[2 \frac{d^2y}{dx^2} \]
(c5) \text{ode2}(%y, x);
\[\frac{3}{3} \]
(d5) \(y + 6 \%k1 y \)
\[\frac{-}{=} \frac{x + \%k2}{6} \]
(c6) \text{ratsimp}(\text{ic2}(d5, x=0, y=0, \text{diff}(y, x) = 2));
\[3 \]
(d6) \(y + 3 \frac{y}{y} \)
\[\frac{-}{=} \frac{x}{6} \]
(c7) \text{bc2}(d5, x=0, y=1, x=1, y=3);
\[3 \]
(d7) \(y - 10 \frac{y}{y} \)
\[\frac{-}{=} \frac{x - \cdot}{2} \]

If \text{ode2} cannot find a solution, it returns \text{false}.

In the course of solving ordinary differential equations, several variables are set purely for informational purposes:

1. The system variable \text{method} denotes the method of solution used and \text{intfactor} denotes any integrating factor used.
2. The system variable \text{odeindex} denotes the index for Bernoulli’s method or for the generalized homogeneous method.
3. The system variable \text{yp} denotes the particular solution for the variation of parameters technique.

Do \text{demo(ode2);} for a demonstration.

Prelle–Singer Algorithm for First Order ODEs The function \text{odefi} uses the Prelle–Singer algorithm to find first integrals.
odefi\((\text{diffq, dependent\textunderscore variable, independent\textunderscore variable})\) \hspace{1cm} \text{Function}

Finds first integrals of the first order ordinary differential equation \text{diffq} using the Prelle-Singer algorithm. The function \text{odefi} is called by \text{ode} where appropriate, but you can also call it explicitly. Do usage(odefi); for more information.

Do demo(odefi); for a demonstration.

Original Author: Roman Shitokhamer

Supplemental Package for Second Order Linear ODEs

The function \text{odelin2} uses techniques based on the hypergeometric equation.

\text{odelin2}\((\text{diffq, dependent\textunderscore variable, independent\textunderscore variable})\) \hspace{1cm} \text{Function}

Solves the second order linear ODE \text{diffq} using a technique based on the hypergeometric equation. It implements a general quadrature for second order linear ordinary differential equations with coefficients in elementary functions. The function \text{odelin2} is called by \text{ode}, as the next to last technique tried, before \text{odeseries}. The user can also call \text{odelin2} explicitly.

Setting the variable \text{odetutor} to true (default false, see also Section 6.5.2.1, page 186) gives much information as to the path to solution taken by the program. Do usage(odelin2); for more information.

Do demo(odelin2); for a demonstration.

Original Author: Shunro Watanabe

6.5.2.3 Frobenius Series Method for Solving ODEs

Name of package: \text{odeseries}

Description: Contains a package that implements the Frobenius series method. This is usually run from the \text{ode} package with the \text{odeseries} option. See “First and Second Order Ordinary Differential Equations,” page 185.

\text{odeseries}\((\text{diffq, dependent\textunderscore variable, independent\textunderscore variable})\) \hspace{1cm} \text{Function}

Computes the solution of second-order linear ordinary differential equations by the method of Frobenius (substitution of infinite series), where \text{diffq} is a differential equation of the form

\[f(x)\diff(y,x,2)+g(x)\diff(y,x)+h(x)y = 0 \]

and where \(y\) and \(x\) are the dependent and independent variables.

The dependencies must be established ahead of time by, for example, \text{depends}(y,x);. The program determines the recurrence relation, and, if that is a function of only one subscripted variable, goes on to determine a complete solution in terms of an infinite series or a sum of infinite series.

numterms default: 5 \hspace{1cm} \text{Option Variable}

If set to another value, this option variable causes the diagnostic routine to compute a different number of terms for the Taylor coefficients when determining the nature of the singularities and truncates an approximate solution (if necessary) at that value.

If the recurrence relation is complicated, \text{odeseries} returns a truncated series. Relations such as \(a[n]=a[n-1]+a[n-2]\) can force this behavior. When this happens, the relation is printed and the program produces a truncated series solution using this option variable.

Routine \text{odeseries} produces answers containing the logarithmic, gamma, and psi (digamma) functions when \text{closedform} is false. (These functions are denoted \text{log}, \text{gamma}, and \text{psi}[0].)
Compatibility note: Previous versions of odeseries returned answers in terms of the functions fff, Pochhammer, and harm. The functions fff and Pochhammer (which are identical) can be expressed in terms of the gamma function, and psi[0] can be expressed in terms of harm.

\[
\text{fff}(exp, n)\quad \text{Function}
\]

For \(n \geq 1\), fff is defined as follows: \(\text{fff}(exp, n) = exp(exp + 1)(exp + 2)\ldots(exp + n - 1)\). For \(n = 0\), and \(exp \neq 0\), fff is 1.

\[
\text{harm}(exp, n)\quad \text{Function}
\]

\(\text{harm}(exp, n)\) is the partial sum of the harmonic series: \(\text{harm}(exp, n) = \sum_{k=1}^{n} \frac{1}{exp+k}\). Clearly, \(\text{harm}(1,n) = \sum(1/(1+k), k, 1, n)\). This function is defined in terms of the harmonic function: \(\text{harm}(a,n) = \text{harmonic}(n, 1, a)\) (see page 57).

\[
\text{verbose1 default: true}\quad \text{Option Variable}
\]

If false, prints diagnostic information about the equation. For example, it tells whether the point at which the solution is found is an ordinary or a singular point, or whether the roots of the indicial equation are equal or differ by an integer (which means that there is a logarithmic term in the solution).

\[
\text{pointexpand default: 0}\quad \text{Option Variable}
\]

If set to any value other than zero, this option variable causes the diagnostics to try that point but does not solve the equation there.

At this time, the routine odeseries does not work for expressions containing transcendental or other functions in the coefficients of the \(y'', y',\) and \(y\) terms nor does it work for non-homogeneous equations. In the latter case, you can, of course, get a partial solution by making the equation homogeneous and solving with this program.

Note: When using ode with the odeseries option, you may get a solution back involving sums which contain occurrences of \('a[0]', 'a[1], or 'b[0]. Please note that to reference one of these entities, typing the "'" is necessary. That is, type 'a[0], and not a[0].

6.5.2.4 Applying Initial and Boundary Conditions to ODEs

To solve initial value problems and boundary value problems, the routine ic1 is available for first order equations, and ic2 and bc2 for second order initial value and boundary value problems, respectively. To solve arbitrary order initial value problems, use ode_conds. (See see Section 6.5.2.4, page 193.) You can use ode_ics to pose generalized initial and boundary conditions which involve equation including values and derivatives of the independent variable. (See see Section 6.5.2.4, page 193.)

\[
\text{ic1(solution, xvalue, yvalue)}\quad \text{Function}
\]

Takes as first argument a general solution to a first order differential equation, as found by ode. The second argument, \(xvalue\), is an equation for the independent variable, in the form \(x = x_0\). The third argument, \(yvalue\), is an equation for the dependent variable, in the form \(y = y_0\). Routine ic1 returns an equation obtained by restricting the general solution \(solution\) according to the initial condition specified by \(xvalue\) and \(yvalue\) together.

\[
\text{ic2(solution, xvalue, yvalue, derivativevalue)}\quad \text{Function}
\]

Takes as first argument a general solution to a second order differential equation, as found by ode. Routine ic2 then solves the initial value problem. The second argument, \(xvalue\), is an equation for the independent variable, in the form \(x = x_0\). The third argument, \(yvalue\), is an equation for the dependent variable, in the form \(y = y_0\). The fourth argument is an equation for the derivative of the dependent variable with respect to the independent variable evaluated at the point \(xvalue\). Routine ic2 returns an equation obtained by restricting the general solution \(solution\) according to the initial conditions specified by \(xvalue\), \(yvalue\), and \(derivativevalue\) together.
The function `ode_iconds` imposes the specified initial conditions on the general solution of the ordinary differential equation as found by one of Macsyma’s ODE solvers. The differential equation can be of any order. `ode_iconds` is a generalization of `ic1` and `ic2` which it calls for equations of first and second order.

Do example(ode_iconds); for an example.

See also `ic1` (page 192), `ic2` (page 192), `ode` (page 185), `ode_abc` (page 193).

`bc2(solution, xvalue1, yvalue1, xvalue2, yvalue2)`

Takes as first argument a general solution to a second order differential equation, as found by `ode2`. `bc2` then solves the boundary value problem. The second argument, `xvalue1`, is an equation for the independent variable, in the form $x = x_0$. The third argument, `yvalue1`, is an equation for the dependent variable, in the form $y = y_0$. The fourth and fifth arguments are equations for the values of these variables at another point. Routine `bc2` returns an equation obtained by restricting the general solution `solution` according to the boundary conditions specified by `xvalue1`, `yvalue1`, `xvalue2`, and `yvalue2` together.

The function `ode_abc` imposes the specified initial/boundary conditions on the general solution of the first or second order ordinary differential equation as found by one of Macsyma’s ordinary differential equation solver commands. `ode_abc` assumes that the original differential equation is first order (and hence contains arbitrary constant `%C`) if only `xcond1` and `ycond1` are specified. Otherwise, it assumes the equation is second order (and thus contain arbitrary constants `%K1` and `%K2`). The `xcondi` are equations (of the form $x = x_i$) specifying values of the independent variable, while the `ycondi` are equations involving the dependent variable and its derivative at the corresponding x_i [e.g., $x = 0$ and $y + y' = 1$]. This function is a generalization of `ic1`, `ic2` and `bc2`.

Do example(ode_abc); for an example.

6.5.2.5 Changes of Variables in ODEs

`ode_indeptran(diffeq,y,x,z,f)`

The function `ode_indeptran` will transform the ordinary differential equation `diffeq` in $y(x)$ to an equation in $y(z)$ using the relationship $z = f(x)$. The function `ode_indeptran` works for ordinary differential equations of arbitrary order.

Do example(ode_indeptran); for an example.

6.5.3 Approximate Symbolic Solutions of ODEs

6.5.3.1 Lindstedt’s Perturbation Method

Name of package: lindst

Description: The Lindstedt package implements Lindstedt’s perturbation method (also known as the method of strained coordinates, or the Poincare–Lighthill–Kuo method) for weakly periodic or autonomous perturbations of the simple harmonic oscillator. The program can be used to compute limit cycles and other periodic solutions.

`lindstedt(diffeq, perturb_var, truncation_order {, initial_conditions})`
lindlc default: 1
Option Variable

Determines how far past the truncation order the program goes when computing a limit cycle.

lindna default: 1
Option Variable

Determines how far past the truncation order the program goes when computing the periodic response of a forced oscillator.

lindic default: 0
Option Variable

Determines how far past the truncation order the program goes when computing a periodic solution with specified initial conditions.

lindstedt_delete_lc default: true
Option Variable

When set to true, any limit cycles with negative or zero amplitude at zeroth order are discarded. When this variable is set to false, all limit cycles are computed. It is usually the case that a limit cycle with a negative amplitude is equivalent to one with a positive amplitude but differs by a phase shift, so the setting true usually returns all distinct solutions and reduces the execution time.

6.5.3.2 Method of Averaging

Name of package: avg_pode

Description: The package avg_pode implements the method of averaging for periodic ordinary differential equations. The user must transform the equations into the “proper form” for averaging before using this file.

average_periodic_ode(diffqs, dep_vars, indep_var, perturb_var, truncation_order,
Function

{near_id_truncation_order})

The function average_periodic_ode computes the averaged equations corresponding to a first-order system of ordinary differential equations diffqs, which are ordered according to dep_vars, with the independent variable indep_var. The input perturb_var is the perturbation parameter. The input truncation_order determines the order to which the procedure is to be carried out, and near_id_truncation_order is an optional argument which specifies the order to which the near-identity transformation is to be computed. If this argument is not specified, or is set to zero, then the net near-identity transformation is not computed.

avg_progress default: false
Option Variable

When set to true, the program gives status reports as the averaging and composition loops execute.

avg_optimize default: true
Option Variable

When set to false, this option disables some optimization routines which speed up the program at higher orders. It is not recommended that you do this.

6.5.3.3 Method of Multiple Scales

This package implements the method of multiple scale expansions for ordinary differential equations.

multiple_scales(diffqs, vars, indep_var, perturb_var, order)
Function

m scales applies the method of multiple scales to the differential equation(s) diffqs. It constructs time scales, performs a series expansion of the dependent variables, and generates the perturbation equations. If requested, it attempts to solve the perturbation equations and identifies and removes secular terms. No attempt is made to solve the secular equations. The program binds intermediate results to E-LINES
for later reference. The modified Macsyma environment (including dependency information and \texttt{let} rule additions) is preserved upon exit to allow the user to continue the analysis interactively.

The inputs to \texttt{mscales} are

- \texttt{diffqs}: is an ordinary differential equation or a list of equations
- \texttt{vars}: is the dependent variable or a list of dependent variables
- \texttt{indep_var}: is the independent variable
- \texttt{perturb_var}: is the perturbation parameter
- \texttt{order}: is the order to which the expansion is carried out

A brief summary of the program defaults follows.

- \textbf{Default Time Scales:}
 The time scale names used internally are \texttt{\%scale0}, \texttt{\%scale1}, \ldots. The default time scales are \texttt{\%scale1 = e^t}, where \(e\) is taken to be the perturbation parameter and \(t\) is the independent variable. It is possible to override the default to use generalized monomial scales of the form, say, \texttt{\%scale0 = t}, \texttt{\%scale1 = \sqrt{e}t}, \texttt{\%scale2 = e^t}.

- \textbf{Default Dependent Variable Expansion Form:}
 The default expansion is taken to be a power series in the perturbation parameter. That is, the dependent variable \(x\) is expanded with respect to the perturbation parameter \(e\) as \(x = x_0 + ex_1 + e^2x_2 + \ldots\)

- \textbf{Default Dependent Variable Expansion Functional Dependencies:}
 The default for functional dependencies for variable expansions is to make all expansion variables depend on all scales. That is, for time scales \texttt{\%scale0} and \texttt{\%scale1} and the dependent variable expansion \(x_0 + ex_1\), the expansion variables \(x_0\) and \(x_1\) both depend on \texttt{\%scale0} and \texttt{\%scale1}. It is possible to restrict the functional dependency of any expansion variable to any subset of the time scales, if desired.

- \textbf{Default Secular Term Predicate:}
 The program uses a predicate which is applied to each term of the solution of the perturbation equation. The predicate returns \texttt{true} if the term is "secular" and \texttt{false} otherwise. The default predicate identifies any term which contains growing exponentials, logs, or rational function coefficients as secular. (The source code for the default predicate is provided below.) A facility is provided by which the user can implement his own secular predicate function.

- \textbf{Default ODE solver:}
 The program uses the Macsyma function \texttt{ode} to solve the perturbation equations by default. However, the user can provide his own solver if he so chooses. (This may be desirable when, for example, the user has a fast solver for the type of \texttt{ode} which arises in his problem.)

- \textbf{Default Canonical Simplifier:}
 The default simplifier is used by \texttt{multiple_scales} is \texttt{expand(trigreduce(expand(\%)))}. Since the type of simplification required depends on the form of the expressions generated, it is possible to provide a simplifier which will be used in place of the default.

Do \texttt{demo(m scales)}; for a demonstration. To see how to call your own secular predicate, or how to use your ordinary differential equation solver, do \texttt{usage(m scales)}; For details of the mathematical technique, see Kevorkian and Cole [KevCole], Rand and Armbruster [RandAr], and Nayfeh [Nayfeh].

Numerous options allow the user to experiment with different variable expansions.
multiple_scale_dontsolve default: false

When true, multiple_scales generates the perturbation equations but doesn’t solve them.

multiple_scale_programmode default: false

When false, multiple_scales binds some quantities to e-labels and displays them, and returns a list of E-LINES. When true, multiple_scales returns a list of lists containing the quantities which would normally be bound to E-LINES. In order of occurrence, these are the dependent variable expansions, the perturbation equations, the time scale definitions, the secular equations, the unsolved perturbation equations, and the perturbation equation solutions.

multiple_scale_taylor_expand default: true

When not false, multiple_scales does a Taylor expansion on the result obtained by substituting in the dependent variable expansions and differentiating. This is done before collecting coefficients of powers of the perturbation parameter. Otherwise, the Taylor expansion is not performed.

multiple_scale_ode_solver default: false

When this option variable evaluates to false or to multiple_scale_ode_solver then multiple_scales calls ode to solve a differential equation. Otherwise, the function specified by this variable is applied to a list containing a differential equation, the dependent variable, and the independent variable. See below for detailed instructions on how to use your own ODE solver.

multiple_scale_secular_predicate_name default: false

When this option variable evaluates to false or to multiple_scale_secular_predicate_name then multiple_scales uses its default predicate to identify secular terms. Otherwise, the function specified by this variable is mapped over solutions returned by the ode solver. This function must accept two arguments – the first being the term to inspect, and the second being the independent variable. See below for detailed instructions on how to use your own secular predicate.

multiple_scale_simplifier default: false

When this option variable evaluates to false or to multiple_scale_simplifier, then multiple_scales simplifies expressions with the default simplification function:

\[
\text{lambda}([\text{foo}], \text{expand}(\text{trigreduce}(\text{expand(foo))))).
\]

Otherwise, the function (or lambda expression) is mapped over the expression. Should you wish to use your own simplifier, it must take exactly one argument.

multiple_scale_constant_name default: ms

is the stem which numbers are concatenated to in order to generate unique names for constants of integration from ode. This can be reset to any symbol of your choice.

multiple_scale_time_scales default: []

When set to a list of the form [expr0, expr1, ...] then multiple_scales uses time scales %scale0 = expr0, %scale1=expr1, When set to a list of the form [name0=expr0, name1=expr1, ...] then multiple_scales uses the specified names for the time scales. The default setting is equivalent to the setting [%scale0=t, %scale1=e^t, %scale2=e^2t] where e is the perturbation parameter and t is the independent variable.

multiple_scale_expansion_orders default: []

This option variable defines the monomials in the perturbation parameter which will be used in the expansion of the dependent variables. For example, the expansion \(x = x_0 + e \times x_1 + e^2 \times x_2 \) would correspond to \([1, e, e^2]\). If several dependent variables are given, you can specify the expansion orders in a list of lists, with each sublist containing the desired expansion variables of the corresponding dependent variable.
multiple_scale_expansion_independencies default: []

Option Variable

This option variable specifies the time scales of which each dependent expansion variable will be independent. The default setting of this option variable specifies that all expansion variables will depend on all time scales. (It is sometimes necessary to restrict functional dependencies of expansion variables to avoid inconsistent secular equations.)

This variable must be specified as a list of lists, one list for each dependent variable. Each sublist should contain a list for each dependent expansion variable, where the entries of the lists are time scales which the corresponding expansion variable will not depend on. (Trailing empty lists may be excluded, if desired.) If an atom appears which is not in a list, it is interpreted to mean that all following lists for that group of expansion variables are independent of it.

Consider an equation in one dependent variable \('\text{diff}(x,t,2)+x+e\cdot x^3=0\). If this is expanded to second order with the default time scales, then the following expansion will be used:

\[
x = x0(%scale0,%scale1,%scale2) + e\cdot x1(%scale0,%scale1,%scale2) + e^2\cdot x2(%scale0,%scale1,%scale2)
\]

If we now set \textit{multiple_scale_expansion_independencies} to \([[[%scale2],[1],[1]]\) then the resulting expansion will be

\[
x = x0(%scale0,%scale1) + e\cdot x1(%scale0,%scale1,%scale2) + e^2\cdot x2(%scale0,%scale1,%scale2)
\]

Setting \textit{multiple_scale_expansion_independencies} to \([[[%scale2],%scale1]]\) yields the expansion

\[
x = x0(%scale0,%scale1) + e\cdot x1(%scale0,%scale1,%scale2) + e^2\cdot x2(%scale0,%scale1,%scale2)
\]

\subsection{6.5.3.4 Taylor Series Solutions of ODEs}

\textbf{Description:} \textit{taylor} is a Macsyma out-of-core file which computes local Taylor series solutions of ordinary differential equation initial value problems. It can handle systems of differential equations of arbitrary order.

\textbf{Note:} The current version of \textit{taylor} is not guaranteed to find all possible solutions. In particular, it finds only those solutions that can be expressed as a true power series. \textit{tayu_ode} does not find Frobenius series solutions.

The main function in \textit{taylor} is called \textit{taylor_ode}. The calling sequence is:

\begin{verbatim}
taylor_ode(diff_eqs,dep_vars,indep_var,order,ic_list)
\end{verbatim}

Where \textit{diff_eqs} is an equation (or list of equations), \textit{dep_vars} is the dependent variable (or list of dependent variables), \textit{indep_var} is the independent variable, \textit{order} is the desired order of the series solution, and \textit{ic_list} is a list (or list of lists) of initial conditions, corresponding to \textit{eqs}.

\textbf{Examples}

(c1) eq1: ['\text{diff}(x,t)=y', '\text{diff}(y,t)=-x];

dx dy
dt dt
(\text{c1})

(d1)

\[
[-= y, -- = -x]
\]

dt dt

(c2) taylor_ode(eq1,[x,y],t,4,[0,[1],[0]]);

\[
t^2 t^4 t^3
\]

(d2)/T/ [[x = 1 - -- + -- + . . . , y = - t + -- + . . .]]

2 24 6
(c3) /* solve a second order equation. the initial values are x(0)=a, x'(0)=b. */
eq[2]: 'diff(x(t),2)=x+%e^(-c*t*'diff(x(t),t));
dx 2 c t --
d x dt
(d3) --- = %e + x
2
dt
taylor_ode(eq[2],x,t,4,[0,a,b]);
2 3
(a + 1) t (b c + b) t
(d4)/T/ [[x = a + b t + ----------- + -----------
2 6
2 2 4
(b c + (2 a + 2) c + a + 1) t
+ --------------------------- + . . .]]

6.5.4 Numerical Methods for Ordinary Differential Equations

6.5.4.1 Runge–Kutta Method

This package numerically integrates explicit ordinary differential equations from an initial point using the 4th-order Runge–Kutta method for first-order ordinary differential equations. A facility for transforming higher-order explicit equations into a first-order system is provided. See also ode_.numsol, page 199.

runge_kutta(equation, dep_var, indep_var, dep_var_init, indep_var_start, indep_var_end, stepsize)

This calling format is for general explicit equations. The input equation is an ordinary differential equation (or a list of such equations); dep_var is the dependent variable (or list of dependent variables); indep_var is the independent variable; dep_var_init is an equation (or list of equations) specifying the required initial conditions in terms of the ’at special form; indep_var_start and indep_var_end are the start and endpoints of the integration range in steps of size stepsize.

runge_kutta(equation, dep_var_init, indep_var_start, indep_var_end, stepsize)

This calling format is for equations of the form dy[i]/dx = f[i](x,y[j]). With this calling format, equation is the right-hand side (for list of right-hand sides) of the ordinary differential equations. dep_var_init, which specifies the initial conditions, must be a list of floating-point numbers. The start and endpoints of the integration range are given by indep_var_start and indep_var_end. They are defined in terms of the step size stepsize.

runge_kutta returns an association list of lists describing the numerical results of integration for the independent variable, the dependent variable, and its derivatives. See assoc, page 327. Do example(plot_ode) for an example of plotting the solution of a differential equation. Also, do demo(rugkut); for a demonstration of using an association list to plot the solution to sample problems.

Since the top-level runge_kutta routine handles many different cases, it is not the most efficient interface to the internal tools of the package. Macsyma users who wish to do their own error checking and reformulation of their problems into appropriate forms, can use the following routines.

runge_1(equation, dep_var_init, indep_var_start, indep_var_end, stepsize)

Routine runge_1 is the internal routine for numerically solving a single first order ordinary differential equation. The arguments are the same as runge_kutta above for a single ordinary differential equation in implicit form. Unlike runge_kutta, routine runge_1 assumes its arguments are of the correct type.
(a function, followed by four floating-point numbers). The returned value is the same as `runge_kutta` returns in this case.

`runge_n(equation, dep_var_init, indep_var_start, indep_var_end, stepsize)`

Function

Routine `runge_n` is the internal routine for solving a system of first order ordinary differential equations. The arguments are the same as `runge_kutta` above for a system of ordinary differential equations in implicit form. Unlike `runge_kutta`, routine `runge_n` assumes its arguments are of the correct type (a list of functions, a list of floating-point numbers, and three floating-point numbers). The returned value is the same as `runge_kutta` would return in this case.

`convert_odes_to_first_order_system(equation, dep_vars, indep_vars, {initial_conditions})`

Function

This function converts a list of higher order ordinary differential equations into a (longer) list of 1st order ordinary differential equations by introducing new variables. It attempts to return the entire set of equations in the form \(\frac{dy_1}{dx} = f_1(x, y_1, y_2, \ldots), \frac{dy_2}{dx} = f_2(x, y_1, y_2, \ldots), \ldots \). The first argument, `equations`, is a list of differential equations to be converted to a first-order system. The second argument, `dep_vars`, is a list of the dependent variables. The third argument, `indep_var`, is the same independent variable used in the equations, and the optional fourth argument provides a way to have the same substitutions made automatically in other equations—for example, in order to derive the new initial conditions.

6.5.4.2 Other Runge–Kutta Methods

Description: This package contains programs which numerically integrate explicit ordinary differential equations from an initial point with a 4th-order or 5th-order Runge–Kutta method using a non-adaptive method or a 5th-order adaptive method for first-order ordinary differential equations. Macsyma also provides a facility for transforming higher-order explicit equations into a first-order system.

`ode_numsol(diffeqs, dep_var, indep_var, dep_var_init, indep_var_start, indep_var_end, stepsize {,method})`

Function

Computes a numerical solution to the ordinary differential equation or system of equations `diffeqs`, using one of several methods of integration.

- a non-adaptive fourth or fifth order Runge–Kutta method
- a fifth order non-adaptive Runge–Kutta method

The inputs to `ode_numsol` are:

- `diffeqs` is an ordinary differential equation (or a list of such equations).
- `dep_var` is the dependent variable (or list of dependent variables),
- `indep_var` is the independent variable.
- `dep_var_init` is an equation (or list of equations) specifying the required initial conditions in terms of the 'at special form.
- `indep_var_start` and `indep_var_end` are the start and endpoints of the integration range.
- `stepsize` is the size of the steps to be taken in the integration range.

The optional argument `method` determines which integration scheme to use: 'rk4, runge_kutta4' (Default) select a 4th order Runge-Kutta scheme while 'rk5, runge_kutta5' select an adaptive 5th order Runge-Kutta scheme.
ode_numSol returns an association list of lists describing the numerical results of integration for the independent variable, the dependent variable, and its derivatives. See assoc, page 327. The format and meaning of arguments and returned values are analogous to those for runge_kutta, page 198.

Do example(odesol); for an example. Do demo(odesol); for a longer demonstration, including using association list to plot the solution to sample problems.

The numerical solution may be plotted by plot_ode, Section Section 6.5.4.4, page 201.

6.5.4.3 Solving Stiff Differential Equations

A stiff set of differential equations is one in which there are two or more different scales of the independent variable on which the dependent variable changes. Stiff problems commonly arise in many areas of physics and engineering. Stiff problems often require specialized numerical methods because, with ordinary methods, resolving the smallest scale, leads to unreasonable large efforts to resolve the longer scales. For example, in plasma physics, the two characteristic time scales of oscillations of an ion-electron plasma are the electron frequency and ion frequency. These two frequencies differ by a factor of approximately 400. Thus, resolving a single ion period requires integrating for over 400 electron periods.

odes stiff(diffeq, dep_var, indep_var, dep_var_init, indep_var_start, indep_var_end, stepsize)

Function

Numerically integrates stiff systems of ordinary differential equations from an initial point using a fourth-order Rosenbrock method. A facility for transforming higher-order explicit equations into a first-order system is provided.

The inputs to odestiff are:

- **diffeq** is an ordinary differential equation or a list of such equations.
- **dep_var** is an ordinary differential equation or a list of such equations.
- **indep_var** is the independent variable.
- **dep_var_init** is an equation or list of equations specifying the required initial conditions in terms of the 'at special form.
- **indep_var_start** and **indep_var_end** are the start and endpoints of the integration range in steps of size stepsize.

Do example(odes stiff); for an example.

A number of option variables control the behavior of odestiff.

stiff eps default: 1.d-6

The solution is computed to a relative error tolerance of stiff eps.

stiff_kount default: 0

stiff_kount is returned as the number of step needed to compute the solution to the desired accuracy. Thus, stiff_kount is proportional to the number of function and jacobian evaluations needed to compute the solution.

stiff_nmax default: 50

No more than stiff_nmax first order equations may comprise the system.

stiff_maxstep default: 10000

No more than stiff_maxstep steps will be taken if the timestep grows too small.
6.5. Ordinary Differential Equations

6.5.4.4 Plotting Numerical Solutions of Differential Equations

\texttt{plot_ode}(\texttt{deq}, \texttt{dep_var}, \texttt{indep_var}, \texttt{dep_var_init}, \texttt{indep_var_start}, \texttt{indep_var_end}, \texttt{stepsize}, \texttt{meth})

Plots the numerical solution of the differential equation \texttt{deq} vs. the independent variable \texttt{indep_var} from \texttt{indep_var_start} to \texttt{indep_var_end}. \texttt{ode_numsol} performs the numerical integration using default \texttt{stepsize} and optional method \texttt{meth}.
Do example(\texttt{plot_ode}); for an example.
See also \texttt{ode_numsol}, page 199.

6.5.4.5 Generating Finite Difference Approximations

Name of package: \texttt{fdif_pde}

\textbf{Description:} This package provides a function which derives finite difference representations for partial differential equations. Equations can involve mixed partial derivatives up to second order in the independent variables.

\texttt{difference_pde}(\texttt{pde_list}, \texttt{y_l}, \texttt{x_l}, \texttt{yd_l}, \texttt{dx_l}, \texttt{xmethod}, \texttt{t}, \texttt{dt}, \texttt{tmethod})

The output of the function is a list of finite difference equations (or a single finite difference equation, if the single input equation is specified without being a list).
The arguments represent the following:

\texttt{pde_list} A list of (partial) differential equations. If there is only one equation, it need not be specified as a list.
\texttt{y_l} A list of dependent variables. If there is only one dependent variable, it need not be specified as a list.
\texttt{x_l} A list of independent variables (possibly excluding the time variable; see \texttt{t_list} below). If there is only one independent variable, it need not be specified as a list.
\texttt{yd_l} A list of names for discretized dependent variables. If there is only one variable, it need not be specified as a list. The length of the list should be the same as the length of \texttt{y_l}.
\texttt{dx_l} A list of names for \texttt{dx} variables.
\texttt{xmethod} A list of the names of the discretization methods used for the independent variables. The choices are:

- \texttt{central}: central difference scheme is used
- \texttt{forward}: forward difference scheme is used
- \texttt{backward}: backward difference scheme is used
- \texttt{user}: user-specified difference scheme, using difference expressions which the user has assigned to the arrays \texttt{my_dydx[iy,ix]}, \texttt{my_dydx2[iy,ix,jx]}.

If the list \texttt{xmethod} methods is shorter than the list \texttt{dx_l}, then \texttt{xmethod} is extended to the length of \texttt{dx_l}, by repeating the last specified member of the list of methods.
The remaining arguments are optional; either all three or none of them should be specified. The purpose of specifying this independent variable separately from the others is to give it a differencing method which is appropriate for a time-like variable and not for the other independent variables.
t Name of the independent variable.
\(dt \) Name of the differencing increment in the variable \(t \).

tmeth The differencing method to be used for the variable \(t \). This variable should be specified only if \(t \) and \(dt \) are specified. The options are:

- **central**: central difference scheme
- **exp_euler**: explicit Euler method
- **imp_euler**: implicit Euler method
- **user**: user-specified difference scheme using difference expressions which the user has assigned to the arrays \(\text{my}_y[iy] \), \(\text{my}_y[iy,ix] \), \(\text{my}_y[iy,ix] \), and \(\text{my}_y \) (not an array).

If the partial differential equation being processed includes mixed derivatives with respect to \(x \) and \(t \), then the user option can be exercised only if both the **xmethod** and **tmeth** for that term are set to 'user'.

Do `demo(fdif_pde)` for a demonstration.

See also the package `fdiff`. Do `demo(fdiff)` for a demonstration.

6.6 Optimization and Control

6.6.1 Transfer Functions of Linear Differential Control Systems

Consider a set of equations in state-variable form

\[
\begin{align*}
\dot{y}(t) &= a \cdot y(t) + b \cdot u(t) \\
z(t) &= c \cdot y(t) + d \cdot u(t)
\end{align*}
\]

where \(y \) is an \(n \)-vector of system states, \(u \) is an \(m \)-vector of system inputs, \(z \) is a \(k \)-vector of system outputs, \(a \), \(b \), \(c \), and \(d \) are appropriately dimensioned constant matrices, and \(. \) denotes matrix multiplication. The function `transfer_matrix` computes the transfer function matrix associated with this system.

transfer_matrix Function

Returns the transfer function matrix of a linear multi-variable time-independent system described by state-space equations, as in the example above. It also stores the transformed matrices in the system variable **phase_variable_matrices**.

The inputs of the program are:

- \(a \), \(b \), \(c \), and \(d \) are the matrices as defined in the equations above.
- \(\text{var} \) is the independent variable of the matrix transfer function.

transfer_phase_vars Option Variable

`transfer` will transform the input matrices into “phase-variable form” unless this option variable is set to `false`. This is accomplished by means of the first invertible transformation to phase-variable form (TPVF) matrix which is computed by the algorithm.

phase_variable_matrices System Variable

This variable contains a list of the transformed matrices, in the same order as the function call, and the TPVF matrix which was used to perform the transformation.
\section*{6.6. OPTIMIZATION AND CONTROL}

\subsection*{6.6.2 Analytic Optimization}

Name of package: \texttt{optmiz}

\textbf{Description:} Type \texttt{load(optmiz)}; to load a package for finding the stationary points of a multivariate objective function, either unconstrained or subject to equality and/or inequality constraints.

\texttt{stap(objective, lezeros, eqzeros, decisionvars)} \hfill \textit{Function}

For this function

- \textit{objective} is an expression denoting the objective function or the label of such an expression.
- \textit{lezeros} must evaluate to a list of expressions constrained to be less than or equal to zero. Use [] if there are no such constraints.
- \textit{eqzeros} must evaluate to a list of expressions constrained to equal zero, or the label of such a list. Use [] if there are no such constraints.
- \textit{decisionvars} must evaluate to a list of decision variables. Use [] if all variables in \textit{objective}, \textit{eqzeros}, and \textit{lezeros} are decision variables. For convenience, brackets can be omitted from one-expression lists, and trailing [] arguments can be omitted. The action of this function is affected by the option variable \texttt{rootepsilon}. See Section 5.7.2.2, page 129.

The class of functions that can be used and the practical limitations on the number of decision variables and constraints is dependent primarily upon the capabilities of the built-in function \texttt{solve}.

\subsection*{6.6.3 Calculus of Variations}

Name of Package: \texttt{optvar}

\textbf{Description:} Type \texttt{load(optvar)}; to load a variational optimization package to solve analytically problems from the calculus of variations and the maximum principle, including optimal control.

The following function derives the Euler–Lagrange equations for a problem in the calculus of variations.

\texttt{el(f, ylist, tlist)} \hfill \textit{Function}

Here \textit{f} is an expression or label of an expression for the integrand of a stationary functional, augmented by Lagrange multipliers times the integrands of any isoperimetric constraints and/or differential expressions constrained to equal zero. In the latter case, the multipliers should be written as functions of the independent variables. The input \textit{ylist} must evaluate to a list of the dependent variables and \textit{tlist} must evaluate to a list of the independent variables.

For the sake of convenience, square brackets can be omitted from 1-element lists. \texttt{el} displays one or more \texttt{E-LINE} equations and returns a list of the \texttt{E-LINES}. These equations are the Euler–Lagrange equations, perhaps together with first integrals corresponding to conservation of energy and/or conservation of momentum. The former contains a constant of integration \texttt{k[0]}, whereas the latter contains constants of integration \texttt{k[i]}, with positive \texttt{i}. The latter immediately follows from the corresponding Euler–Lagrange equation.

\textbf{Examples}

The following example solves the brachistome problem: A bead will slide along a wire connecting two given points; find the shape of the wire so that the travel time is minimized. Given the integrand of the relevant function, Macsyma finds the single Euler–Lagrange equation. This non-linear ordinary differential equation is solved to obtain the usual cycloid solutions.
(c1) load(optvar)$
(c2) derivabbrev:true$
(c3) depends(y,x)$
(c4) sqrt(1+diff(y,x)^2)/sqrt(y);

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}}
\]

(d4)

\[
\frac{\sqrt{y}}{\sqrt{y}}
\]

(c5) e1(%y,x);

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}}
\]

(e5)

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}} = k
\]

(e6)

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}} = \frac{2}{3/2} \frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}}
\]

(d6)

\[
[e5, e6]
\]

(c7) ratsimp(ev(lhs(e6),diff)-rhs(e6));

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}}
\]

(d7)

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}}
\]

(c8) part(%i,1,2);

(d8)

\[
\frac{2}{x} \frac{\sqrt{y+1}}{\sqrt{y}}
\]

(c9) ode2(%y,x,x);

(c10) radcan(subst(2*log(%k3), %k1, %));
The following function derives the Hamiltonian and auxiliary differential equations for an optimal control problem.

\[\begin{align*}
\frac{2}{\sqrt{1 - \%k3 \ y}} & \quad \text{atan}(---) + \%k3 \ \sqrt{y} \ \sqrt{1 - \%k3 \ y} \\
\%k3 \ \sqrt{y} & \quad = x + \%k2
\end{align*} \]

The function \texttt{ham(odes)}

\texttt{Function}

The argument \textit{odes} must evaluate to a list of first-order differential equations that govern the state variables. Each differential equation must be of the form

\[\frac{d(y, t)}{dt} = \text{expression} \]

where \(y \) is one of the dependent variables, \(t \) is the independent variable, and \(\text{expression} \) depends upon the independent, dependent, and control variables.

The function \texttt{ham} displays two or more \texttt{E-Lined} expressions, then returns a list of the \texttt{E-Lines}. The first expression is the Hamiltonian, and the other expressions are the auxiliary differential equations, together with their general solutions, \(\text{aux}[i] = k[i] \), whenever the \(i^{th} \) differential equation is of the trivial form \(\frac{d(\text{aux}[i], t)}{dt} = 0 \). The \(k[i] \) are undetermined constants of integration.

The function \texttt{ham} is directly suitable for the autonomous time-optimal problem. Other problems can be converted to this form by introducing extra state variables, as described in most optimal-control texts or in [St3].

6.6.4 Numerical Optimization

Name of package: \texttt{minfunc}

This package contains functions which find the minimum of a specified univariate scalar function by numerical methods. The main function in the package is \texttt{min_function}.

\texttt{min_bracket(xa,xb,func)}

\texttt{Function}

Given function \textit{func} and distinct initial points \(xa \) and \(xb \), \texttt{min_bracket} returns three points \([xa, xb, xc]\) which bracket a minimum of the function. This means that these conditions are satisfied:

\((xa < xc < xb \quad \text{or} \quad xa > xb > xc) \) \quad and \quad \(f(xb) < f(xa) \) \quad and \quad \(f(xb) < f(xc) \)

The routine also returns the values of \textit{func} at the three points, returning the list \([[xa, xb, xc], [f(xa), f(xb), f(xc)] \])

If the inputs to \texttt{min_bracket} are given as double-precision numbers, then the bracketing values are returned in double precision.

\texttt{min_function(xa,xb,xc,f)}

\texttt{Function}

Finds a minimum of a univariate scalar function \(f \) by Brent’s method, starting with a bracketing triple of points, such as is produced by \texttt{min_bracket}. If \texttt{verbose=true} then each intermediate guess \([xmin, f(xmin)]\) is printed on each iteration.
If the inputs to \texttt{min_function} are given as double-precision numbers, then the bracketing values are returned in double precision.

\texttt{min_dfunction}(xa,xb,xc,f,df)

Function

Finds a minimum of a univariate scalar function \(f \) by Brent's method with derivative \(df \), starting with a bracketing triple of points, such as is produced by \texttt{min_bracket} (see below). If \texttt{verbose=true} then each intermediate guess \([x_{\text{min}}, f(x_{\text{min}})]\) is printed on each iteration.

If the inputs to \texttt{min_dfunction} are given as double-precision numbers, then the bracketing values are returned in double precision.

\texttt{min_search_tol} default: \([\text{sqrt}(\text{least positive float})]\)

Option Variable

Floating point number such that if \(|(x_1 - x_2)/((x_1 + x_2)/2)|\) exceeds this limit, then \texttt{min_function} treats \(x_1 \) and \(x_2 \) as separate points.

For values of \(x \) very near zero, \texttt{min_function} overrides \texttt{min_search_tol} by applying the test that the points are considered distinct if \(|x_1 - x_2| > \texttt{min_search_epsilon}|\).

\texttt{min_search_epsilon} default: \([1.0e-9]\)

Option Variable

Floating point number such that if \(|x_1 - x_2|\) exceeds this limit, then \(x_1 \) and \(x_2 \) are considered to be distinct points by \texttt{min_function} regardless of the fractional difference \(|(x_1 - x_2)/((x_1 + x_2)/2)|\).

Do \texttt{demo(minfunc)}; for a demonstration.

These commands are adapted from \textit{Numerical Recipes}, by Press, Flannery, Teukolsky and Vetterling.

6.6.5 Linear Programming

Macsyma offers the following for linear programming problems.

\texttt{lp_by_simplex}(objfun \{, [constraint1,\ldots, constraintM], \} \{[v1,\ldots, vN]\}) Function

Applies the simplex algorithm, maximizing the linear objective function of \(N \) variables \(\texttt{objfun} = a[0,1]*v1 + \ldots + a[0,N]*vN \) subject to the primary constraints \(v1 \geq 0,\ldots, vN \geq 0 \), and simultaneously subject to \(M \) additional linear constraints

\[
\begin{align*}
 a[i,1]*v1 + \ldots + a[i,N]*vN &\leq b[i] \quad i = 1,\ldots, m1 \\
 a[j,1]*v1 + \ldots d\quad dots + a[j,N]*vN &\geq b[j] \quad j = m1+1,\ldots, m1+m2 \\
 a[k,1]*v1 + \ldots + a[k,N]*vN &\quad = b[k] \quad k = m1+m2+1,\ldots, M
\end{align*}
\]

Be sure to check that the objective function and the constraints are fully expanded and all the coefficients \(a[m,n] \) must be numbers. Bigfloats and ratsnums are not supported. \texttt{simplex} returns as its value a list containing the maximum of the objective function (or \texttt{no_solution} if no solution satisfies the given constraints or \texttt{inf} if the solution is unbounded) followed by the solution list.

Do \texttt{example(lp_by_simplex)}; for an example.

\texttt{lp_by_simplex} will return unreliable results when any numbers in the \texttt{objfun} or \texttt{constraints} are bigfloats or ratsnums.

6.7 Partial Differential Equations

6.7.1 Lie Symmetries and Symbolic Solutions of PDEs

Name of package: \texttt{pdelie}

Original Author: Peter Vafeades
This package analyzes differential equation systems using Lie symmetry group methods. The analysis starts by determining the symmetry vector fields for the particular differential system, be they geometric or of Bessel–Haagen type. The user may then compute structure constants for Lie subalgebras generated by the symmetry vector fields. Lie algebras or subalgebras may then be used to reduce the differential system to one involving fewer dependent and independent variables. This usually leads to either an ordinary differential equation or an algebraic system. The reduced equations sometimes can be solved to give explicit symbolic solutions for the original system of equations. When the system is variational, the user may compute the Noether conservation laws of the system.

The package provides the following features:

- **Automatic computation of symmetry vectors**
 pdelie proceeds unassisted by the user to compute the complete set of symmetry vectors for the system in many cases.

- **Generalized symmetry computation**
 pdelie automatically solves for Bessel–Haagen generalized symmetries of the order selected by the user through the pl_eor global option variable.

- **Algebraic constants**
 When the system involves simple algebraic parameters, pdelie computes symmetries and similarity solutions.

- **Lie algebras**
 The structure constants of Lie subalgebras generated by the symmetry vector fields can be computed using pdelie.

- **Differential invariants**
 The differential invariants for symmetry vectors are computed automatically.

- **Similarity analysis and similarity solutions**
 The differential invariants may be used to reduce the differential solution. pdelie computes the similarity solutions to a great number of systems of ordinary as well as partial differential equations of many types, linear as well as nonlinear, coupled or uncoupled.

- **Euler operators**
 pdelie can compute the result of applying regular or extended Euler operators to an expression.

- **Conservation laws**
 For variational systems, the Noether conservation laws and the generalized or Bessel–Haagen conservation laws may also be computed.

\texttt{pl_symmetry(pl_eq,pl_dv,pl_iv,pl_par,pl_vl)}

Function

Automatically begins the computation of the Lie symmetry vectors of the system. Often a complete analysis is possible in which case the output consists of a list of single-parameter Lie symmetry vectors. In verbose mode (\texttt{pl_verbose} set to true), each vector field is displayed on a distinct \texttt{E-LINE}.

If the system can not be analyzed completely by \texttt{pl_symmetry} the user is provided with partial results as well as a list of the remaining equations of the determining system that were not solved. This command returns a list of all symmetry vectors of the system.

\texttt{pl_check(vector)}

Function

Checks whether a user-provided vector is indeed a symmetry vector for the system. The command returns a boolean value which indicates whether the vector satisfies the determining system. \texttt{pl_check} is automatically run on each single parameter vector before being displayed by \texttt{pl_symmetry}.

\textbf{6.7. PARTIAL DIFFERENTIAL EQUATIONS}
pl_liebracket(vector1, vector2) \hspace{1cm} Function

Computes the Lie bracket of two vectors.

pl_comtab(list of vectors) \hspace{1cm} Function

Computes the structure constants of a list of vectors. When all vectors in the list are in involution \(i.e.\) structure constants exist for all combinations \(i.e.\) we then have a Lie subalgebra of dimension \(n\) where \(n\) is the number of independent vectors in the list of vectors.

If any two vectors are not in involution the user is notified.

The structure constants are stored in the global variable \(pl_{stcon}\), which is an \(n \times n\) array of lists of structure constants. Typically, if the Lie algebra is made up of \(n\) vectors \([v_1, v_2, v_3, \ldots, v_n]\), we get \(pl_{stcon}[i, j]\) equal to \([A_1 = \text{fixnum1}, A_2 = \text{fixnum2}, \ldots, A_n = \text{fixnumn}]\) which indicates that \(\text{liebracket}(v_i, v_j) = \sum_k A_k v_k\)

When the Lie bracket of two vectors is zero, the corresponding entry in \(pl_{stcon}\) is zero. If two vectors are not in involution, then the corresponding entry in \(pl_{stcon}\) is \(-1\).

pl_solve(vector) \hspace{1cm} Function

pl_solve(lie-subalgebra) \hspace{1cm} Function

The symmetry vector or each vector in the Lie subalgebra is used to compute differential invariants. In verbose mode \(i.e.\) \(pl_{verbose}\) must be set true by the user) each differential invariant is displayed on its own E-LINE.

These invariants are then used to compute reduced versions of the differential system involving fewer independent and dependent variables. The new variables are named \(\%x\#\) where \# is a fixnum which starts with one and increments. In verbose mode, the reduced differential systems are displayed on distinct E-LINES.

When the reduced system becomes a system of differential equations or a single differential equation or a system of algebraic equations or a single algebraic equation, \(pl_{solve}\) attempts to solve the system for the new variables and then resolves for the original dependent variables in terms of the original independent variables.

Each symmetry vector provided to \(pl_{solve}\) must have less than two zero entries.

pl euler(dependent variable, lagrangian) \hspace{1cm} Function

Applies the familiar Euler operator with respect to the dependent variable specified to the Lagrangian, thus producing the Euler–Lagrange equation for the variational system. The order of the Euler operator is half the order of the differential system.

pl_e euler(dependent variable, list, lagrangian) \hspace{1cm} Function

Applies the extended Euler operator as specified in the list with respect to the independent variable to the Lagrangian. The order of the Euler operator is half the order of the differential system.

pl_con(pl_la, vector) \hspace{1cm} Function

\(pl_{con}\) computes the Noether conservation laws of variational systems. The symmetry vector may be geometric or generalized. The output consists of a vector whose total divergence is equal to zero or a multiple of the equations in the differential system. \(pl_{con}\) first determines whether the conservation law is variational or of divergence type and informs the user.

pl_tdiv(vector, pl_iv, pl_dv) \hspace{1cm} Function

\(pl_{tdiv}\) computes the total divergence of vector with respect to the independent and dependent variables \(pl_{iv}\) and \(pl_{dv}\) respectively.

pl_eq \hspace{1cm} System Variable

List of equations in the differential system.
6.7. PARTIAL DIFFERENTIAL EQUATIONS

\textbf{pl_dv} \\
List of dependent variables.

\textbf{pl_iv} \\
List of the independent variables.

\textbf{pl_par} \\
List of algebraic parameters.

\textbf{pl_vl} \\
List of derivative terms to be eliminated algebraically.

\textbf{pl_la} \\
Lagrangian of the system (if variational).

\textbf{pl_ev} \\
List of extended variables.

\textbf{pl_sksol} \\
List of solutions for each coefficient of the symmetry vector. Always consult \texttt{pl_sksol} when an arbitrary function is referred in a symmetry vector or there are equations which must be solved for.

\textbf{pl_eor} \\
Order of generalisation for Bessel–Haagen symmetries. Default is zero.

\textbf{pl_zout_flag default: true} \\
Controls whether \texttt{pl_zout}, an eliminator of duplicate arbitrary functions, is run.

\textbf{pl_auto_flag default: true} \\
Controls whether the second order derivatives of the dependent variable coefficient functions with respect to the dependent variables are assumed zero. For almost all physically meaningful systems this is true. (See Theorems 4.2.3-5, 4.2.3-6, 4.2.3-7 in Bluman and Kumei [BluKum]).

\textbf{pl_verbose default: false} \\
When true, verbose output is provided. \texttt{pl_symmetry} displays each vector field on an individual \texttt{e-line}. \texttt{pl_solve} displays the differential invariants as well as each reduced differential system.

The available demo files are listed below in order of increasing complexity:

- \texttt{demo(pdelie)}; - An introductory demonstration analyzes the heat equation with a scalar parameter and produces similarity solutions.

- \texttt{demo(pl_heat)}; - Computes the Lie symmetries and similarity solutions of the one-dimensional heat equation.

- \texttt{demo(pl_blasius)}; - Computes the Lie symmetries and similarity solution to the Blasius nonlinear ordinary differential equation which Macsyma cannot solve.

- \texttt{demo(pl_kdvpar)}; - Computes the Lie symmetries and similarity solutions to a nonlinear Korteweg–de Vries equation involving a scalar parameter.

- \texttt{demo(pl_one_step)}; - Computes the Lie symmetries of a nonlinear partial differential equation and similarity solutions. When a particular one-parameter symmetry vector reduces the system of an ordinary differential equation which Macsyma cannot solve, a two dimensional Lie subalgebra is used to solve the system.
• demo(pl_laplace_3d); - Computes the Lie symmetries and similarity solutions of the three-dimensional Laplace equation. Structure constants of Lie Algebra, two dimensional Lie subalgebras. Use of Euler operator, Noether conservation laws and total divergence.

• demo(pl_nls); - Computes the Lie symmetries of a nonlinear system of partial differential equations.

• demo(pl_ernst); - Similar to pl_nls.

• demo(pl_heat_3); - Computes the third order Bessel Haagen generalized symmetries of the heat equation.

• demo(pl_biharmonic); - Computes the symmetry vectors of the biharmonic in two-dimensional space. Demonstration of higher order Euler operators, conservation laws associated with geometric symmetries. This demo takes considerably more time to run than most of the others.

• demo(pl_navier); - The Navier equations are a system of coupled nonlinear Partial Differential equations involving two scalar parameters modelling linear elasticity. First, the geometric symmetry vectors are computed and then the associated Noether conservation laws. Next, generalized symmetries may be computed as well as the associated Noether conservation laws. Demos of higher order and extended Euler operators. This demo takes considerably more time to run than most of the others.

The present implementation of this package requires that each problems must be in Cartesian coordinates. Also, pl_solve uses the invariant form method which depends on Macsyma’s ode solvers to come up with differential invariants. The direct substitution method may be used when the invariant form method fails but this method has not yet been fully implemented in this package. Finally, pl_solve requires that symmetry vectors have no more than one nonzero coefficient. Similarity solutions for vectors with more than one nonzero entry may be computed.

6.7.2 Numerical Solutions of Systems of PDEs

Macsyma has a companion product called PDEase which solves systems of linear and nonlinear partial differential equations using the finite element method. It solves static and dynamic and eigenvalue problems, including elliptic, parabolic, and hyperbolic systems of PDEs in two spatial dimensions and one time dimension. It covers many application domains, such as solid elasticity, plasticity, heat transfer, radiative heat transfer, reaction-diffusion, fluid flow, and electromagnetics.

PDEase automatically generates a finite element grid, and refines the grid as necessary during the solution process to satisfy error tolerances which can be user specified. It also computes an approximate Sobolev error norm in an attempt to assure that the grid is fine enough in each part of the geometric domain, and to ensure that the solution satisfies specified error tolerances.

You can use Macsyma’s vector calculus package (vect) and tensor analysis packages (itensor and ctensor) to generate systems of PDEs as input to PDEase. Macsyma is pre-programmed to convert PDEs from coordinate-independent vector or tensor form to any of 20 orthogonal coordinate systems, and the tensor packages can handle generalized non-orthogonal coordinates. PDEase can read the differential equations generated by Macsyma.

PDEase is currently available on PCs running DOS or MS-Windows, and on SPARC workstations running SunOS. This product is available from Macsyma Inc. as a stand-alone product, or bundled with Macsyma. The product comes with its own documentation set. Contact Macsyma Inc. for more information.

6.7.3 Other Facilities for PDEs

The itensor and ctensor packages together have the capability to produce partial differential equations from compact, coordinate-independent notation, and to express them in virtually any sufficiently smooth coordinate system. (Please see Section 8 for more information).
The package `fdif_pde` can generate finite difference approximations to partial differential equations (see page 201).

6.8 Integral Equations

Name of package: **inteqn**

Original Authors: R. Bogen and D. Stoutemyer

Description: The `inteqn` package solves integral equations of various types. Both exact and approximate solution methods are included. In addition, some of the solution methods can handle systems of integral equations.

Two types of equations are considered. An integral equation of the *first kind* is of the following form:

\[
\int_{a(x)}^{b(x)} w(x, u, p(u)) \, du = f(x)
\]

An integral equation of the *second kind* is of the following form:

\[
p(x) = q \left(x, p(x), \int_{a(x)}^{b(x)} w(x, u, p(u), p(u)), du\right)
\]

The unknown function in these equations is \(p(x) \) while \(q, w, a, \) and \(b \) are given functions of the independent variable. Although these are the general forms, most of the solution techniques require particular forms of \(q \) and \(w \).

\[
\text{ieqn}(\text{eqns, unks, \{tech, napprox, guesses\}})
\]

Function

For this function:

- **eqns** the integral equation or list of integral equations.
- **unks** the unknown or list of unknowns, with dependencies given explicitly.

- **tech** (default: `first`) the technique to be attempted. **tech** can be either the name of a technique, `first`, or `all`. When the name of a technique is given, `ieqn` attempts to solve the given integral equation with the specified technique. When `tech` is specified as `first`, the solution techniques are tried sequentially, and the result of the first successful one is returned. When `tech` is specified as `all`, all routines are attempted on the equation. If an inappropriate technique is specified, `ieqn` will likely return an empty list.

- **napprox** (default: 1) specifies the order to which the approximation is to be computed (for iterative methods) or the degree of the solution expansion (for series solution methods).

- **guesses** an initial guess (or list of guesses, for systems) for the iterative methods `neumann` and `firstkindseries`.

The following techniques are used for equations of the first kind:

<table>
<thead>
<tr>
<th>Method</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlfrnk</td>
<td>exact solution</td>
</tr>
<tr>
<td></td>
<td>single separable equation of finite-rank with variable limit</td>
</tr>
</tbody>
</table>
ltran exact solution
 general systems of equations with variable limits

fffrnk2nd exact solutions
 systems of separable equations of the second kind
 of finite-rank with fixed limits

fffrnk1st exact solutions
 systems of equation of the first kind
 of finite rank with fixed limits

abeel exact solution
 Abel's equation

collocate approximate solution
 general systems of equations with fixed limits

tailor approximate solutions
 general systems of equations with variable limits

fredseries approximate solutions
 single linear equation of the second kind

neumann approximate solutions
 general systems of equations of the second kind

firstkindseries approximate solutions
 general systems of equations of the first kind

The following option variables control the behavior of \texttt{ieqn}.

\texttt{ieqnprint \ default: true} \hspace{1cm} \textit{Option Variable}

When \texttt{true}, results are printed on the terminal.

\texttt{ieqn_fredholm_eigenvalue \ default: true} \hspace{1cm} \textit{Option Variable}

When \texttt{true}, the routine which solves Fredholm equations of the second kind will look for eigenvalues.

\texttt{ieqn_volterra_taylor_order \ default: 2} \hspace{1cm} \textit{Option Variable}

The depth to which the variable-limit equation solver computes a Taylor-series expansion in order to determine appropriate constants of information. The user should never have to change this value.

\texttt{ieqn_fredholm_constants \ default: []} \hspace{1cm} \textit{Option Variable}

When set to a list of symbols, the routine which solves Fredholm equations of the second kind will not consider these symbols when searching for eigenvalues.
6.9 Operator Algebra

Name of package: \texttt{opalg}

Description: The operator algebra package makes it possible to manipulate expressions that contain only operators. “Operator algebra” means the set of algebraic rules governing the manipulation of such expressions. As the examples in this section show, the operator approach can support a manner of computation that is more natural when thought of in terms of operators.

The basic operations on operators are addition (+), composition (.), and scalar multiplication (*). Examples of these operations are shown below.

\begin{align*}
(c1) & \quad (u + v + w)(x); \\
(d1) & \quad w(x) + v(x) + u(x) \\
(c2) & \quad (u + v + w)(x, y); \\
(d2) & \quad w(x, y) + v(x, y) + u(x, y) \\
(c3) & \quad (u \cdot v \cdot w)(x); \\
(d3) & \quad u(v(w(x))) \\
(c4) & \quad (u \cdot v \cdot w)(x, y); \\
(d4) & \quad u(v(w(x, y))) \\
(c5) & \quad (2 * u)(x); \\
(d5) & \quad 2u(x) \\
(c6) & \quad (u^{-3})(x); \\
(d6) & \quad u(u(u(x))))
\end{align*}

C6 illustrates the use of Macsyma’s “\texttt{**}” non-commutative exponentiation operator to indicate repeated occurrences of non-commutative multiplication. The operation \(u^{**}n\), where \(n\) is not a non-negative integer, is left undefined.

\begin{align*}
(c7) & \quad \text{declare}(c, \text{opscalar}); \\
(c8) & \quad (u + c)(x); \\
(d8) & \quad u(x) + c x \\
(c9) & \quad (c^2 * u)(x); \\
(d9) & \quad 2 c u(x) \\
(c10) & \quad 1(x); \\
(d10) & \quad x
\end{align*}

C8 shows the addition of an operator and a scalar. That is, the scalar “1” is used for the identity operator as shown in C10, which may be left implicit as in C8. No explicit identity operator has been implemented. A scalar applied to an argument \(c(x)\) “evaluates to” \(c^{} x\).

The operations “*” and “\-” on operators is left undefined:

\begin{align*}
(c11) & \quad (u * v + u^{}2)(x); \\
(d11) & \quad (u v)(x) + (u)^{}(x)
\end{align*}

To use the operator algebra package, first load the package with the command \texttt{load(opalg)};

The operator algebra package includes the features of the partial differentiation package, described in Section 6.1.3, and the following commands and capabilities.

\begin{verbatim}
use_operators default: true

The operator algebra code will be used if, and only if, \texttt{use_operators} is set to \texttt{true}.

diffCanonicalize default: true

By default, \texttt{diff} and the operator algebra package assume that mixed partial derivatives are equal; for example, that \texttt{'diff}(f,x,1,y,1) = \texttt{'diff}(f,y,1,x,1) and \texttt{diffop}(x,1,y,1) = \texttt{diffop}(y,1,x,1). Thus, one of \texttt{diff}'s and \texttt{diffop}'s simplification rules is
\end{verbatim}
\texttt{diffop}(x, i, \ldots) \cdot \texttt{diffop}(y, j, \ldots) \cdot \texttt{diffop}(x, k, \ldots) \rightarrow \texttt{diffop}(x, i + k, y, j, \ldots)

This assumption may be turned off by setting \texttt{diff_canonicalize} to \texttt{false}.

\texttt{integconstprefix default: \%integconst} \hspace{1cm} \textit{Option Variable}

Together with \texttt{integconstnum}, this option variable gives the user control over the naming of the integration constant. \texttt{integconstprefix} is the alphabetic prefix used when generating names. \texttt{integconstnum} is the numeric suffix used. If \texttt{false}, no numeric suffix is used. (It is sometimes useful to have an unchanging name).

\texttt{diffop}(\texttt{var}_1, \texttt{num}_1, \texttt{var}_2, \texttt{num}_2, \ldots \texttt{var}_n, \texttt{num}_n) \hspace{1cm} \textit{Function}

This is the differentiation operator. The arguments to \texttt{diffop} indicate the derivative with respect to each \texttt{var}_i \texttt{num}_i times. The arguments to \texttt{diffop} are simply the latter arguments to \texttt{diff} (all but the first).

\texttt{diffop} uses the following simplification rules, where \(x, y, \) and \(z\) denote arbitrary variables, and \(i, j, k, \) and \(n\) denote arbitrary expressions (generally integers):

\begin{align*}
\texttt{diffop}(x, 0) & \rightarrow 1 \\
\texttt{diffop}(x, i, y, 0, z, k, \ldots) & \rightarrow \texttt{diffop}(x, i, z, k, \ldots) \\
\texttt{diffop}(x, i, \ldots) \cdot \texttt{diffop}(y, j, \ldots) \cdot \texttt{diffop}(x, k, \ldots) & \rightarrow \texttt{diffop}(x, i + k, y, j, \ldots) \\
\texttt{diffop}(x, i, y, j, \ldots)^{\cdot n} & \rightarrow \texttt{diffop}(x, n \cdot i, y, n \cdot j, \ldots) \\
\texttt{diffop}(x, -i, y, j, \ldots) & \rightarrow \texttt{diffop}(y, j, \ldots) \cdot \texttt{integop}(x)^{\cdot i} \quad (i > 0)
\end{align*}

\textit{Note:} The centered dot (\(\cdot\)) is used above to indicate the non-commutative multiplication operator instead of \(\cdot\).

The third rule above assumes that mixed partial derivatives are equal; for example, that \texttt{diffop}(x, 1, y, 1) = \texttt{diffop}(y, 1, x, 1). This assumption may be turned off by setting \texttt{diff_canonicalize} to \texttt{false}.

The fifth rule uses the operator \texttt{integop}, the integration operator. For more information about this operator, see page 215.

\textit{Examples}

(c1) \texttt{diffop}(x, 1, y, 2);

\begin{verbatim}
d 3 d

2 dx dy
\end{verbatim}

You can indicate, for example, the derivative with respect to \(x\) twice plus the derivative with respect to \(x\) once as shown below:

(c2) \texttt{diffop}(x, 2) + \texttt{diffop}(x);

\begin{verbatim}
d 2 d
--- + --
2 dx dx
\end{verbatim}
You can apply the operator expression above to an ordinary expression as follows:

\(\text{integop}(\text{arg}_1, \text{arg}_2, \ldots \text{arg}_n) \)

This is the integration operator.

Examples

You can indicate the double indefinite integral with respect to \(x \) plus the integral with respect to \(x \) as follows:

\[
(c1) \ \text{integop}(x^2 + \text{integop}(x) ;
(c2) \ \text{integop}(x^5) ;
(d2) \ -x + \text{integconst}2 \ x + \text{integconst}3 + \text{integconst}1
\]

There is no multiple integration operator. Instead, this is done in terms of the basic \text{integop} operator with the use of "\cdot\cdot".

The last expression may be applied to an ordinary expression as follows:

\[
(c3) \ \text{integop}(x^2, 2, 4) ;
(d3) \ -x + \text{integconst}2 \ x + \text{integconst}3 + \text{integconst}1
\]

To get correct answers when manipulating operator expressions, as in \(d2 \) above, you must use integration constants. For more information about the integration constants shown above, see the option variables \text{integconstprefix} (page 214) and \text{integconstnum} (page 214).

The \text{integop} operator can also indicate definite integration, as follows:

\[
(c4) \ \text{integop}(x^3) ;
(d4) \ 60
\]

constop(c)

This is the constant operator. It takes one argument, a constant \(c \). The operator \text{constop}(c) \) when applied to any number of arguments produces \(c \). That is,

\[
\text{constop}(c)(x, y, \ldots, z) \rightarrow c
\]

For example, consider the following:

\[
(c1) \ \text{constop}(a) ;
(d1) \ \text{constop}(a) ;
(c2) \ \text{integop}(x,y,z) ;
(d2) \ \text{integop}(x,y,z) ;
\]

\text{constop} uses the following simplification rules:
\[\text{constop}(c) \cdot \text{anything} \quad \rightarrow \quad \text{constop}(c) \]

\[\text{constop}(c)^n \quad \rightarrow \quad \text{constop}(c) \quad (n \text{ an integer, } n > 0) \]

Note: The centered dot (\(\cdot\)) is used above to indicate the non-commutative multiplication operator instead of "+".

\(\text{op}(\text{exp})\)
Function

Returns the operator of \(\text{exp}\). \(\text{op}(\text{exp})\) returns the same answer as \(\text{part}(\text{exp}, 0)\). See \(\text{part}\). The function \(\text{op}\) is affected by \(\text{inflag}\).

\(\text{operatorp}(\text{exp}, \text{op})\)
Function

Returns \textbf{true} if \(\text{op}\) is the main operator in the expression \(\text{express}\).

\(\text{operatorp}(\text{expr}, \text{list-of-operators})\)
Function

Returns \textbf{true} if one of the operators in list-of-operators is the main operator in the expression \(\text{expr}\). The function \(\text{operatorp}\) is affected by the \(\text{inflag}\) switch.

\(\text{opscalar}\)
Property

You can \texttt{declare} a variable \texttt{opscalar} if you want it to be treated as a scalar with respect to the operator algebra. (Macsyma's existing \texttt{scalar} property has simplification properties that may at times be inconsistent with the requirements of the operator algebra; hence, this \texttt{opscalar} property.) \texttt{opscalar} is a member of the \texttt{features} property list. This property can be removed with \texttt{remove}. It can be detected with \texttt{opscalarp}.

Example

\begin{verbatim}
(c1) op: a . diffop(x,2);
 2
 d
 a . ---
 2
 d

(d1)

(c2) op(x^5);

(d2)

(c3) declare(a, opscalar)$

(c4) op(x^5);

(d4)

The extended example beginning on page 218 also illustrates the use of \texttt{opscalar}.\n
\(\text{opscalarfun}\)
Property

You can \texttt{declare} a function \texttt{opscalarfun} if you want it to be treated as a scalar with respect to the operator algebra. An \texttt{opscalarfun} is a function that, when applied to its arguments, is declared to return an \texttt{opscalar}. \texttt{opscalarfun} is a member of the \texttt{features} property list. This property can be removed with \texttt{remove}. It can be detected with \texttt{opscalarp}.

The extended example, beginning on page 218, illustrates the use of the \texttt{opscalarfun} property.

\(\text{opscalarp}(\text{exp})\)
Function

Returns \textbf{true} if the Macsyma expression \(\text{exp}\) is \texttt{opscalar} (see \texttt{opscalar}, page 216). An expression \(\text{exp}\) is \texttt{opscalar} if, and only if, \text{\textit{exp}} is one of the following:
• a number (including rational numbers, bigfloats, etc.)
• a symbol that is declared to be a constant, opscalar, or integer, and is not the name of a function
• a functional form \(f(x) \) and \(f \) is declared to be an opscalarfun (see opscalarfun, page 216)
• an expression \(op(arg_1, arg_2, \ldots, arg_n) \), where \(op \) is not one of diffop, integop, or constop, and where \(\text{opscalarp}(arg_i) \) is true for all of the \(arg_i \).

The extended example beginning on page 218 illustrates the use of \text{opscalarp}.

The operator algebra package also implements the following simplification rules:

\[\text{diffop}(x, i, y, j, \ldots) \cdot \text{integop}(x) \rightarrow \text{diffop}(x, i - 1, y, j, \ldots) \]
\[\text{diffop}(x, i, y, j, \ldots) \cdot \text{integop}(x)^n \rightarrow \text{diffop}(x, i - n, y, j, \ldots) \]
\[\text{integop}(x) \cdot \text{diffop}(x, i, y, j, \ldots) \rightarrow \text{diffop}(x, i - 1, y, j, \ldots) + \text{constop}(c_k) \]
where \(c_k \) is a generated constant.

The following set of examples illustrates the manipulation of operators in the operator algebra package, including the use of multthru and expand with the operator algebra facilities.

Examples
(c1) \text{diffop}(x,2) + \text{diffop}(x);

\[
\begin{array}{c}
\text{d} \\
\text{d} \\
\text{d} \\
\text{d}
\end{array}
\]

(d1)
\[
\begin{array}{c}
\text{dx} \\
\text{dx} \\
\text{dx} \\
\text{dx}
\end{array}
\]

(c2) \text{op1: multthru(diffop(x,3) \cdot %);}

\[
\begin{array}{c}
\text{d} \\
\text{d} \\
\text{d} \\
\text{d}
\end{array}
\]

(d2)
\[
\begin{array}{c}
\text{dx} \\
\text{dx} \\
\text{dx} \\
\text{dx}
\end{array}
\]

(c3) \%(x^\text{10});

\[
\begin{array}{c}
\text{dx} \\
\text{dx} \\
\text{dx} \\
\text{dx}
\end{array}
\]

(d3)
\[
\begin{array}{c}
\text{dx} \\
\text{dx} \\
\text{dx} \\
\text{dx}
\end{array}
\]

(c4) \text{integop}(x);

\[
\begin{array}{c}
\text{d} \\
\text{d} \\
\text{d} \\
\text{d}
\end{array}
\]

(d4)
\[
\begin{array}{c}
\text{dx} \\
\text{dx} \\
\text{dx} \\
\text{dx}
\end{array}
\]

(c5) \text{op2: 2\% + op1;}

\[
\begin{array}{c}
\text{dx} \\
\text{dx} \\
\text{dx} \\
\text{dx}
\end{array}
\]

(d5)}
(c6) \(\%\!(x^5)\);

\[
\begin{align*}
6 \\
x
\end{align*}
\]

(d6) \[2 \left(\ldots + \%\text{integconst}5\right) + 120x + 120\]

(c7) multthru(diffop(x) . op2);

\[
\begin{align*}
& 6 \\
& 5 \\
& \frac{d}{dx} \quad \frac{d}{dx}
\end{align*}
\]

(d7) \[-\ldots + \ldots + 2\]

\[
\begin{align*}
& 6 \\
& 5 \\
& \frac{dx}{dx} \quad \frac{dx}{dx}
\end{align*}
\]

(c8) op2^2;

\[
\begin{align*}
& 5 \\
& 4 \\
& \frac{d}{dx} \quad \frac{d}{dx}
\end{align*}
\]

(d8) \[-\ldots + \ldots + 2 \quad 1\]

\[
\begin{align*}
& 5 \\
& 4 \\
& \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx}
\end{align*}
\]

(c9) expand(%)..

\[
\begin{align*}
& \quad <2> \\
& / \\
& [\\
& 10 \quad 9 \quad 8 \quad 4 \quad 3 \\
& \quad \frac{d}{\ldots} \quad \frac{d}{\ldots} \quad \frac{d}{\ldots} \quad \frac{d}{\ldots} \quad \frac{d}{\ldots}
\end{align*}
\]

(d9) \[41 + \ldots + 2 \quad \ldots + 4 \quad \ldots + 4 \quad \ldots + 4 \quad \ldots + 2 \quad c\]

\[
\begin{align*}
& \quad <\%\text{integconst}7> \\
& / \quad \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx} \quad \frac{dx}{dx} \\
& \quad + 2 \quad c \quad <\%\text{integconst}6>
\end{align*}
\]

The following is an extended example of the operator algebra capabilities.

Test that two operator expressions give the same results:

(c1) declare(f, opscalarfun)$

(c2) op3: diffop(x) . f(x);

\[
\begin{align*}
& \frac{d}{dx} \quad f(x)
\end{align*}
\]

(d2)

Note the new partial differentiation representation in the following:

(c3) op4: f(x) . diffop(x) + diff(f(x), x);

\[
\begin{align*}
& \frac{d}{dx} \quad (1)
\end{align*}
\]

(d3)

\[
\begin{align*}
& f(x) \quad . \quad \frac{\ldots}{dx} \quad + \quad f(x)
\end{align*}
\]

(c4) res1: op3(sin(x));

\[
\begin{align*}
& (1)
\end{align*}
\]

(d4)

\[
\begin{align*}
& f(x) \quad \sin(x) \quad + \quad f(x) \quad \cos(x)
\end{align*}
\]

(c5) res2: op4(sin(x));

\[
\begin{align*}
& (1)
\end{align*}
\]

(d5)

\[
\begin{align*}
& f(x) \quad \sin(x) \quad + \quad f(x) \quad \cos(x)
\end{align*}
\]

Generate a rule:

(c6) matchdeclare(s, opscalarp, y, true)$

(c7) tellsimpafter(diffop(y) . s, s . diffop(y) + diff(s, y))$

(c8) declare(x, opscalar, n, integer)$
\[(c9) \text{diffop}(x) \cdot x^n;\]
\[
\frac{d^n}{dx^n} x^n = \frac{d}{dx} \frac{d^{n-1}}{dx^{n-1}} x^n = \frac{d}{dx} \left(x \cdot \sum_{k=0}^{n-1} \binom{n}{k} x^{n-k-1} \right) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{d^k}{dx^k} x^{n-k-1}
\]

\[(d9)\]
\[
\frac{d}{dx} x^n = \sum_{k=0}^{n-1} \binom{n}{k} x^{n-k-1}
\]

\[(c10) \sin(x);\]
\[
\frac{d^{n-1}}{dx^{n-1}} \sin(x) = \frac{d}{dx} \left(\sum_{k=0}^{n-1} \binom{n}{k} x^{n-k-1} \right) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{d^k}{dx^k} x^{n-k-1}
\]

\[(d10)\]
\[
\frac{d}{dx} \sin(x) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{d^k}{dx^k} x^{n-k-1}
\]

\[(c11) \text{res1}, f(x) := x^n;\]
\[
\frac{d^{n-1}}{dx^{n-1}} x^n = \frac{d}{dx} \left(\sum_{k=0}^{n-1} \binom{n}{k} x^{n-k-1} \right) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{d^k}{dx^k} x^{n-k-1}
\]

\[(d11)\]
\[
\frac{d}{dx} x^n = \sum_{k=0}^{n-1} \binom{n}{k} x^{n-k-1}
\]

\[(d11)\]
\[
\frac{d}{dx} \sin(x) + x \cos(x) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{d^k}{dx^k} x^{n-k-1}
\]
Chapter 7

Linear Algebra and Matrices

7.1 Basic Matrix Operations

7.1.1 Matrix Arithmetic

The arithmetic operators +, -, *, / and ^ operate on matrices in an element-by-element fashion.
You can perform Matrix multiplication by using the dot operator, “.”. This operator is also used to represent other noncommutative algebraic operations (see Section 7.8.3, page 267).
Raising a matrix to an integer power is represented by two carets in a row (^^
). Thus, for a matrix A we have: A.A = A^A2 and, if it exists, A^A^{-1} is the inverse of A.
All matrix operations are normally carried out in full, including the . (dot) operation. Macsyma offers many options for controlling simplification of expressions involving the dot operator and matrix-list operations.

\textbf{Infix Operator}

\textbf{A < / B}

\textbf{Infix Operator}

A < / B is left matrix division. That is, it returns the matrix X that satisfies the equation AX = B.
Notice that the arguments A and B must have the same number of rows to satisfy such an equation, but they may have any number of columns. The solution X may be unique, or may contain arbitrary constants, or may fail to exist. See also \textbf{matlinsolve}.

Do example(mat_ldiv); to see examples. Do demo(mat_ldiv); to see more extensive examples.

\textbf{B / > A}

\textbf{Infix Operator}

B / > A is right matrix division. That is, it returns the matrix X that satisfies the equationXA = B.
Notice that the arguments A and B must have the same number of columns to satisfy such an equation, but they may have any number of rows. The solution X may be unique, may contain arbitrary constants, or may fail to exist. See also \textbf{matlinsolve}.

Do example(mat_rdiv); to see examples. Do demo(mat_rdiv); to see more extensive examples.
For on-line demonstrations of various matrix capabilities in Macsyma, do demo(matrix);, demo(matrix1);, demo(matrix2);, demo(matrix_exp);, demo(matsolve);, demo(jordan_form); and demo(matfuncs);

7.1.2 Defining Matrices and Matrix Elements

\texttt{entermatrix}(m, n) \hspace{1cm} \textit{Function}

Enables you to enter a matrix element by element, in response to requests for values for each of the mn entries. It asks you about the type of matrix to be entered, so that for a diagonal matrix, for instance, it is only necessary to input the diagonal elements, followed by semicolons.
Example
(c1) entermatrix(3,3);
Is the matrix 1. diagonal 2. symmetric 3. antisymmetric 4. general
Answer 1, 2, 3 or 4
1;
Row 1 column 1: a;
Row 2 column 2: b;
Row 3 column 3: c;
Matrix entered.
\[
\begin{bmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c \\
\end{bmatrix}
\]

matrix(row1, …, rown)

Function
Defines a rectangular matrix with the indicated rows. Each row has the form of a list of expressions, such as \([A, X^2, Y, 0]\), which is a list of four elements. See also Section 7.5 which includes entry functions for specialized matrices such as Hankel, Toeplitz, and other specialized matrices.

genmatrix(array, i1, j1, i2, j2)

Function
Generates a matrix from the array using array(i1, j1) for the first (upper-left) element and array(i2, j2) for the last (lower-right) element of the matrix. If j1 = i1 then j1 can be omitted. If j1 = i1 = 1 then i1 and j1 can both be omitted. If i2 = j2 and j1 = i1 = 1 then j2, i1, and j1 can all be omitted. If a selected element of the array does not exist, a symbolic one is used.

Example
(c1) h[i,j]:=1/(i+j-1)
(c2) genmatrix(h,3,3);
(d1)
\[
\begin{bmatrix}
 1 & 1 \\
 1 & - \\
 2 & 3 \\
 \cdot & \cdot \\
 1 & 1 & 1 \\
 - & - & - \\
 2 & 3 & 4 \\
 \cdot & \cdot & \cdot \\
 1 & 1 & 1 \\
 - & - & - \\
 3 & 4 & 5 \\
\end{bmatrix}
\]

gevector(array, i1, i2)

Function
Generates a column matrix from array using array(i1) for the first (top) element and array(i2) for the last (bottom) element of the matrix. If i1 = 1 then i1 can be omitted. If a selected element of the array does not exist, a symbolic one is used.

Example
(c1) a[j]:=b[2*j+1]
(c2) gevector(a,2);
7.1. BASIC MATRIX OPERATIONS

```
[ b  ]
[ 3  ]
[   ]
[ b  ]
[ 5  ]
```

\textit{copymatrix}\textit{(matrix)} \quad \textit{Function}

Creates a copy of the matrix \textit{matrix}. This is the only way to make a copy aside from recreating \textit{matrix} element-wise. Copying a matrix can be useful when \textit{setelmx} is used (see page 223).

\textit{copylist}\textit{(list)} \quad \textit{Function}

Creates a copy of the list \textit{list}.

\textit{addrow}\textit{(matrix, listm_1, listm_2, \ldots, listm_n)} \quad \textit{Function}

Appends the row(s) given by zero or more lists (or matrices) \textit{listm_i} onto the matrix \textit{matrix}.

List inputs to \textit{addrow} and \textit{addcol}, e.g. \textit{[a_1, \ldots, a_n]}, are converted into \textit{matrix([a_1, \ldots, a_n])}. An alternative is \textit{[< matrix; listm_1; listm_2; \ldots; listm_n >]} as seen in Section 7.7.

In the case of \textit{addrow} and \textit{addcol}: If the latter arguments are of incompatible dimensions with the first argument, then \textit{transpose} is called on the latter argument and tries that before erring out with \textit{Incompatible structure}.

\textit{addcol}\textit{(matrix, listm_1, \ldots, listm_n)} \quad \textit{Function}

Appends the column(s) given by zero or more lists or matrices \textit{listm_i} onto the matrix \textit{matrix}. An alternative is \textit{[< matrix; listm_1; listm_2; \ldots; listm_n >]} as seen in Section 7.7.

\textit{setelmx}\textit{(x, i, j, matrix)} \quad \textit{Function}

Changes the \textit{i, j} element of \textit{matrix} to \textit{x}. The altered matrix is returned as the value. The notation \textit{matrix[i,j];x} can also be used, altering \textit{matrix} in a similar manner, but returning \textit{x} as the value. See also the description of the \textit{copymatrix} command, page 223.

\textit{set_element}\textit{(list-or-matrix,i,\{\},value)} \quad \textit{Function}

Sets the \textit{i}th element of \textit{list} or the \textit{(i, j)}th element of \textit{matrix} to \textit{value}. The function \textit{set_element} corresponds to the \texttt{:} method of assignment as follows:

\textit{set_element}\textit{(list, i, value)}	is equivalent to	\textit{list[i]; value}
\textit{set_element}\textit{(matrix,i, j, value)}	is equivalent to	\textit{matrix[i,j]; value}
\textit{set_element}\textit{(matrix, i, row)}	is equivalent to	\textit{matrix[i]; row}

Table 7.1: Behavior of \textit{set_element} on Lists and Matrices

where \textit{row} is a list of the appropriate length.

However, unlike the \texttt{:} method for assignment which returns \textit{value} or \textit{row}, \textit{set_element} returns the altered list or matrix.

The function \textit{set_element} avoids the ambiguous subscripted syntax of the \texttt{:} method for assignment, so it is better for use in programs. The function \textit{set_element(matemrix,i,j,\textit{value})} is the same as \textit{setelmx(value,i,j,\textit{matrix})} except with a more rational order of arguments.

\textit{lmxchar} \textit{default: [} \quad \textit{Option Variable}

When displaying matrices in ASCII text format, \textit{lmxchar} is the character used for drawing the left hand side of a pair of matrix braces. Matrices are displayed in text format in files created with \texttt{writefile} and on the screen when \texttt{fancy_display: false}.

Option Variable

When displaying matrices in ASCII text format, \texttt{rmxchar} is the character used for drawing the right hand side of a pair of matrix braces. Matrices are displayed in text format in files created with \texttt{writefile} and on the screen when \texttt{fancy_display : true}.

\textbf{new_mat_subscr_mode} \textbf{default: true} \quad Option Variable

Controls whether indices to 1-by-n and n-by-1 matrices return a matrix element or a row of the matrix. The \texttt{part} command is unaffected by this option variable. Do \texttt{example(new_mat_subscr_mode)} for an example.

<table>
<thead>
<tr>
<th>new_mat_subscr_mode</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-by-3 row matrix</td>
<td>a</td>
<td>[a,b,c]</td>
</tr>
<tr>
<td>matrix([a,b,c])[1];</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>3-by-1 column matrix</td>
<td>b</td>
<td>[b]</td>
</tr>
<tr>
<td>[a;b;c][2]</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Table 7.2: Effect of Settings of new_mat_subscr_mode

7.1.3 Building Special Matrices

ident(n) \quad Function

Produces an \textit{n} by \textit{n} identity matrix. See also \texttt{mat_eye}.

\texttt{zeromatrix(m, n)} \quad Function

Takes integers \textit{m}, \textit{n} as arguments and creates an \textit{m} by \textit{n} matrix of 0's. See also \texttt{mat_zeros}.

\texttt{ematrix(m, n, x, i, j)} \quad Function

Creates an \textit{m} by \textit{n} matrix all of whose elements are zero except for the \textit{i, j} element that is \textit{x}.

\texttt{mat_ones(input \{, n\})} \quad Function

The function \texttt{mat_ones} generates a matrix of ones which can be square: \texttt{mat_ones(m)}, rectangular: \texttt{mat_ones(m,n)}, or the size of an input matrix: \texttt{mat_ones(Mat)}. However, if the option variable \texttt{size_of_flag} is set to \texttt{true}, \texttt{mat_ones(mat_size(Mat))} will produce an output the same size as that of \textit{Mat}. See \texttt{size_of_flag}, Section 7.7.3, page 256.

Do \texttt{example(mat_ones)}; for an example.

\texttt{diag_matrix(al, \ldots, ak)} \quad Function

Returns a diagonal \textit{k} \times \textit{k} matrix with diagonal elements \textit{a}1, \ldots, \textit{ak}. See also \texttt{mat_diag}.

\texttt{diagmatrix(n, x)} \quad Function

Returns a diagonal matrix of size \textit{n} by \textit{n} with the diagonal elements all \textit{x}. An identity matrix is created by \texttt{diagmatrix(n, 1)}, or you can use \texttt{ident(n)}. See also \texttt{mat_diag}.

The next function, \texttt{mat_diag}, illustrates some issues that arise because Macsyma can have block structured matrices. See Section 7.5.2, page 245.
7.1. BASIC MATRIX OPERATIONS

mat_diag\{input \{, \ k\}\}

Function

The value of \textit{input} can be either a matrix, a vector, or a list. Applied to a non-vector matrix, \textit{M}, \textit{mat_diag} returns a vertical vector of the diagonal elements \(M_{ii}\) of the matrix. Applied to a vector or a list, \textit{V}, \textit{mat_diag} returns a square matrix with \(V_i\) on the diagonal. Called with its optional second argument, \(k\), \textit{mat_diag} extracts the \(k^{th}\) diagonal of the input. Thus, \textit{mat_diag}\{(vector, \ k)\} returns a square matrix with \textbf{vector} on the \(k^{th}\) diagonal. Positive \(k\) correspond to upper diagonals. The index \(k = -1\) corresponds to the first subdiagonal, \(k = 0\) to the main diagonal, etc. See also \textit{mat_tril} and \textit{mat_triu}.

The function \textit{mat_diag} is affected by the Macsyma option variables \textit{keep_block_matrix} and \textit{matrix_elements_assumed_scalar}. If the option variable \textit{keep_block_matrix} is \textit{true} (not the default), \textit{mat_diag} will return a block matrix.

\begin{verbatim}
(c94) mat_diag([mat_ones(2)*333,1]), \textit{keep_block_matrix}:=\textit{true};

\begin{verbatim}
[[333 333] [0]]
[[0 0] [1]]
\end{verbatim}
\end{verbatim}

If the option variable \textit{keep_block_matrix} is \textit{false} (the default), \textit{mat_diag} uses \textit{mat_unblocker}.

\begin{verbatim}
(d94) mat_diag([mat_ones(2)*333,1]), \textit{keep_block_matrix}:=\textit{false};

\begin{verbatim}
[333 333 0]
[0 0 1]
\end{verbatim}
\end{verbatim}

The option variable \textit{matrix_elements_assumed_scalar} is by default \textit{true}. In this case variables are treated as scalars as in this example.

\begin{verbatim}
(c97) mat_diag([aa,1]), \textit{matrix_elements_assumed_scalar}:=\textit{true};

\begin{verbatim}
[aa 0]
[0 1]
\end{verbatim}
\end{verbatim}

When the option variable \textit{matrix_elements_assumed_scalar} is set to \textit{false}, undeclared variables are treated as nonscalar, as in this example.

\begin{verbatim}
(c98) mat_diag([aa,1]), \textit{assumescalar}:=\textit{false};

\begin{verbatim}
[aa mat_zeros(mat_nrows(aa), 1)]
[mat_zeros(1, mat_ncols(aa)) [1]]
\end{verbatim}
\end{verbatim}

When the variable \textit{aa} is evaluated, the result is a block structured matrix.

\begin{verbatim}
(c99) \%, \textit{aa}=mat_ones(2)*222;

\begin{verbatim}
[[222 222] [0]]
[[0 0] [1]]
\end{verbatim}
\end{verbatim}

Do \texttt{example(mat_diag)}; for an online example.

coeffmatrix\{(eq1, \ldots, eqn), [var1, \ldots, varn]\}

Function

The coefficient matrix for the variables \textit{var}1, \ldots, \textit{var}n of the system of linear equations \(eq1, \ldots, eqn\). \textit{coeffmatrix} also accepts \(eq_i\) as polynomials. That is, they need not be equations.
Note: The \(e_i \) are recast in the form \(\text{lhs}(e_i) - \text{rhs}(e_i) \) if \(\text{rhs}(e_i) \) is not equal to zero.

\texttt{augcoefmatrix}([e_1, \ldots, e_n], [v_1, \ldots, v_n]) \hspace{1cm} \text{Function}

The augmented coefficient matrix for the variables \(v_1, \ldots, v_n \) of the system of linear equations \(e_1, \ldots, e_n \). This is the coefficient matrix with a column adjoined for the constant terms in each equation. Constant terms are those not dependent upon \(v_i \). \texttt{augcoefmatrix} also accepts \(e_i \) as polynomials. That is, they need not be equations.

\begin{verbatim}
Example
(c1) [2*x-(a-1)*y=5*b,a*x+b*y+c=0]$ (c2) augcoefmatrix(%,[x,y]);
 [2 1 -a -5 b]
 [a b c]
\end{verbatim}

\texttt{mat_kron}(A, B) \hspace{1cm} \text{Function}

The function \texttt{mat_kron} forms the matrix Kronecker product from two input matrices \(A \) and \(B \). Do example(mat_kron); for an example.

7.1.4 Extracting Parts of Matrices

\texttt{row(matrix, i)} \hspace{1cm} \text{Function}

Returns a matrix of the \(i^{th} \) row of matrix \(matrix \). An alternative is \(M[i,..] \) where \(M \) is a matrix.

\texttt{col(matrix, i)} \hspace{1cm} \text{Function}

Returns a matrix of the \(i^{th} \) column of the matrix \(matrix \). An alternative is \(M[..,i] \) where \(M \) is a matrix.

\texttt{submatrix}(m_1, \ldots, m_n, matrix, n_1, \ldots, n_n) \hspace{1cm} \text{Function}

Creates a new matrix composed of the matrix \(matrix \) with rows \(m_i \) deleted, and columns \(n_i \) deleted. See also \texttt{submat}, page 275.

\texttt{minor(matrix, i, j)} \hspace{1cm} \text{Function}

Computes the \(i, j \) minor of the matrix \(matrix \). That is, \(matrix \) with row \(i \) and column \(j \) removed.

\texttt{mat_tril}(Mat_or \{, k\}) \hspace{1cm} \text{Function}

The function \texttt{mat_tril} returns the lower triangular part of its input, \(Mat_or \), by zeroing out all other entries. List input is treated as a row vector and scalar input as a \(1 \times 1 \) matrix. With an optional second argument, \texttt{mat_diag}(Mat,k) extracts from the \(k^{th} \) diagonal and below. The index \(k = -1 \) corresponds to the first subdiagonal, \(k = 0 \) to the main diagonal, etc. See also \texttt{mat_triu} and \texttt{mat_diag}.

Do example(mat_tril); for an example.

\texttt{mat_triu}(Mat_or \{, k\}) \hspace{1cm} \text{Function}

The function \texttt{mat_triu} returns the upper triangular part of its input, \(Mat_or \), by zeroing out all other entries. List input is treated as a row vector and scalar input as a \(1 \times 1 \) matrix. With an optional second argument, \texttt{mat_diag}(Mat,k) extracts from the \(k^{th} \) diagonal and above. The index \(k = -1 \) corresponds to the first subdiagonal, \(k = 0 \) to the main diagonal, etc. See also \texttt{mat_tril} and \texttt{mat_diag}.

Do example(mat_triu); for an example.
7.1.5 Transpose, Flip and Related Operations

transpose(Mat, or)

The function `transpose` produces the transpose of its input `Mat, or`. List input is treated as a row vector and scalar input as a 1x1 matrix.

There are four postfix variants of `transpose`:

- `^` Where `A` (A caret back-quote) is the transpose of matrix `A`.
- `*` Where `A` (A caret asterisk) is the conjugate transpose (Hermitian adjoint) of matrix `A`.
- `~` Where `A` (A caret tilde back-quote) is the counter-transpose of matrix `A` (reflection about the counter-diagonal),
- `~*` Where `A` (A caret tilde asterisk) is the conjugate counter-transpose of matrix `A` (reflection about the counter-diagonal and conjugated).

Do `example(transpose)`; for an example.

M ^

Transpose operator. `M` returns the transpose of the matrix `M`. If `M` is a list, it treated as a row vector. A scalar `M` is treated as a 1x1 matrix. Do `demo(transpose)`; to see examples.

M *

Hermitian transpose operator. `M` returns the Hermitian transpose of the matrix `M` (complex conjugate of the transpose of `M`). If `M` is a list, it treated as a row vector. A scalar `M` is treated as a 1x1 matrix. Do `demo(transpose)`; to see examples.

M ~

Countertranspose operator. `M` returns the countertranspose of the matrix `M`. That is, the reflection of `M` about the principal counter-diagonal. If `M` is a list, it treated as a row vector. A scalar `M` is treated as a 1x1 matrix. Do `demo(transpose)`; to see examples.

M ~*

Hermitian countertranspose operator. `M` returns the Hermitian countertranspose of the matrix `M` (complex conjugate of the countertranspose of `M`). If `M` is a list, it treated as a row vector. A scalar `M` is treated as a 1x1 matrix. Do `demo(transpose)`; to see examples.

mat_flipud(Mat, or)

The function `mat_flipud` reverses the order of the rows of a matrix. List or scalar input is returned unchanged. See also `mat_fliplr`.

Do `example(mat_flipud)`; for an example.

mat_fliplr(mat, or)

The function `mat_fliplr` reverses the order of the columns of a matrix. List input is reversed, and scalar input is returned unchanged. See also `mat_flipud`.

Do `example(mat_fliplr)`; for an example.

mat_rot90(Mat, or {, k})

The function `mat_rot90` rotates a matrix 90 degrees counterclockwise. List input is treated as a row vector and scalar input as a 1x1 matrix. An optional second argument allows the matrix to be rotated more than once. The direction of the rotation may be changed by making this argument negative.
7.1.6 Predicates to Identify Matrices

\textbf{matrixp}(exp) \quad \textbf{Function}

Returns \textbf{true} if \textit{exp} is a matrix else \textbf{false}.

\textbf{square_matrixp}(x) \quad \textbf{Function}

Returns \textbf{true} if, and only if, \textit{x} is a square matrix.

\textbf{vectorp}(input) \quad \textbf{Function}

The function \textbf{vectorp} is a predicate which tests for a vector. The argument \textit{input} must be an empty matrix or a one-row matrix or a one-column matrix (and not a list or a scalar).

\textbf{Note}: There is no way to declare a variable to be a vector (or a matrix). The vector must be specifically formed. See also \textbf{rowvectorp}, \textbf{colvectorp}, \textbf{matrixp}, and \textbf{square_matrixp}.

\textbf{colvectorp}(input) \quad \textbf{Function}

The function \textbf{colvectorp} is a predicate which tests for a column vector. The argument \textit{input} must be an empty matrix or a one-column matrix.

\textbf{Note}: there is no way to declare a variable to be a vector (or a matrix). The vector must be specifically formed. See also \textbf{vectorp}, \textbf{rowvectorp}, \textbf{matrixp}, and \textbf{square_matrixp}.

\textbf{rowvectorp}(input) \quad \textbf{Function}

The function \textbf{rowvectorp} is a predicate which tests for a row vector. For the function to return \textbf{true}, the argument \textit{input} must be an empty matrix or a one-row matrix (not a list or a scalar).

\textbf{Note}: there is no way in Macsyma to declare a variable to be a vector (or a matrix). The vector must be specifically formed. See also \textbf{vectorp}, \textbf{colvectorp}, \textbf{matrixp}, and \textbf{square_matrixp}.

7.2 Determinant, Inverse, and Related Functions

7.2.1 Trace, Determinant and Characteristic Polynomials

\textbf{matrix_trace}(mat) \quad \textbf{Function}

Returns the trace (sum of the elements on the main diagonal) of the matrix \textit{matrix}.

Do \texttt{example(matrix_trace)}; for an example.
7.2. DETERMINANT, INVERSE, AND RELATED FUNCTIONS

determinant(matrix)

Function

Computes the determinant of the square matrix *matrix* by a method similar to Gaussian elimination. The method and the form of the result depend upon the setting of the option variable `ratmx`. There is a special routine for dealing with determinants of sparse matrices that can be used by setting the option variables `sparse: true`. In the case of numerical matrices (matrices containing only integers, rational numbers, single-floats, or double-floats), if the option variable `use_matrix_lu` is `true` (its default), `determinant` will use fast LU methods to compute the determinant. The function `determinant` has the alias `det`. See Section 7.8.2, page 266.

newdet(matrix, n)

Function

Computes the determinant of *matrix* but uses the Johnson-Gentleman tree minor algorithm. The argument *matrix* can be the name of a matrix or array. The argument `n` is the order of the determinant to be computed; it is optional if *matrix* is a matrix.

permanent(matrix, n)

Function

Computes the permanent of *matrix*. A permanent is like a determinant but with no sign changes.

echelon(matrix)

Function

Produces the echelon form of *matrix*. That is, *matrix* with elementary row operations performed on it such that the first nonzero element in each row in the resulting matrix is a 1 and the column elements under the first 1 in each row are all 0.

Example

(c3) `echelon(d2);` /* d2 is as above */

\[
\begin{bmatrix}
 a - 1 & 5 b \\
 2 & 2 \\
\end{bmatrix}
\]

(d3)

\[
\begin{bmatrix}
 2 c + 5 a b \\
 1 & \cdots & \cdots \\
\end{bmatrix}
\]

triangularize(matrix)

Function

Produces the upper triangular form of the matrix *matrix* that needn’t be square.

Example

(c4) `triangularize(d2);`

\[
\begin{bmatrix}
 2 & 1 - a & - 5 b \\
 \vdots & \ddots & \ddots \\
\end{bmatrix}
\]

(d4)

\[
\begin{bmatrix}
 2 \\
\end{bmatrix}
\]

rank(matrix)

Function

Computes the rank of the matrix *matrix*. That is, the order of the largest nonzero subdeterminant of *matrix*.

Note: `rank` may return the wrong answer if it cannot determine that a matrix element that is equivalent to zero is indeed so.

Example

(c5) `rank(d2);`

(d5) 2

see also `mat_rank`
nullspace(matrix)

Returns a list of vectors (given as lists) that forms a basis for the null space of the matrix. The null space of a matrix \(m \) is a list of basis vectors whose linear combinations satisfy the matrix equation \(m \cdot x = 0 \). (Also, the null space is spanned by the eigenvectors with eigenvalue equal to 0.) See also mat_null.

charpoly(matrix, var)

This computes the characteristic polynomial for matrix with respect to the variable var. That is, charpoly evaluates \(\text{determinant}(\text{matrix} - \text{diagmatrix(\text{length(matrix)}, \text{var}))} \). There is also an alternative command, ncharpoly, which avoids polynomial arithmetic. See Section 7.2.1, page 230.

Example

(c1) a: matrix([3,1],[2,4]);
 [3 1]
 []
 [2 4]

(d1) charpoly(a, lambda);
 (3 - lambda) (4 - lambda) - 2

(c3) solve(%);
 [lambda = 5, lambda = 2]

(c4) x: matrix([x1],[x2]);
 [x1]
 []
 [x2]

(c5) a.x - lambda*x, d3[1];
 [x2 - 2 x1]
 []
 [2 x1 - x2]

(c6) %[1,1]=0;
 x2 - 2 x1 = 0

(d6) x2 - 2 x1 = 0

(c7) x1^2 + x2^2 = 1;
 2 2

(d7) x2 + x1 = 1

(c8) solve([d6,d7],[x1,x2]);
 [x1 = ------], [x2 = ------],
 1 1
 sqrt(5) sqrt(5)
 2 2
 [x1 = -----], [x2 = -----]
 sqrt(5) sqrt(5)

Name of Package: ncharpl

Original Author: D. R. Barton

ncharpoly(matrix, var)

Returns the characteristic polynomial of the square matrix matrix with respect to var by computing traces of powers of the matrix matrix, which are known to equal sums of powers of the roots of the characteristic polynomial. From these quantities the symmetric functions of the roots can be calculated, which are nothing more than the coefficients of the characteristic polynomial. By contrast, charpoly forms the determinant of matrix - var * iden(mat_rows(matrix)). Thus, ncharpoly is preferred in the case of large dense matrices filled with integers, since it avoids polynomial arithmetic altogether. See Section 7.2.1, page 230.
7.2. Determinant, Inverse, and Related Functions

7.2.2 Inverse and Related Functions

invert *(matrix)*

Function

Finds the inverse of a matrix. The technique used is controlled by the system variable `use_matrix_lu`. The inverse of a matrix can also be obtained by using a negative exponent, as in M^{-1}. In the case of numerical matrices (matrices containing only integers, rational numbers, single-floats, or double-floats), if the option variable `use_matrix_lu` is `true` (its default), `invert` will use fast LU methods to compute the inverse. In the case of complex elements, `invert` uses slower symbolic methods. Use `invertc` instead for complex matrices. The function `invert` has the alias `inv`.

See also `invertc`, `invert_using_minors`, `invert_by_ldu`, `invert_by_lu`, `invert_by_lu_symb`, `invert_toeplitz`, `invert_hankel` and `invert_by_cholesky`.

invertc *(matrix)*

Function

Finds the inverse of a matrix whose elements are complex numbers. `invertc` is more efficient than `invert` because, while `invert` uses symbolic code for complex matrices, `invertc` converts an $N \times N$ matrix of complex numbers of a $2N \times 2N$ matrix of real numbers and then uses LU decomposition.

Do example(`invertc`); for an example.

See also `invert_using_minors`, `invert_by_ldu`, `invert_by_lu`, `invert_by_lu_symb`, `invert_toeplitz`, `invert_hankel`, `invert_by_cholesky` and `invert`.

adjoint *(matrix)*

Function

Computes the classical adjoint of the matrix `matrix`, which is equal to the inverse matrix multiplied by the determinant. Having computed the adjoint of a matrix, `adj:adjoint(matrix)`, for example, the determinant can be obtained by `det:row(matrix,1).col(adj,1)`, and then the inverse of `matrix` can be obtained from `adj/det`. In fact, this is what the `invert_using_minors` function does.

use_matrix_lu default: `true`

System Variable

The system variable `use_matrix_lu` controls whether LU decomposition is used for numerical matrices by `determinant` and `invert`. Numerical matrices are matrices all of whose elements are integers, single or double floats, or rational numbers.

use_minors default: `false`

Option Variable

The option variable `use_minors` controls the method used for matrix inversion for non-numerical matrices. When it is `false`, the default, a method based on Gaussian elimination is used. When `use_minors` is set to `true`, an adjoint method using minors is used. For numerical matrices, inversion uses LU decomposition, and `use_minors` has no effect. Numerical matrices are matrices all of whose elements are integers, single or double floats, or rational numbers.

invert_using_minors *(matrix)*

Function

Finds the inverse of a matrix using the adjoint method. This provides a way to compute the inverse of a matrix with bfloat entries or polynomials with floating-point coefficients without converting to CRE form. The command `determinant` is used to compute cofactors, so if `ratmx` is `false`, the default, the inverse is computed without changing the representation of the elements. The current implementation is inefficient for matrices of high order. See Section 7.8.2, page 266.

If `true`, the option variable `detout` keeps the determinant factored out of the inverse. See Section 7.8.2, page 266.

The results are not automatically expanded. If the matrix originally had polynomial entries, better appearing output can be generated by `expand(invert(matrix),detout);`. If it is desirable to divide through by the determinant, this can be accomplished by

```
Expand(adjoint(matrix))/expand(determinant(matrix));
Invert(matrix):=adjoint(matrix)/determinant(matrix);
```
7.2.2.1 Moore–Penrose Pseudo-Inverse

Name of Package: geninv

geninv is an out-of-core file which defines a function which computes the Moore–Penrose generalized inverse of a matrix. It also has a function which uses the generalized inverse to find the least-squares solution of inconsistent systems of linear equations. See also matsolve_by_svd (see page 243).

Note: It may be useful to set ratmx to true when working with matrices containing symbols. To use this package, type load(geninv);. Type demo(geninv); for a demonstration.

\textbf{pinv}(\texttt{matrix}) \hspace{2cm} \textit{Function}

Computes the Moore–Penrose inverse (also called the generalized inverse or the pseudoinverse) of its argument, which must be a matrix. This implementation is based on work performed by Dr. Daniel Zwillinger and Dr. Michael Sousa.

\textbf{moore_penrose_inverse}(\texttt{matrix}) \hspace{2cm} \textit{Function}

This routine computes the Moore–Penrose inverse of its argument, which must be a matrix. The routine \textbf{moore_penrose_inverse} actually calls \textbf{pinv}, described above, and is retained for compatibility with previous releases.

\textbf{lsq_linsolve}(\texttt{list-of-equations},\texttt{[list-of-variables]}) \hspace{2cm} \textit{Function}

Computes the Moore–Penrose inverse and uses it to compute the least-squares solution to the set of equations specified by \texttt{list-of-equations}. The second argument, \texttt{list-of-variables}, specifies the variables to be solved for. If this argument is not given, then \textbf{lsq_linsolve} solves for the list given by \texttt{listofvars(list-of-equations)};

\textbf{pinv_tol} \hspace{1cm} \textit{Option Variable}

default: 1.0e-5

The tolerance used to determine when the algorithm terminates when the matrix contains floating-point numbers and \texttt{keepfloat} is set to \texttt{true}.

Note: Although \textbf{pinv} will execute the inversion algorithm in floating-point arithmetic, it will usually fail due to round-off error. It is advisable to rationally approximate floats (either explicitly, via \texttt{rat}, or implicitly, by not setting \texttt{keepfloat} to \texttt{true}) when computing the pseudo-inverse and return to floating-point representation via \texttt{bfloat} and/or \texttt{sfloat} or \texttt{dfloat}.

\textbf{pinv_rank} \hspace{2cm} \textit{System Variable}

A global variable which contains the rank of the matrix as computed by \textbf{pinv}.

7.2.3 Solving Matrix Equations

\textbf{matlinsolve}(\texttt{linear_matrix_equations}, \texttt{vector_variables}) \hspace{2cm} \textit{Function}

The function \textbf{matlinsolve}, found in the \texttt{matsolve} package, accepts as an argument either a single linear matrix equation or a list of linear matrix equations and solves for a single vector variable or list of vector variables in a manner analogous to \textbf{linsolve}. The equation(s) can be either a matrix, a vector, or a scalar equation, and the variable(s) can be either a vector, a matrix, or a scalar. The function \textbf{matlinsolve} returns a list of solution equations, with matrices in the original form.

If you wish to solve nonlinear matrix equations, such as eigenvalue equations where both the eigenvalue and the eigenvector are unknown, then use \textbf{matsolve}. The function \textbf{matlinsolve} solves only linear matrix equations whereas \texttt{matsolve} solves both linear and nonlinear matrix equations. Internally, \textbf{matlinsolve} calls \texttt{linsolve} while \texttt{matsolve} calls \texttt{solve}. The function \textbf{matlinsolve} preserves floating
point numbers, whereas `matsolve` converts them to rational numbers to use nonlinear algebraic methods if needed.

Do example(matlinsolve); for an example.

```
matsolve(list_of_equations, list_of_variables)  Function
```

This solves the list of equations in the variables in a manner analogous to `solve`. However, the equations can be matrix, vector, or scalar equations, and the variables can be either vectors, matrices, or scalars.

The function `matsolve` can be given single matrix equation without brackets, as well as single matrix variables. The function `matsolve` returns a list of solution equations, with matrices in original form.

Do example(matsolve); for an example.

See also `matsolve_by.lu` (see page 242), `matsolve_by.lu_symb` (see page 242), `lu_decomp_symb` (see page 240), `matsolve_by.svd` (see page 243), `matsolve_by.cholesky` (see page 237), `cholesky_decomp` (see page 237), and `cholesky_decomp_symb` (see page 237).

7.3 Eigenvalues and Eigenvectors

`Eigens` provides the following facilities for eigenanalysis of matrices:

- The `eigen` package contains functions for exact symbolic or numerical eigen analysis. These methods are applicable to matrices up to size 4×4 and larger matrices which can be factored into 4×4 subblocks.

- The `eigenvalues_by_schur` command calculates eigenvalues of general real matrices. It is also a replacement as well as an enhancement of functions in an older `Eigenf` package, now obsolete. The function `eigenvectors_by_schur` calculates eigenvectors of general real matrices. In some cases, `eigenvectors_by_schur` may not be able to calculate all eigenvectors corresponding to repeated eigenvalues, but this is unlikely to occur in practice.

- The function `eigens_by_jacobi` calculates eigenvalues and eigenvectors of real symmetric matrices using Jacobi rotations.

7.3.1 Exact Eigen-Analysis

Name of Package: `eigen`
Original Author: Y. Gursel

The `eigen` package contains functions that compute right eigenvectors, right unit eigenvectors, eigenvalues, and similarity transforms. There are commands in this package to handle multiple eigenvalues and the eigenvectors corresponding to those eigenvalues. It works with any square matrix (not necessarily symmetric or Hermitian) and determines whether the matrix is diagonalizable. The calculated eigenvectors and the unit eigenvectors of the matrix are the right eigenvectors and the right unit eigenvectors respectively (these are the usual eigenvectors and eigenvalues). `eigen` uses the functions `solve` and `algsys`, and if `solve` cannot find the roots of the characteristic polynomial of the matrix, or if it generates a rather messy solution, then the `eigen` package may not produce any useful results. More information can be found in the description of the commands.

Any imaginary numbers ($\%i$'s) in the expressions should be explicit. This is true for all the functions in this package.

Table 7.3 contains a list of aliases for the sometimes lengthy names of the functions in this section.

Do demo(eigen); for a demonstration of finding eigenvalues and eigenvectors of matrices. To determine the eigenvalues and eigenvectors of floating point matrices, see `eigenvalues_by_schur` (see page 236) and `eigenvectors_by_schur` (see page 236).
<table>
<thead>
<tr>
<th>Short Form</th>
<th>Long Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>inprod(x,y)</td>
<td>innerproduct(x,y)</td>
</tr>
<tr>
<td>uvect(x)</td>
<td>unitvector(x)</td>
</tr>
<tr>
<td>covect(x)</td>
<td>columnvector(x)</td>
</tr>
<tr>
<td>gschmit(x)</td>
<td>gramschmidt(x)</td>
</tr>
<tr>
<td>eivals(mat)</td>
<td>eigenvalues(mat)</td>
</tr>
<tr>
<td>eivects(mat)</td>
<td>eigenvectors(mat)</td>
</tr>
<tr>
<td>uivects(mat)</td>
<td>uniteigenvectors(mat)</td>
</tr>
<tr>
<td>simtran(mat)</td>
<td>similaritytransform(mat)</td>
</tr>
</tbody>
</table>

Table 7.3: Aliases for Some Lengthy Command Names

innerproduct(lista, listb)

Function
If lista and listb are two lists of equal length, then innerproduct returns their inner (scalar) product defined by conjugate(lista).listb. The “dot” operation is the same as the usual one defined for vectors.

unitvector(list)

Function
Takes list as its argument and returns a unit list consisting of a list of unit magnitude.

columnvector(list)

Function
Takes list as its argument and turns it into a column vector. This procedure is useful if you want to use parts of the outputs of the functions in this package in matrix calculations.

gramschmidt(list)

Function
Takes as its argument a list of lists, list, representing a list of vectors which are not necessarily orthogonal (with respect to the inner product defined by innerproduct), and returns a list of the independent sublists in list after they have been orthogonalized. Returned results can contain integers that are factored. This is due to the fact that the function factor is used to simplify each substage of the Gram-Schmidt algorithm. This prevents the expressions from getting very messy and helps to reduce the sizes of the numbers which are produced along the way.

Enter the command example(gramschmidt); for an example, and demo(eigen); for a longer demonstration.

eigenvalues(matrix)

Function
Computes the eigenvalues of the matrix and returns as its value a list containing two sublists. The first sublist specifies the eigenvalues determined, while the second lists their corresponding multiplicities. If the characteristic polynomial of the matrix is not completely factorable, then the list of multiplicities will be followed by the residual polynomial that results from removing the solvable factors from the characteristic polynomial. The residual polynomial will be expressed in terms of the global variable mcharpoly
var (default: %lambda). The function eigenvalues uses solve by default to find the roots of the characteristic polynomial and so deficiencies in solve can affect the results returned by this function. For example, solve can generate very messy eigenvalues in some cases. You may want to simplify the answers yourself before you go on and assign the results to knowneigvals. The function solve can also return a not-so-obviously real expression for an eigenvalue which is supposed to be real.

Do example(eigenvalues); for an example and demo(eigen); for a longer demonstration. See also mcharpoly
var, eigenmethod, numeigs, meigenvalues, and mat_eig.

eigenvectors(matrix)

Function
Computes the eigenvalues and corresponding eigenvectors of the matrix. The eigenvectors function returns a list of the form \([e_1, m_1, [v_{11}, v_{12}, \ldots]], [e_2, m_2, [v_{21}, v_{22}, \ldots]], \ldots\), where \(e_i\) is the \(i^{th}\) distinct
eigenvalue, \(m \) is its corresponding multiplicity and \(v_{ij} \) are the eigenvectors that correspond to \(e_i \) (presented as lists). In some cases, \texttt{eigenvectors} may be unable to determine the eigenvectors corresponding to a particular eigenvalue, in which case the list of eigenvectors for that eigenvalue will be empty. The function \texttt{eigenvectors} calls \texttt{eigenvalues}, so if \texttt{eigenvalues} produced a residual polynomial, \texttt{eigenvectors} will return as the last sublist of its output an item of the form \([\text{roots of residual polynomial, variable}], 1, []\), indicating that the roots of this residual polynomial with respect to the variable will produce the remainder of the eigenvalues for \texttt{matrix}.

Do \texttt{example(eigenvectors)}; for an example and \texttt{demo(eigen)}; for a longer demonstration.

\texttt{nondiagonalizable default: false}

Is set to \texttt{true} or \texttt{false} by \texttt{eigenvectors} depending on whether the matrix is nondiagonalizable or diagonalizable.

\texttt{hermitianmatrix default: false}

If set to \texttt{true}, this option variable causes the degenerate eigenvectors of the Hermitian matrix to be orthogonalized using the Gram–Schmidt algorithm.

\texttt{knowneigvals default: false}

If set to \texttt{true}, the \texttt{eigen} package assumes the eigenvalues of the matrix are known and stored under the global name \texttt{listeigvals}.

The function \texttt{algsys} is used here to solve for the eigenvectors. Sometimes, if the eigenvalues are messy, \texttt{algsys} is not able to produce a solution. In that case, you should try to simplify the eigenvalues by first finding them using \texttt{eigenvalues} and then using whatever tricks you might know to simplify them further. You can then use the option variable \texttt{knowneigvals} to proceed further.

\texttt{listeigvals default: false}

If \texttt{knowneigvals} is set to \texttt{true}, the \texttt{eigen} package assumes that the eigenvalues of the matrix are known and stored under the global name \texttt{listeigvals}. The variable \texttt{listeigvals} should be set to a list similar to the output of the command \texttt{eigenvalues}.

\texttt{uniteigenvectors(matrix)}

The function \texttt{uniteigenvectors} produces an output similar to \texttt{eigenvectors} except that the eigenvectors are all of unit length.

\texttt{knowneigvects default: false}

If set to \texttt{true}, the \texttt{eigen} package assumes that the eigenvectors of the matrix are known and are stored under the global name \texttt{listeigvects}. \texttt{listeigvects} should be set to a list similar to the output of \texttt{eigenvalues}. If \texttt{knowneigvects} is set to \texttt{true} and the list of eigenvectors is given, the setting of the flag \texttt{nondiagonalizable} may not be correct. If so, case, you should set it to the correct value. It is assumed that you will not try to diagonalize a matrix whose eigenvectors do not span a vector space of the appropriate dimension (which would be mathematically incorrect).

\texttt{listeigvects default: false}

If \texttt{knowneigvects} is set to \texttt{true}, the \texttt{eigen} package assumes that the eigenvectors of the matrix are known and stored under the global name \texttt{listeigvects}. The variable \texttt{listeigvects} should be set to a list similar to the output of the command \texttt{eigenvectors}.

\texttt{similaritytransform(matrix)}

The function \texttt{similaritytransform} takes a \texttt{matrix} as its argument and returns a list which is the output of the command \texttt{uniteigenvectors}. In addition, if the option variable \texttt{nondiagonalizable} is \texttt{false}, it generates two global matrices \texttt{leftmatrix} and \texttt{rightmatrix}. These matrices have the property that \texttt{leftmatrix matrix rightmatrix} is a diagonal matrix with the eigenvalues of \texttt{matrix}.
on the diagonal. If non-diagonalizable is true, these two matrices will not be generated. If the option variable hermitianmatrix is true, leftramatrix is the complex conjugate of the transpose of rightramatrix. Otherwise leftramatrix is the inverse of rightramatrix. rightramatrix is a matrix whose columns are the unit eigenvectors of matrix. The other option variables have the same effects, since similaritytransform calls the other functions in the package to form rightramatrix.

7.3.2 Eigenvalues and Eigenvectors of General Real Matrices

eigenvalues_by_schur(a {flag})

The function eigenvalues_by_schur(a) returns a list of eigenvalues of the real matrix a. Schur decomposition of an arbitrary square real matrix a is performed using an accelerated QR algorithm. The optional argument flag (default: 'single, 'double) is used to control the floating point mode in which calculations are performed. The option variable schur_qr_iters (default: 30) controls the maximum number of QR iterations performed for each eigenvalue. After executing eigenvalues_by_schur, the variable schur_total_iters contains the total number of QR steps used and the variable schur_form contains the numerically derived Schur form of the matrix a. The value of eigenvalues_by_schur_flag indicates convergence. If the value is 0, convergence is successful. If it is equal to n, then a maximum number of QR iterations has been exceeded for the nᵗʰ eigenvalue. Do example(eigenvalues_by_schur); for an example.

schur_qr_iters default: 30

Option Variable

Maximum number of QR iterations performed per eigenvalue in eigenvalues_by_schur.

eigenvalues_by_schur_flag default: 0

Option Variable

Returned value is 0 if the QR iterations converged successfully to calculate the eigenvalues in eigenvalues_by_schur. If equal to some integer N, the maximum number of QR iterations has been exceeded for the Nᵗʰ eigenvalue.

schur_total_iters default: 0

Option Variable

Returned values as the total number QR iterations performed to calculate the eigenvalues in eigenvalues_by_schur.

bfeigenvalues_by_schur(a)

Function

The function bfeigenvalues_by_schur is a bigfloat version of eigenvalues_by_schur.

The function eigens_by_schur replaces a now obsolete Eigenf package.

eigens_by_schur(a {flag})

eigenvectors_by_schur(a {flag})

Function

The function eigenvectors_by_schur returns a list of eigenvalues and eigenvectors of the real matrix a. eigenvectors_by_schur is used to calculate the eigenvalues (see page 236). The optional argument flag is used to control the floating point mode in which calculations are performed (default: 'single, or 'double or 'bfloat). eigenvectors_by_schur returns a list of 1, a list of eigenvalues; 2, a list of column vectors that are the corresponding eigenvectors.

Under certain circumstances, not all eigenvectors associated with a repeated eigenvalue may be found, but this is unlikely to occur in practice.

See also eigens_by_jacobi (see page 237)
7.3.3 Eigenvalues and Eigenvectors of Symmetric Real Matrices

eigens_by_jacobi(a \{flag\}) \hspace{1em} \textit{Function}

Computes the eigenvalues and eigenvectors of a real, symmetric matrix \(a \) by successive Jacobi transformations. The matrix is assumed to have no more than \(\text{eigenvalues_by_jacobi_nmax} \) rows or columns. \texttt{eigens_by_jacobi} returns a list of \(1 \), a list of eigenvalues; \(2 \), a list of column vectors that are the corresponding normalized eigenvectors, and \(3 \), the number Jacobi rotations used.

eigenvalues_by_jacobi_nmax \hspace{1em} \textit{Option Variable}

Maximum size of square, real matrix allowed for \texttt{eigens_by_jacobi}.

7.4 Normal Forms of Matrices

This section describes Macsyma functions for producing special forms of matrices.

7.4.1 Cholesky Decomposition

\texttt{cholesky_decomp(matrix)} \hspace{1em} \textit{Function}

The function \texttt{cholesky_decomp} calculates the Cholesky factorization of the numerical, square, positive definite Hermitian matrix \(\text{matrix} \). The result returned is the lower triangular matrix \(L \) that satisfies \(LL^* = \text{matrix} \).

Enter \texttt{example(cholesky_decomp)}; for an example and \texttt{demo(cholesky)}; for a longer demonstration.

\texttt{cholesky_decomp_symb(matrix)} \hspace{1em} \textit{Function}

The function \texttt{cholesky_decomp_symb} calculates the lower Cholesky decomposition of the positive definite square symmetric matrix \(\text{matrix} \). This function does not check for positive definiteness, so it may return complex matrices, which are correct. The result is a lower triangular matrix.

\texttt{invert_by_cholesky(matrix)} \hspace{1em} \textit{Function}

The function \texttt{invert_by_cholesky} computes the inverse of the numerical, square, positive definite Hermitian matrix \(\text{matrix} \) using its Cholesky factorization.

\texttt{matsolve_by_cholesky(matrix, B)} \hspace{1em} \textit{Function}

Solves the numerical matrix equation \(\text{matrix} \ X = B \) for \(X \) using the Cholesky factorization of \(\text{matrix} \) (which needs to be square, positive definite and Hermitian).

7.4.2 Hessenberg Form

\texttt{hessenberg(A \{flag\})} \hspace{1em} \textit{Function}

Transforms the square matrix \(A \) into upper Hessenberg form \((H) \) using similarity transformations. If the value of the optional argument \(\text{flag} \) is \texttt{similarity_matrix} or \texttt{similarity_matrices}, then \texttt{hessenberg} will return the list \([H, S]\) or \([H, S, S^*\{-1\}]\) respectively, where \(H = S^*(-1)A S \). The first argument to \texttt{hessenberg} may also be a list like \([A, D]\). In this case, \(A \) must be a Hermitian matrix and \(D \) a diagonal matrix with real, positive diagonal elements. The similarity transformation will then be applied to \(D^*\{-1\}A \), corresponding to the eigenproblem \(Ax = \lambda Dx \). The algorithm used in this situation will put \(D^*\{-1\}A \) into general tridiagonal form by applying a mostly symmetry preserving transformation (fast Givens rotations).

Do \texttt{example(hessenberg)}; for an example and \texttt{demo(matrice1)}; for a longer demonstration. See also \texttt{m_hessenberg}.
If true, hdivfree (for Hessenberg DIVision FREE algorithm) will cause hessenberg to use a division free algorithm when performing the similarity reduction of a matrix from general into upper Hessenberg form. If the initial matrix entries are polynomials, perhaps with a common divisor, produced, for example, by applying derat (see derat, page 272) to the original matrix, then the final Hessenberg form will also have entries of this type (as will the similarity matrices). This algorithm may lead to an increase in the speed of the reduction, since no GCDs are performed; however, the matrix entries can become quite large. One method of alleviating this problem is to allow GCDs (and exact divisions) to be taken occasionally. The default action (which can be prevented by setting hdivfree to the atomic value nogcds) is to perform some GCDs as part of a process of removing common factors from the entries of the elementary similarity matrices that are formed at each stage of the reduction, which will result in reducing the transformed matrix by the square of these factors.

hesstrans default: false

If true, hesstrans will allow hessenberg to perform the general Hessenberg reduction on the transpose of its matrix argument if it deems this to be advantageous for the first stage of the transformation. The results will be transformed back to the original problem after the reduction process is completed. For some problems, setting this option may reduce the computation time and/or produce simpler looking results.

minhermpivot default: false

If false, the function minhermpivot (MINimize HERMitian PIVOT) will cause hessenberg to not try to minimize the complexity of the pivots used during the reduction of a Hermitian matrix to tridiagonal form, unless a superdiagonal element is zero at the beginning of some stage of the reduction and so a search has to be made in any case. This will minimize the number of similarity permutations that will be applied to the matrix, all of which involve actual physical swapping of matrix elements, rather than implicit swapping through indexing arrays, as is done when transforming a general matrix into upper Hessenberg form. If minhermpivot is true, then at the beginning of each stage of the reduction, the appropriate superdiagonal element and those elements that will undergo elimination during this stage are scanned, and the simplest element examined will be chosen to be the pivot. You can set minhermpivot to the atomic value always to cause this process to occur at the beginning of every single step. (There are, in general, several per stage of the reduction.)

mraltsimp default: false

If not false, then mraltsimp (Matrice Reduction ALTerate SIMPlifier) should be the name of a function of two arguments which simplifies its first argument. The second argument will be an atomic descriptor indicating the form of the matrix elements (numerical, cre or general expressions) which the function may find useful for deciding how to perform its simplification. This function will be applied as an alternate to the default simplification during matrix reduction transformations (e.g., hessenberg). Thus, this allows the user to specify what simplifications (if any) should take place during each stage of matrix reduction processes. See also mhessenberg, page 273.

mverbose default: false

If true, mverbose will cause comments about the progress of various Matrice package functions (e.g., hessenberg) to be printed as their execution proceeds. If the value of mverbose is all, then very detailed comments will be produced. These comments provide detailed information, mainly for debugging purposes.

zerotest default: false

If not false, then the value of zerotest should be the name of a function of one argument which returns true if given an expression equivalent to zero and false otherwise. This function will be
applied in various situations when it is necessary to test for zeroes (e.g., avoid a zero pivot) and
the expression being tested has been determined not to be a simple zero by \texttt{zerop}. Thus, this
allows the user to impose additional zero testing if he feels that the checks for simple zeroes are
not sufficient for his particular problem (e.g., dealing with general functions for which expressions
equivalent to zero may not be trivially obvious to Macsyma). Any expressions determined to be
equivalent to zero will be immediately replaced by zero to simplify further calculations.

\textbf{Note:} this methodology is only in use in the functions \texttt{mhessenberg} and \texttt{mcharpoly}.

\subsection{Jordan Form}

\textbf{Name of Package:} \texttt{jordan_form}

\textbf{Original Author:} N. Strauss

The Jordan form package allows the user to compute the Jordan normal form for any square matrix over
the complex numbers, finite fields, algebraic extensions, or transcendental extensions.

\texttt{jordan_form}(\textit{mat}) \textit{Function}

Returns the Jordan similar matrix for \textit{mat}.

Radicals should be avoided as entries in the matrix since \texttt{jordan_form} does not handle them. The
problem can probably be avoided by explicitly using the \texttt{tellrat} command.

The following options are provided:

\texttt{jordan_option_ncharpoly} \textit{default: false} \textit{Option Variable}

Controls how the characteristic polynomial is found. If set to \texttt{true}, then \texttt{ncharpoly} will be used to
find the characteristic polynomial. This can entail considerable savings in time for large matrices.

\texttt{jordan_simple_roots} \textit{default: false} \textit{Option Variable}

If set to \texttt{true} will use \texttt{solve} instead of \texttt{factor} to find the eigenvalues of the characteristic polynomial.

\texttt{jordan_option_mat_output} \textit{default: false} \textit{Option Variable}

If set to \texttt{true}, \texttt{jordan_form} will return a list of lists as output. The output has the form \([[[\textit{eigval1},
[[\text{size_of_jordan_block}, \text{number_of_this_size}]}, \ldots], [\textit{eigval2}, \ldots]]]. This can be useful for large ma-
trices.

Other options that are useful with \texttt{jordan_form}:

\texttt{ratmx} is useful for matrices with entries of a known type, \textit{i.e.} multivariate polynomials. \texttt{ratmx} should
be set to \texttt{true}. This will ensure that CRE form will be used for computations and efficient determinant
algorithms will be employed.

\texttt{sparse} can also be set to \texttt{true} in conjunction with \texttt{ratmx} to ensure that efficient determinant algorithms
will be employed.

\texttt{known_eigvals} can be set to \texttt{true} in conjunction with \texttt{ratmx} to ensure that efficient determinant algorithms
will be employed.

Other commands available:

\texttt{prettyjordan}([[[\textit{eigval1}, [\text{block_size}, \text{number_of_this_size}], \ldots], [\textit{eigval2}, \ldots]]], \textit{di-
}mension)) \textit{Function}

Produces a Jordan matrix of size and \textit{dimension} from the specified Jordan blocks and eigenvalues.

\texttt{jordan_simtran}(\textit{mat}) \textit{Function}

Computes a similarity matrix \(P\) such that \(P \cdot \textit{mat} \cdot P^{-1} = J\), where \(J\) is in Jordan canonical form.
Note: The function \texttt{jordan_form} must be called on \texttt{mat} previously to ensure that \texttt{eigpolylist} is set to the correct invariant factor structure.

\texttt{eigpolylist} \hspace{1em} \textit{default: []} \hspace{1em} \textit{Option Variable}

is a list containing invariant structure information for a matrix \(M\) that is output from \texttt{jordan_form}(\(M\)). The function \texttt{jordan_simtran} uses this list.

\texttt{jordan_matrix_expt(mat, power)} \hspace{1em} \textit{Function}

Computes \(mat^{**\text{power}}\) by first reducing \(mat\) to Jordan form. \texttt{jordan_form} need not be called before \texttt{jordan_matrix_expt}. See also \texttt{matrix_exp}. See also \texttt{matrix_fun}.

7.4.4 LDU Decomposition

\texttt{ldu_decomp(mat)} \hspace{1em} \textit{Function}

Computes the LDU decomposition of the square matrix \(mat\). The function returns the result as a list \([L, D, U]\), where \(L\) is a lower triangular matrix with 1’s on its diagonal, \(U\) is an upper triangular matrix with 1’s on its diagonal, and \(D\) is a diagonal matrix. The matrices \(L, D,\) and \(U\) satisfy \(L.D.U=M\).

\texttt{ldu_decompf(mat)} \hspace{1em} \textit{Function}

Same as \texttt{ldu_decomp}, but optimized for the case where all the elements of \(mat\) are floating point numbers.

\texttt{det_by_ldu(mat)} \hspace{1em} \textit{Function}

Computes the determinant of the square matrix \(mat\) as the product of the diagonal elements of \(D\) in the LDU decomposition of \(mat\).

\texttt{det_by_lduf(mat)} \hspace{1em} \textit{Function}

Same as \texttt{det_by_ldu}, but optimized for the case where all the elements of \(mat\) are floating point numbers.

\texttt{invert_by_ldu(mat)} \hspace{1em} \textit{Function}

Inverts the square matrix \(mat\) by first finding the LDU decomposition.

\texttt{invert_by_lduf(mat)} \hspace{1em} \textit{Function}

Same as \texttt{invert_by_ldu}, but optimized for the case where all the elements of \(mat\) are floating point numbers.

\texttt{solve_l1xy(l, y)} \hspace{1em} \textit{Function}

Solves the matrix equation \(L.X=Y\), where \(L\) is a square lower triangular matrix with 1’s on the diagonal.

7.4.5 LU Decomposition

\texttt{lu_decomp_symb(mat)} \hspace{1em} \textit{Function}

Calculates the LU decomposition of the (positive definite real) square symbolic matrix \(mat\) with or without partial pivoting. The answer returns the \(L\) matrix below the diagonal, and the \(U\) matrix on and above the diagonal. The \(L\) matrix has a diagonal of 1’s which are not shown. When \texttt{lu_decomp_symb} uses pivoting, it returns the LU decomposition of a row-permutated version of \(mat\).

The option variable \texttt{lu_pivot} controls pivoting in \texttt{lu_decomp_symb}.
lu_pivot default: true

Option Variable

Controls whether lu_decomp_symb uses row-pivoting. When lu_pivot is false, pivoting is not performed, and diagonal entries of the matrix matrix must be nonzero. The matrices L and U satisfy L.U=M.

lu_backsub_symb(matrix, vector)

Function

The function lu_backsub_symb back substitutes using the matrix matrix and the vector vector to solve linear equations matrix.X = vector. The reduced matrix matrix is supplied by lu_decomp. The function lu_backsub knows about pivoting which occurred in lu_decomp by luindex.

Do example(lu_backsub_symb); for an example.

lu_decomp(matrix)

Function

Produces the LU factorization of the numerical matrix matrix. Either partial (row) or full (row and column) pivoting is performed depending on the value of the option variable lu_full_pivoting. The function lu_decomp returns a list of the form [LU, r, c], where LU holds the packed factorization of matrix, containing the L matrix below the diagonal and the U matrix on and above the diagonal. L also has a diagonal of ones which are not shown. The elements r and c are lists indicating what row and column permutations, respectively, were performed during the decomposition.

Do example(lu_decomp); for an example, and demo(lu); for a longer demonstration.

See also lu_matrices (Section 7.4.5, page 241).

lu_matrices(matrix)

Function

Takes as input the output produced by lu_decomp and converts this into standard matrices. In particular, the command

apply('lu_matrices, lu_decomp(matrix));

returns the list of matrices [L, U, R, C] where LU is the factorization of RAC. Where R and C are permutation matrices indicating what row and column swaps were performed, respectively, during the factorization.

lu_full_pivoting default: false

Option Variable

When lu_full_pivoting is false, Macsyma computes LU decompositions of matrices using partial (row) pivoting; otherwise, Macsyma performs full row and column pivoting.

lu_backsub(LU, B[, r, c])

Function

The function lu_backsub uses back substitution to solve the numerical matrix equation LU X = B, where LU contains the packed LU factorization of a numerical square matrix produced by, say, lu_decomp. r and c are optional lists specifying what row and column permutations, respectively, were performed during the original decomposition.

determinant_by_lu(matrix)

Function

Computes the determinant of the numerical square matrix matrix using its LU factorization.

invert_by_lu(matrix)

Function

Computes the inverse of the numerical square matrix matrix using its LU factorization. Enter the command example(invert_by_lu); for an example.

invert_by_lu_symb(matrix)

Function

Computes the inverse of the symbolic square matrix matrix using its LU factorization. Enter the command example(mat6invert); for an example.
matsolve_by_lu(M, B)
Function
Solves the numerical matrix equation $M X = B$ for X using the LU factorization of M (which needs to be square). Do example(matsolve_by_lu); for an example and demo(lu); for a longer demonstration.

matsolve_by_lu_symb(M, B)
Function
Solves the symbolic matrix equation $M X = B$ for X using the LU factorization of M (which needs to be square). Do example(matsolve_by_lu_symb); for an example and demo(lu); for a longer demonstration.

improve_lu_solve(M, v, \{N, float\})
Function
Solves the numerical matrix equation $M X = v$ where v is a column vector for X using the LU factorization of M (which needs to be square) and follows the solution with N (default: 1) iterative improvements using floater (Default: `dfloat`) arithmetic. Do example(improve_lu_solve); for an example.

lu_compute_condition default: false
Option Variable
If true, lu_compute_condition will cause various LU functions to compute an estimated condition number of the matrix they are factoring. It is currently implemented for only one function, invert_by_lu. The norm used is determined by the value of lu_condition_norm. The resulting condition number is assigned to the global variable lu_condition. The condition number will be exact for the function invert_by_lu.

lu_condition_norm default: infinity
Option Variable
The option variable lu_condition_norm is the norm used to compute the condition number of a matrix undergoing LU factorization. Other possible values are 1 and frobenius. See mat_norm, page 271.

lu_condition
System Variable
The system variable lu_condition is the estimated condition number computed during the last LU factorization.

7.4.6 QR Decomposition

qr_decomp(matrix)
Function
Computes the QR factorization of the $m \times n$ numerical matrix matrix. The function qr_decomp returns a list of the matrices Q and R, where Q is column unitary ($m \geq n$; also row unitary if $m = n$ and matrix is nonsingular) and R is upper triangular with matrix = $Q R$. See also mat_qr. Do example(qr_decomp); for an example and demo(qr); for a longer demonstration.

qr_decomp_symb(matrix)
Function
Computes the QR factorization of the $m \times n$ symbolic (or numerical) matrix matrix. The function qr_decomp_symb returns a list of the matrices Q and R, where Q is column unitary ($m \geq n$; also row unitary if $m = n$ and matrix is nonsingular) and R is upper triangular with matrix = $Q R$. Do example(qr_decomp_symb); for an example.

7.4.7 Schur Form

schur_form(a)
Function
The function schur_form computes and returns the Schur form of the square real floating point matrix a. The result is also stored as the value of the option variable schur_form. Do example(schur_form); for an example.
The option variable `schur_form` holds the Schur form of a matrix as computed by the last call to the `schur_form` function.

7.4.8 Singular Value Decomposition

`svd(A)`

The function `svd` computes the singular value decomposition of the matrix A and returns a list of the singular values of A. `svd(A, 'svd_matrices)` returns a list of the form `[s, U, V]`, where s is the list of the singular values of A, and U and V are matrices that satisfy $A = U S V^*$ with S being the diagonal matrix corresponding to s. If A is $m \times n$, then V will be unitary and $n \times n$. However, due to differences in the algorithms employed, for numerical matrices (elements are rational numbers or floats) U will be column orthogonal and $m \times n$ and S will be $n \times n$, while for non-numerical matrices, U will be unitary and $m \times m$ and S will be $m \times n$. Do `demo(svd)` for a demonstration. See also `svd_numerical`.

`svd_numerical(A)`

The function `svd_numerical` computes the singular value decomposition of the numerical matrix A. It returns a list of the form `[s, U, V]`, where s is the list of the singular values of A, U is a column orthogonal matrix and V is an orthogonal matrix satisfying $A = U S V^*$ with S being the diagonal matrix corresponding to s. If A is $m \times n$, then U will also be $m \times n$, while S and V will be $n \times n$. See also `svd`.

`matsolve_by_svd(matrix, B {,tol})`

Solves the numerical matrix equation $matrix \times X = B$ for X using the Singular Value Decomposition of A. A may be singular, or stiff (large condition number). Also, A need not be square. A and B must have numbers only (not bfloats). `tol` (default: `dfloat_epsilon * mat_nrows(A)`) is an optional argument to specify when a singular value of A should be treated as 0. When A is invertible, `matsolve_by_lu` (see page 242) can produce equivalent answers. When A is not invertible, see also `lsq_linsolve` (see page 232) which uses the Moore-Penrose inverse to compute an alternative least square solution.

7.5 Special Matrix Types

7.5.1 Banded Matrices

Name of Package: `bandmat`

The `bandmat` package contains commands which facilitate computing with banded matrices. Operations include:

1. Conversion between banded matrix and full matrix storage
2. Multiplying banded matrices times vectors
3. Solving equations which include banded matrices.

Both general banded and symmetric banded matrices are accommodated. Floating point versions of the elimination routines are provided to run floating point problems more efficiently. All matrices are stored as arrays, and not as Macsyma matrices.

In all the functions in this package, `dim` is the dimension of the (square) matrices and of the vectors, `nband` is the bandwidth, and `nsband` is the half-bandwidth (including the diagonal) of symmetric banded matrices.
full2banda(ba, fa, dim, nband)
Stores the central band of a full matrix in the array `ba`, which can be used as a banded matrix in other operations. The full matrix is specified as the array `fa`, in the region with indices `[1..dim,1..dim]`. The array `ba` stores the entries of the banded matrix in the range of indices `[1..dim,1..nband]`.
The transformation between `fa` and `ba` is: `ba[i,j] := fa[i,j+i-nband]` where `nband:=floor((nband+1)/2)` is the lower half bandwidth. The cell `[i,j]` is unused when `j+i-nband` is outside of the range `[1..dim]`.
When `nband` is odd, then the banded matrix has the same number of band rows above and below the diagonal. When `nband` is even, the upper band has one more row than the lower half.

full2sbanda(sba, fa, dim, nsb)
Stores the upper central band of a full matrix in the array `sba`, which can be used as a symmetric banded matrix in other operations. The full matrix is specified as the array `fa`, in the region with indices `[1..dim,1..dim]`. The array `sba` stores the entries of the banded matrix in the range of indices `[1..dim,1..nsb]`.
The transformation formula between `fa` and `sba` is: `sba[i,j] := fa[i,j+i-1]`. The cell `sba[i,j]` is unused when `j+i-1` is outside of the range `[1..dim]`.

band2fulla(fa, ba, dim, nband)
Interprets the contents of the array `ba` as the central band of a matrix with dimension `dim x dim`. `nband` is the full bandwidth of the matrix. `band2fulla` stores these elements in the array `fa`, in the region with indices `[1..dim,1..dim]`. `fa` represents a matrix in full storage format.
The transformation formula between `ba` and `fa` is: `fa[i,j] := ba[i,j-i+nb]` where `nb:=floor((nband+1)/2)` is the lower half bandwidth.

sband2fulla(fa, sba, dim, nsb)
Interprets the contents of the array `sba` as the upper central band of a matrix with dimension `dim x dim`. `nsb` is the upper half bandwidth of the symmetric matrix. `sband2fulla` stores these elements in the array `fa`, in the region with indices `[1..dim,1..dim]`. `fa` represents a matrix in full storage format.
The transformation formula between `fa` and `sba` is: `fa[i,j] := sba[i,j-i+1]`.

b_multv(wa, ba, va, dim, nband)
Multiplies the banded matrix stored as the array `ba` times the vector stored as the array `va`. The result is stored in the array `wa`.

b_multvf(wa, ba, va, dim, nband)
A version of `b_multv` for declared single and double floating point arrays, which is more efficient in those cases. All the arrays must be declared floating point arrays.

sb_multv(wa, sba, va, dim, nsb)
Multiplies the symmetric banded matrix stored as the array `sba` times the vector stored as the array `va`. The result is stored in the array `wa`.

sb_multvf(wa, sba, va, dim, nsb)
A version of `sb_multv` for declared single and double floating point arrays, which is more efficient in those cases. All the arrays must be declared floating point arrays.

b_reduce(ba, dim, nband)
Performs Gauss reduction of a banded square matrix, which is specified as an array `ba`. The matrix has size `dim` and bandwidth `nband`. The reduced matrix is stored into the array `ba`. This command accepts general symbolic-numerical arrays.
7.5. SPECIAL MATRIX TYPES

b.reduce(ba, dim, nband)
A version of b.reduce for declared single and double float arrays, which is more efficient in those cases. ba must be a declared floating point array.

b.backsub(ba, veca, dim, nband)
Performs Gauss back-substitution on vector veca, which is stored in the array veca. The array ba stores a reduced banded matrix, with dimension dim and bandwidth nband. This command accepts general symbolic-numerical arrays.

b.backsubf(ba, veca, dim, nband)
A version of b.backsub for declared single and double float arrays, which is more efficient in those cases. ba and veca must be declared floating point arrays.

sb.reduce(sba, dim, nsb)
Performs Gauss reduction of a symmetric banded square matrix, which is stored in the array sba. The matrix has size dim and half-bandwidth nsb. The reduced matrix is stored into the array sba. This command accepts general symbolic-numerical arrays.

sb.backsub(sba, veca, dim, nsb)
A version of sb.backsub for declared single and double float arrays, which is more efficient in those cases. sba must be a declared floating point array.

sb.backsubf(sba, veca, dim, nsb)
Performs Gauss back-substitution on vector veca, which is stored in the array veca. The array sba stores a reduced symmetric banded matrix, with dimension dim and half-bandwidth nsb. This command accepts general symbolic-numerical arrays.

sb.backsubf(sba, veca, dim, nsb)
A version of sb.backsub for declared single and double float arrays, which is more efficient in those cases. sba and veca must be declared floating point arrays.

7.5.2 Block Structured Matrices

A block structured matrix is one which is expressed as a matrix of smaller matrices. Macysma has facilities for computing with block structured matrices, and converting back and forth from block mode to regular matrix mode.

Do demo(matrix2); for a demonstration of computing with block structured matrices.

If one is working with block matrices, that is, matrices with elements that are themselves matrices, the function mat_block_pack changes the values of option variables that affect block matrix computations.

mat_block_pack()
The function mat_block_pack resets option variables to the usual values used with matrices whose elements are themselves matrices. Atoms are assumed nonscalar when they are elements of a matrix. The following values are set by mat_block_pack.

Do example(mat_block_pack); for an example.

See mat_unblock_pack for resetting these option variables. See also mat_unblocker.

mat_unblock_pack()
The function mat_unblock_pack resets the option variables used with matrices whose elements are scalars. Atoms are assumed scalar when they are elements of a matrix. The defaults restored by mat_unblock_pack are:
### Variable	Value	Comment
`keep_block_matrix` | true | Used to inhibit `mat_unblocker`
`assumescalar` | all | `x.matrix([a, b]) → matrix([x*a, x*b])`
`sclaramatrixp` | false | Keeps 1x1 matrices from becoming scalars
`dotscrules` | true | Keeps 1x1 matrices from becoming scalars
`matrix_element_add` | + | Keeps 1x1 matrices from becoming scalars
`matrix_element_mult` | * | Keeps 1x1 matrices from becoming scalars
`matrix_element_transpose` | ^ | Keeps 1x1 matrices from becoming scalars
`matrix_elements_assumed_scalar` | false | Keeps 1x1 matrices from becoming scalars

### Variable	Value	Comment
`keep_block_matrix` | false | Allows `mat_unblocker` to act
`assumescalar` | true | `x.matrix([a, b]) → matrix([x*a, x*b])`
`sclaramatrixp` | true | Makes 1x1 matrices become scalars
`dotscrules` | false | Makes 1x1 matrices become scalars
`matrix_element_add` | “+” | Makes 1x1 matrices become scalars
`matrix_element_mult` | “*” | Makes 1x1 matrices become scalars
`matrix_element_transpose` | false | Makes 1x1 matrices become scalars
`matrix_elements_assumed_scalar` | true | Makes 1x1 matrices become scalars

Do example(`mat_unblock.pack`); for an example.

See `mat_block_pack` for matrices whose elements are themselves matrices. See also `mat_unblocker`.

keep_block_matrix default: false

When set to `true`, the action of `mat_unblocker` is inhibited. This preserves the form of a matrix with elements that are themselves matrices. See also `mat_unblocker`.

matrix_elements_assumed_scalar default: true

The option variable `matrix_elements_assumed_scalar` is used by `determinant`, `inverse`, and some Matlab-type functions. If the value of `matrix_elements_assumed_scalar` is `true`, then the corresponding arithmetic operations can be carried out using scalar arithmetic, regardless of the matrix elements. See also `determinant`, `invert`, `mat_block_pack`, and `mat_unblocker`.

Do example(`matrix_elements_assumed_scalar`); for an example.

assumescalarp (input)

The function `assumescalarp` returns `true` for scalar input and `false` for nonscalar input. Otherwise this function tests the option variable `matrix_elements_assumed_scalar` for values `true` or `all` to authorize treating input as a scalar. See also `matrix_elements_assumed_scalar` and `mat_block_pack`.

Do example(`assumescalarp`); for an example.

mat_unblocker (`block_mat_or`)

The function `mat_unblocker` removes the inner matrix structure of a matrix having some elements that are matrices. However, if the value of the option variable `keep_block_matrix` is `true`, then `mat_unblocker` returns its input unchanged. See also `keep_block_matrix` and `mat_block_pack`.

Do example(`mat_unblocker`); for an example.
7.5. SPECIAL MATRIX TYPES

(blockmat(matrix))

Function

Takes a block matrix (a matrix whose entries are appropriately dimensioned matrices) and returns a regular matrix. E.g., See also mat_unblocker.

7.5.3 Cauchy Matrices

cauuchy(x_list {}, y_list)

Function

The function cauchy produces a square matrix whose general element is \(1/(x_{\text{list}}[i] + y_{\text{list}}[j])\), where x_list and y_list are lists or vectors. If y_list is not input, its value defaults to the value of x_list. A special exception is, if the first input is a scalar k, cauchy(k) is the same as cauchy([1, 2, ..., k]).

Do example(cauchy); for an example.

7.5.4 Circulant Matrices

circulant(col)

Function

The function circulant generates a circulant matrix from a list or vector containing the elements of the first column of the matrix. The \(i,j^{th}\) element of the matrix contains \(\text{col}(k)\), where \(k = i - j + 1\), mod \(n\), where \(n\) is the length of the argument col.

Do example(circulant); for an example.

gencirculant(array, rows {}, cols, offset, stepsize)

Function

The function gencirculant generates a circulant matrix from array. If a selected element of the array doesn't exist, a symbolic one will be created. On the main diagonal is array[offset]. At the upper right corner is array[offset+cols -1]. After the first row, each succeeding row is advanced to the right by stepsize (default 1) with wraparound to the left of the row. If omitted, offset defaults to zero. If cols is also omitted, it is taken to be equal to rows.

Do example(gencirculant); for an example.
7.5.5 Hadamard Matrices

\texttt{hadamard(n)} \hspace{1cm} \textit{Function}

The function \texttt{hadamard} returns a Hadamard matrix of order \(n \), that is, a square matrix \(H \) with elements 1 or -1 such that \(H \cdot H^* = H^* \cdot H = n \cdot \text{ident}(n) \). An \(n \times n \) Hadamard matrix with \(n > 2 \) exists only if \(\text{remainder}(n,4) = 0 \). The function \texttt{hadamard} is implemented only in the cases where \(n \), \(n/12 \) or \(n/20 \) is a power of 2.

Do \texttt{example(hadamard)}; for an example.

7.5.6 Hankel Matrices

A Hankel matrix is one where \(m[i,j] = m[i+k,j-k] \) for any integer \(k \) such that the indices \(i+k \) and \(j-k \) are in the range \(\{1, \ldots, \text{dim}\} \). Pictorially, a \(4 \times 4 \) Hankel matrix has identical elements on the skew diagonals as shown:

\[
\begin{pmatrix}
a & b & c & d \\
b & c & d & e \\
c & d & e & f \\
d & e & f & g \\
\end{pmatrix}
\]

A persymmetric Hankel matrix is one which is symmetric about the diagonal running from upper right to lower left, \textit{i.e.} \(m[i,j] = m[\text{dim+1-i, dim+1-j}] \). Pictorially, a \(4 \times 4 \) persymmetric matrix has identical elements as shown:

\[
\begin{pmatrix}
a & b & c & d \\
e & f & g & c \\
h & i & f & b \\
j & h & e & a \\
\end{pmatrix}
\]

\texttt{hankel(first_col[, last_row])} \hspace{1cm} \textit{Function}

The function \texttt{hankel} returns a Hankel matrix whose first column is given by the elements of the list \texttt{first_col}, and whose last row is given by the elements of the list \texttt{last_row}. If \texttt{last_row} is not specified, then it defaults to a list of zeros of the same length as \texttt{first_row}. The last element of \texttt{first_row} overrides the first element of \texttt{last_row} to determine the lower left matrix element.

Do \texttt{example(hankel)}; for an example.

\texttt{genhankel(arrname, numrows[, numcols])} \hspace{1cm} \textit{Function}

The function \texttt{genhankel} generates a Hankel matrix with entries \texttt{arrname}[0], \texttt{arrname}[1] and so forth. The argument \texttt{numrows} is the number of rows, and \texttt{numcols} is the number of columns. If \texttt{numcols} is not specified, then its value defaults to the value of \texttt{numrows}, so that the resulting matrix is square.

Do \texttt{example(genhankel)}; for an example.

\texttt{invert_hankel(matrix)} \hspace{1cm} \textit{Function}

This function inverts the square Hankel matrix \texttt{matrix}. If all elements are floats, then \texttt{invert_hankel} automatically calls \texttt{invert_hankelf}. If all elements are integers or rational numbers, then it automatically calls \texttt{invert_hankelr} in the \texttt{blinalg} file. The matrix defined by \texttt{hilbert[i,j]} := \(1/(i+j-1)\) is an example of a Hankel matrix.

\texttt{invert_hankelf(matrix)} \hspace{1cm} \textit{Function}

This function is the same as \texttt{invert_hankel} but is optimized for the case where all the elements of \texttt{matrix} are floating point numbers.
invert_hankel(matrix)

This function is the same as invert_hankel but is optimized for the case where all the elements of matrix are integers or rational numbers.

invert_psymhankel(matrix)

This function inverts the square persymmetric Hankel matrix matrix.

invert_psymhankelf(matrix)

This function is the same as invert_psymhankel but is optimized for the case where all the elements of matrix are floating point numbers.

hilbert(n)

The function hilbert generates a Hilbert matrix of size n. The \(ij\)th element of the matrix is \(1/(i+j-1)\). This matrix is known to be ill-conditioned for inversion. See also invert_hankel and invhilbert.

Do example(hilbert); for an example.

invhilbert(n)

The function invhilbert generates the exact inverse of the Hilbert matrix of order n. The elements of this matrix are integers. Both the Hilbert matrix and its inverse are ill-conditioned for inversion. See also hilbert and invert_hankel.

Do example(invhilbert); for an example.

7.5.7 Krylov Matrices

krylov(vec, mat, \{n\})

Returns the Krylov matrix of order defined by the vector vec, the matrix mat with the number of columns specified by the integer n. The kth column of the Krylov matrix is the product \(mat^{-k-1}(vec)\). If n is not specified, krylov returns a square matrix.

Do example(krylov); for an example.

7.5.8 Pascal Matrices

pascal(n)

The function pascal returns a matrix whose upper-left half forms Pascal's triangle of order \(n-1\). The whole matrix is a diamond-shaped section of Pascal's triangle of order \(2(n-1)\). The general \(ij\)th element is given by \(\text{binomial}(i+j-2,i-1)\). These matrices have integer entries, and so do their inverses. Pascal matrices of all orders have determinant 1, yet they are ill-conditioned for inversion.

7.5.9 Toeplitz Matrices

A Toeplitz matrix is one where \(m[i,j] = m[i+k, j+k]\) for any integer \(k\) such that the indices \(i+k\) and \(j-k\) are in the range \(\{1, \ldots, \dim\}\). Pictorially, a \(4 \times 4\) Toeplitz matrix has identical elements on the main diagonals as shown:

\[
\begin{pmatrix}
d & c & b & a \\
e & d & c & b \\
f & e & d & c \\
g & f & e & d \\
\end{pmatrix}
\]
toeplitz(first_col,first_row)
Returns a Toeplitz matrix with first_col as its first column. If first_row is specified, then this will be the first row of the Toeplitz matrix. If first_row is not specified, then a symmetric Toeplitz matrix is returned. When determining the upper left element, the first element of the first column takes precedence over the first element of the first row. Both first_col and first_row are lists.

Do example(toeplitz); for an example.

gen_toeplitz(arrname, numRows, numCols, 'symmetric')
The function gen_toeplitz generates a Toeplitz matrix with diagonal entries arrname[0], subdiagonal elements arrname[-1], superdiagonal elements arrname[1] and so forth. The argument numRows specifies the number of rows, and numCols the number of columns. If numCols is unspecified, it defaults to the value of numRows, so that the resulting matrix is square. If 'symmetric' is specified, then the matrix elements above the diagonal are repeated below the diagonal by transposing, yielding a symmetric matrix.

Do example(gen_toeplitz); for an example.

invert_toeplitz(matrix)
Inverts the square Toeplitz matrix matrix.

invert_toeplitzf(matrix)
Same as invert_toeplitz, but optimized for the case where all the elements of matrix are floating point numbers.

invert_sym_toeplitz(matrix)
Inverts the square symmetric Toeplitz matrix matrix.

invert_sym_toeplitzf(matrix)
Same as invert_sym_toeplitz, but specialized to the case where all the elements of matrix are floating point numbers.

solve_toeplitz(matrix,b)
Solves the matrix equation \(M \cdot X = B \), where \(M \) is a Toeplitz matrix and \(b \) is a vector (or a matrix). Multiple vectors can be specified at one time by making \(b \) a matrix with several columns, where each column is treated as a separate vector.

solve_toeplitzf(matrix,b)
Same as solve_toeplitz, but optimized for the case where all the elements of matrix are floating point numbers.

7.5.10 Vandermonde Matrices

vandermonde(second_col,numCols)
Returns a Vandermonde matrix with second column specified by the list second_col. Equivalently, second_col is a list of the variables which are raised to powers moving from left to right in the Vandermonde matrix. If numCols is specified, then the matrix returned has numCols columns. If numCols is not specified, then its value defaults to length(second_col); that is, the matrix returned is square.

Do example(vandermonde); for an example.

gen_vandermonde(arrname, numRows, numCols)
The function gen_vandermonde generates a Vandermonde matrix with second row arrname[1],..., arrname[numRows]. The argument numRows is the number of rows, and numCols is the number of
columns. If numcols is not specified, then its value defaults to the value of numrows, so that the resulting matrix is square.

Do example(genvandermonde); for an example.

mat_vander(list_or, cols)

The function mat_vander returns a column reversed version of the Vandermonde matrix. This puts the elements of list_or into the next to last column. The function mat_vander returns a square matrix unless the optional second argument cols is given. The value of this argument is the number of columns.

Do example(mat_vander); for an example.

7.6 Functions of a Matrix

7.6.1 Matrix Exponentiation

Name of Package: matexp

The function matrix_exp computes exact or approximate matrix exponentials by means of inverse Laplace transforms.

matrix_exp(mat, var)

When mat is a square matrix and var evaluates to a symbol, this function returns exp(mat*var), or false if it is unsuccessful.

matrix_exp_exact default: all

Controls the way in which matrix_exp factors the characteristic polynomial of the matrix. When true, the polynomial is factored exactly using factor, and if the factorization is not successful, then the program returns false. When matrix_exp_exact is false, an approximate factorization of the characteristic polynomial is obtained by means of allroots. When matrix_exp_exact is all, then the program attempts to find the exact result, but if this is not possible, then it returns an approximate one.

matrix_exp_status

A global status variable. It returns exact if the returned result is exact, or if the approximate method is inappropriate, and approximate otherwise.

7.6.2 Functions of Normal Matrices

Analytic functions of normal, real, symmetric and nonnegative definite, matrix argument can be computed in a stable way via the Singular Value Decomposition.

An alternative for general matrices is to evaluate matrix functions via the Jordan normal form. See also Section 7.6.3.

matrix_poly(poly, mat)

Evaluates the univariate polynomial poly at the matrix argument mat. Mat must be a square matrix. matrix_poly uses a more efficient algorithm than mat_list2poly (see page 261) for large matrices or for high order polynomials.

matrix_fun(func, mat)

Computes a numerical function of a square, real symmetric positive definite matrix mat. matrix_func depends on using the Singular Value Decomposition of mat. For example, matrix_fun(sqrt, mat)
computes a positive definite square root of mat. Because mat is nonnegative definite, the SVD is numerically stable.

To evaluate a function with a square matrix argument, see also `mat_funm` (Section 7.6.3, page 252).

To evaluate the matrix exponential, see also `matrix_exp` (Section 7.6.1, page 251), `mat_expm` (Section 7.6.3, page 252), and `jordan_matrix_expt` (Section 7.4.3, page 240).

7.6.3 Functions of a Matrix by Jordan Form

With the exception of `mat_expm`, the following functions of a matrix variable are implemented only for matrices in Jordan form (See `jordan_form`, Section 7.4.3, page 239). All of the following functions depend on finding the eigenvalues and Jordan form of their argument `Mat`, which in general can not be done exactly. In floating point cases, the result may be unstable if `Mat` is not normal. For normal matrices, see Section 7.6.2. For an alternative algorithm for evaluating the matrix exponential, see also `matrix_exp` (Section 7.6.1, page 251).

The special Jordan form matrix functions include `mat_cosm` (Section 7.6.3, page 252), `mat_logm` (Section 7.6.3, page 252), `mat_log10` (Section 7.6.3, page 252), `mat_simm` (Section 7.6.3, page 252), `mat_sqrtm` (Section 7.6.3, page 252), `mat_tanm` (Section 7.6.3, page 253) and `mat_expm` (Section 7.6.3, page 252) which need not be in Jordan form.

```plaintext
mat_funm(Mat, fcn) Function
mat_funm(fcn, Mat) Function

The function `mat_funm` is a function of a square matrix. As an example, `mat_funm(A, cos)` is the matrix cosine function.

Do example(mat_funm); for an example.

To evaluate a function with a square matrix argument, see also `matrix_fun` (Section 7.6.2, page 251).

mat_cosm(Mat) Function

The function `mat_cosm` is the matrix cosine function of a square matrix.

Do example(mat_cosm); for an example.

mat_expm(Mat) Function

The function `mat_expm` is the matrix exponential function of a square matrix. This function is implemented for all square matrices.

mat_logm(Mat) Function

The function `mat_logm` is the matrix logarithm function of a square matrix. Of course, some matrices, like \([<0,1;0,0>]\), do not have any logarithms.

Do example(mat_logm); for an example.

mat_log10(Mat) Function

The function `mat_log10` is the matrix logarithm to base 10 function of a square matrix. Of course, some matrices, like \([<0,1;0,0>]\), do not have any logarithms.

mat_simm(Mat) Function

The function `mat_simm` is the matrix sine function of a square matrix.

Do example(mat_simm); for an example.

mat_sqrtm(Mat) Function

The function `mat_sqrtm` is the matrix logarithm function of a square matrix. Of course, some matrices, like \([<0,1;0,0>]\), do not have any square roots.

Do example(mat_sqrtm); for an example.
```
mat_tanm(Mat)

The function mat_tanm is the matrix tangent function of a square matrix. Of course, some matrices do not have tangents.
Do example(mat_tanm); for an example.

7.6.4 Functions that Apply to Matrices Element by Element

The basic arithmetic operators +, *, / and ^ operate on matrices element by element.

matrixmap(function, matrix)

Maps the function function onto each element of the matrix matrix. In this way, any univariate function can be applied to a matrix element by element.

One can declare a function of one variable to be threadable. This means it applies element by element to lists, matrices, and equations. See page 369. See also map, page 345 and matrixmap, page 253.

All the usual mathematical functions in Macsyma are threadable. These include abs,acos, acosh, asin, asinh, atan, atan2, cos, cosh, erf, exp, fix, gamma, log, round, sin, sinh, sqrt, tan, tanh, floor, and ceil.

In addition, the following functions are threadable: mat_sign, mat_angle, mat_real, mat_imag, mat_conj, mat_log10, mat_atan2, mat_rem, and mat_quot.

mat_atan2(x, y)

The function mat_atan2 is a two argument atan function. The inputs x and y can be any combination of scalars, lists, or matrices as long as they both have the same number of rows and columns. An exception is made if one argument is a scalar (or a singleton list or a 1x1 matrix). In this case, the option variable scalarmatrixp may affect the result by causing any 1x1 matrices to be converted to scalars. A matrix is returned if one of the inputs is a matrix, a list is returned if one of the inputs is a list, and otherwise a scalar is returned. See also atan2, asumescalarp, and scalarmatrixp.

mat_rem(x, y)

The function mat_rem is a special case of the remainder function. It returns the remainder of x divided by y for integers or univariate polynomials. It applies element by element to any combination of scalars, lists, or matrices if they both have the same number of rows and columns. An exception is made if one argument is a scalar (or a singleton list or a 1x1 matrix). In this case, the option variable scalarmatrixp may affect the result by causing any 1x1 matrices to be converted to scalars. A matrix is returned if one of the inputs is a matrix, a list is returned if one of the inputs is a list, and otherwise a scalar is returned. See also remainder, scalarmatrixp, and quotient.

Do example(mat_rem); for an example.

Macsyma has many other higher transcendental functions that are threadable. For example, zeta, totient, ai, ei, and covers.

mat_quot(x, y)

The function mat_quot is a special case of the quotient function. It returns the quotient of x divided by y for integers or univariate polynomials. It applies element by element to any combination of scalars, lists, or matrices if they both have the same number of rows and columns. An exception is made if one argument is a scalar (or a singleton list or a 1x1 matrix). In this case, the option variable scalarmatrixp may affect the result by causing any 1x1 matrices to be converted to scalars. A matrix is returned if one of the inputs is a matrix, a list is returned if one of the inputs is a list, and otherwise a scalar is returned. See also mat_rem, remainder, scalarmatrixp, and quotient.

Do example(mat_quot); for an example.
7.7 Macsyma for Matlab Users

Matlab is a generic term for a family of languages for computing numerically with matrices, including the language of MATLAB, a product whose name is a trademark of Mathworks, Inc.

7.7.1 Command Naming Conventions

Macsyma contains nearly all the mathematical functionality found in the basic Matlab language. In most cases, a Matlab command with the name `funcname` is mirrored in Macsyma by a command with the name `mat_functionname`. This command naming convention is supported by Macsyma for the convenience of Matlab users. For example,

- The Macsyma command `ident` generates an identity matrix. Macsyma also supports a command named `mat_eye`, because the Matlab language has a command `eye` which returns identity matrices.

- The Macsyma command `svd` returns the singular value decomposition of a matrix. Macsyma also supports a command named `mat_svd` whose input and output are essentially the same as those of the Matlab command `svd`, which are significantly different from those of Macsyma’s `svd`.

- The Macsyma command `sample_mean` computes the mean of a list of numbers. Macsyma also supports a command named `mat_mean` which is defined for lists or matrices, and behaves like the Matlab function `mean`.

The `mat_` naming convention for Matlab command names is not supported for graphics commands. However, Macsyma generally has equivalent commands.

7.7.2 Basic Operators

Table 7.4 compares a number of Macsyma and Matlab operators in typical cases. These operators are described in more detail in the remainder of this section.

<table>
<thead>
<tr>
<th>Matlab</th>
<th>Macsyma</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>d=norm(A)</td>
<td>d:mat_norm(A)</td>
<td>assignment of value by :</td>
</tr>
<tr>
<td>[U,D]=eig(A)</td>
<td>[U,D]<:mat_eig(A)</td>
<td>multiple assignment by <:</td>
</tr>
<tr>
<td>1:6</td>
<td>1..6</td>
<td>sequence [1,2,3,4,5,6]</td>
</tr>
<tr>
<td>1:2:6</td>
<td>1..2..6</td>
<td>stepped sequence [1,3,5]</td>
</tr>
<tr>
<td>[1,2;3,4]</td>
<td>[1,2,3,4] or [<1,2,3,4>]</td>
<td>a 2x2 matrix</td>
</tr>
<tr>
<td>A([i,j],[k,1])</td>
<td>A[[i,j],[k,1]]</td>
<td>2x2 submatrix of A</td>
</tr>
<tr>
<td>A(2:n,2:n)</td>
<td>A[2..n,2..n]</td>
<td>a principal minor of A</td>
</tr>
<tr>
<td>A(:,1)</td>
<td>A[..,1]</td>
<td>first column of matrix A</td>
</tr>
<tr>
<td>A([3,5],:) = A([5,3],:)</td>
<td>A[[3,5],..]:A[[5,3],..]</td>
<td>interchange rows 3 and 5</td>
</tr>
<tr>
<td>X=A(,:)</td>
<td>X:A[..]</td>
<td>vector of appended columns of A</td>
</tr>
<tr>
<td>X(,:)=A</td>
<td>X[..]:A</td>
<td>fills X by columns from A</td>
</tr>
<tr>
<td>X(X>5)</td>
<td>X[X>5]</td>
<td>Boolean subcripting</td>
</tr>
<tr>
<td>A'</td>
<td>A^*</td>
<td>Hermitian transpose</td>
</tr>
<tr>
<td>A.'</td>
<td>A'^t</td>
<td>transpose</td>
</tr>
<tr>
<td>A\B</td>
<td>A/< /B</td>
<td>solution of A X = B</td>
</tr>
<tr>
<td>B/A</td>
<td>B/ >A</td>
<td>solution of X A = B</td>
</tr>
</tbody>
</table>

Table 7.4: Comparison of Macsyma and Matlab Operators
7.7. MACSYMA FOR MATLAB USERS

list_of_variables <: expression

Infix Operator

Multiple assignment operator. Variables in the `list_of_variables` are assigned the values from the list that results from evaluating `expression` in a context where `mat_nargout` has been set to the length of `list_of_variables`. This returned list is displayed. In addition, `[x, y, z] <: q` assigns the value of q to each of x, y, and z. Without a list on the left, `x <: a` is equivalent to `x := a`.

m .. n

Infix Operator

Sequence operator. For `n > m`, `m .. n` returns a list that starts with `m` and each additional element is increased by 1 as long as it does not exceed `n`. By convention, if `n < m`, `m .. n` returns an empty list. A similar construction is used when the optional third argument `step` is given and `step > 0`. The case of `step < 0` is generated by the reverse process.

`<a11, ..., a1n; a21, ..., a2n; ...; am1, ..., amn>

Matchfix Operator

Creates a matrix. Rows are separated by semicolons. Elements within each row are separated by commas. An element may itself be a scalar, a matrix, or a list (which is treated as a row vector). A block matrix may be returned if an element is `non scalar` or if `matrix_elements_assumed_scalar` is `false` or if `keep_block_matrix` is `true`. Do `example(matrix_entry)`; to see examples. Do `demo(matrix_entry)`; to see more extensive examples.

Note: This notation does not apply to 1 x 1 matrices because of possible confusion with a list. To enter a 1 x 1 matrix, you must explicitly say `matrix([element])`;

M[[list_of_rows, list_of_columns]]

Matrix Operator

Submatrix selection by lists of integers. A list of one element may be replaced by the element. Thus, both `A[1..n,1]` and `A[1..n,1]` return first column of matrix A. If `M` is a vector (or a list), then `[M]list` will return an object of the same type containing a subset of the elements of `M`. See also `submatrix` and `submat`.

M[.., list_of_columns] or M[list_of_rows,..]

Matrix Operator

Wildcard subscripting. In the context of subscripting, ".." stands for "all rows (or columns) of the matrix." For example, `M[[3,5,..]:M[[5,3,..]]` interchanges rows 3 and 5 of the matrix `M`. Naturally, `M[..,..]` returns the entire matrix `M`. See also `submatrix` and `submat`.

M[..]

Matrix Operator

Single wildcard subscripting. On one hand, `M[..]` by itself, or in an assignment of the form `X : M[..]`, returns a column vector formed from the appended columns of `M`. A list `M` is treated as a row vector. On the other hand, if `M[..]` occurs on the left hand side of an assignment statement, as in `M[..] : A`, then `M` is filled using elements of `A` in column order. Of course, the statement `M[..] : A[..]` produces the same result.

7.7.3 Functions That Create Matrices

mat_eye(input {, n})

Function

The function `mat_eye` generates an identity matrix which can be square: `mat_eye(m)`, rectangular: `mat_eye(m,n)`, or the size of the input matrix: `mat_eye(Mat)`. However, if the option variable `size_of_flag` is set to `true`, then `mat_eye(mat_size(Mat))` will produce an output the same size as that of `Mat`. See `size_of_flag`, Section 7.7.3, page 256.

Do `example(mat_eye)`; for an example.
mat_iden(input {, n})

The function mat_iden generates an identity matrix which can be square: mat_iden(m), rectangular: mat_iden(m,n), or the size of an input matrix: mat_iden(Mat). However, if the option variable size_of_flag is set to true, then mat_iden(mat_size(Mat)) will produce an output the same size as that of Mat. See size_of_flag, Section 7.7.3, page 256. See also ident.

Do example(mat_iden); for an example.

mat_zeros(input {, n})

The function mat_zeros generates a matrix of zeros which can be square: mat_zeros(m), rectangular: mat_zeros(m,n), or the size of an input matrix: mat_zeros(Mat). However, if the option variable size_of_flag is set to true, mat_zeros(mat_size(Mat)) will produce an output the same size as that of Mat. See size_of_flag, Section 7.7.3, page 256. See also zeromatrix.

Do example(mat_zeros); for an example.

size_of_flag default: false

When set to true, the option variable size_of_flag enables the functions mat_iden, mat_eye, mat_zeros, mat_ones, and mat_rand, to be applied as, for example, mat_eye(mat_size(Mat)), which is preferred to the usage mat_eye(Mat) (which requires size_of_flag to be false).

size_ofp(input)

The function size_ofp returns true if input might have been returned by mat_size, that is, if input is a list of two non-negative integers. Used in cases like mat_eye(mat_size(Mat)), which is preferred to the usage mat_eye(Mat). See also size_of_flag.

mat_vander(list)

This function returns a Matlab style (column reversed) square Vandermonde matrix. The input list contains the elements of the next to last column. See also vandermonde.

See also Section 7.5 for functions which build specialized matrices.

7.7.4 Matrix, Vector, List, and Scalar Data

Matlab has only one data type, a complex double precision floating point matrix. Macsyma has many data types, including for example, integers, single and double precision floating point numbers, and boolean constants.

In Macsyma a variable x may be assigned a value which is a list, a row vector, or a column vector, all of which are different structures in Macsyma.

mat_raise(input)

The function mat_raise converts an expression or a list to a matrix, regardless of the option variable scalarmatrixp. However, scalarmatrixp may affect subsequent results by causing 1x1 matrices to be converted to scalars. This function is the inverse to mat_lower. See also scalarmatrixp.

Do example(mat_raise); for an example.

mat_lower(input)

The function mat_lower coerces input to lower type, when possible. It returns the only element of a 1 x 1 matrix, returns the only element of a list of length 1 (regarding the list as a row vector), or it returns a list of the elements of a row vector. Column vectors and other matrices are unchanged. It is unaffected by the option variable scalarmatrixp. The function mat_lower is the inverse to mat_raise.

vec2list(vec)

The function vec2list forms a list from the elements of the row or column vector vec. See also vectorp.

Do example(vec2list); for an example.
matrixlikep(input)

The function matrixlikep is a predicate which tests its argument input and returns true if input is a matrix, a list, or a scalar, since all of these can be regarded as special cases of matrices.

Do example(matrixlikep); for an example.

booleanp(input)

The function booleanp is the Boolean predicate. It distinguishes Boolean (literally either true or false) input from all other input.

mat_isempty(input)

The function mat_isempty returns true if input is an empty list or empty matrix.
See also scalarp, nonscalarp, listp, matrixp, square_matrixp, and float_matrixp.

7.7.5 Functions That Give Information About Matrices

All the functions in this subsection act on matrices. However, a list input is treated as a row vector and a scalar input is treated as a 1x1 matrix.

mat_ncols(Mat_or)

The function mat_ncols returns the number of columns in a matrix. List input is treated as a row vector and scalar input as a 1x1 matrix.

mat_nrows(Mat_or)

The function mat_nrows returns the number of rows in a matrix. List input is treated as a row vector and scalar input as a 1x1 matrix.

mat_length(Mat_or)

The function mat_length returns either the length of a vector or the maximum dimension of a matrix. List input is treated as a row vector and scalar input as a 1x1 matrix.
Do example(mat_length); for an example.

mat_size(Mat_or)

The function mat_size returns the size of a matrix as a list of the form [number of rows, number of columns]. List input is treated as a row vector and scalar input as a 1x1 matrix.
Do example(mat_size); for an example.

mat_rank(Mat_or)

The function mat_rank returns the rank of a matrix. List input is treated as a row vector and scalar input as a 1 x 1 matrix.
Do example(mat_rank); for an example.

7.7.6 Matrix Decompositions

All the functions in this subsection act on matrices. However, a list input is treated as a row vector and a scalar input is treated as a 1x1 matrix.

mat_qr(Mat_or {, 'unnormalized})

The function mat_qr performs an orthogonal-triangular decomposition of the matrix. The form [Q, R] <: MAT_QR(A) produces an upper triangular matrix R of the same size as A and a matrix Q such
that $A = Q \cdot R$, and $Q^* \cdot Q = I$. Whereas QR(A) simply returns R. The form $[Q, R] \leftarrow \text{MAT}_\cdot \text{QR}(A, \text{unnormalized})$ is recommended for symbolic matrices. This returns an upper triangular matrix R of same size as A and a matrix Q such that $A = QR$, and $Q^{\ast} \cdot Q$ is diagonal. See qr.decomp, page 242.

mat_eig(amat \{, bmat\})

The function mat_eig returns a column vector of the eigenvalues of amat (generalized eigenvalues if the optional second argument bmat is given). $[U, D] \leftarrow \text{mat_eig}(amat \{, bmat\})$ returns a list of two matrices, $[U, D]$ such that amat = bmat U D, with D diagonal.

mat_svd(M \{0 \{predicate_function\}\})

The function mat_svd performs a singular value decomposition of a matrix.

The form $[U, S, V] \leftarrow \text{mat_svd}(Mat, 0 \{predicate_function\})$ returns and assigns three matrices $[U, S, V]$ with S a diagonal matrix of the same size as A with real, nonnegative diagonal elements, and unitary matrices U and V such that $A = U \cdot S \cdot V^{\ast}$.

The elements of the diagonal matrix S are sorted even though they may be symbolic. Note that they may not remain ordered after elements are evaluated! The default ordering is given by the standard internal ordering equivalent to orderlessp, unless the last argument of mat_svd is another ordering predicate function of two arguments.

The form mat_svd(A) returns a vector of the singular values of A in sorted order.

The form $[U, S, V] \leftarrow \text{mat_svd}(A, 0)$ returns an “economy size” decomposition of A. If A has fewer columns, say n, than rows, then the returned matrix U has only n columns and S is $n \times n$. Nevertheless, $A = U \cdot S \cdot V^{\ast}$. See also svd.

7.7.7 Functions That Act on Lists

Many functions are most naturally regarded as acting on lists. For example, sort. In this subsection such functions are extended so as to act on vectors and matrices (by columns).

mat_max(x \{, x2, ..., xn\})

The function mat_max returns the maximum on multiple inputs or maximum of a list or vector. It applies by columns on matrices, producing a list. See also max.

Do example(mat_max); for an example.

mat_min(x \{, x2, ..., xn\})

The function mat_min returns the minimum on multiple inputs or minimum of a list or vector. It applies by columns on matrices, producing a list. See also min.

Do example(mat_min); for an example.

mat_sum(list_or)

The function mat_sum sums a list or vector. It applies by columns on matrices, returning a list. It also sums multiple inputs as in mat_sum(1, 2, 3, 4). See also mat_cumsum.

Do example(mat_sum); for an example.

mat_cumsum(list_or)

The function mat_cumsum returns a cumulative sum on a list or vector. It applies by columns on matrices. It also returns a list of the cumulative sums of multiple inputs, as in mat_cumsum(1, 2, 3, 4). See also mat_sum.

Do example(mat_cumsum); for an example.
The function `mat_prod` multiplies elements of a list or vector. It applies by columns on matrices, returning a list. It also multiplies multiple inputs as in `mat_prod(1, 2, 3, 4)`. See also `mat_cumprod`.
Do example(mat_prod); for an example.

The function `mat_cumprod` returns a cumulative product on a list or vector. It applies by columns on matrices. It also returns a list of the cumulative products of multiple inputs, as in `mat_cumprod(1, 2, 3, 4)`. See also `mat_prod`.
Do example(mat_cumprod); for an example.

The function `mat_sort` orders a list in ascending order. It applies by columns on matrices. It also returns permuted indices if called in a command of the form

```
[sorted, indices] <: mat_sort(input {, predicate_function}).
```

The function `mat_sort` takes an optional second argument of a “less than” type predicate function of two arguments. Some forethought may be needed, since symbolic comparisons like \(a < b \) may be undecidable. The default ordering is `orderless`. See also `orderless`, `orderlessp`, `mainvar`, and `assume`.
Do example(mat_sort); for an example.

The function `mat_orderlessp` combines the ordering of real numbers and symbolic expressions. It orders real numbers using “<”, and uses the Macsyma predicate function `orderlessp` when “<” is undecidable.
Do example(mat_orderlessp); for an example.
See also `orderlessp`, `mainvar`, `assume`, and `declare`.

The function `mat_absorderlessp` orders complex numbers by magnitude. It uses “<” on absolute values and uses the Macsyma function `orderlessp` when “<” is undecidable. See also `orderlessp`, `assume`, and `mat_sort`.
Do example(mat_absorderlessp); for an example.

7.7.8 Polynomials as Lists of Coefficients

When the functions in this subsection call for inputs that are lists, row vectors or column vectors may generally be used instead.

The function `poly2list` converts a polynomial in the named variable to a list of coefficients in order of decreasing powers of the variable. The polynomial can be recovered by using the function `list2poly`.

The function `list2poly` creates a Macsyma polynomial from a list or vector of coefficients given in order of decreasing powers of the variable. This is inverse to the action of the function `poly2list`.
list2horner(coef_list, variable)

The function list2horner recovers a polynomial in Horner form from a list or vector of coefficients given in order of decreasing powers.

poly2companion(poly, var)

The function poly2companion returns the companion matrix of an input Macsyma polynomial. The monic form of the original polynomial can be recovered by using the function charpoly.

\[
\begin{align*}
(c41) \quad & \text{acoef3} \times \text{variable}_x^3 + \text{acoef2} \times \text{variable}_x^2 + \text{acoef1} \times \text{variable}_x + \text{acoef0} \\
(d41) \quad & \text{acoef3} \times \text{variable}_x + \text{acoef2} \text{ variable}_x + \text{acoef1} \text{ variable}_x + \text{acoef0} \\
(c42) \quad & \text{poly2companion}(% \text{variable}_x); \\
& \begin{bmatrix}
0 0 & - & - & - \\
acoef3 & & & \\
& acoef1 & & \\
& & acoef2 & & \\
& 0 1 & - & - & - \\
& & acoef3 & & \\
\end{bmatrix} \\
(d42) \quad & \begin{bmatrix}
1 0 & - & - & - \\
acoef3 & & & \\
& acoef1 & & \\
& & acoef2 & & \\
& 0 1 & - & - & - \\
& & acoef3 & & \\
\end{bmatrix}
\end{align*}
\]

list2companion(list_or)

The function list2companion returns the companion matrix from a list of polynomial coefficients, beginning with the highest power, and proceeding to a constant. It also accepts vectors. Recover coefficients of monic form of polynomial by using mat_poly.

\[
\begin{align*}
(c27) \quad & \text{list2companion}([\text{acoef3}, \text{acoef2}, \text{acoef1}, \text{acoef0}]); \\
(d27) \quad & \begin{bmatrix}
0 0 & - & - & - \\
acoef3 & & & \\
& acoef1 & & \\
& & acoef2 & & \\
& 0 1 & - & - & - \\
& & acoef3 & & \\
\end{bmatrix} \\
(c28) \quad & \mat\text{poly}(%) \\
(d28) \quad & \begin{bmatrix}
1, & - & - & - & - \\
\text{acoef3} & \text{acoef3} & \text{acoef3} \\
\end{bmatrix}
\end{align*}
\]

mat_poly(mat_or)

The function mat_poly accepts as an argument either a matrix or a list. When given a matrix, it returns $-1^n \times$ characteristic polynomial of the input matrix. The actual output is a list of its coefficients, from highest powers to lowest. When applied to a list of roots, mat_poly returns the coefficients of a polynomial with these roots. The function mat_roots is the inverse function of mat_poly applied to a list of roots. Scalar input is treated as a 1x1 matrix.
mat_compan(list_or)

The function mat_compan returns the transpose (consistent with matlab usage) of the companion matrix given an input list of polynomial coefficients, beginning with the highest power, and proceeding to a constant. It also accepts vectors.

mat_polyfit(list_or, degree)

The function mat_poly returns the polynomial fit to a list or vector of values of the desired polynomial. The output is a list of coefficients of a polynomial of the specified degree. This list of coefficients is in order of increasing powers of the polynomial.

diff(list, k)

The function difference returns the k^{th} forward difference of a list. If a value of k is not input, it defaults to 1. When $k=1$, the i^{th} item on the output list is list$[i+1]$ - list$[i]$. The output list has one fewer elements than the input list.

Do example(difference); for an example.

See the function mat_diff, which acts line difference on lists, and is also defined on matrices.

7.7.9 Functions for Numerical Analysis
\textbf{mat_diff}(\textit{list_or_matrix} \{, \textit{order}\}) \quad \textit{Function}

Computes the forward difference of order \textit{order} of the elements of the first argument, where the first argument is a list or a matrix. \textbf{mat_diff} acts on the columns of matrices. If \textit{order} is not specified, then \textit{order}=1 is assumed.

Do \textbf{example(mat_diff)}; for an example.

\textbf{difference_table}(\textit{list} \{, \textit{order}\}) \quad \textit{Function}

The function \textbf{difference_table} returns a matrix of forward differences of a list to the specified \textit{order}. If a value of \textit{order} is not input, it defaults to its maximum possible value, giving \textbf{length(list)} columns. The \textit{k}th difference, padded by leading zeros, forms the \((k + 1)^{th}\) column of the output matrix.

Do \textbf{example(difference_table)}; for an example.

\textbf{mat_quad8}(\textit{fcnname}, \textit{lo}, \textit{hi} \{, \textit{tol} \{, \textit{p1}, \textit{p2}, ..., \textit{pN}\}\}) \quad \textit{Function}

The function \textbf{mat_quad8} approximates an integral of \textit{fcnname} from \textit{lo} to \textit{hi} using the Newton-Cotes 8 panel method. The argument \textit{fcnname} must be the name of a function which accepts only one argument.

Do \textbf{example(mat_quad8)}; for an example.

7.7.10 Matlab Style Programming

Recall that Macsyma uses \texttt{true} and \texttt{false} for boolean variables, while Matlab uses 1 and 0. No problem arises if boolean expressions are generated by predicates, such as \texttt{is(m>5)}:

\textbf{mat_for}(\textit{expression}) \quad \textit{Special Form}

Used in translation of Matlab expressions like \texttt{for col=mat, norm(col), end}.

\textbf{mat_all}(\textit{list_or}) \quad \textit{Function}

The function \textbf{mat_all} applies the logical function \texttt{and} to lists, vectors, or matrices. When applied to a matrix, it is applied by columns, yielding a list. By convention, \textbf{mat_all} returns \texttt{true} when applied to an empty list or matrix.

Do \textbf{example(mat_all)}; for an example.

\textbf{mat_any}(\textit{list_or}) \quad \textit{Function}

The function \textbf{mat_any} applies the logical function \texttt{or} to lists, vectors, or matrices. When applied to a matrix, it is applied by columns, yielding a list. By convention, \textbf{mat_any} returns \texttt{false} when applied to an empty list or matrix.

Do \textbf{example(mat_any)}; for an example.

\textbf{mat_nargin} \quad \textit{System Variable}

The variable \textbf{mat_nargin} (for \texttt{MAT}rix \texttt{N}umber \texttt{OF} \texttt{ARG}uments \texttt{IN}put) is a local variable available inside function definitions which gives the number of input arguments.

\textbf{mat_nargout} \texttt{default: 1} \quad \textit{System Variable}

The system variable \textbf{mat_nargout} is generated by the assignment operator “<:” and specifies the number of expected outputs of a function call. If \textbf{mat_nargout} is equal to \textit{n} > 1, the function will return a list of length \textit{n}.

\textbf{mat_break}() \quad \textit{Function}

The function \textbf{mat_break} causes termination of a loop. In nested loops, only the current loop is terminated. See \textbf{return} on page 405.
mat_pause({n})

The function `mat_pause`, called with no arguments, suspends computation awaiting a carriage return. It invokes `pause();`. If called with its optional argument `n`, `mat_pause` suspends computation for `n` seconds. In this case it invokes `sleep(n);`. See `sleep` on page 459 and `pause` on page 457.

mat_error(string)

The function `mat_error` accepts an error message in the form of a string, prints the string and returns to the top level of Macsyma. See `error` on page 445 and `errcatch` on page 446.

7.7.11 Matlab Utility Functions

mat_computer()

The function `mat_computer` returns a string containing the type of computer you are on. Possible values are: SUN4, Symbolics 3600, and PC. This command may have different behavior on your system. Check the Release Notes for your version of Macsyma. See `status` on page 459.

mat_exist('input)

The function `mat_exist` returns an integer whose value indicates information about its argument `input`.

\[
\begin{align*}
0 & \text{ if input does not exist} \\
1 & \text{ if input has been assigned a value} \\
2 & \text{ if input is a user-defined function} \\
5 & \text{ if input is a system function}
\end{align*}
\]

mat_feval(funname, expr1, expr2, ..., exprn)

The function `feval` forms the expression `funname(expr1, expr2, ..., exprn)` and evaluates it as a Macsyma expression. The argument `funname` can be a string or a variable. See `apply` on page 344.

mat_eval(expr)

The function `mat_eval` evaluates its argument `expr` and returns an expression or a string containing an expression. For example, `mat_eval(try, catch);` evaluates `try` and returns it if no error occurs. Otherwise, the evaluation of `catch` is returned. The function `mat_eval` does not support multiple returns. The form `[X, Y, Z, ...] <: mat_eval(input)` is not supported in Macsyma. See `error`, page 445, `eval_string`, page 319, and `errcatch`, page 446 for more information.

mat_ieeef()

The function `mat_ieee` returns `true` if your version of Macsyma features IEEE floating point arithmetic. This function is identical to `mat_isieee`.

mat_isieee()

The function `mat_isieee` returns `true` if your version of Macsyma features IEEE floating point arithmetic. This function is identical to `mat_ieee`.

mat_who()

The function `mat_who` prints a list of the names of all variables that have been assigned values. The system variable `values` holds such a list maintained by Macsyma. The value of a variable can be removed with the function `remvalue`. Enter `infolists;` to see the names of the other lists maintained by the system. See `values` on page 413 and `infolists` on page 361.
7.7.12 The Matlab to Macsyma Translator

Macsyma provides a translator for translating Matlab functions into Macsyma functions. There are three ways to use the translator: translating a Matlab Command File, loading a Matlab command file into Macsyma, and typing Matlab commands interactively into the Macsyma front end.

7.7.12.1 Translating Matlab Command Files into Macsyma Command Files

A typical call to the function would be as follows:

\[
\text{translate_matlab_file(\text{in-file}, \text{inherit-existing-environment}, \text{out-file})}
\]

The file type of the input file is “matlab” (which is, for example, “.mat” on UNIX platforms). The file type for the output file is “macsyma”. The value of the optional argument \text{inherit-existing-environment} can be \text{true} or \text{false}.

The input file is a Matlab “function file” — it must define a function, and may not contain arbitrary commands. The Matlab input is translated into the corresponding Macsyma program.

The translator knows how to convert Matlab function names into Macsyma function names; for example, \text{ones} => \text{mat_ones}. In Macsyma, the names of Matlab functions, are prefixed by \text{mat_}. To call regular Macsyma functions, just use their regular names.

Your function definition can include calls to other functions, too. If your function calls another function whose name is not already known to the translator, you will get a warning message. If the argument \text{inherit-existing-environment} is \text{true}, the translator will consider that it also knows functions that are defined (or have autoload properties) in the current Macsyma session, so you won’t get warnings about them.

The function translate_matlab_file can be called with several input files in the following way:

\[
\text{translate_matlab_file([\text{in-files}], \text{inherit-existing-environment})}
\]

Called this way, the function behaves in a similar way, except that it takes a list of input file specs, and does not let you specify the output file spec. This method would be used for processing several (presumably related) files at once. The main point is that the function definitions can refer to functions in the other files in the group. So if you have file \text{foo_mat} and file \text{bar_mat}, and function \text{foo} has a call to function \text{bar} in it, you will not get a warning about unknown function \text{bar}, if they are all done at once this way.

7.7.12.2 Loading Matlab Command Files into Macsyma

The function \text{load} knows how to load Matlab function files. This works the same way as loading a Lisp file. No intermediate file is created by this; the translation is done “on the fly” and the resulting function is defined in Macsyma.

You can use the translator interactively, typing Matlab expressions into it and seeing the result immediately. To do this, change the Macsyma option variable \text{input_language} from \text{macsyma} to \text{matlab}. When it is \text{matlab}, you get \text{M-LINES} instead of \text{C-LINES}. You can type in simple one-line Matlab expressions, call Matlab functions, and call Macsyma functions. End your input with a \text{RETURN}. The result is returned in a Macsyma \text{D-LINE}.

7.7.12.3 Limitations of the Matlab to Macsyma Translator

Matlab graphics functions have counterparts in Macsyma, but the current release of the translator does not translate them.
7.8 Other Linear Algebra and Matrix Capabilities

7.8.1 Matrix Convolution

Name of Package: matconvolve

There are three independent functions in the package matconvolve — matconvolve direct, matconvolve poly, and matconvolve fft — for computing the matrix which is the convolution of two given matrices.

Do demo(matconvolve); for a demonstration.

\[\text{matconvolve_direct}(A,B) \]

If \(A\) is an \(m\) (rows) by \(n\) (columns) matrix, and \(B\) is \(p\) by \(q\), then the convolution \(C\) is defined to be an \(m+p-1\) by \(n+q-1\) matrix, with

\[C_{i,j} = \sum_{k,n} A_{k,n} B_{i+k-1,j+n-1} \]

with \(k\) and \(n\) ranging everywhere the summand is defined.

\[\text{matconvolve_fft}(A,B) \]

computes a single-precision, complex, floating point approximation to the convolution, and requires the input matrices to be numeric. It introduces roundoff noise and imaginary fuzz, but may be faster for very large input matrices.

\[\text{matconvolve_poly}(A,B) \]

Computes the same matrix convolution \(C\) as matconvolve direct via generating functions and coeff-matrix. It may be faster in some cases, depending on the size of the input matrices, and the data type of their elements.

7.8.2 Special Control of Matrix Operations

Many of the option variables that control the simplification of expressions involving matrices have short mnemonic names. In these names “mx” stands for Matrix and “sc” stands for Scalar. Thus dommxmxops means “do matrix-matrix operations”.

You have some control over the operations performed during matrix multiplication. The three operations that can be changed are the multiplication and addition that are performed during matrix multiplication and the transpose operation that is performed during transposition. This utility provides a way to perform calculations with matrices of nonscalars, but the facility is general enough to permit a wide variety of different kinds of computations.

\[\text{matrix_element_add \ default: +} \]

Element addition. It can be set to any operator, the name of a function, or a lambda expression. This redefines the primitive addition operation performed when addition of matrices is called for.

\[\text{matrix_element_mult \ default: *} \]

Element multiplication. It can be set to any operator (most often “.”), the name of a function, or a lambda expression. This redefines the primitive multiplication operation performed when multiplication of matrices is called for.

\[\text{matrix_element_transpose \ default: false} \]

This redefines the primitive transpose operation. Other useful settings are “^”, “*” and nonscalars. Alternatively, it can be the name of a function or a lambda expression. It is the name of the operation
that is to be performed on the elements of the transpose of a matrix when that matrix is transposed. The transpose setting is useful if the elements of the matrix are matrices. The nonscalars setting is useful if the entries are non scalar.

ratmx default: false

Option Variable

If false, this option variable causes determinant and matrix addition, subtraction, and multiplication to be performed in the representation of the matrix elements and causes the result of matrix inversion to be left in general representation. If it is true, the four operations mentioned above are performed in CRE form and the result of matrix inverse is in CRE form. Matrix inversion is always performed in CRE form, except when done via the invert_using_minors command.

Note: This option variable can cause the elements to be expanded (depending on the setting of ratfac), which might not always be desired.

listarith default: true

Option Variable

If false, this option variable causes any arithmetic operations with lists to be suppressed; when true, list-matrix operations are contagious, causing lists to be converted to matrices yielding a result which is always a matrix. However, list-list operations should return lists. The function cf sets listarith to false (see Section 2.2.4, page 26).

detout default: false

Option Variable

If true, this option variable causes the determinant of a matrix whose inverse is computed to be kept outside of the inverse. For this option variable to have an effect, doallmxops and doscmxops should be false (see below). When this option variable is given to ev, it causes the doallmxops and doscmxops to be set correctly.

doallmxops default: true

Option Variable

If true, all operations relating to matrices are carried out. If it is false, then the setting of the following option variables govern which operations are performed.

domxmxops default: true

Option Variable

If true, then all matrix-matrix or matrix-list operations are carried out (but not scalar-matrix operations); if this option variable is false, they are not.

domxntimes default: false

Option Variable

If true, this option variable causes noncommutative products of matrices to be carried out.

doscmxops default: false

Option Variable

If true, then scalar-matrix operations are performed.

doscmxplus default: false

Option Variable

If true, this option variable causes scalar + matrix to return a matrix result. This option variable is not subsumed under doallmxops.

scalarmatrixp default: true

Option Variable

If true, then whenever a 1 × 1 matrix is produced as a result of computing the dot product of matrices it is converted to a scalar, namely the only element of the matrix. If set to all, then this conversion occurs whenever a 1 × 1 matrix is simplified. If set to false, no conversion is done.

sparse default: false

Option Variable

If true, then determinant uses special routines for computing determinants of sparse matrices.
7.8 OTHER LINEAR ALGEBRA AND MATRIX CAPABILITIES

assumescalar default: true

Option Variable

Helps govern whether expressions \(\text{exp} \) for which \text{nonscalarp(\text{exp})} is \text{false} are assumed to behave like scalars for certain transformations as follows: Let \text{exp} represent anything not a list or matrix and let [1,2,3] represent any list or matrix. Then \text{exp}.[1,2,3]; returns [\text{exp}, 2*\text{exp}, 3*\text{exp}] if any of the following are \text{true}: \text{assumescalar}, \text{scalarmp(\text{exp})}, or \text{constantp(\text{exp})}. If \text{assumescalar} is \text{true}, such expressions behave like scalars only for the commutative operators, but not for ".". If \text{assumescalar} is \text{false}, such expressions behave like nonscalars. If \text{assumescalar} is \text{all}, such expressions behave like scalars for the operators +, *, \(^\) and dot.

domxexpt default: true

Option Variable

By default, exponentiation by a matrix results in a matrix of exponentiated matrix elements. For example, \(e^\text{matrix([1,2], [3,4])} \); becomes \text{matrix([e^1, e^2], [e^3, e^4])}. In general, this transformation affects expressions of the form \text{base}^\text{power} where \text{base} is an expression assumed scalar or constant, and \text{power} is a list or matrix. To turn this transformation off, set the option variable \text{domxexpt} to \text{false}.

7.8.3 The Dot Operator

In some applications, you may need to work with expressions containing noncommuting variables. To allow other variables to play the role of scalars and constants, the noncommuting variables can be declared \text{nonscalar} by using the function \text{declare}. Then by setting the appropriate option variables below and possibly using the pattern-matching functions you can control simplification and interaction between scalars and nonscalars.

After you manipulate the expressions into a particular form, you can substitute them for the actual matrices. Several option variables are provided for controlling the treatment of such expressions. Macsyma uses the option variables in the order in which they are presented here.

In the following discussion \(a, b, \) and \(c \) are any expressions, and \(x \) is a scalar expression. A scalar expression is free of lists, matrices, and any atoms declared \text{nonscalar}.

dotassoc default: true

Option Variable

When \text{true}, this option variable causes \((a.b).c\) to simplify to \(a.b.c\). It simplifies as an \text{nary} operator, which can take any number of operands. See \text{nary}, page 501.

dotident default: 1

Option Variable

The value to be returned by \(a^0\).

dotsrules default: false

Option Variable

When \text{true}, this option variable causes \(a.x\) or \(x.a\) to simplify to \(x.a\), if \(x\) is scalar and \(a\) is not. Similarly, \(a.(x.b)\) simplifies to \(x(a.b)\) (when \(b\) is not a scalar). See \text{scalar}, page 372.

dotconstrules default: true

Option Variable

When \text{true}, this option variable causes \(a.x\) or \(x.a\) to simplify to \(x.a\), if \(x\) is constant and \(a\) is not. Similarly, \(a.(x.b)\) simplifies to \(x(a.b)\) (when \(b\) is not a scalar). See \text{constant}, page 372.

dot0nscsimp default: true

Option Variable

When \text{true}, this option variable causes a noncommutative product of zero and a nonscalar term to be simplified to a commutative product.

dot0simp default: true

Option Variable

This option variable causes a noncommutative product of zero and a scalar term to be simplified to a commutative product.
dot1simp \(\text{default: true} \quad \text{Option Variable}\)

This option variable causes a noncommutative product of one and another term to be simplified to a commutative product.

dotexptsimp \(\text{default: true} \quad \text{Option Variable}\)

When \texttt{true}, this option variable causes \(aa\) to simplify to \(a^2\).

dotdistrib \(\text{default: false} \quad \text{Option Variable}\)

If \texttt{true}, this option variable causes \(ab+c\) to simplify to \(a(b+c)\).

Examples

- \((c1)\) declare\((s,\text{scalar},[m1,m2,m3],\text{nonscalar})$
- \((c2)\) expand\(((1-s*m1).(-s*m2).(-s*m3));$
- \((d2)\) \(-s\ m3+s\ m2+s\ m1+s\ m3$
 \(-s\ m1+s\ m2+s\ m3+s\ m1+s\ m2-s\ m1+1$
- \((c3)\) \%\,\text{dotcruses};$
- \((d3)\) \(-s\ m3+s\ (m2\ .\ m3)-s\ m2+s\ (m1\ .\ m3)\$
 \(-s\ (m1\ .\ m2\ .\ m3)+s\ (m1\ .\ m2)-s\ m1+1$
- \((c4)\) rat\((\%\,s)\);$
- \((d5)\) \%\,\text{R/} - (m1\ .\ m2\ .\ m3)\ s + (m2\ .\ m3 + m1\ .\ m3 + m1\ .\ m2)\ s$
 \(+ (-m3 - m2 - m1)\ s + 1$

7.8.4 Pfaffians

pfaffian\((n, \text{list})\)

The function \texttt{pfaffian} returns the Pfaffian of \texttt{list}. The first argument \texttt{n} is an integer which denotes the order of the Pfaffian to be expanded. The second is a list of the elements of the Pfaffian.

The Pfaffian is the square root of the determinant of an antisymmetric matrix. For example, consider the matrix

\[
\begin{vmatrix}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{vmatrix}
\]

The Pfaffian is defined as the square root of the determinant of this matrix.

One would evaluate the Pfaffian

\[
\begin{vmatrix}
a & b & c \\
d & e \\
f
\end{vmatrix}
\]

as \texttt{pfaffian\((3, [a,b,c,d,e,f])\)}.

To speed the evaluation, a hashed array called \texttt{pfaffm} is created and added to from time to time, whenever a Pfaffian of a new and higher order is evaluated. This array contains information used by
7.8. OTHER LINEAR ALGEBRA AND MATRIX CAPABILITIES

the function \texttt{pfaffian} and is of no interest to the user. Killing it will slow the evaluations, but will not otherwise affect the results. Modifying the array \texttt{paffm} will lead to errors.

Some error-checking is done by \texttt{paffian}. If the length of \texttt{list} is not equal to \((n + 1) \times n / 2\), or if \(n\) is not a positive integer, or if the second argument is not a list, an error is detected and both arguments are put into a list, which is returned with the error message.

Do \texttt{demo(paff)}; for a demonstration of Pfaffians.

7.8.5 The Matrice Package

Name of Package: \texttt{matrice}

Original version contributed by Michael Wester.

\texttt{matrice\textunderscore functions} \hspace{1cm} \textit{System Variable}

Holds a list of all the Macsyma callable functions in the Matrice package, arranged in alphabetical order.

\texttt{matrice\textunderscore variables} \hspace{1cm} \textit{System Variable}

Holds a list of all the Macsyma variables in the Matrice package, arranged in alphabetical order.

\texttt{matrices} \hspace{1cm} \textit{System Variable}

Holds a Macsyma list whose elements are all the matrices that have been defined in the current session.

\texttt{matrice(symbol, object, options)} \hspace{1cm} \textit{Function}

Creates a matrix described by the argument \texttt{options} with its elements taken from the argument \texttt{object} and attaches it to the argument \texttt{symbol}. The argument \texttt{object} may be a matrix, a two-dimensional array, the word \texttt{zeroses} (in which case the matrix will be filled with \texttt{zeroses}), the pseudofunction \texttt{value}(\(k\)) (in which case the nonzero portion of the matrix will be filled with the value specified by \(k\)), or a list of lists. In the last case, the (sub)lists will be used to fill the secondary arrays of the matrix directly so that this operation performs the inverse of \texttt{ice2list}. (As a shorthand, a single expression can be used to abbreviate a sublist of identical copies of this expression.) If \texttt{object} is omitted, then \texttt{matrice} will call \texttt{entermatrice}. The options consist of zero or more descriptors providing the parameters of the matrix. If a descriptor is a positive integer or a list containing a single positive integer, then the number will be taken for the row and column dimension of the matrix. If a descriptor is a list containing two positive integers, then the first integer will be taken to be the row dimension and the second the column dimension of the matrix.

\textbf{Note:} If the object provided to \texttt{matrice} is a matrix or a two-dimensional array, then the dimensions of \texttt{object} will be used for the matrix and thus do not need to be explicitly specified.

A descriptor may also indicate the mathematics of the matrix (\texttt{real} or \texttt{complex} — default is \texttt{real}), the form of its elements (\texttt{numerical}, \texttt{cre} — Canonical Rational Expressions, or \texttt{general\textunderscore expressions} — the default), or its type (default is \texttt{general}). The possible types that may be specified are given in the first column of table 7.5.

The first eight entries are the basic matrix types, while the remaining entries designate certain special aliases whose equivalents are given in the third column of the table. The second column displays the possible dimensions each matrix of the indicated type can take. Here, \(m\) and \(n\) are positive integers where \(m\) need not be equal to \(n\). The (banded) types preceded by a plus (+) can also be given in the form of pseudofunctions with the half-bandwidth as their argument; for example, \texttt{general\textunderscore banded}(3) indicates a type of \texttt{general\textunderscore banded} with a half-bandwidth of 3. If any necessary descriptors are omitted and cannot be defaulted, then their values will be prompted for interactively. The \texttt{matrice} function returns as its value the description of the newly created matrix produced by \texttt{matrice\textunderscore info}.

Do \texttt{demo(matrice2)}; for a demonstration.
<table>
<thead>
<tr>
<th>Types</th>
<th>Dimensions</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>$m \times n$</td>
<td></td>
</tr>
<tr>
<td>hermitian</td>
<td>$n \times n$</td>
<td></td>
</tr>
<tr>
<td>general_bandeda</td>
<td>$n \times n^b$</td>
<td></td>
</tr>
<tr>
<td>hermitian_bandeda</td>
<td>$n \times n$</td>
<td></td>
</tr>
<tr>
<td>upper_triangular</td>
<td>$m \times n$</td>
<td></td>
</tr>
<tr>
<td>lower_triangular</td>
<td>$m \times n$</td>
<td></td>
</tr>
<tr>
<td>upper_hessenberg</td>
<td>$n \times n$</td>
<td></td>
</tr>
<tr>
<td>lower_hessenberg</td>
<td>$n \times n$</td>
<td></td>
</tr>
<tr>
<td>symmetric</td>
<td>$n \times n$</td>
<td>real hermitian</td>
</tr>
<tr>
<td>bandeda</td>
<td>$n \times n^b$</td>
<td>general_banded</td>
</tr>
<tr>
<td>diagonal</td>
<td>$m \times n$</td>
<td>general_banded(1)</td>
</tr>
<tr>
<td>tridiagonal</td>
<td>$n \times n$</td>
<td>general_banded(2)</td>
</tr>
<tr>
<td>hermitian_tridiagonal</td>
<td>$n \times n$</td>
<td>hermitian_banded(2)</td>
</tr>
<tr>
<td>symmetric_bandeda</td>
<td>$n \times n$</td>
<td>real hermitian_banded</td>
</tr>
<tr>
<td>symmetric_tridiagonal</td>
<td>$n \times n$</td>
<td>real hermitian_banded(2)</td>
</tr>
<tr>
<td>triangular</td>
<td>$m \times n$</td>
<td>upper_triangular</td>
</tr>
<tr>
<td>hessenberg</td>
<td>$n \times n$</td>
<td>upper_hessenberg</td>
</tr>
</tbody>
</table>

aA banded type of matrice command can also be given in the form of pseudo-functions with the half-bandwidth as their argument.

bMay be $m \times n$ if the half-bandwidth is 1.

Table 7.5: Options for matrice

entermatrice($symbol$, $options$)

Function

Allows the user to interactively enter the elements of a matrice that is described by the options. (See matrice, page 269 for more information on the form of the options). The matrice created will be attached to the symbol. The function entermatrice will only prompt for unique, nonzero elements (for example, the upper triangle of a Hermitian or upper triangular matrix) and will do this on a row by row basis. Elements can be entered either individually or several at a time in lists. Note, however, that the elements in a list can correspond to locations in only one row of the matrice at a time. The value returned by entermatrice is the description of the created matrice produced by matriceinfo.

transmute(A, B, $options$)

Function

The function transmute converts the matrice A into a form as specified by the argument $options$ and attaches it to the symbol B. See matrice, page 269 for more information on the form of the options. The new matrice B will have the same dimensions as the original matrice A. All other properties of the original matrice, however, may be changed as long as they are kept consistent. A rectangular matrice may not be conveted to a type that is only allowed to be square, for example. Any properties not specified will default to the values held by the matrice A, if possible. The effect (and implementation) of this function is very similar (but not identical for certain special cases) to matrice(B, $options$, ice2ix(A)). The value returned by transmute is the description of B produced by matriceinfo. See also ice2ix, page 271.

copymatrice(mat, $name$)

Function

The function copymatrice creates a distinct but identical copy of the matrice mat attached to the symbol $name$. The value returned is the description of the copied matrice produced by matriceinfo.

mapmatrice(mat_1, mat_2, $function$)

Function

The function mapmatrice maps the function $function$ onto the non-redundant elements of the matrice mat_1. The result will be stored in the newly created matrice mat_2. The value returned is the description
of mat2 produced by matriceinfo.

renamematrice(mat, newname)
Function

The function renamematrice renames the matrice mat to newname. The value returned is the description of the matrice produced by matriceinfo.

ice2ix(matrice)
Function

The function ice2ix (matrice to matrix) converts the matrice matrice into a matrix. The matrix is returned by the function while the matrice is left physically unaltered.

ice2list(matrice)
Function

The function ice2list (matrice to list) converts the matrice matrice into a list of lists as appropriate to the matrice type. In other words, the arrays in the matrice are directly transformed into lists. The list of lists is returned by the function while the matrice is left physically unaltered.

remmatrice(matrice1, matrice2, ...)
Function

The function remmatrice (REMmove MATRICE) removes each of the matrices listed as its arguments from Macsyma. This allows the space taken up by them to be reclaimed. The command remmatrice(all) will remove every matrice present in the current Macsyma. The function remmatrice returns a list containing the name of every matrice actually removed as its value.

matricep(arg)
Function

The function matricep (MATRICE Predicate) tests if its argument arg is a matrice and returns true if arg is a matrice and false otherwise.

matriceinfo(mat)
Function

The function matriceinfo produces a list describing the matrice mat or signals an error if its argument is not a matrice. The form of the list returned is

[mathematics, type, [row dimension, column dimension], half bandwidth, form of the elements]

where the next to the last entry (half bandwidth) is present only if the type refers to a banded matrix.

gmatrice(m, i, j)
Function

The function gmatrice (Get MATRICE element) returns the value of the matrice element m[i,j]. Note that the rows and columns of the matrice are assumed to be numbered starting from one.

pmatrice(m, i, j, value)
Function

The function pmatrice (Put into MATRICE) stores the given value into the matrice element m[i,j]. Note that the rows and columns of the matrice are assumed to be numbered starting from one.

mdiagonal(a)
Function

The function mdiagonal produces a list containing the diagonal elements (in order) of a where a is either a matrice, a two-dimensional array, or a matrice.

mat_norm(A, p)
Function

The function mat_norm calculates the p-norm of the matrix or matrice A. The argument p may be either 1 (1-norm), 2 (Euclidean 2-norm), inf or infinity (infinity-norm), minf (minus-infinity-norm), or f, fro, frobenius or schur (F - norm = \(\sqrt{\text{trace}(A^*A)} \)). If p is omitted, the default is the f-norm. If A is a vector, however, p may be any integer > 2 in addition to the above possibilities. Do example(mat_norm); for an example.
identity(n \{, symb\})

The function identity creates an \(n \times n \) identity matrix/matrice. If a second argument is not provided, then identity will return the specified identity matrix as its value. Otherwise, identity will create the specified identity matrix and attach it to the symbol symb, returning as its value the description of the created matrix provided by matriceinfo. See ident, page 224.

perm_mat(n, i, j \{, a\})

The function perm_mat creates the \(n \times n \) permutation matrix/matrice \(P_{i,j} \). If a fourth argument is not provided, then perm_mat will return the specified permutation matrix as its value. Otherwise, perm_mat will create the specified permutation matrix and attach it to the symbol a, returning as its value the description of the created matrix provided by matriceinfo.

hermitian(mat \{, symb\})

The function hermitian takes the Hermitian (complex conjugate transpose) of the matrix or matrice mat. If mat is a matrix, then no second argument should be specified and hermitian will return as its value the matrix that is the Hermitian of mat. Otherwise, if mat is a matrix, then a matrice representing the Hermitian of mat will be attached to the symbol symb, and hermitian will return as its value the description of symb produced by matriceinfo.

mtranspose(mat \{, symb\})

The function mtranspose (Matrix/Matrice TRANSPOSE) takes the transpose of the matrix or matrice mat. If mat is a matrix, then no second argument should be specified and mtranspose will return as its value the matrix that is the transpose of mat. Otherwise, if mat is a matrix, then a matrice representing the transpose of mat will be attached to the symbol symb and mtranspose will return as its value the description of symb produced by matriceinfo.

companion(poly, x \{, symb\})

The function companion generates the generalized hypercompanion matrix associated with the polynomial poly when poly is taken as a function of x. If poly is factored, then this matrix will be a direct sum of the hypercompanion matrices associated with each unique factor. The resultant matrix has the property that its characteristic polynomial is poly. If a third argument is provided to companion, then a matrice will be produced (attached to symb) instead of a matrix.

Do example(companion); for an example.

gcdn(mat)

The function gcdn returns the greatest common divisor of the elements in the list, matrix or matrice mat.

derat(mat, symb \{, nogcds\})

The function derat converts the matrice mat of rational entries into a matrice of polynomial entries by multiplying each element in mat by a common multiple of the denominators of all the matrice entries. (Call this quantity \(d \)). The matrice resulting from this transformation will be attached to the symbol symb. The least common multiple will be \(d \), unless the optional flag nogcds is provided, in which case \(d \) will be the product of the denominators of the non-redundant matrice entries. The function derat will globally associate the divisor \(d \) with the matrice symb (so that mdivisor(symb) will yield \(d \)). Many, but not all, functions in the Matrice package will properly deal with matrice divisors. In particular, those functions which produce a non-matrice quantity from a matrice (ice2x, ice2list, mdiagonal, mat_norm, mcharpoly, meigenvalues) will ignore matrice divisors currently. In these cases, the correct result is obtained by dividing the quantity by the divisor (or the absolute value of the divisor for norms) of the matrice from which the quantity was computed. The exception to this rule occurs when polynomials (characteristic or residual) are calculated, in which case a proper result is obtained by substituting for the polynomial variable, the variable multiplied by the divisor of the matrice from which the polynomial was computed (e.g., subst(mdivisor(mat) *\(\lambda \), \(\lambda \), mcharpoly(mat, \(\lambda \))). In some
cases, these corrections can be performed automatically (see `usemdivisor`). The function `derat` will return d as its value.

usemdivisor default: false

This option variable can affect `mcharpoly`’s or `meigenvalues`’s calculations as follows:

If the value of `usemdivisor` (USE Matrice Divisor) is

- `'mcharpoly`: The function `mcharpoly` will automatically substitute the polynomial variable by its product with the matrice divisor (if there is one) in calculating the characteristic polynomial of the matrice.

- `'meigenvalues`: The function `meigenvalues` will automatically divide any eigenvalues by the matrice divisor (if there is one) and will automatically replace the residual polynomial by its product with the matrice divisor.

- `'false`: `mcharpoly` and `meigenvalues` will ignore any matrice divisors of their arguments.

mdivisor(matrice)

The function `mdivisor` (Matrice DIVISOR) returns the common divisor of the elements of the matrice determined previously by `derat` or `false` if no divisor has been determined previously.

mdivmod(matrice {, divisor])

The function `mdivmod` (Matrice DIVisor MODification) modifies the divisor associated with the matrice. If no second argument is provided, then the divisor associated with the matrice will be eliminated and the deleted divisor (or `false` if the matrice had no divisor) will be returned as `mdivmod`’s value. Otherwise, `divisor` will become the divisor associated with the matrice, replacing the old value if one exists. In this case, `mdivmod` will return as its value the former divisor or `true` if the matrice originally had no divisor associated with it.

mhessenberg(A, H {, S {, SINV}})

The function `mhessenberg` transforms the square matrice A into upper Hessenberg form using similarity transformations. The resultant transformed matrice is attached to the symbol H, and the appropriate transforming matrices are attached to the symbols S and $sinv$ if one or both of these is provided as an argument. (Here, $H = SINVAS$ where $sinv$ is the inverse of S.) As a special case, Hermitian matrices are transformed via a mostly symmetry preserving transformation into general tridiagonal form. For this special case, the first argument to `mhessenberg` may also be a list like `[A, D]` where A is the Hermitian matrix and D is a diagonal matrice with real, positive diagonal elements. In this situation, the similarity transformation will be applied to $D^{-1}A$, corresponding to the eigenproblem $Ax = \lambda D x$.

The value returned by `mhessenberg` is a list of the descriptions of the newly created matrices (in argument order) produced by `matriceinfo`.

See also `hessenberg`, page 237.

mcharpoly(A, \lambda)

The function `mcharpoly` computes the characteristic polynomial of the matrice A in terms of the variable λ. The calculation will take advantage of matrices in certain special forms (diagonal, tridiagonal, triangular, upper Hessenberg).

meigenvalues(A)

meigenvalues(p, \lambda)

Computes the eigenvalues of the matrice A or of the characteristic polynomial p written in terms of the variable λ. The function `meigenvalues` returns as its value a list containing two sublists. The first sublist specifies the eigenvalues determined, while the second lists their corresponding multiplicities. If the characteristic polynomial of A (or p) is not completely factorable, then the list of multiplicities will
be followed by the residual polynomial that results from removing the solvable factors from the characteristic polynomial. The residual polynomial will be expressed in terms of the variable `mcharpoly_var` if `meigenvalues` is called with a matrice as the argument. The function `meigenvalues` uses `solve` by default to find the roots of the characteristic polynomial and so deficiencies in `solve` can affect the results returned by this function.

`mcharpoly_var` default: `%lambdavar`

The variable in which `eigenvalues` and `meigenvalues` will express the residual polynomial.

Note: In this case, `meigenvalues` must be called with a matrice as its argument.

`eigenmethod` default: `solve`

Specifies the method `eigenvalues` will use to determine the roots of a characteristic polynomial. If `eigenmethod` is the atomic value `solve`, then Macsyma uses `solve` to find the roots of the characteristic polynomial. Otherwise, Macsyma takes the value of `eigenmethod` as the name of a factoring operator (e.g., `factor`, `gfactor`), and only those factors that are linear with respect to this operator will have their roots solved for, while higher degree irreducible factors will be consolidated into the residual polynomial.

Do `demo(eigen)` for a demonstration. See also `eigenvalues`, page 234.

`numeigs` default: `false`

If `true`, the function `numeigs` (for NUMerical EIGenvalueS) will cause `eigenvalues` to numerically solve for the roots (using the Macsyma function `allroots`) of any univariate residual polynomials left over during the course of computing the exact roots of matrix characteristic polynomials. If `numeigs` is `false`, then only exact roots will be returned by `eigenvalues`.

`dupe(e, n)`
Creates a list containing `n` copies of the item `e`. For example:

```lisp
(cl1) dupe(e, 3); 
(d1)                      [e, e, e]
```

`countops({flag})`
If the value of `flag` is `true`, or if it is omitted, the function `countops` (COUNT OPerationS) will, after initializing the second sublist in `opcount` (see `opcount`) to zero, cause `opcount` to keep a running record of the number of basic rational arithmetic operations performed subsequently by functions in the Matrice package. Calling `countops` with the value of `flag` `false` will cause the operation count to be terminated.

`opcount` default: `false`

The variable `opcount` will keep a running count of the number of basic rational arithmetic operations that have been performed by functions in the Matrice package since `opcount` was last initialized by `countops`, up until operation counts are turned off by `countops(false);`. The normal structure of `opcount` is a list of two lists. The first sublist displays the operations that are being counted (additions, negations, multiplications, divisions, raising to powers, absolute values, explicit GCDs) while the second shows their corresponding counts.

`ratio(x, y)`
The function `ratio` creates the ratio `x/y` which will not simplify like a rational number to lowest terms.

`exprswell` default: `false`

If `true`, `exprswell` will cause all basic rational arithmetic operations in the Matrice package (additions, subtractions, multiplications, divisions, exponentiations to an integer power, absolute values, explicit GCDs) to act appropriately for an expression swell analysis. This means that a rational number `m/n`
will be treated as representing a rational number consisting of an \(m \) digit numerator and an \(n \) digit denominator, while an integer \(n \) will be treated as representing an \(n \) digit integer. When performing a rational arithmetic operation, it will be assumed that all GCDs are one and that all integer arithmetic operations produce worst case behavior. That is, the results contain the greatest number of digits that are possible. To make the mathematics simpler, all rational numbers and integers must be explicitly specified (e.g., \(2/3, 1 \)) and so contain no variables. Since the arithmetic on rational numbers is slightly different from that on integers (the former produces an upper bound on the possible rational number expression swell while the latter does the same for integers under integer preserving operations), the two types of numbers are not allowed to be mixed during expression swell analyses. An error will be generated if they are. It is also an error to attempt to perform a non-integer preserving operation (such as a non-exact division) when performing arithmetic on integers under this option. If `exprswell` is set to the atomic value `rational`, then an integer \(n \) will be treated as representing a rational number consisting of an \(n \) digit numerator and denominator during expression swell analysis. The results of expression swell analysis in this mode will give a cheap estimate of the upper bound derived when doing a full rational expression swell analysis, although this number may not always be an upper bound itself.

7.8.6 Miscellaneous Matrix Functions

Name of Package: `matfuncs`

To use this package, type `load(matfuncs);`

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>submat(matrix, row_list, col_list)</code></td>
<td>Returns the submatrix of matrix <code>matrix</code> consisting of rows whose indices are specified in the list <code>row_list</code>, and whose columns are specified in the list <code>col_list</code>. An alternative is <code>M[row_list, col_list]</code>, where <code>M</code> is a matrix. See also <code>submatrix</code>, page 226.</td>
</tr>
<tr>
<td><code>rows(matrix, row_list)</code></td>
<td>Returns the submatrix of matrix <code>matrix</code> consisting of rows whose indices are specified in the list <code>row_list</code>. An alternative is <code>M[row_list, ..]</code>, where <code>M</code> is a matrix.</td>
</tr>
<tr>
<td><code>cols(matrix, col_list)</code></td>
<td>Returns the submatrix of matrix <code>matrix</code> consisting of columns whose indices are specified in the list <code>col_list</code>. An alternative is <code>M[.., col_list]</code>, where <code>M</code> is a matrix.</td>
</tr>
<tr>
<td><code>rotmat2(phi)</code></td>
<td>The rotation matrix in the ((x, y)) plane, with angle of rotation <code>phi</code> and positive orientation. That is, the positive (x)-axis (as a column vector) rotates into the positive (y)-axis.</td>
</tr>
<tr>
<td><code>rotmat3(theta, phi)</code></td>
<td>The rotation matrix in ((x, y, z)) space, where <code>theta</code> and <code>phi</code> are spherical coordinates. <code>theta=0</code> on the equator ((x, y)) plane and <code>phi</code> is the angle of rotation in the ((x, y)) plane.</td>
</tr>
<tr>
<td><code>rotmatx(gamma)</code></td>
<td>Rotation about the (x)-axis in ((x, y, z)) space, with positive orientation.</td>
</tr>
<tr>
<td><code>rotmaty(beta)</code></td>
<td>Rotation about the (y)-axis in ((x, y, z)) space, with positive orientation.</td>
</tr>
<tr>
<td><code>rotmatz(alpha)</code></td>
<td>Rotation about the (z)-axis in ((x, y, z)) space, with positive orientation.</td>
</tr>
</tbody>
</table>
Chapter 8

Vector and Tensor Analysis

Tensor analysis is the “absolute differential calculus” which is valid in all coordinate systems on differentiable manifolds. It is often the most powerful way to state and solve problems in many branches of continuum mechanics, including solid mechanics, hydrodynamics, electrodynamics, and general relativity.

Macsyma implements symbolic tensor manipulation of two distinct types: component tensor computation and indicial tensor computation.

Component tensor computation means that the individual tensor components have values which are mathematical expressions involving local coordinates and other variables. The tensors are represented as arrays or matrices. Tensor operations such as covariant differentiation or index contraction are actually carried out on the expressions which are the values of the tensor components.

Indicial tensor computation means performing tensor computations at the level of generality provided by tensors as indexed symbols, where the tensor components are not assigned any particular value. Tensor operations such as covariant differentiation or index contraction are carried out on the indexed tensor symbols, without any reference to values of the tensor components.

Indicial tensor computations are described starting on page 281. Component tensor computations are described starting on page 298. Routines for converting between the two representations are described starting on page 296.

8.1 Vector Algebra and Calculus

Name of package: vect

Description: Type load(vect); to load a vector analysis package.

The vector analysis package can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate systems. There is also a capability for deriving the scalar or vector potential of a field.

8.1.0.1 Defining Vectors

To establish indeterminate_1, \ldots, indeterminate_n as vector entities, type declare([indeterminate_1, \ldots, indeterminate_n], nonscalar);

Vectors can also be represented as lists of components.
simple_vector_p default: false

Option Variable

This is an in-core switch which affects the vect package. If true, then nonscalars are assumed to be “simple vectors”, i.e., vectors all of whose components are scalars. This is the setting used by the vect package.

If simple_vector_p is true and declare([v,v1,v2], nonscalar) $ has been specified, then

1. scalarp(v[x]); is true, since v[x] represents a component of the vector v.
2. scalarp(v1.v2); is true, since this is just the dot product of two vectors. In general, the expression scalarp(v1.v2...vn); will be true for n even, and the vi all nonscalarp.

8.1.0.2 Dot and Cross Products

The following operators are either defined or modified by the vect package.

\[vector_1 . vector_2 \]

Infix Operator

Returns the dot product of vector_1 and vector_2.

Note: “.” is declared to be a commutative operator in the vect package. This can affect the behavior of this operator if it is used in the usual way after vect is loaded. If you wish to use “.” as the conventional non-commutative operator, use remove(".", commutative). In this case vector inner products will no longer simplify as commutative.

\[vector_1 \times vector_2 \]

Infix Operator

Returns the cross product of vector_1 and vector_2.

8.1.1 Basic Differential Operators in Vector Fields

\[\text{div } exp \]

Prefix Operator

\text{div} is the divergence operator, and returns the divergence of its argument, exp.

\[\text{curl } exp \]

Prefix Operator

\text{curl} is the curl operator, and returns the curl of its argument, exp.

\[\text{grad } exp \]

Prefix Operator

\text{grad} is the grad operator, and returns the gradient of its argument, exp.

\[\text{laplacian } exp \]

Prefix Operator

\text{laplacian} is the Laplacian operator, and returns the Laplacian of its argument, exp.

8.1.1.1 Simplifying Vector Expressions

Most noncontroversial simplifications are automatic. For additional simplification, there is a function which can be used in the form below:

\[\text{vectorsimp(vectorexpression) } \]

Function

Employs additional noncontroversial simplifications, together with various optional expansions according to the settings of the global option variables in table 8.1.1.1.

All these option variables have default value false. The suffix -plus indicates that additivity or distributivity is applied. The suffix -prod indicates that an operand in the form of a product is expanded.
8.1. VECTOR ALGEBRA AND CALCULUS

expandall	expanddot	expanddotplus
expandcross	expandcrossplus	
expandgrad	expandgradplus	expandgradprod
expanddiv	expanddivplus	expanddivprod
expandcurl	expandcurlplus	expandcurlprod
expandlaplacian	expandlaplacianplus	expandlaplacianprod

Table 8.1: Global Dot Product Option Variables, and How They Relate

\[
\text{expandcross cross} \text{ causes } p \sim (q \sim r) \text{ to be replaced by } (p \cdot r) \cdot q - (p \cdot q) \cdot r, \text{ and expandcurl curl causes curl curl } p \text{ to be replaced by grad div } p + \text{ div grad } p. \text{ Performing expandcross: true$ is the same effect as expandcrossplus: expandcross cross: true$}, \text{ and so on. Two other option variables, expand plus and expand prod, have the same effect as setting all similarly suffixed option variables true. When true, the option variable expandlaplacian to div grad replaces the operator laplacian by the composition div grad. For the sake of convenience, all of them have been declared evflag.}

8.1.1.2 Vector Fields in Specific Coordinate Systems

\textbf{vect coordsy s(coordinate_transform) Function}

For orthogonal curvilinear coordinates, vect coordsy s sets the option variables vect coords (default: [x, y, z]), vect dim (default: 3), sf (default: sf[1]:sf[2]:sf[3]:1), and sf prod (default: 1).

The input coordinate_transform has the following form: [[expression1, ..., expression_n], indeterminate_1, ..., indeterminate_n], where indeterminate_1, ..., indeterminate_n are curvilinear coordinate variables and where a set of rectangular Cartesian components is given in terms of the curvilinear coordinates by [expression1, ..., expression_n].

The variables sf[1], sf[2], ..., sf[vect dim] (where by default sf[1]=sf[2]=sf[3]=sf prod=1 in accordance with three-dimensional rectangular Cartesian coordinates) are set to the coordinate scale factors, and sf prod is set to the product of these scale factors. See the file vectorth (page page 279), which contains transformations between rectangular coordinates and 20 different orthogonal coordinate systems in two and three dimensions.

\textbf{vect coords default: [x, y, z] System Variable}

vect coords is set by vect coordsy s to the vector [indeterminate1, indeterminate2, ...].

\textbf{vect dim default: 3 System Variable}

vect dim is set by vect coordsy s to the length of the vector vect coords.

\textbf{vect express(expression) Function}

Expands an expression into physical components in the current coordinate system. The result uses the noun form of any derivatives arising from expansion of the vector differential operators. To force evaluation of these derivatives, the built-in function ev can be used together with the evflag diff, after using the built-in function depends to establish any new implicit dependencies. If given with a second argument (like the argument of vect coordsy s), the function causes vect coordsy s to be invoked prior to any other computations.
The file `vectorth` is a separate, external library file, which contains the definitions of various orthogonal
curvilinear coordinate systems. Invoking the command `vect_coordsys` in the `vect` package, with the name of
one of the `vect.coordinate.system` as an argument, will cause `vect.ort` to load. Otherwise, type
`load(vectorth);` to load this file. The variable `vect.coordinate.systems` evaluates to a list of the
names of the coordinate systems available in `vectorth`. When prefixed by %, each name evaluates to a list
suitable as input to the command `vect_coordsys`. For example, the value of `%cartesian2D` is `[[x,y],
x,y]`. Note that the coordinate names without a % prefix are still used as arguments to `vect_coordsys`.

`vect_coordsys(polarcylindrical);` is the same as typing `vect_coordsys([[[r*cos(theta),r*sin(theta),z],r,theta,z]]);`.

Definitions for the coordinate systems shown in table 8.2 are included in the file.

<table>
<thead>
<tr>
<th>2D</th>
<th>3D</th>
<th>3D–spherical</th>
</tr>
</thead>
<tbody>
<tr>
<td>cartesian 2d</td>
<td>cartesian 3d</td>
<td>spherical a</td>
</tr>
<tr>
<td>polar</td>
<td>polarcylindrical</td>
<td>oblatespheroidal</td>
</tr>
<tr>
<td>elliptic</td>
<td>ellipticcylindrical</td>
<td>oblatespheroidalsqrt</td>
</tr>
<tr>
<td>confocalelliptic</td>
<td>confocalellipsoidal</td>
<td>prolatespheroidal</td>
</tr>
<tr>
<td>bipolar</td>
<td>bipolarcylindrical</td>
<td>prolatespheroidalsqrt</td>
</tr>
<tr>
<td>parabolic</td>
<td>paraboloidal</td>
<td>conical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>toroidal</td>
</tr>
</tbody>
</table>

Table 8.2: Predefined Coordinate Systems Understood by Macsyma in `vect_coordsys`

```
^vect_coordsys implements the assumption assume(r>0)
```

8.1.1.3 Scalar and Vector Potentials

`scalar_potential(givengradient)`

Function

Returns the scalar potential of a given gradient vector in the current coordinate system. The calculation
makes use of the option variable `potential_zero_location`. If given with a second argument (like the
argument of `vect_coordsys`), the function causes `vect_coordsys` to be invoked prior to any other
computations.

`potential_zero_location` **default**: 0

Option Variable

Must not be a list or must be of the form `[indeterminate_j=expression_j, indeterminate_k=expression_k, ...
]`, the former being equivalent to the nonlist expression for all right sides in the latter. The indicated
right sides are used as the lower limit of integration. The success of the integrations can depend upon
their values and order.

`vector_potential(givencurl)`

Function

Returns the vector potential of a given curl vector in the current coordinate system.

`potential_zero_location` has a similar role for `vector_potential` as for function `scalar_potential`,
but the order of the left sides of the equations must be a cyclic permutation of the coordinate variables.
If an optional second argument is given (like the argument of `vect_coordsys`), `vector_potential`
invokes `scalefactor` prior to any other computations.

8.2 Indicial Tensor Analysis

Name of Package: \texttt{itensor}

This package can be loaded by doing \texttt{init_itensor();} or \texttt{load(itensor);} or \texttt{init_tensors();}.

In \texttt{itensor}, a tensor is represented as an “indexed object.” This is a function of three groups of indices, which represent the covariant, contravariant and derivative indices. The covariant indices are specified by a list as the first argument to the indexed object, and the contravariant indices by a list as the second argument. If the indexed object lacks either of these groups of indices, then the empty list [] is given as the corresponding argument. Thus, \(g([a, b], [c]) \) represents an indexed object called \(g \), which has two covariant indices \((a, b)\), one contravariant index \((c)\) and no derivative indices.

The derivative indices, if they are present, are appended as additional arguments to the symbolic function representing the tensor. You can explicitly specify them or allow them to be created in the process of differentiation with respect to some coordinate variable. Since ordinary differentiation is commutative, the derivative indices are sorted alphanumerically. This canonical ordering makes it possible to recognize that, for example, \(t([a], [b], i, j) \) is the same as \(t([a], [b], j, i) \). By modifying the existing function \texttt{diff} in \texttt{itensor}, Macsyma now assumes that all indexed objects depend on any variable of differentiation unless otherwise stated. This makes it possible for the summation convention to be extended to derivative indices. It should be noted that \texttt{itensor} does not possess the capabilities of raising derivative indices, and so they are always treated as covariant.

Each tensor is represented with three groups of indices:

1. a list of covariant (“lowered”) indices
2. a list of contravariant (“raised”) indices
3. a group of derivative indices, which are always covariant, and assumed to commute (except when frame fields are chosen, see Section 8.2.3).

Do \texttt{demo(itensor)}; for a basic demonstration of \texttt{itensor} and \texttt{demo(itensor1)}; ..., \texttt{demo(itensor6)}; for others. In addition to the \texttt{itensor} demo files, \texttt{demo(tens.pde)}; shows how to use \texttt{itensor}, \texttt{ctensor}, and other parts of Macsyma to perform tensor computations.

8.2.1 Tensor Algebra Operations

8.2.1.1 Specifying the Metric Tensor

\texttt{imetric(name)} \hspace{1cm} \textit{Function}

Specifies \texttt{name} as the metric name by assigning the variable \texttt{imetric:name}. In addition, the contraction properties of the metric \texttt{name} are set up by executing the commands \texttt{deicon(name)}; and \texttt{deicon(name, name, kdelta)};. See the example on page 290. In releases starting with number 414, if \texttt{allsym} is \texttt{false}, it declares the metric tensor to be symmetric by executing the commands \texttt{decsym(name, 2,0,[sym (1,2)],[])}; and \texttt{decsym(name, 0,2,[],[sym (1,2)]);}.

8.2.1.2 Assigning Component Values to Indicial Tensors

\texttt{components(tensor, exp)} \hspace{1cm} \textit{Function}

Enables you to assign an indicial tensor expression, \texttt{exp}, as the value of an indicial tensor, \texttt{tensor}. These are automatically substituted for the \texttt{tensor} whenever it occurs with all of its indices. The \texttt{tensor} must be of the form \(t([\ldots],[\ldots]) \) where either list can be empty. The input \texttt{exp} can be any indexed expression involving other objects with the same free indices as \texttt{tensor}. When used to assign values to the metric
tensor wherein the components contain dummy indices, you must be careful to define these indices to avoid the generation of multiple dummy indices. Removal of this assignment is given to the function `remcomps` described below.

In the example under `defcon` (see page 283), lines (c6)–(d9) demonstrate the use of the `components` function to define an *algebraically special metric* and also show how the null property of the vector field can be given with the property assignment functions. See the example on page 290 for the basic syntax used in the `components` statement.

```
components default: []
```

This stores a list of all tensors which have been assigned components.

```
remcomps(tensor)
```

Removes all tensor component assignments from `tensor` which were assigned with the function `components`.

8.2.1.3 Defining Tensor Symmetry Properties

Note that the functions `canform` (page 284) and `canten` (page 285) also apply symmetry properties to tensor expressions.

```
decsym(tensor, m, n, [cov1, ..., covp], [contr1, ..., contrn])
```

Declares symmetry properties for `tensor` of `m` covariant and `n` contravariant indices. The `cov_i` and `contr_i` are pseudo-functions expressing symmetry relations among the covariant and contravariant indices respectively. These pseudo-functions have the form `symop/er(index1, index2, ...)` where `symop/er` is one of `sym`, `anti`, or `cyc` and the `index_i` are integers indicating the position of the index in the `tensor`. This will declare `tensor` to be symmetric, antisymmetric, or cyclic respectively in the `index_i`. The form `symop/er(all)` is also allowable; this indicates that all indices obey the symmetry condition. For example, given an object `b` with five covariant indices, the function call

```
decsym(b, 5, 3, [sym(1, 2), anti(3, 4)], [cyc(all)]);
```

declares `b` symmetric in its first and second and antisymmetric in its third and fourth covariant indices, and cyclic in all of its contravariant indices. Either list of symmetry declarations may be null. These properties can be displayed with `dispsym` (see page 283). They can be removed with `remsym` (see page 283). The function which performs the simplifications is `canform` as the example below illustrates.

```
symmetries
```

This stores a list of all tensors which have been assigned symmetry properties.

Example

```
(c1) exp:a([k, j, i], [])+a([k, i, j], [])+a([j, k, i], [])+a([j, i, k], [])+a([i, k, j], [])+a([i, j, k], [])
```

```
(d2) ishow(exp);
```

```
    a + a + a + a + a + a
    k i j i k j i j k i k j i j k
```

```
(c3) allsym;
```

```
(d3) true
```

```
(c4) ishow(canform(exp));
```

```
    6
```

```
(d4) a
```

```
    i j k
```

```
(c5) allsym: false$
```

```
(c6) decsym(a, 3, 0, [anti(all)], []);
```

```
(c7) dispsym(a, 3, 0);
```
(d7) [[anti, [[1, 2, 3]], []]]
(c8) ishow(canform(exp));
(d8) 0
(c9) remsym(a, 3, 0)
(c10) decsym(a, 3, 0, [cyc(all)], [])
(c11) ishow(canform(exp));
(d11) 3 a + 3 a
 i k j i j k

dispsym(tensor, m, n)
Function

Displays symmetries declared by decsym as a list of lists or returns [] if there are none. See the example on page 282. The first element of the inner list is one of the atoms sym, anti, or cyc. The second element is a list of lists of the index positions that have this property in the covariant indices of tensor. The third element is the same, except that it is for the contravariant indices.

remsym(tensor, m, n)
Function

Removes all symmetry properties from tensor which has m covariant indices and n contravariant indices.

allsym default: false
Option Variable

If allsym is true, all indexed objects are assumed symmetric in all of their covariant and contravariant indices. If false, no symmetries of any kind are assumed in these indices, though symmetry information provided by decsym declarations will then be used by canform. Derivative indices are always taken to be symmetric. However, the simplification routines may no longer operate completely. In addition, if allsym is true, rename sorts dummy indices alphanumerically (whether covariant or contravariant indices depends upon the value of flipflag). See Section 8.2.1.6, page 286.

Note: In releases before number 414, the default value is true.

8.2.1.4 Contraction Identities for Indicial Tensors

defcon(tensor1, tensor2, tensor3)
Function

Gives tensor1 the property that the contraction of a product of tensor1 and tensor2 results in tensor3 with the appropriate indices. If only one argument, tensor1, is given, the contraction of the product of tensor1 with any indexed object having the appropriate indices, say tensor, yields an indexed object with that name, tensor, and with a new set of indices reflecting the contractions performed. For example, if imetric:g; has been done, defcon(g); implements the raising and lowering of indices through contraction with the metric tensor.

These properties can be displayed with dispoon (see page 284). They can be removed with remcon (see page 284).

The following example for an algebraically special metric shows how the null property of a vector field may be assigned, as well as demonstrating that more than one defcon assignment can be given for the same indexed object.

contractions
System Variable

This is an information list of those indexed objects which have been given contraction properties with defcon.

Example
(c1) declare(e, constant)
(c2) defcon(e)
(c3) defcon(e, e, kdelta)
(c4) defcon(1, 1, w)
CHAPTER 8. VECTOR AND TENSOR ANALYSIS

(c5) \(w*(1,1,12) := 0 \$
(c6) components(g([p,q],[[]]), e([p,q],[[]])*2*m*1([p],[[]])*1([q],[[]]))$
(c7) components(g([a,b]), e([a,b])*2*m*1([a],[[]])*1([b],[[]]))$
(c8) ishow(g([i,j],[[]]));
(d8) \[2 \ i \ j \ i \ j \ m + e \]
(c9) ishow(g([], [i,j]));
(d9) \[i \ j \ i \ j \ e - 2 \ i \ j \ m \]
(c10) imetric(g)$
(c11) contract(rename(expand(g([i,j],[[]])*g([], [j,k]))))$
(c12) ishow(%);
(d12) \[k \delta \]
(k)
(c13) dispcon(all);
(d13) [[e, e, \delta]]$

dispcon(tensor_1, \ldots, tensor_n)$

Function

Displays the contraction properties of the tensor_i, which were given to `defcon`. dispcon(all); displays all defined contraction properties. See the example on page 283.

remcon(tensor_1, \ldots, tensor_n)$

Function

Removes all the contraction properties from the tensor_i. Performing `remcon(all)`; removes all contraction properties from all indexed objects.

8.2.1.5 Specifying Coordinate Symbols in Indicial Tensor Computations

coord(tensor_1, \ldots, tensor_n)$

Function

Gives tensor_i the coordinate differentiation property that the derivative of a contravariant vector whose name is one of the tensor_i yields a Kronecker delta. For example, if `coord(x)` has been done, then `idiff(x([i],[j]), i)`; gives `\delta([i],[j])`. This property can be removed with `remcoord`. See page 284.

coord default: []

Option Variable

This is an information list which contains a list of all indexed objects having the above property.

remcoord(tensor_1, \ldots, tensor_n)$

Function

Removes the coordinate differentiation property from the tensor_i that was established by the function `coord`. Performing `remcoord(all)`; removes this property from all indexed objects.

8.2.1.6 Simplification of Indicial Tensor Expressions

To convert derivatives of the metric tensor into Christoffel symbols, see the function `conmetderiv`, page 291. For `demo(tenssimp)`; for an executable demonstration of some tensor simplifications.

canform(exp)$

Function

Simplifies exp by renaming dummy indices and reordering all indices as dictated by symmetry conditions imposed on them. The dummy indices are renamed in the same manner as in the function `rename`. When `canform` is applied to a large expression, the calculation may take a considerable amount of time. This time can be shortened by calling `rename` on the expression first. The action of this function is controlled by `allsym`, described above. See the example on page 282.
8.2. INDICIAL TENSOR ANALYSIS

Note: `canform` may not be able to reduce an expression completely to its simplest form, although it will always return a mathematically correct result.

canten(`exp`)
Function

Simplifies `exp` by renaming and permuting dummy indices. (See `rename`, page 285.) The function `canten` is restricted to sums of tensor products in which no derivatives are present. As such it is limited and should only be used if `canform` is not capable of carrying out the required simplification.

The function `canten` should only be used with tensors that are fully symmetric in their upper and lower indices.

contract(`exp`)
Function

Carries out the tensor contractions in `exp`, which can be any combination of sums and products. This function uses the information given to the `defcon` function. When using `contract`, `exp` must be fully expanded. See Section 8.2.1.1, page 281. See the example on page 288.

Note: In current releases, use of `contract` on expressions involving a contraction with the metric causes a tensor index to be moved from one index list to the beginning of the index list of the opposite variance. If the tensors do not have the appropriate symmetry properties, this can lead to an unexpected result.

rename(`exp`, `{count}`)
Function

Returns an expression equivalent to `exp` but with the dummy indices in each term chosen from the set `{%1, %2, ... }`, if the optional second argument is omitted. Otherwise, the dummy indices are indexed beginning at the value of `count`. Each dummy index in a product will be different. For a sum, `rename` will operate upon each term in the sum resetting the counter with each term. In this way `rename` can serve as a tensor simplifier. The action of this function is controlled by `allsym` (see Section 8.2.1.3, page 283) and by `flipflag`, described on page 286.

Examples

```
(c1) ishow(exp);
   \%4 \%5 \%6 \%7 \%3 u \%1 \%2
(d1) g g ichr2 ichr2 ichr2 ichr2
    \%1 \%4 \%2 \%3 \%5 \%6 \%7 r
    \%4 \%5 \%6 \%7 u \%1 \%3 \%2
    - g g ichr2 ichr2 ichr2 ichr2
      \%1 \%2 \%3 \%5 \%4 \%6 \%7 r

(c2) flipflag;
(d2) false

(c3) ishow(rename(exp));
   \%2 \%5 \%6 \%7 \%4 u \%1 \%3
(d3) g g ichr2 ichr2 ichr2 ichr2
    \%1 \%2 \%3 \%4 \%5 \%6 \%7 r
    \%4 \%5 \%6 \%7 u \%1 \%3 \%2
    - g g ichr2 ichr2 ichr2 ichr2
      \%1 \%2 \%3 \%4 \%5 \%6 \%7 r

(c4) flipflag:true$
(c5) rename(d1);
(d5) 0
(c6) [first(d3),last(d3)]$
(c7) ishow(rename(\%));
   \%1 \%2 \%3 \%4 \%5 \%6 \%7 u
(d7) [g g ichr2 ichr2 ichr2 ichr2 ,
Now suppose that the name specified by the value of imetric corresponds to a tensor that has been given some structure by the command components. (We are assuming a weak field metric.)

\begin{verbatim}
c8) indexed_tensor(ichr2)$
c9) declare(e,constant)$
c10) imetric: g$ 
c11) components(g([m,n],[[]]), e([m,n],[[]]) + 2*1*p([m,n],[[]])$ 
c12) components(g([], [m,n]), e([], [m,n]) - 2*1*p([], [m,n])$ 

c13) ishow(g([i,j],[[]])); 
(d13) 2 l p + e 
   i j i j

(c14) ishow(g([], [i,j])); 
(d14) i j i j

(c15) (ratvars(1), ratweight(1,1), ratwtlvl:1)$
c16) icurvature([s,u,n],[y])$
c17) ,eval$

c18) ishow(canform(contract(rename(ratexpand(%))))$ 
(d18) - e l p + e l p + e p l 
   s u i1 n n s i1 u n s i1 y 
   - e p l 
   i1 n s u
\end{verbatim}

\textbf{flipflag} \textit{default: false} \textbf{Option Variable}

If \textbf{flipflag} is \textit{false}, the indices will be renamed according to the order of the covariant indices. Otherwise, they will be renamed according to the order of the contravariant indices. It often happens that the combined effect of two renamings reduces an expression more than either renaming does by itself. This option variable influences \textbf{rename} in the following way. If \textbf{flipflag} is \textit{false}, \textbf{rename} forms a list of the covariant indices as they are encountered from left to right. (If \textit{true} then of the contravariant indices). The first dummy index in the list is renamed to \texttt{\%1}, the next to \texttt{\%2}, etc. Then sorting occurs after using \textbf{rename}. See the example on page 285.

\textbf{itensform} (\textit{exp, {"method1, method2}}) \textit{Function}

This is the most powerful simplification command. It combines various methods for simplifying the indicial tensor \textit{exp}. Normally \textbf{itensform} applies \textbf{canform} to the expression and then checks whether any of the terms in the result are zero tensors (for example, the product of a symmetric tensor with an antisymmetric tensor).

The optional arguments \textit{method1} and \textit{method2} can have the following values:

- \textbf{rename} (apply \textbf{rename} with both possible values of \textbf{flipflag})

- \textbf{canform} (reapply \textbf{canform})

- \textbf{all} (tries all methods)

If optional methods are specified, they will be performed directly after the initial application of \textbf{canform}. The optional methods may produce a more simplified version of the original expression, but may take much more time to execute.
itensor\text{\textregistered} is usually the most time-consuming simplification command in \texttt{itensor}.

\texttt{changeName}(old, new, exp) \hspace{1cm} \textit{Function}

Changes the name of all indexed objects called \texttt{old} to \texttt{new} in \textit{exp}. \texttt{old} can be either a symbol or a list of the form \texttt{[name, m, n]}, in which case only those indexed objects called \texttt{name} with \texttt{m} covariant and \texttt{n} contravariant indices are renamed to \texttt{new}.

### 8.2.1.7 Tensor Index Counting

\texttt{icounter} \hspace{1cm} \textit{Default: 0} \hspace{1cm} \textit{Option Variable}

Determines the numerical suffix to be used in generating the next dummy index. It can also be used to set the counter to any value. See \texttt{indices}, described below.

\texttt{idummy()} \hspace{1cm} \textit{Function}

Increments \texttt{icounter} and returns as its value an index of the form \texttt{\%n} where \texttt{n} is a positive integer. This guarantees that dummy indices that are needed in forming expressions will not conflict with indices already in use. See \texttt{indices}, described below.

\texttt{idummyX} \hspace{1cm} \textit{Default: \%} \hspace{1cm} \textit{Option Variable}

Is the prefix for dummy indices. See \texttt{idummy}, described above.

\texttt{indices(exp)} \hspace{1cm} \textit{Function}

Returns a list of two elements. The first is a list of the free indices in \textit{exp} (those that occur only once). The second is the list of the dummy indices in \textit{exp} (those that occur exactly twice) as the following example demonstrates.

\textit{Example}

\begin{verbatim}
(c1) ishow(icurvature([i,j,k],[l])*icurvature([a,b,c],[d]));
   d   d   \%2    d   d   \%2
   (d1) (- ichr2 - ichr2 ichr2 + ichr2 + ichr2 ichr2 )
        a c, b \%2 b a c a b, c \%2 c a b
        l 1 \%1 1 1 \%1
    
    (- ichr2 - ichr2 ichr2 + ichr2 + ichr2 ichr2 )
    i k, j \%1 j i k i j, k \%1 k i j

(c2) indices(\%);
(d2) \[\[d, c, a, b, l, k, i, j\], \[\%2, \%1\]\]
(c3) icounter;
(d3) 2
(c4) icounter:11$
    
(c5) 'ic1;
    
   d   d   13  d   d   \%13
   (d5) (- ichr2 - ichr2 ichr2 + ichr2 + ichr2 ichr2 )
        a c, b \%13 b a c a b, c \%13 c a b
        l 1 \%12 1 1 \%12
    
    (- ichr2 - ichr2 ichr2 + ichr2 + ichr2 ichr2 )
    i k, j \%12 j i k i j, k \%12 k i j

(c6) idummyx;
(d6)  
(c7) idummyx:&&$
\end{verbatim}
\[ k_{\delta}(i, j) \]

The function \( k_{\delta} \) is the generalized Kronecker delta function with \( I_1 \) the list of covariant indices and \( I_2 \) the list of contravariant indices. \( k_{\delta}(i, j) \); returns the ordinary Kronecker delta function. See also Section 3.1.2, page 32.

The command \( \text{ev}(\exp, k_{\delta}) \); causes \( k_{\delta}([], []) \) contained in \( \exp \) to be set equal to the dimension of the manifold.

\[ k_{\delta}([a,b,c],[r,s,t]) \]

\[ k_{\delta}([a,b,c],[r,s,t]) \]

The following example demonstrates the contraction property of the Kronecker delta.

\[ \text{contract}(k_{\delta}([a],[b])*k_{\delta}([b],[a])); \]

\[ k_{\delta}([], []); \]

\[ \text{ev}(k_{\delta}, k_{\delta}); \]

\[ 4 \]

\( \text{Levi-Civita} \)

Is the permutation (or Levi-Civita) tensor density which yields 1 if the list \( I \) consists of an even permutation of integers, \(-1\) if it consists of an odd permutation, and 0 if some indices in \( I \) are repeated.

8.2.1.9 Noncommutative Multiplication Operator in Indicial Tensors

\( \text{itensor} \) can manipulate Macsyma’s noncommutative multiplication operator, or dot operator “.” , enabling you to compute with tensor calculus and noncommutative algebras together. (Other tensor algebra capabilities are available in the \( \text{atensor} \) package.)

8.2.2 Tensor Calculus Operations

8.2.2.1 Derivatives Which are Independent of the Affine Connection

Macsyma can compute four types of derivatives which are independent of the affine connection:
8.2. **INDICIAL TENSOR ANALYSIS**

- Differentiation with respect to an extrinsic variable, using the command `diff`. (That is, time is a variable which is extrinsic to the geometry of spatial 3-manifolds in nonrelativistic physics.) This is the first of five fundamental types of derivatives implemented in `itensor`.

- Indicial differentiation with respect to coordinates or frame field directions, using the command `idiff`. For example, `idiff(exp, i)` means the coordinate derivative of `exp` with respect to coordinate number `i`.

- Lie derivatives of tensor fields with respect to arbitrary vector fields, using the function `liediff`.

- Exterior derivatives of antisymmetric covariant tensor fields (differential forms), using the function `extdiff`.

---

**Function**

\[
diff(\text{exp}, v_1, n_1, \ldots, v_n, n_n)
\]

This is the usual differentiation function which has been expanded in its abilities for the package `itensor`. It takes the derivative of the expression `exp` `n_1` times with respect to `v_1`, `n_2` times with respect to `v_2`, etc. For the tensor package, the following modifications have been incorporated (see Section 8.2.2.2, page 291):

- The `v_i` can be integers from 1 up to the value of the variable `dim` *(default: 4)*. This causes the differentiation to be carried out with respect to the `v_i`-th member of the list `vect.coors` which should be assigned to a list of the names of the coordinates, such as `[x, y, z, t]`. If `vect.coors` is bound to an atomic variable, then that variable subscripted by `v_i` will be used for the variable of differentiation. This permits an array of coordinate names or subscripted names like `x[1]`, `x[2]`, ... to be used. If `vect.coors` has not been assigned a value, then the variables will be treated as above.

**Function**

\[
idiff(\text{exp}, v_1, n_1, \ldots, v_n, n_n)
\]

This is a differentiation function for use with tensors. It takes the derivative of the expression `exp` `n_1` times with respect to the `v_1`th variable, `n_2` times with respect to the `v_2`th, etc. This command has the following features:

- The derivatives of any indexed objects in `exp` will have the variables `v_i` appended as additional arguments. Subsequently, all derivative indices will be sorted.

- You can now differentiate the determinant of the metric tensor. Thus, if `imetric` has been bound to `g` then `idiff(determinant(g), k)`; will return `2*determinant(g)*ichr2([k, i], [k, i])`, where the dummy index has been appropriately chosen.

**Function**

\[
extdiff(\text{exp}, k)
\]

Computes the exterior derivative of the differential form *(i.e. antisymmetric covariant tensor field)*. This operation does not depend on the affine connection. The symbol `k` describes the derivative index.

**Function**

\[
liediff(v, \text{exp})
\]

Computes the Lie derivative of the tensor field `exp`, with respect to the vector field whose symbol is `v`. While `exp` is a full indicial tensor expression, `v` is merely the symbolic name of the vector field. This operation does not depend on the affine connection.

---

8.2.2.2 **Covariant Derivatives**

Covariant differentiation with respect to a metric affine connection:
• Computing Christoffel symbols of a Riemannian connection in terms of the metric. See functions icch1 and icch2 for Christoffel symbols of the first and second kinds respectively (the definitions of these functions are shown below).

• Computing covariant derivatives, using Christoffel symbols. See the function covdiff (described below).

<table>
<thead>
<tr>
<th>icch1</th>
<th>indicial Christoffel symbols of the first kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>icch2</td>
<td>indicial Christoffel symbols of the second kind</td>
</tr>
<tr>
<td>icc1</td>
<td>indicial connection coefficients of the first kind</td>
</tr>
<tr>
<td>icc2</td>
<td>indicial connection coefficients of the second kind</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>icch1([i, j, k])</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yields the Christoffel symbol of the first kind via the definition</td>
<td></td>
</tr>
</tbody>
</table>
| icch1([i, j, k]) = \[ijk, k\] = \[1/2 \left( \frac{\partial g_{ij}}{\partial u_j} + \frac{\partial g_{jk}}{\partial u_i} - \frac{\partial g_{ki}}{\partial u_k} \right) = \frac{1}{2} [g_{i,j,k} + g_{j,k,i} - g_{i,j,k}] \]

<table>
<thead>
<tr>
<th>icch2([i, j, k])</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yields the Christoffel symbol of the second kind defined by the relation</td>
<td></td>
</tr>
</tbody>
</table>
| icch2([i, j, k]) = \[ij, k\] = \[k \atop ij\] = \[g^{ks} \frac{g_{ks}}{2} \left[ g_{i,j,s} + g_{j,s,i} - g_{i,j,s} \right] \]

As an example, consider a conformally flat metric and find the Christoffel symbols of both kinds:

Example
(c1) declare(e, constant)$
(c2) imetric(g)$
(c3) components(g([i, j], [i], e([i, j], [i])))$p([i, j])$
(c4) components(g([i, j], e([i, j], [i])))$p([i, j])$
(c5) ishow(g([i, j], [i]));
(d5) p e
   i j
(c6) ishow(g([], [i, j]));
   i j
   e
(d6) ----
   p
\[(c7) \text{ishow}(\text{ichr1}([i,j,k])); \]
\[
\begin{align*}
pe - pe + pe \\
, i k j , k j i , j i k
\end{align*}
\]
\[(d7) \quad \frac{\text{2}}{\text{2}}
\]
\[(c8) \text{ishow}(\text{factor}(\text{ichr2}([i,j],[k])));
\]
\[
\begin{align*}
&k \%1 \\
&\text{e} \ (pe - pe - pe) \\
, %1 j i , j i %1 , i %1 j
\end{align*}
\]
\[(d8) \quad \frac{\text{2}}{\text{p}}
\]
\[\text{conmetderiv}(\text{exp}, \text{tensor}) \quad \text{Function}\]
This is used to simplify expressions containing ordinary derivatives of both covariant and contravariant forms of the metric tensor (the current restriction). For example, \text{conmetderiv} can relate the derivative of the contravariant metric tensor with the Christoffel symbols as seen from the following:

\[\begin{align*}
\text{Example} \\
(c1) \text{ishow}(g(\square,[a,b],c))
\end{align*}\]
\[
\begin{align*}
&\begin{array}{c}
a b \\
g, \\
c
\end{array}
\end{align*}
\]
\[(d1) \\]
\[(c2) \text{ishow}(\text{conmetderiv}(\%1,g));
\]
\[
\text{ichr2} - \text{ichr2} - \text{ichr2}
\]
\[
\frac{\%1 c}{\%1 c}
\]
\[(d2) \quad \frac{\text{2}}{\text{p}}
\]

The following functions are available in the \text{itensor} package for manipulating indexed objects. (See Section 8.2.1.3, page 283). In what follows, general indexed objects are denoted by \text{tensor}_1, \text{tensor}_2, \ldots, \text{tensor}_n.

\[\text{indexed_tensor}(\text{tensor}) \quad \text{Function}\]
Must be executed before assigning components to a \text{tensor} for which a built-in value already exists, as with \text{ichr1}, \text{ichr2}, and \text{icurvature}. See the example on page 286.

\[\text{indexed_tensors} \quad \text{Option Variable}\]
List of tensors declared by \text{indexed_tensor}.

\[\text{undiff}(\text{exp}) \quad \text{Function}\]
Returns an expression equivalent to \text{exp} but with all derivatives of indexed objects replaced by the noun form of the \text{diff} function. Its arguments would yield that indexed object if the differentiation were carried out. This is useful when you want to replace an indexed object inside a differentiation operation and then carry out the differentiation by saying \text{ev}(\text{exp}, \text{diff});.

\[\text{rediff}(\text{exp}) \quad \text{Function}\]
This replaces the derivative noun forms in a tensor, after they have been \text{undiffed}.

\[\text{evundiff}(\text{exp}) \quad \text{Function}\]
This executes the following sequence of operations: \text{undiff}, \text{eval}, and then \text{rediff}. 
8.2.2.3 Riemannian Curvature

**icurvature**([i, j, k], [h])

Yields the Riemann curvature tensor in terms of the Christoffel symbols of the second kind (ichr2). The following notation is used:

\[
\text{icurvature} = - \text{ichr2} - \text{ichr2} \text{ ichr2} + \text{ichr2} \\
i j k \quad i, k, j \quad %1 j i k \quad i, j, k \quad %1 \\
+ \text{ichr2} \quad \text{ichr2} \\
%1 k \quad i j
\]

**Example**

(c1) ishow(covdiff(a([i, j], [D]), s));

k %1 1 1 1 1
(d1) - a ichr2 - a ichr2 + a + ichr2 a
i %1 s j %1 j s i i, j s %1 i j

(c2) /* verification of form of icurvature tensor */
ishow('icurvature([i, j, k], [D]) = icurvature([i, j, k], [D]));

h h %1
(d2) icurvature = ichr2 + ichr2 ichr2

i j k k i j %1 k i
%1 h h

8.2.2.4 Setting Derivatives of Tensors to Zero

**igeodesic_coords**(exp, name)

Causes undifferentiated Christoffel symbols and first derivatives of the metric tensor to vanish in *exp* (as in geodesic coordinates). The *name* in the function *igeodesic_coords* refers to the metric name (if it appears in *exp*) while the connection coefficients must be called with the names *ichr1* and/or *ichr2*.

**Example** The following example demonstrates the verification of the cyclic identity satisfied by the Riemann curvature tensor while also showing the use of the function *igeodesic_coords*.

(c1) exp: icurvature([i, j, k], [D]) + icurvature([i, j, k], [D])
   + icurvature([k, i, j], [D])

(c2) ishow(exp);

h h %1 h h %1
(d2) - ichr2 - ichr2 ichr2 + ichr2 + ichr2 ichr2

k, j i %2 k j k, i j %1 k i
%2 h %1 h h
+ ichr2 ichr2 - ichr2 ichr2 + ichr2
i j k %2 j i %1 j k, i
%3 h %3 h h
+ ichr2 ichr2 - ichr2 - ichr2 ichr2 ichr2 - ichr2
i %3 j k j i, k i k j %3 i, k
h
+ ichr2
i j, k

(c3) ishow(canform(igeodesic_coords(exp, ichr2)));
(d3) 0
flush\((exp, tensor_1, \ldots, tensor_n)\)

Function

Sets to zero, in \(exp\), all occurrences of the \(tensor_i\) that have no derivative indices.

flushd\((exp, tensor_1, \ldots, tensor_n)\)

Function

Sets to zero, in \(exp\), all occurrences of the \(tensor_i\) that have derivative indices.

flushnd\((exp, tensor, n)\)

Function

Sets to zero, in \(exp\), all occurrences of the differentiated object \(tensor\) that have \(n\) or more derivative indices as the following example demonstrates.

Example

\[
\begin{align*}
(c1) & \quad \text{ishow}(a([i],[j],[k,r]) + a([i],[j],[r,s],[k],[r,s])); \\
& \quad j \ r \ s \ j \ r \\
(d1) & \quad a + a \\
& \quad i, k \ r \ s \ i, k \ r \\
(c2) & \quad \text{ishow}(\text{flushnd}(d1, a, 3)); \\
& \quad j \ r \\
(d2) & \quad a \\
& \quad i, k \ r
\end{align*}
\]

flushideriv\((exp, tensor)\)

Function

Sets to zero, in \(exp\), all occurrences of \(tensor\) that have exactly one derivative index.

lorentz_gauge\((exp, tensor_1, \ldots, tensor_n)\)

Function

Imposes a generalized Lorentz gauge condition on \(exp\) replacing by zero those \(tensor_i\) which have a derivative index identical to a contravariant index. If no \(tensor_i\) are specified, this process will be performed on all indexed objects in \(exp\). See the example on page 296.

8.2.3 Frame Fields and Related Topics

8.2.3.1 Frame Fields

The itensor package has the following capabilities:

- Computation including frame fields, and Lie brackets of the frame fields, denoted by the tensor symbol \(ifb\). This feature is turned on when the option variable \(iframe\_flag\) (default: false) is true.

- Computation of connection coefficients, using functions icc1 and icc2, with the definitions

\[
\begin{align*}
\text{icc1} &= \%\text{icc1} - \%\text{icc1} + \%\text{icc1} , \\
& \quad acb \ acb \ cba \ bac \\
\end{align*}
\]

where

\[
\begin{align*}
\%\text{icc1} &= (d \ g - ifb - itr + imm \ g ) / 2 , \\
& \quad acb \ a \ cb \ acb \ a \ cb \ acb \ a \ cb \\
\end{align*}
\]

and

\[
\begin{align*}
\text{ ICC2} &= g \ \text{icc1} . \\
& \quad ac \ acd
\end{align*}
\]

\text{icb}\_1\_1 is like icc1, but has no frame fields, no torsion, and no conformal nonmetricity.

- Separate computation of the frame bracket contributions to connection coefficients (using functions ifc1 and ifc2) and the torsion contribution, known as the "contortion" (using functions ikt1 and ikt2).
• Computation of covariant derivatives (with function covdiff) and the curvature tensor automatically including frame fields and torsion. The index convention for the covariant derivatives and curvature are

\[
covdiff( \mathbf{v} , j ) = d v^i + v^{i k} \partial_j c^{k} \, ,
\]

and

\[
icurv = d _{j} c^{k}_{i} - d _{i} c^{k}_{j} - i f b _{i j k} c^{k}_{2} + i c c_{i j k} c^{k}_{2} - i c c_{i j k} i c c_{2} \, .
\]

• Optional expression of frame brackets, ifb, in terms of the frame fields, ifr, and inverse frame fields, ifri. Use the command iframes() to set up contraction identities involving ifr and ifri, and to assign component expressions to ifb involving ifr and ifri.

The notation used in frame fields is shown in table 8.4.

| icc1 | connection coefficient of first kind |
| icc2 | connection coefficient of second kind |
| ifr  | frame field |
| ifri | frame field inverse |
| ifb  | frame Lie bracket |

\[
IFB_{[i,j],[k]} = IFB_{i,j}^{\epsilon} = IFB_{i}^{\epsilon}(d_{j}IFR_{i}^{\epsilon} - d_{i}IFR_{j}^{\epsilon})IFR_{b}^{\epsilon}
\]

\[
= (IFR_{i}^{\epsilon}IFR_{j}^{\epsilon} - IFR_{i}^{\epsilon}IFR_{j}^{\epsilon})IFR_{b}^{\epsilon}
\]

| ifc1 | frame coefficient in icc1 |
| ifc2 | frame coefficient in icc2 |

\[
IFC_{1}[a,b,c] = IFC_{1}^{abc} := g_{c,i}IFC_{2}^{ci} d_{b}^{c} d_{a}^{c}
\]

\[
IFC_{2}[a,b,c] = IFC_{2}^{abc} := 1/2(IFB_{b,a}^{c}IFB_{ab}^{c} + IFB_{a,b}^{c})
\]

Table 8.4: Notation used for Frame Coefficients, Frame Fields and Connection Coefficients in itensor

We have the following correspondence with conventional notation:

<table>
<thead>
<tr>
<th>Indexed Object</th>
<th>Conventional Tensor Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>icc1([[a,b],[c],[l]])</td>
<td>$c_{a b c} := \frac{1}{2} g^{c d} (%c_{a d b} - %c_{d a b} + %c_{b a d})$</td>
</tr>
<tr>
<td>icc2([[a,b],[c]])</td>
<td>$c_{c}^{a b} := g^{a d} c_{a b d}$</td>
</tr>
</tbody>
</table>

Table 8.5: Correspondence of Frame Field Object Indices with Conventional Tensor Notation

where $\%c_{a c b} := (f_{r_{a}^{i} d_{r_{b}^{i} c} + n m_{a c b} - tr_{a c b} - f_{b a c})$.

8.2.3.2 Affine Torsion

The itensor package has the following capabilities:

• Computation including the affine torsion tensor, denoted by the symbol itr, and the contortion tensor, denoted by ixt. This feature is turned on when the option variable itorsion.flag (default: false) is true.

The notation used for affine torsion is shown in table 8.6.
8.2.2 **INDICIAL TENSOR ANALYSIS**

<table>
<thead>
<tr>
<th>itr</th>
<th>affine torsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>itr([a,b],[c])</td>
<td>↔</td>
</tr>
<tr>
<td>it[k]1</td>
<td>contortion tensor, used in icc1</td>
</tr>
<tr>
<td>it[k]1([a,b,c],[k])</td>
<td>↔</td>
</tr>
<tr>
<td>it[k]2</td>
<td>contortion tensor, used in icc2</td>
</tr>
<tr>
<td>it[k]2([a,b],[c])</td>
<td>↔</td>
</tr>
</tbody>
</table>

Table 8.6: Notation used for Affine Torsion in Connection Coefficients in itensor

### 8.2.3.3 Conformal Nonmetricity

The itensor package has the following capabilities:

- Computation including conformal nonmetricity vector $\text{inm}$, defined so that
  \[
  \text{covdiff}(\text{metric }, \text{k}) = - \text{inm} \text{ metric } .
  \]

This feature is turned on when the option variable `nonmet_flag (default: false)` is `true`.

The notation used for conformal nonmetricity is shown in table 8.7.

<table>
<thead>
<tr>
<th>inm</th>
<th>nonmetricity tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>inmc1</td>
<td>Connection nonmetricity coefficient in icc1</td>
</tr>
<tr>
<td>inmc1([i,j,k])</td>
<td>↔</td>
</tr>
<tr>
<td>inmc2</td>
<td>Connection nonmetricity coefficient in icc2</td>
</tr>
<tr>
<td>inmc2([i,j],[k])</td>
<td>↔</td>
</tr>
</tbody>
</table>

Table 8.7: Notation used for Conformal Nonmetricity in Connection Coefficients in itensor

### 8.2.4 Display of Indicial Tensors

**Note:** The general indexed object display command `indexed_tensor` does not work with the itensor package.

**ishow**(exp) \hspace*{1cm} Function

Displays `exp` with the indexed objects in it shown having their covariant indices as subscripts and contravariant indices as superscripts. The derivative indices are displayed as subscripts, separated from the covariant indices by a comma.

**makebox**(exp, tensor) \hspace*{1cm} Function

Displays, with the symbol [], all occurrences of the flat-space d'Alembertian operator acting upon `tensor` in `exp`. The name of the flat-space metric appears in the argument to the function. In the following example, `ein` is the weak field approximation of the Einstein tensor for the metric (d1) where $l$ is a small parameter.
Example

(c1) ishow(g([i,j]));

(d1) \[ p \, l + e \, i \, j \]

(c2) ishow(ein);

\[ \%1 \%2 \, i \, j \, \%1 \%2 \, i \, j \, \%1 \%2 \, i \, j \]

(d2) \[- e \, p \, l + p \, e \, l + p \, e \, l + p \, e \, l \]

\[ \%1 \%2 \, \%1 \%2 \, \%1 \%2 \, \%1 \%2 \]

\[ %1 \, i \, %2 \, j \, %1 \, i \, %2 \, j \, %1 \, i \, %2 \, j \]

\[ + e \, p \, l + p \, e \, l - p \, e \, l - p \, e \, l \]

\[ \%1 \%2 \, \%1 \%2 \, \%1 \%2 \]

(c3) ishow(lorentz_gauge(%,p));

\[ \%1 \%2 \, i \, j \, \%1 \%2 \, i \, j \]

(d3) \[- e \, p \, l + p \, e \, l \]

\[ \%1 \%2 \, \%1 \%2 \]

\[ - p \, e \, l \]

\[ \%1 \%2 \]

(c4) ishow(makebox(%,e));

\[ i \, j \, i \, j \, \%1 \, i \, %2 \, j \]

(d4) \[- [\%]p \, l + [\%]p \, e \, l - p \, e \, l \]

\[ \%1 \%2 \]

8.2.5 Conversion from Indicial to Component Tensors

Indicial tensor analysis enables you to perform tensor computations at a level of generality which includes arbitrary dimensions, arbitrary smooth coordinate systems, and arbitrary values for the components of the tensors. _itensor_ is a companion to the _ctensor_ package for component tensor analysis for computing with tensors in specific local coordinates, which is often a subsequent step after indicial component computation.

- _itensor_ includes a command _ic_convert_ which converts expressions from _itensor_ form to Macsyma arrays suitable for use with _ctensor_. The option variable _metricconvert_ (default: true) controls the translation of the metric tensor, frame brackets, and torsion tensor into _ctensor_ notation.

- _ctensor_ enables you to perform tensor computations on tensors whose individual components evaluate to mathematical expressions involving local coordinates and other parameters. Using _ctensor_ requires that the dimension of the manifold be specified. For more information on _ctensor_, type _usage(tensor)_.

**ic_convert(eqn)**

*Function*

Converts an _itensor_ equation _eqn_ to a _ctensor_ assignment statement. Implied sums over dummy indices are made explicit, while indexed objects are transformed into arrays. (The array subscripts are in the order of covariant followed by contravariant indices of the indexed objects.) The derivative of an indexed object will be replaced by the noun form of _diff_ taken with respect to _ct_coords_ subscripted by the derivative index. The Christoffel symbols _ichr1_ and _ichr2_ will be translated to _les_ and _mcs_ respectively. The action of this function is controlled by _metricconvert_, described below. In addition, _do_ loops will be introduced by summing over all free indices so that the transformed assignment statement can be evaluated with _ev_.
metricconvert default: true

Option Variable

If this option variable is true, all occurrences of the metric with two covariant (contravariant) indices will be renamed to \( lg \) (ug).

The following examples demonstrate the features of the functions ic_convert and metricconvert.

Examples

(c9) ishow(x);

\[(1 \quad k \quad i \quad i \quad j)\]

(d9)

\[g = f \quad a \quad (c \quad b \quad + \quad d) \quad e\]

\[(i \quad j \quad k \quad l)\]

(c10) ic_convert(x);

(d10) \[g : \text{sum} (\text{sum} (\text{sum} (a \quad (c \quad b \quad , \quad k \quad , \quad i \quad , \quad l \quad , \quad j \quad , \quad i \quad , \quad 1 \quad , \quad \text{dim}) \quad , \quad j \quad , \quad i \quad , \quad \text{dim}) \quad , \quad l \quad , \quad i \quad , \quad \text{dim}))\]

(c11) ishow(t[[i],[j]]);

\[j\]

(d11)

\[t\]

\[i\]

(c12) ishow(covdiff(%,k));

\[j \quad %1 \quad j \quad j \quad %1\]

(d12)

\[-t \quad ichr2 \quad + \quad t \quad + \quad ichr2 \quad t\]

\[%1 \quad i \quad k \quad i, \quad k \quad %1 \quad k \quad i\]

(c13) metricconvert;

(d13) true

(c14) ic_convert(h[[i],[k]],%j=d12);

(d14) for i thru dim do (for j thru dim do (for k thru dim do h :)

\[i, \quad k, \quad j\]

- \text{sum}(t \quad mcs \quad , \quad %1, \quad 1, \quad \text{dim}) \quad + \quad \text{diff}(t \quad , \quad \text{ct}_\text{coords})\]

\[%1, \quad j \quad i, \quad k \quad %1 \quad i, \quad j \quad k\]

+ \text{sum}(mcs \quad t \quad , \quad %1 \quad , \quad 1, \quad \text{dim}))\]

\[%1, \quad k \quad i, \quad %1\]

(c15) imetric(g)$

(c16) d12,ichr2$

(c17) ishow($%

\[%1, \quad %3, \quad j\]

\[g \quad t \quad (g \quad - \quad g \quad + \quad g)\]

\[%1, \quad k, \quad %3, \quad i \quad i, \quad k, \quad %3 \quad i, \quad %3, \quad k\]

(d17) - -------------------------------------

\[2, \quad j \quad %1\}

\[g \quad t \quad (g \quad - \quad g \quad + \quad g)\]

\[%1, \quad k, \quad %2, \quad %1, \quad %2, \quad %1, \quad %2, \quad k, \quad j\]

+ ------------------------------------- + t

\[2, \quad i, \quad k\]

(c18) ic_convert(h[[i],[k]],%j=d17);

(d18) for i thru dim do (for j thru dim do (for k thru dim do h :)

\[i, \quad k, \quad j\]

- \text{sum}(\text{sum}(ug \quad t \quad (\text{diff}(lg \quad , \quad \text{ct}_\text{coords})\]

\[%1, \quad %3, \quad %1, \quad j \quad k, \quad %3 \quad i\]

\[i, \quad k \quad %3 \quad i, \quad %3 \quad k\]

- \text{diff}(lg \quad , \quad \text{ct}_\text{coords}) \quad + \quad \text{diff}(lg \quad , \quad \text{ct}_\text{coords}), \quad %1, \quad 1, \quad \text{dim}, \quad %3, \quad i, \quad k \quad %3 \quad i, \quad %3 \quad k\]
init_tensor()

This removes all tensor properties.

The Macsyma commands initialize_macsyma(); and reset(all); (which normally remove all Macsyma properties) do not do this completely for tensor at this time. If the tensor information lists components, coord, contractions, or symmetries (actually in this case an internal list called isymmetries) get changed by other means, then init_tensor(); and the rem... (all); commands may not remove all tensor properties. In this case, they can be removed by name with the rem... (all); command. Otherwise, start a fresh Macsyma.

entertensor({name})

Enables you (by prompting) to create an indexed object called name with any number of tensor and derivative indices. Either a single index or a list of indices (which can be null) is acceptable input.

Example
(c1) entertainser();
Enter tensor name: a;
Enter a list of the covariant indices: [i,j]
Enter a list of the contravariant indices: [k];
Enter a list of the derivative indices: []

(d1) a
    i j

8.3 Component Tensor Computations

tensor describes many of the same tensor objects as tensor, but with an important difference. While tensor describes tensors as indexed objects, ctensor describes tensors as arrays whose entries can be expressions in local coordinates.

8.3.1 Initialization, Metrics, and Christoffel Symbols

Name of Package: ctensor

Description: To specify the local geometry of a manifold, the user assigns:

- the dimension of the manifold, as a fixnum dim (dimf is an alias for dim),
- the coordinates, as a list ct.coords,
- the covariant metric tensor, as a matrix lg[i,j].
Then \texttt{cmetric} is invoked to initialize the computation. Either \texttt{cssetup} or \texttt{cmetric} autoload this package, or you may load it by typing \texttt{init\_ctensor();} or \texttt{load(\texttt{ctensor})}. Note that \texttt{init\_ctensor} performs \texttt{setflags()} as part of refreshing \texttt{ctensor}.

\begin{center}
\begin{tabular}{|c|c|}
\hline
\textbf{Rational simplification control} & \textbf{becomes true} \\
\hline
\texttt{ratchristof} & \\
\hline
\texttt{ratriemann} & \\
\hline
\texttt{ratweyl} & \\
\hline
\texttt{rateinstein} & \\
\hline
\textbf{Nonstandard option} & \\
\hline
\texttt{ctayswitch} & \textbf{false} \\
\hline
\texttt{cfframe\_flag} & \textbf{false} \\
\hline
\texttt{ctorsion\_flag} & \textbf{false} \\
\texttt{ctnonmet\_flag} & \textbf{false} \\
\hline
\textbf{Display} & \\
\hline
\texttt{derivabbrev} & \textbf{true} \\
\hline
\end{tabular}
\end{center}

\footnotetext{1}{Note that \texttt{ctorsion\_flag} and \texttt{ctnonmet\_flag} can be true only if \texttt{cfframe\_flag} is true.}

Table 8.8: Option Variables Reset by the Function \texttt{setflags}

The various arrays generated by the commands in this section correspond to conventional tensor notation as follows (when frame fields are used, \texttt{lcs} and \texttt{mcs} are generalized, see Section 8.3.4.1):}

\begin{center}
\begin{tabular}{|l|c|}
\hline
\textbf{Array} & \textbf{Conventional Tensor Notation} \\
\hline
\texttt{lg[i,j]} & \texttt{g_{ij}} \\
\texttt{ug[i,j]} & \texttt{g^{ij}} \\
\texttt{lcs[i,j,k]} & \texttt{cc_{ijk} := \frac{1}{7}(d_j g_{ik} - d_i g_{kj} + d_k g_{ji})} \\
\texttt{mcs[i,j,k]} & \texttt{cc_{ik} := g^{kl} cc_{jkl}} \\
\hline
\end{tabular}
\end{center}

Table 8.9: Correspondence of Frame Field Arrays in \texttt{centensor} with Conventional Tensor Notation

\texttt{init\_ctensor()} \textit{Function}

Clears out old values and arrays left over from prior computations. Afterward, \texttt{ctensor} is ready for a new computation.

\texttt{christof(display)} \textit{Function}

Computes the mixed Christoffel symbols of the metric connection and returns them in the array \texttt{mcs[i,j,k]}. (These are the coefficients of the connection form on a fiber bundle over the manifold \text{M, but they do not specify a tensor on M.}) The mixed Christoffel symbols can include torsion and conformal nonmetricity tensors. The argument \texttt{display} controls the printed display as follows:

\texttt{ratchristof default: true} \textit{Option Variable}

If \texttt{ratchristof} is true, then \texttt{christof} rationally simplifies the Christoffel symbols.

\texttt{ct\_coordsys(coordinate\_system \{mextra\_args\})} \textit{Function}

Sets up many common coordinate systems and user-defined coordinate systems for use with \texttt{ctensor}. The command assigns values to the \texttt{ctensor} variables.
CHAPTER 8. VECTOR AND TENSOR ANALYSIS

| display: lcs  | → show the lowered Christoffel symbols $\Gamma^{i}_{jk}$ |
| display: mcs  | → show the mixed (1,2) Christoffel symbols $\Gamma_{ijk}$ |
| display: all  | → show lcs$[i,j,k]$ and mcs$[i,j,k]$ |

Table 8.10: Display Choices for Christoffel Symbols in ctensor

- `dim`, the number of dimensions,
- `ct_coords`, a list of names of the individual coordinate functions,
- `lg`, a matrix which represents the covariant (with lowered indices) metric tensor.

If `frame_flag=true`, then `ct_coordsys` assigns values to `dim`, `ct_coords`, the fiber metric `lfg` and the inverse frame field `fri` (instead of binding `lg`).

The argument `coordinate_system` can be of two types.

- A symbolic name of a coordinate system. The symbolic names already known to `ct_coordsys` are listed in Table 8.11, on page 301.
- A list of coordinate transform information, of the form $[[x_1(u_1, \ldots, u_n), \ldots, x_n(u_1, \ldots, u_n)], u_1, \ldots, u_n]$. This is the same input format as input to the command `vect_coordsys`, Section Section 8.1.1.2, page 279.

The optional arguments `extra_args` can be one or more of

- `'cylindrical`: cause `ct_coordsys` to add a cylindrical dimension to the geometry with positive squared length.
- `'minkowski`: cause `ct_coordsys` to add a cylindrical dimension to the geometry with negative squared length.
- `'all`: causes `ct_coordsys` to call `cmetric()` and `christoff(false)` before returning. These define the raised metric $g$, the Christoffel symbols and other variables in preparation for computing with the given coordinate system.

If the option variable `verbose` (default: false) is true, then `ct_coordsys` displays `dim`, `ct_coords` and `lg` (or `lfg` and `fri` when using frame fields).

See also `vect_coordsys` and `vectort`, which perform similar functions.

See `usage(coordsys)`; for more information. Do `demo(coordsys)`; for a demonstration.

cmetric()  

Function

This automatically loads the `ctensor` package if it is not already loaded. It computes the contravariant metric tensor and returns it in the array `ug[i,j]`, and computes the determinant of the covariant metric, and returns it as the value of the variable `gdet`. `cmetric` also determines whether the metric is diagonal, so that other functions can use more efficient algorithms for diagonal metrics.

If frame fields are being used, then `cmetric` takes the fiber metric `lfg` and the inverse frame field matrix `fri`, and computes the inverse metric `ufg`, the frame field `fr`, and the coordinate metric `lg` and its inverse `ug`. Also returned in this case are `fdet`, the determinant of the frame field matrix `fr`, and `fgdet`, the determinant of the fiber metric `lfg`.
Table 8.11: Predefined Coordinate Systems Understood by Macsyma in ct_coordsys

<table>
<thead>
<tr>
<th>2D</th>
<th>3D</th>
<th>3D-spherical</th>
</tr>
</thead>
<tbody>
<tr>
<td>cartesian2d</td>
<td>cartesian3d</td>
<td>spherical^a</td>
</tr>
<tr>
<td>polar*[4]</td>
<td>polarcylindrical*[4]</td>
<td>oblatespheroidal</td>
</tr>
<tr>
<td>elliptic</td>
<td>ellipticcylindrical</td>
<td>oblatespheroidalsqrt</td>
</tr>
<tr>
<td>confocallelliptic</td>
<td>confocallellipsoidal</td>
<td>prolatespheroidal</td>
</tr>
<tr>
<td>bipolar</td>
<td>bipolarcylindrical</td>
<td>prolatespheroidalsqrt</td>
</tr>
<tr>
<td>parabolic</td>
<td>paraboloidal</td>
<td>ellipsoidal^a</td>
</tr>
<tr>
<td></td>
<td>conical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>toroidal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4D Relativistic</td>
<td></td>
</tr>
<tr>
<td>cartesian4d</td>
<td>exterior_schwarzschild^[4]</td>
<td></td>
</tr>
<tr>
<td>spherical4d^[4]</td>
<td>interior_schwarzschild</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kerr_newmann</td>
<td></td>
</tr>
</tbody>
</table>

^a ct_coordsys implements the assumption \( \text{assume}(r \geq 0) \)
^b ct_coordsys implements the assumption \( \text{assume}(r \geq 2M) \)

csetup() Function

This command initiates an interactive session using the ctensor package. csetup automatically loads ctensor (if it is not already loaded), then prompts you to specify the dimension of the manifold, the names of the coordinates, and a metric tensor. If the dimension is 2, 3 or 4, then the list of coordinates defaults to \([x,y]\), \([x,y,z]\) or \([x,y,z,t]\) respectively. You can change the names by assigning a new list of coordinates to the variable ct_coords (described below), and you are queried about this. You must take care to avoid the coordinate names conflicting with other object definitions. Next, you enter the metric, either directly or from a file, by specifying its ordinal position. As an example of common metrics, see the file macsyma:tensor;cmetrics.

The metric is stored in the matrix \( lg \). Finally, the metric inverse is computed and stored in the matrix \( ug \). You have the option of carrying out all calculations in a power series.

diagmetric default: false Option Variable

If diagmetric is true, special routines compute all geometrical objects (which contain the metric tensor explicitly) by taking into consideration the diagonality of the metric. Reduced run times will, of course, result.

Note: This option variable is set automatically by cmetric to true if \( lg \) is a diagonal matrix.

dim default: 4 Option Variable

Is the dimension of the manifold with the default 4. The command dim: n; resets the dimension to any other positive integral value.

dimf default: 4 Option Variable

An alias for dim.

cr_coords default: ct_coords Option Variable

The option variable ct_coords stores a list of names of the local coordinates to be used in ctensor (e.g. ct_coords has the value \([x,y,z]\) in three dimensional Cartesian coordinates). The coordinates can be redefined with the assignment ct_coords: \([j1,j2,\ldots,jn]\) where the j's are the new coordinate names. The length of the list ct_coords must equal the dimension of the manifold, as specified by the
variable \texttt{dim}. A call to \texttt{ct. coords} will return the list of coordinate names. The function \texttt{csetup} asks the user whether he wants to change the coordinate names (see Section 8.3.1, page 301).

\textbf{Note}: In Macsyma 419, and earlier, \texttt{ct. coords} is called \texttt{OMEGA}.

\begin{verbatim}
setflags()
\end{verbatim}

Resets the several option variables to the values shown in table 8.8.

\subsection*{8.3.2 Curvature Tensors}

The various arrays generated by the commands in this section correspond to conventional tensor notation as follows:

<table>
<thead>
<tr>
<th>Array</th>
<th>Conventional Tensor Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{riem[i,j,k,l]}</td>
<td>$R_{ijkl} := d_k cc_{ij}^i - d_i cc_{kj}^k + cc_{km}^i cc_{lj}^m - cc_{lm}^i cc_{km}^i$</td>
</tr>
<tr>
<td>\texttt{lriem[i,j,k,l]}</td>
<td>$R_{ijkl} := g_{im}^{m}g_{jk}^{l}$</td>
</tr>
<tr>
<td>\texttt{ric[j,l]}</td>
<td>$R_j^k := R_{jk}$</td>
</tr>
<tr>
<td>\texttt{uric[j,k]}</td>
<td>$R_j^k := R_{jk}g^{lk}$</td>
</tr>
<tr>
<td>\texttt{tracer}</td>
<td>$R := R_j^j$</td>
</tr>
<tr>
<td>\texttt{w[i,j,k,l]}</td>
<td>$w_{ijkl} := R_{ijkl} - z_{ijkl}g_{ij}g_{kl}$</td>
</tr>
<tr>
<td>\texttt{uriem[i,j,k,l]}</td>
<td>$R_{ijkl}^{k} := R_{mmp}^{m}g_{mj}^{n}g_{nk}^{p}g_{pl}^{i}$</td>
</tr>
<tr>
<td>\texttt{kinvariant}</td>
<td>$R_{ijkl}^{k} R_{ijkl}$</td>
</tr>
</tbody>
</table>

Table 8.12: Correspondence of Curvature Arrays to Conventional Tensor Notation in \texttt{ctensor}

where $z_{jt} = \frac{4}{n-2} R_{jt} - \frac{1}{n-1} R_g g_{jt}$.

The metric, Christoffel, and curvature functions are dependent on one another in this order:

\begin{verbatim}
 URIEMANN -- RINVARIANT
 / \ / \ \\
 CMETRIC -- CHRISTOF -- Riemann -- LRIEMANN -- WEYL \\
 \ / \ / \\
 RICCI ----- SCURVATURE \\
 \ / \\
 URICCI -- EINSTEIN
\end{verbatim}

\texttt{riemann(display)}

Computes the (1,3) Riemann curvature tensor, and returns it in the array \texttt{riem[i,j,k,l]}. If \texttt{display} is set to \texttt{true}, then \texttt{riem[i,j,k,l]} is displayed.

\texttt{liemann(display)}

Computes the (0,4) covariant Riemann curvature tensor, and returns it in the array \texttt{liem[i,j,k,l]}. If \texttt{display} is set to \texttt{true} then \texttt{liem[i,j,k,l]} is displayed. (If \texttt{cnonmet\_flag} is set to \texttt{false}, then \texttt{liem[i,j,k,l]} is displayed only for $i < j$, since \texttt{liem[j,i,k,l]} = $-\texttt{liem[i,j,k,l]}$. If \texttt{ctorsion\_flag} is set to \texttt{false}, then the symmetry \texttt{liem[i,j,k,l]} = \texttt{liem[k,l,i,j]} is also assumed, and the display is reduced.)
8.3. COMPONENT TENSOR COMPUTATIONS

uriemann(display)

Computes the (4,0) Riemann curvature tensor, and returns it in the array uriem[i,j,k,l]. If display is true then uriem[i,j,k,l] is displayed.

ratriemann default: true

Option Variable

If ratriemann is true, then riemann, riemann and uriemann rationally simplify the Riemann curvature.

ricci(display)

Computes the (0,2) covariant Ricci curvature tensor, and returns it in the array ric[i,j]. Also, the curvature scalar is returned as the value of the variable tracer. If display is set to true then ric[i,j] is displayed. (If torsion_flag and nonmet_flag are set to false, then ric[i,j] = ric[j,i], so ric[i,j] is displayed only for i≤j.)

uricci(display)

Computes the (1,1) Ricci tensor, and returns it in the array uric[i,j]. The second index is contravariant. If display is set to true then uric[i,j] is displayed.

einstein(display)

Computes the (1,1) Einstein curvature tensor, and returns it in the array ein[i,j]. If display is set to true then ein[i,j] is displayed. In releases prior to number 414.80, the result is returned in the array g[i,j].

einstein(display)

Computes the covariant Einstein tensor, and returns it in the array lein[i,j], where i and j are covariant (lower) indices. If display is set to true then lein[i,j] is displayed.

rateinstein default: true

Option Variable

If rateinstein is true, then einstein rationally simplifies the Einstein curvature tensor.

rinvariant()

Computes the Kretschmann invariant, and returns it as the value of the variable kinvariant.

scurvature()

Computes the scalar curvature (if ricci has not been invoked), and factors it if ratfac is set to true.

weyl(display)

Computes the (0,4) Weyl curvature tensor, and returns it in the array weyl[i,j,k,l]. If display is set to true then weyl[i,j,k,l] is displayed. (At this time, the Weyl tensor does not include contributions from affine torsion.)

ratweyl default: true

Option Variable

If ratweyl is true, then weyl rationally simplifies the Weyl curvature.

8.3.3 Other Differential Operators

cdiv11(tensor_name, display)

Computes the covariant divergence of a (1,1) tensor and stores the result in the array cd[iv][i]. If display is true then the result is also displayed. The first tensor index is covariant (lowered) and the second index is contravariant (raised). The divergence is taken on the second tensor index. The function assumes that the determinant of the metric tensor is negative.
When computing with frame fields (including computations with torsion and nonmetricity), \texttt{cdiv11} performs covariant differentiation on the contravariant index with respect to the torsion-free metric connection. This is a computational device for representing the divergence operator as the Hodge dual of the exterior derivative operator.

\textbf{cgeodesic}(\texttt{display}) \quad \textit{Function}

Computes the contravariant equations of geodesic motion and returns the result in the array \texttt{geo}[i]. If the argument \texttt{display} is \texttt{true}, then \texttt{geo}[i] is displayed.

\textbf{cograd}(\texttt{function}, \texttt{covectormap}) \quad \textit{Function}

Computes the covariant gradient of a scalar \texttt{function} and stores the result in the user-specified array \texttt{covectormap}.

\textbf{contragrad}(\texttt{function}, \texttt{vectormap}) \quad \textit{Function}

Computes the contravariant gradient of a scalar \texttt{function} and returns the result in the array \texttt{vectormap}.

\textbf{dscalar}(\texttt{function}) \quad \textit{Function}

Computes the tensor d’Alembertian of the scalar \texttt{function}. \texttt{dscalar} assumes that the determinant of the metric tensor is negative.

For all of the differential operators above, when frame fields are used (see also Section 8.3.4), components of the output tensors are expressed in terms of the frame field, not in terms of the coordinate basis for tangent vectors.

\section*{8.3.4 Frame Fields and Related Topics}

\subsection*{8.3.4.1 Frame Fields}

The definitions of the connection coefficients, or generalized Christoffel symbols, generated when \texttt{cframe_flag} is set to \texttt{true}, are given below, including torsion and nonmetricity. Curvatures are computed from the connection coefficients in the same way as before, but the curvature tensors will in general have less symmetry. The notation used in frame fields is shown in table 8.13.


| fr | frame field |
| fri | frame field inverse |
| fb | frame Lie bracket |

Table 8.13: Notation used for Frame Fields in \texttt{ctensor}

Note that with frame fields the arrays \texttt{lcs} and \texttt{mcs} have a more generalized meaning than they did in Section 8.3.1. \texttt{itensor} package:

\begin{tabular}{|c|c|}
\hline
Array & Conventional Tensor Notation \\
\hline
\texttt{lcs}[a,b,c] & \leftrightarrow \alpha_{abc} := \frac{1}{2} (\%c_{acb} - \%c_{bca} + \%c_{bac}) \\
\texttt{mcs}[a,b,c] & \leftrightarrow \alpha_{abc}^c := g^{cd} \alpha_{abd} \\
\hline
\end{tabular}

Table 8.14: Correspondence of Frame Field Arrays with Conventional Tensor Notation in \texttt{ctensor}

where \( \%c_{acb} := (fr^i_a d_i g_{cb}) + nm_a g_{cb} - tr_{acb} - fb_{acb} \).
To calculate using frame fields, set `cframe_flag` to `true`, and specify:

- the dimension of the manifold, as a fixnum `dim`,
- the coordinates, as a list `ct_coords`,
- the covariant fiber metric tensor, as a matrix `lfg[i,j]`,
- the inverse frame field, as a matrix `fri[a,i]`.

Then invoke `cmetric` to initialize the computation.

```
cframe_flag default: false
```

When `true`, `ctensor` computes, using the inverse frame field stored in the matrix `fri[a,i]`, the frame field `ff[i,a]`, and the fiber metric in the matrix `lfg`.

```
frameBracket(fr,fri,diagframe)
```

Computes the structure coefficients for the Lie bracket of two frame vectors, where `fr` is the frame field, `fri` is the inverse frame field, and `diagframe (true or false)` tells whether or not `fr` is a diagonal frame.

Given two basis vector fields, `e_a` and `e_b`, the Lie bracket of `e_a` and `e_b` (usually denoted `[e_a,e_b]`), is given by: \[ \sum_{c=1}^{dim} fb[a,b,c] e_c. \] The inputs to `frameBracket` are the frame field matrix `fr` (where the frame field vector `e_a = \sum_i (\frac{\partial}{\partial x_i}) fr[i,a]`), the inverse frame field matrix `fri`, and the value of `diagframe (true or false)` to specify whether the matrix `fr` is diagonal or not. This information saves time where the inverse has already been computed. The result is stored in the array `fb[a,b,c]`.

`ctensor` can compute using affine torsion and conformal nonmetricity `nm[i]`.

### 8.3.4.2 Affine Torsion

To calculate using torsion:

- invoke `init_ctensor`;
- set `cframe_flag` to `true`;
- if you want nonzero torsion, set `ctorsion_flag` to `true`;
- if you want nonzero nonmetricity, set `ctorsion_flag` to `true`.

Specify:

- the dimension of the manifold, as a fixnum `dim`,
- the coordinates, as a list `ct_coords`,
- the covariant fiber metric tensor, as a matrix `lfg[i,j,k]`,
- the inverse frame field, as a matrix `fri[a,i]`.

Invoke `cmetric`, which will declare the `tr` and `nm` arrays and set all their components to zero.

Specify:
Array | Conventional Tensor Notation
--- | ---
affine torsion tensor | \( \mathbf{tr} \)
\( \mathbf{tr}[i,j,k] \) | \( tr^i_{jk} \) (equals the torsion)
contortion tensor | \( \mathbf{kt} \)
\( \mathbf{kt}[i,j,k] \) | \( k_{ij}^k = \frac{1}{2} \left( tr^i_{jk} + g^{kl} tr^l_{kj} + g^{kl} tr^l_{ji} \right) \)
modified torsion tensor | \( \mathbf{st} \)
\( \mathbf{st}[a,b,c] \) | \( \frac{1}{2} \left( st^a_{bc} + k \delta_{ac} tr^d_{ab} - k \delta_{ad} tr^d_{ab} \right) \)

Table 8.15: Correspondence of Affine Torsion Arrays with Conventional Tensor Notation in \texttt{ctensor}

- if you want nonzero torsion, the torsion in the array \( \mathbf{tr}[i,j,k] \);
- if you want nonzero nonmetricity, the conformal nonmetricity vector in the array \( \mathbf{nm}[i] \).

The notation used for affine torsion is shown in table 8.15. The various arrays generated by the commands above correspond to conventional tensor notation as follows:

\texttt{contortion(lowered_torsion)}

Function

Computes the contortion tensor from the lowered torsion tensor and returns the result in the array \( \mathbf{kt}[a,b,c] \). The \texttt{christof} function invokes the \texttt{contortion} function when \texttt{ctorsion_flag} is set to \texttt{true}.

\texttt{mod_torsion()}

Function

Computes the modified torsion tensor and returns it in the array \( \mathbf{st} \).

### 8.3.4.3 Conformal Nonmetricity

The notation used for conformal nonmetricity is shown in table 8.16. See the discussion of frame fields, which shows where the nonmetricity enters into connection coefficients and curvature.

\begin{tabular}{|c|c|}
\hline
\texttt{nm} & conformal nonmetricity covector \\
\hline
\end{tabular}

Table 8.16: Notation used for Conformal Nonmetricity in \texttt{ctensor}

The covector \( \mathbf{nm} \) is defined by

\[
\text{covariant derivative}(k) \text{ of } \mathbf{lg}[i,j] = - \mathbf{nm}[k] \mathbf{lg}[i,j] .
\]

### 8.3.5 Taylor Series Capability

\texttt{ctaylor(expr)}

Function

Computes a Taylor series representation of the expression \( expr \), when \texttt{ctayswitch} is set to \texttt{true}. When \texttt{ctayswitch} is set to \texttt{false} (default), \( expr \) is returned as given. The Taylor parameters used by \texttt{ctaylor} are:
- `ctayvar` is the variable (or list of variables) with respect to which a Taylor expansion is taken.
- `ctaypt` is the point (list of variable values) around which expansion is taken.
- `ctaypow` is the highest order term (or list of orders) to be included in the Taylor expansion.

**ctayswitch** default: false

Setting `ctayswitch` to `true` will cause Taylor series to be taken before the final simplification and factoring is performed, in most `ctensor` functions. The `ctaylor` function is embedded in most of the `ctensor` routines, and it uses the variables `ctayvar`, `ctaypt`, and `ctaypow` described above.

### 8.3.6 Tensor Transformation Functions

**cttransform**(tensorname)

Transforms second rank covariant tensors given the components and the transformation law. The tensor can be specified as a matrix or an array. The transformation law is specified as $y_i = y_i(x_1, \ldots, x_{\text{dim}})$. You must input the expressions which define the transformation as in (c4) below. The following example demonstrates the transformation from Cartesian to spherical coordinates:

*Example*

(c1) `dim:3$
(c2) `ct_coords:[r,theta,phi]$
(c3) `lg:matrix([1,0,0], [0,1,0], [0,0,1]);
    [ 1 0 0 ]
    [ 0 1 0 ]
    [ 0 0 1 ]
(d3)

(c4) `cttransform(lg)$
Transform # 1
R*sin(theta)*sin(phi);
Transform # 2
R*sin(theta)*cos(phi);
Transform # 3
R*cos(phi);
(c5) /* a substitution which reduces the transformed matrix. */
Ev('%,cos(theta) = sqrt(1-sin(theta)^2),sin(phi) = sqrt(1-cos(phi)^2),ratsimp);
    [ 1 0 0 ]
    [ 2 0 0 ]
    [ 2 2 0 ]
(d5)

**deleten**(list, n)

Returns a new list consisting of `list` with the `n`th element removed.

**findde**(array, n)

Returns a list of the unique differential equations corresponding to the elements of the square `array` of rank `n`. Presently, `n` can be 2 or 3. The global list `deindex` contains the indices of `array` corresponding to these unique differential equations.
CHAPTER 8. VECTOR AND TENSOR ANALYSIS

ntermst(f)

Function

Gives you a quick picture of the size of the doubly subscripted tensor (array) f. It returns two-element lists where the second element corresponds to nterms of the components specified by the first elements. In this way, it is possible to quickly find the nonzero expressions and attempt simplification.

8.3.7 Display of Component Tensors

cdisplay(tensor, name)

Function

Will display any of the metric tensors, connection coefficients, or curvature tensors listed above (except the scalars tracer and kinvariant). It will also display fb (frame bracket coefficients), tr (torsion tensor), kt (contortion tensor), st (modified torsion) and nm (nonmetricity vector). If the tensor to be displayed is one of lg, ug, lfg, ufg, fr or fri, then the function cdisplay must be called as cdisplay(’lg), etc., since these tensors are represented internally by matrices, not by arrays.

8.3.8 Alternate Gravity Theories

bdvae()

Function

Generates the covariant components of the vacuum field equations of the Brans–Dicke gravitational theory. There are two field equations. The components of the second rank covariant field tensor are represented by the array bd2. The scalar field equation requires you to input the name of a scalar and declare its functional dependencies. This field equation is represented by the scalar bd0.

invariant1()

Function

Generates the mixed Euler–Lagrange tensor (field equations) for the invariant density of r^2. The field equations are the components of an array named inv1.

8.4 General Tensor Algebras

The atensor package performs multilinear tensor algebra in basis-independent or basis-dependent nonindicial notation. The algebras can be of six types, depending on the value of the option variable alg_type:

alg_type default: universal

Option Variable

Determines the commutation or anticommutation relations to be used in the tensor algebra whose operation is denoted by ".". When atensor is loaded, dotscrules and dotdistrib are set to true and dotexptsimp is set to false. The permissible values of alg_type are:

universal This yields a universal tensor algebra generated by all symbols which are not declared scalar.

grassmann This yields a Grassmann (i.e. antisymmetric) algebra over all symbols which are not declared to be scalar. The defining relation is that U.V + V.U = 0.

clifford This yields a Clifford algebra over all symbols which are not declared to be scalar. The defining relation is that U.V + V.U = 2 SF(U,V), where SF is a symmetric, scalar-valued function.

symmetric This yields a symmetric (i.e. polynomial) algebra over all symbols which are not declared to be scalar. The defining relation is that U.V - V.U = 0.

symplectic This yields a symplectic algebra over all symbols which are not declared to be scalar. The defining relation is that U.V - V.U = 2 AF(U,V), where AF is an antisymmetric scalar-valued function.
lie_envelop  This yields a Lie enveloping algebra over all symbols which are not declared to be scalar.
The defining relation is that \( U \cdot V - V \cdot U = 2 \ AV(U,V) \), where \( AV \) is an antisymmetric function.

The simplification induced by the fundamental tensor relations is executed by the function \texttt{asimp}:

\begin{verbatim}
asimp(expr)
\end{verbatim}

\texttt{asimp} applies the fundamental simplification rules for each type of tensor algebra defined by the option variable \texttt{alg_type}. When (anti)symmetry properties permit, symbols (except scalars) are placed in increasing order, as determined by Macsyma’s \texttt{ordergreatp} function.

Several types of tensor algebras can be created using the following command, which also autoloads \texttt{atensor}:

\begin{verbatim}
init_atensor(algebra_name, optional_dims)
\end{verbatim}

This function sets the values of \texttt{alg_type}, \texttt{aform} and \texttt{adim}, to generate specific tensor algebras over real vector spaces. Some possible values of \texttt{algebra_name} are:

- \texttt{complex} generates complex numbers as a Clifford algebra over a one-dimensional real vector space.
- \texttt{quaternion} generates quaternions as a Clifford algebra over a two-dimensional real vector space.
- \texttt{pauli} generates the Pauli algebra as a Clifford algebra over a three-dimensional real vector space.
- \texttt{dirac} generates the Dirac algebra as a Clifford algebra over a four-dimensional real vector space, with metric signature \((-+,+,+,-,\)

Other allowed values for \texttt{algebra_name} are \texttt{universal}, \texttt{grassmann}, \texttt{symmetric}, \texttt{clifford} and \texttt{symplectic}. In the case of \texttt{clifford}, you have the option of specifying \texttt{optional_dims}, which is one, two, or three non-negative integers which are the number of positive-definite dimensions, degenerate dimensions, and negative-definite dimensions in the bilinear form. If no optional dimensions are specified, then the symmetric bilinear form \( SF \) is not evaluated. In the case of \texttt{symplectic}, you have the option of specifying one or two non-negative integers which are the number of nondegenerate dimensions (an even integer), and the number of degenerate dimensions of the symplectic bilinear form. If no optional dimensions are specified, then the antisymmetric bilinear form \( AF \) is not evaluated.

Note that algebras of Boson (Fermion) creation and annihilation operators form symplectic (Clifford) algebras.

The bilinear forms \( SF, AF, \) and \( AV, \) which appear in the fundamental algebraic relations listed above, can be evaluated in the case when the vector arguments to \( SF, AF, \) or \( AV \) are identifiable as basis elements of the underlying vector space. The following option variables are used to do this.

\begin{verbatim}
asymbol default: V
\end{verbatim}

The symbol for the subscripted variable that designates the basis elements for the vector space which generates the tensor algebra. Symbols of the form \texttt{asymbol[1]} etc. are recognized as basis elements of the underlying vector space.

\begin{verbatim}
adim default: 0
\end{verbatim}

The dimension of the vector space which generates the tensor algebra. If \texttt{adim} is 0, then no evaluation of the bilinear forms will occur.

\begin{verbatim}
aform default: diagmatrix(3,1)
\end{verbatim}

The symbol for the matrix or array whose values are returned when the bilinear forms \( SF, AF, \) and \( AV \) are evaluated.
8.5 Exterior Algebra and Differential Forms

Name of Package: **cartan**
Original Authors: F.B. Estabrook and H.D. Wahlquist

**Description**: **cartan** is a Macsyma file which implements the calculus of differential forms. Included are facilities for computing exterior products, contraction of vectors and forms, exterior derivatives, and Lie derivatives. The differential forms are given in terms of the natural basis forms derived from the coordinates of the manifold. Type `init_cartan();` or to load this file. For a demonstration, type `demo(cartan);`.

```lisp
init_cartan(coord_list)
```

*Function*

Initializes some global variables for the package. The argument, `coord_list`, is an ordered list of coordinates. The coordinate list is stored as the value of the variable `cartan_coords`. The value of the variable `cartan_basis` is a list of the basis 1-forms. The dimension is stored as the value of the variable `cartan_dim`.

```lisp
form1 ~ form2
```

*Infix Operator*

An infix operator which denotes the exterior (wedge) product. The canonical ordering of the products is determined by the order in which the coordinates were specified. For example, if the coordinate list is specified as `[x,y,z]`, then the two-form `dy~dx` simplifies to `-dx~dy`.

```lisp
vector | form
```

*Infix Operator*

An infix operator which defines the contraction of a vector on a form. The vector should be given on the left.

```lisp
ext_diff(form)
```

*Function*

The exterior derivative operator. It takes one argument, which should be a differential form.

```lisp
lie_diff(vector1, vector2)
```

*Function*

Computes the Lie derivative of `vector2` with respect to `vector1`. Alternatively, `lie_diff` computes the Lie derivative of `form` with respect to `vector1`.
Part II

Mathematical Utilities
Chapter 9

Evaluation

9.1 Introduction to Evaluation

Evaluation is the fundamental process which distinguishes symbolic mathematical languages from numerical mathematical languages. In a conventional programming language, a variable either has a numerical value or it has no value. In a symbolic language, a symbol can be assigned as its value another symbol or a complicated symbolic expression, which in turn may evaluate to other expressions or numbers. The following example illustrates some of the power of evaluation.

Set up an evaluation chain with three levels.

```
(c1) a:b;
 b
(d1)

(c2) b:c;
 c
(d2)

(c3) c:3;
 3
(d3)
```

Evaluate the symbols in the evaluation chain.

```
(c4) a;
 b
(d4)

(c5) b;
 c
(d5)

(c6) c;
 3
(d6)

(c7) ev(a);
 c
(d7)

(c8) ev(ev(a));
 3
(d8)
```

The function `infeval` evaluates its argument until the result stops changing.

```
(c9) infeval(a);
 3
(d9)
```

Evaluate `a` in a temporary environment where `b` has the value `x`.

```
(c10) ev(a, b=x);
 x
(d10)

(c11) b;
 c
(d11)
```

If you already know how to use a numerical programming language, then learning how to use and control evaluation is the most important new skill you must master in order to use a symbolic programming language such as Macsyma. Evaluation adds some complexity, but it vastly increases the power under your control.
9.2 Further Discussion of Evaluation

An expression that appears on the command line is first parsed. See Section 21.1.1. After it is parsed, the expression is evaluated and simplified and the result is displayed. Often the two-phase process of evaluation and simplification is referred to simply as “evaluation.” In this section, though, we use the word “evaluation” to refer only to the evaluation stage and not to the simplification stage.

Expressions consist of numbers, variables, function calls, and operators. When an expression is read, the parsing program translates it into Lisp, preserving the order, and the result is the value of the current C-LINE. The evaluation phase proceeds by building up an expression that is similar in form to the input expression but has certain substitutions. The evaluator is recursive and calls itself on all sub-expressions.

When the evaluator encounters a name, it checks whether the name has a value assigned to it. If it has a value, that value is returned by the evaluator. If there is no value assigned to the name, the evaluator just returns the name itself. For the means of assigning values to names, refer to Section 16.5. For a description of the evaluation process as applied to subscripted names, see Section 16.6. Note that problems could arise if a variable is bound to an expression containing an occurrence of that variable, since each time the variable is evaluated, the entire expression is substituted for each occurrence of the variable. For example if $y$ has the value $[x, y, z]$ and if the value of $y$ is evaluated, the result is $[x, [x, y, z], z]$.

There are two types of functions - nouns and verbs. Most functions in the system, including all user-defined functions, are initially considered to be verb-type. Undefined functions and some system functions are considered to be noun-type. When the evaluator sees a function call, it evaluates the arguments to the function, unless that function is of a type that controls the way its arguments are evaluated. (Such functions are called special forms; batch is one of these.) Then, if the function is verb-type and not a special form, the evaluator applies the function to the evaluated arguments and returns the value of the function. For noun-type functions, the evaluator returns an expression identical to the function call, except that the arguments are replaced by their values.

You can explicitly declare a function to be noun-type by using declare. See Section 13.1.1, page 361. For example, the function integrate normally tries to integrate its first argument. After the command declare(integrate, noun); is given, however, integrate does not perform the integration. Sometimes you may give a verb function arguments that it is not equipped to deal with. In certain cases the verb function returns the noun form of itself. If this happened because of some undefined functions in the expression, which you later define, you can cause the noun form to be reevaluated at that time by applying the special form ev to the expression. See Section 9.3, page 316. For example:

(c1) diff(x*f(x),x);
(d1) x (-- f(x)) + f(x)

(c2) f(x):=sin(x)$
(d2) sin(x) + x cos(x)
(c3) ev(d1,diff);
(d3) sin(x) + x cos(x)
(c4) ev(d1, nouns);
(d4) sin(x) + x cos(x)

Evaluation causes each name that has to be replaced by its value and each verb-type function call to be replaced by the result of applying the function to its arguments. See apply_nouns, page 326.

Several special operators give you some control over the evaluation process. The single quote operator ‘ has the effect of preventing evaluation. Thus, an expression preceded by a single quote evaluates to that expression. A special case is the evaluation of a function call where the name of the function is preceded by a quote, as in ‘f(x). In this instance, the quote causes the function to be treated as though it were noun-type.

To simply prevent evaluation of f(x) without converting f to a noun, use ‘(f(x)).

The quote-quote operator, ‘’, causes an extra evaluation to occur. It is best considered as a macro character. An input expression preceded by a quote-quote has exactly the same effect as an input expression consisting
of the result of evaluating and simplifying the expression. In other words, when an input expression contains a sub-expression that begins with a quote-quote, that sub-expression is replaced in the input string by the result of evaluating and simplifying the expression following the quote-quote. This occurs at the time an expression is parsed. In the case of evaluating a function call with a ‘’ preceding the name of the function, as in ‘’f(x), the ‘’ causes the function to be treated as if it were verb-type.

(c1) x;
(d1) x
(c2) x:3$
(c3) x;
(d3) 3
(c4) 'x;
(d4) x
(c5) f(x):=x^2;
(d5) f(x) := x
(c6) 'f(2);
(d6) f(2)
(c7) ev(%,f);
(d7) 4
(c8) '(f(2));
(d8) f(2)
(c9) '%;
(d9) 4
(c10) declare(integrate, noun)$
(c11) integrate(y^2, y);
 / 2
 [ y dy
 ]
(c12) 'integrate(y^2, y);
 / 3
 y
(d12) --
 / 3
(c13) f(y):=diff(y*log(y), y, 2);
(d13) f(y) := diff(y log(y), y, 2)
(c14) f(y):=''(diff(y*log(y), y, 2));
 1
(d14) f(y) := -
 1
(c15) c14;
1
(d15) f(y) := -
 1
Notice that the input expression has been changed due to the use of ‘’.

Referring to line (c14) above, suppose you want to define the function f(y) as diff(y*log(y), y, i) within another function g(i) where the i in the definition of f(y) is to be replaced by the argument to g when g is called. The command g(i) := block(..., f(y):=''(diff(y*log(y), y, i)), ...); does not do the job because the operator ‘’ causes the differentiation to be carried out at parse time, and thus either an error results (if i is unbound), or the current global value of i is used rather than the value of the argument to g when it is called. Omitting the ‘’ is also not desirable in this example, because that forces the differentiation to be done each time f is called, rather than at the time it is defined. To remedy this, use the command
define, which is like \texttt{function(arguments):=} 'body, but causes the evaluation of body to occur at the time define is evaluated. Thus \texttt{g(i):=}block(...,define(f(y),diff(y*log(y),y,i), ...);) works properly. define can also be used for subscripted functions. See Section 11.1.1, page 339.

### 9.3 The ev Special Form

\texttt{ev(exp, arg_1, \ldots, arg_n)}

The function \texttt{ev} is one of Macsyma's most powerful and versatile functions. It evaluates the expression \texttt{exp} in the environment specified by the \texttt{arg}_i. Evaluation is done in the following order:

1. First, the environment is set up by scanning the \texttt{arg}_i, which can be any of the items specified below. A list is made of the nonsubscribed variables appearing on the left side of equations in the \texttt{arg}_i or in the value of some \texttt{arg}_i, if the value is an equation.

2. The variables, including subscripted variables, in \texttt{exp} that are not on the list made in step (1) are replaced by their global values. If \texttt{exp} is just a line label or \texttt{\%}, as in (c2) below, this step simply retrieves the expression named by the label, so that \texttt{ev} can work on it.

3. Any substitutions indicated by the \texttt{arg}_i are carried out.

4. Unless one of the \texttt{arg}_i is \texttt{noeval}, the resulting expression is reevaluated and simplified according to the \texttt{arg}_i. \textbf{Note:} Any function calls in \texttt{exp} are carried out after the variables in the expression are evaluated. Therefore, \texttt{ev(f(x))} may behave like \texttt{f(ev(x))}.

5. If one of the \texttt{arg}_i is \texttt{eval}, steps (3) and (4) are repeated.

The special form \texttt{ev} accepts any of the items below as arguments. The effect of using each argument is also described.

- **Variables Declared evflag**
  Any variable that has been declared \texttt{evflag}, or that is \texttt{evflag} by default, can be given as an argument to \texttt{ev}. In all cases, the effect of giving such an argument to \texttt{ev} is the same as setting the option \texttt{true}. For example, \texttt{simp} causes \texttt{exp} to be simplified, regardless of the setting of the option variable \texttt{simp} that normally inhibits simplification if \texttt{false}. Two examples of \texttt{evflags} are given below.

  See Section 13.1.4, page 373 for a complete list.

  - \texttt{detout} causes any matrix inverses computed in \texttt{exp} to have their determinant kept outside of the inverse rather than dividing through each element. Refer to \texttt{detout} on page 266 for more information.

  - \texttt{numer} causes some mathematical functions (including exponentiation) with numerical arguments to be evaluated in single precision floating-point. It causes variables in \texttt{exp}, which have \texttt{numerical} properties, to be replaced by their values. See Section 13.1.2, page 367. It sets the option variable \texttt{float} to \texttt{true}. See Section 2.2.2.2, page 22. The command \texttt{ev(\%enumer)} is a special case, where \texttt{ev} converts \texttt{\%} to floating-point whether or not \texttt{\%enumer is true}. Refer to \texttt{ffloat} on page 22 for more information on floating point functions.

- **Functions Declared evfun**
  Any function that has been declared \texttt{evfun} or that is \texttt{evfun} by default can be given as an argument to \texttt{ev}. In all cases, the effect of giving such an argument to \texttt{ev} causes that function to be applied to \texttt{exp}. For a list of \texttt{evfuns}, see Section 13.1.4, page 373.
9.3. THE EV SPECIAL FORM

- Other Functions
  Any other function names, such as `sum`, cause evaluation of occurrences of those names in `exp` as though they were verbs. Two important examples of this are the function `expand`, which causes expansion, and `diff`, which causes all differentiations indicated in `exp` to be performed.

- Keywords and Keyword Forms
  A keyword is an argument to `ev` which modifies the behavior of `ev`. `ev` currently recognizes the following keywords: `noeval`, `eval`, `infeval`, `pred`, `nouns` and function names. Recognized keyword forms include: `expand[m, n]`, `derivlist(var_1, ..., var_n)`, `v:expression`, and `f(args):=body`. The effects of these items are described below.

- Equations, lists, and atoms or subscripted variables
  If an atom not mentioned above, a subscripted variable, or a subscripted expression is given as an argument, it is evaluated, and if the result is an equation or assignment, then the indicated binding or substitution is performed. If the result is a list, the members of the list are treated as if they were additional arguments given to `ev`. This enables you to give as an argument either a list of equations, such as `[x=1, y=a^2]`, or a list of names of equations `[e1, e2]` where `(e1)` and `(e2)` are equations, such as might be returned by `solve`. Refer to `numer` on page 316 for more information.

The `arg_i` of `ev` can usually be given in any order, but since they are picked up left to right the order may influence the result. This is strictly true of substitution equations, which are handled in sequence from left to right, and `evfun`, which are composed. For example, `ev(exp, ratsimp, rectform)` is handled as `rectform(ratsimp(exp))`. The option variables `simp`, `numer`, `float`, `pred`, and `infeval` may also be set locally in a `block`, or globally at the top level, so that they remain in effect until they are reset. Setting `infeval:true` locally causes all evaluations occurring via explicit calls to `ev` to be done “infinitely.” See Section 15.3, page 404.

If `exp` is in CRE form, then `ev` returns a result in CRE form, provided the `numer` and `float` option variables are both `false`. See Section 21.3.2, page 506.

Below are the keywords and keyword forms recognized by `ev`. In these descriptions, `exp` refers to the first argument of `ev`.

`noeval`  
*Keyword*  
*Keyword for:* `ev`

This keyword suppresses the evaluation phase of `ev`, described in step (4). This is useful in conjunction with the other option variables and in causing `exp` to be resimplified without being rerevaluated.

`eval`  
*Keyword*  
*Keyword for:* `ev`

This keyword causes an extra post-evaluation of `exp` to occur, as described in step (5) above.

`infeval`  
*Keyword*  
*Keyword for:* `ev`

The keyword `infeval` leads to an “infinite evaluation” mode, causing `ev` to repeatedly evaluate an expression until the expression stops changing. To prevent a variable, say `x`, from being evaluated away in this mode, simply include `x=x` as an argument to `ev`. Of course, expressions such as `ev(x, x=x+1, infeval)`; generate an infinite loop.

`pred`  
*Keyword*  
*Keyword for:* `ev`

The keyword `pred` causes predicates, which are expressions that evaluate to `true` or `false`, to be evaluated.
CHAPTER 9. EVALUATION

nouns

The keyword nouns converts all nouns occurring in exp to verbs. See apply_nouns, page 326.

expand(m, n)

The keyword expand(m, n) causes expansion, setting the values of maxposex and maxnegex to m and n respectively. Refer to maxnegex on page 101 for more information.

derivlist(var1, ..., vark)

Causes differentiations with respect to the indicated variables only.

var : expression

Entering the command var:expression, or alternatively var = expression causes var to be bound to the value of expression during the evaluation of exp. Note: If var is an option variable, expression is used for its value during the evaluation of exp. If more than one argument to ev is of this type, the binding is done in parallel. If var is a nonatomic expression, a substitution rather than a binding is performed.

var = expression

Entering the command var:expression, or alternatively var = expression causes var to be bound to the value of expression during the evaluation of exp. Note: If var is an option variable, expression is used for its value during the evaluation of exp. If more than one argument to ev is of this type, the binding is done in parallel. If var is a nonatomic expression, a substitution rather than a binding is performed.

f(args) := body

A function occurring in exp, say f(args) can be defined locally for the purpose of this evaluation of exp by giving f(args):=body as an argument to ev.

Examples

(c1) sin(x)+cos(y)+(w+1)^2+diff(sin(w),w);

(d1) cos(y) + sin(x) + 2*(sin(w)) + (w + 1)

(c2) ev(%, sin, expand, diff, x=2, y=1);

(d2) cos(w) + 2 w + cos(1) + 1.909297426825682

An alternate top level syntax has been provided for ev. Just type in its arguments, without the ev(). That is, you write exp, arg1, ..., argn. This is not permitted as part of another expression, as in functions, blocks, and so on. exp, rescan is equivalent to ev(exp).

(c3) x+y, x:=a+y, y:=2;

(d3) y + a + 2

Notice the parallel binding process.

(c4) 2*x-3*y=3$

(c5) -3*x+2*y=-4$

(c6) solve([d4,d5]);
9.4. OTHER EVALUATION COMMANDS

\[
\begin{align*}
(\text{d6}) & \quad [y = -3, x = -7] \\
(\text{c7}) & \quad d5, d6; \\
(\text{d7}) & \quad -4 = -4 \\
(\text{c8}) & \quad x+1/x > \text{gamma}(1/2); \\
(\text{d8}) & \quad x + - > \text{sqrt}(\%\pi) \\
(\text{c9}) & \quad \%\text{, numer, } x=1/2; \\
(\text{d9}) & \quad 2.5 > 1.7724538 \\
(\text{c10}) & \quad \%\text{, pred}; \\
(\text{d10}) & \quad \text{true}
\end{align*}
\]

\section*{9.4 Other Evaluation Commands}

\textbf{eval(\textit{exp}) \quad Function}

The function \texttt{eval} causes an extra post-evaluation of \textit{exp} to occur.

\textbf{infeval(\textit{exp}) \quad Function}

The function \texttt{infeval} evaluates \textit{exp} in “infinite evaluation” mode, which means as many times as needed until the results stop changing. Enter the command \texttt{example(infeval)}; to see the effect of using \texttt{infeval}

\textbf{eval\_string(\textit{string}) \quad Function}

Evaluates the symbolic components of a string. For example, \texttt{a:2} followed by \texttt{eval\_string("a+b\*c")}; results in \texttt{bc+2}.
Chapter 10

Simplification, Parts and Substitution

This chapter describes the functions and option variables needed for the basic processes of simplification, expansion, and substitution. The option variables that influence the operation of certain functions are described with those functions.

10.1 Using the General Simplifier

Simplification is controlled by the option variable simp, which is defined below:

\texttt{simp default: true} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, automatic simplification takes place. The simplifier takes the output of the evaluator and, if possible, makes the expression smaller and more manageable, using built-in algebra. If \texttt{false}, automatic simplification is inhibited.

Unless you set \texttt{simp} to \texttt{false}, call \texttt{factor} on an integer, or call \texttt{cfdisrep} on a list, Macsyma always returns a simplified expression.

The simplifier reorders expressions to obtain a standard form, and the result is the value of the current \texttt{d-line}. For example, the expressions \(a + b + c, c + a + b, \) and \(c + b + a\) are all represented in the same internal form, \((\text{plus } a b c)\), which displays as \(c + b + a\).

The simplifier also changes the function \texttt{sqrt} to exponentiation to the \(1/2\) power and removes the difference and quotient operators from the expression by converting \(x - y\) to \(x + (-1)y\) and \(x/y\) to \(x*y^{-1}\).

\textbf{Note:} This option variable is not normally set to \texttt{false} except for local use.

The simplifier orders expressions by ordering any subexpressions first. Variables are ordered alphabetically from a to z. Constants such as \%e, \%pi and \%i and any atoms declared \texttt{constant} come before variables, and numbers come before constants. Finally, functions are ordered according to their arguments, comparing first arguments first, second arguments second, and so on, and according to their names, in case their arguments are the same. For example, \(y+2*a*x-%pi\) becomes \((\text{plus } (\text{times } -1 \%pi ) (\text{times } 2 \text{ a } x) y)\). For more information about ordering, see \texttt{orderless}.

\texttt{ratnum_to_expt_expand default: false} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, this option variable causes \((m/n)^x\), when \(n\) and \(m\) are numbers, to be transformed into \(m^x/n^x\). (This transformation is also performed if there is something special about \(m\) or \(x\); \textit{e.g.}, \(x\) is...
some kind of number (integer, float, bfloat, rational), or m is 1, or m is −1 and x is of even or odd type, etc.) The idea is that you may wish to cut down on the growth in the number of x's.

Examples
(c1) \((3/4)^x\);

\[
\begin{align*}
x & \quad 3 \\
- & \quad x \\
3 & \quad 4 \\
- & \quad \end{align*}
\]

(d1) \(-x\);

\[
\begin{align*}
x & \quad 3 \\
- & \quad x \\
3 & \quad 4 \\
- & \quad \end{align*}
\]

resimplify(expr)

Function

Takes expr through the simplification stage again. What this means is resimplify ignores the simp flags on the operators of expr and invokes the simplifier on expr again.

Many option variables e.g. expop, expon, exponentialize, trigsign, as well as the opproperties are handled during the simplification stage, so you can reset some of these variables or change some opproperty information and call resimplify on your expression in order to transform it in some way.

standardize_signs(expr)

Function

Arranges all the algebraic signs in expression exp in a standard manner, which assists in recognizing cancellations and simplifications. Do example(standardize_signs); for an executable example.

unknown(expr)

Function

Returns true if, and only if, expr contains an operator or function not known to the built-in simplifier. The line between evaluation and simplification is not clear-cut. For instance, sin is a noun-function. When the evaluator sees \(\text{sin}(u)\), it returns \(\text{sin}(u)\). However, the simplifier notices this special case and changes this expression to 0. So simplification sometimes obscures the difference between noun and verb functions. [Moses1] mentions these and many other matters dealing with simplification.

## 10.2 Selecting Parts of an Expression

The functions in this section are used to extract or replace parts of expressions.

### 10.2.1 General Part Selection

The part functions make it possible to reference or replace any part of any expression. A part of a displayed expression is referred to by a set of indices that are nonnegative integers. For example, in exponentiation the base is considered part 1 and the exponent part 2. In a quotient, the numerator is part 1 and the denominator part 2. In a sum or product, the \(i^{th}\) term or factor is part \(i\). In any expression, the main operator is part 0. For \(-x\), the \(0^{th}\) part is \(-\), for \(a \cdot b\) it is \(
\), for \(\text{diff}(f(x), x)\) it is \(\text{diff}\), etc.

Note: Unary minus is considered an operator.

You have some control of the format of displayed expressions. You can control the ordering of factors in a product or terms in a sum. See functions for ordering on page 356. The ordering of parts in the displayed form of an expression may differ from the ordering in the internal representation of the expression.
10.2. SELECTING PARTS OF AN EXPRESSION

\textbf{part}(exp, n_1, \ldots, n_k) \hfill \textit{Function}

Deals with the displayed form of \textit{exp}. It obtains the part of \textit{exp} as specified by the indices \(n_1, \ldots, n_k\). First part \(n_1\) of \textit{exp} is obtained, then part \(n_2\) of that, etc. The result is part \(n_k\) of ... part \(n_1\) of \textit{exp}. Thus \textbf{part}(z+2*y, 2, 1) results in 2. Function \textbf{part} can be used to obtain an element of a list, a row of a matrix, etc. If the last argument to \textbf{part} is a list of indices, then several subexpressions are picked out, each one corresponding to an index of the list. Thus, \textbf{part}(x+y+z, [1, 3]) results in \(z+x\). \textbf{part} also recognizes the form \texttt{allbut}. See Section 10.2.1, page 325.

If the part selected by the arguments to \textbf{part} does not exist, an error results. This can be controlled by setting the option variable \textbf{partswitch}, described below. \textbf{part} binds the system variable \texttt{piece} to the part it selects. \texttt{piece} is described below. \textbf{part} is affected by the setting of \texttt{inflag}. See Section 10.2.1, page 325.

\textit{Examples}
\begin{verbatim}
(c1) x+y/z^2;
  y
(d1)      -- + x
         2
       z

(c2) part(d1,1,2,2);
(d2)

(c3) 'integrate(f(x),x,a,b)+x;
(b
 [i f(x) dx + x
] /a

(d3)

(c4) part(y,1,1);
(d4)

part(label, exp, n_1, \ldots, n_k) \hfill \textit{Function}

Selects the same subexpression as \textbf{part}, but instead of just returning that subexpression as its value, it returns the whole expression with the selected subexpression displayed inside a labeled box. The box is actually part of the expression.

The function \textbf{lpard} is similar to \textbf{dpart} but uses a labeled box. A labeled box is similar to the one produced by \textbf{dpart} but it has a name in the top line.

If the last argument to \textbf{lpard} is a list of indices, then several subexpressions are picked out, each one corresponding to an index of the list. Thus \textbf{lpard}(label, x+y+z, [1, 3]) returns a box called \texttt{label} containing \(z+x\). If the part selected by the arguments to \textbf{lpard} does not exist, an error results. This can be controlled by setting the option variable \textbf{partswitch}, described above. \textbf{lpard} also recognizes the form \texttt{allbut}. See Section 10.2.1, page 325. \textbf{lpard} is affected by the setting of \texttt{inflag}. See Section 10.2.1, page 325. \textbf{lpard} also binds \texttt{piece}. See Section 10.2.1, page 323.

\textbf{op}(exp) \hfill \textit{Function}

Returns the operator of \textit{exp}. \textbf{op}(exp); returns the same answer as \textbf{part}(exp,0);. \textbf{op} is affected by \texttt{inflag}. You can test whether the main operator of an expression is a particular operator or in a list of operators. See Section 14.3.2.

\texttt{piece} \hfill \textit{System Variable}

Holds the last expression selected when using the part functions. It is set during the execution of the function and can be referred to in the function itself, as shown in the examples below.

The functions that set \texttt{piece} are: \textbf{part}, \textbf{inpart}, \textbf{substpart}, \textbf{substinpart}, \textbf{dpart} and \textbf{lpard}. 
Examples

\((c1)\) \(27\times 3 + 54\times y + 36 \times 2 + 8 \times y + 8 \times x + 3 \times x + 1\);
\(3 \quad 2 \quad 2 \quad 3\)

\((d1)\) \(27 \times y + 54 \times y + 36 \times y + 8 \times x + x + 1\)

\((c2)\) part\((d1, 2, [1, 3])\);

\(2\)

\((d2)\) \(54 \times y\)

\((c3)\) \(\sqrt{\text{piece}/54}\);

\((d3)\) \(\text{abs}(y)\)

\((c4)\) substpart\((\text{factor}(\text{piece}), d1, [1, 2, 3, 5])\);

\(3\)

\((d4)\) \(3 \times y + 2 \times x + y + x + 1\)

\((c5)\) \(\frac{1}{x + y} / x - 1 / z\);

\(1 \quad y \quad 1\)

\((- - + + -\)

\(z \quad x \quad x\)

\((c6)\) substpart\((\text{thru}(\text{piece}), y, [2, 3])\);

\(y + 1 \quad 1\)

\(----- - -\)

\(x \quad z\)

\(\text{partswitch default: false} \quad \text{Option Variable}\)

If set to true, then end is returned when a selected part of an expression does not exist. Otherwise, the following error message is given: function-name fell off end. function-name is the name of the part function that caused the error. Functions affected by this option variable are: part, inpart, substpart, substinpart, dpart and lpart.

end \quad \text{Special Symbol}

Is sometimes returned by the functions part, inpart, substpart, substinpart, dpart and lpart. If the part selected does not exist, and partswitch is true, these functions return end.

inpart\((exp, n_1, \ldots, n_k)\) \quad \text{Function}

Is similar to part but works on the internal representation of the expression rather than the displayed form and thus may be faster since no formatting is done. Refer to simp on page 321 for more information.

Care should be taken with respect to the order of subexpressions in sums and products, since the order of variables in the internal form is often different from that in the displayed form. This is especially true when dealing with unary minus, subtraction and division, since these operators are removed from the expression in the internal representation. part\((x + y, 0)\) or inpart\((x + y, 0)\) yield +, though in order to refer to the operator it must be enclosed in "s. For example ... if inpart\((d9, 0)\) = "+" then ...

If the last argument to inpart is a list of indices, then several subexpressions are picked out, each one corresponding to an index of the list. Thus inpart\((x + y + z, [1, 3])\); results in \(z + x\). inpart also recognizes the form allbut. See Section 10.2.1, page 325.

If the part selected by the arguments to inpart does not exist, an error results. This can be controlled by setting the option variable partswitch, described above. inpart binds the system variable piece to the part it selects. piece is described above. inpart is not affected by the setting of inflag.

Examples

\((c1)\) \(x + y + w + z\);

\((d1)\) \(w + z + y + x\)

\((c2)\) inpart\((d1, 3, 2)\);

\((d2)\) \(z\)

\((c3)\) part\((d1, 1, 2)\);

\((d3)\) \(z\)
10.2. SELECTING PARTS OF AN EXPRESSION

```
(c4) 'limit(f(x)^g(x+1), x, 0, minus);
g(x + 1)
(d4) limit f(x)
x -> 0-
(c5) inpart(%_1, 2);
g(x + 1)
(d5)

rempart(exp, n) Function

Removes the nth part of expression exp.

inflag default: false Option Variable

If set to true, the part extraction functions operate on the internal form of exp. Setting inflag to true and calling part or substpart is the same as calling inpart or substinpart respectively. Except for experimentation, you should not work with inflag globally set to true, since that setting could adversely affect out-of-core files that you load, which may be assuming the default false setting. The proper usage of inflag: true is within a block, block([inflag: true], ...).

The functions affected by the setting of inflag are: part, substpart, first, rest, last, length, the for ... in construct, map, fullmap, maplist, reveal, args and pickapart.

allbut(arg1, ..., argn) Keyword Form for: kill, part, inpart, substpart, substinpart, dpart, lpart

Works with the part functions, namely part, inpart, substpart, substinpart, dpart, and lpart. For example, if expr is e+d+c+b+a, then part(expr, [2,5]); returns d+a, while part(expr, allbut(2,5)); returns e+c+b. allbut also works with the kill command. See kill on page 472.

args(exp) Function

Returns a list of the arguments of exp. It is equivalent to typing substpart("", exp, 0).

dispform(exp) Function

Returns the external representation of exp with respect to its main operator. This is useful in conjunction with part, which also deals with the external representation. Suppose exp is -a. Then the internal representation of exp is "*(-1,a)", while the external representation is "-"a.

dispform(exp, all); converts the entire expression (not just the top-level) to external format. For example, if exp:sin(sqrt(x)), then freeof(sqrt, exp); and freeof(sqrt, dispform(exp)); give true, while freeof(sqrt, dispform(exp, all)); gives false.

nounify(function-name) Function

Returns the noun form of the function name function-name. This is needed if you want to refer to the name of a verb function as if it were a noun.

Note: Some verb functions return their noun forms if they cannot be evaluated for certain arguments. This is also the form returned if a function call is preceded by a quote.

Example
```
(c1) 'limit(f(x)^g(x+1), x, 0, minus);
g(x + 1)
(d1)           limit  f(x)
x -> 0-
(c2) is(inpart(d1,0) = nounify('limit));
true

apply_nouns(exp) Function
```
apply_nouns(exp, name1, ..., name_n)

Function

Causes the application of noun forms in an expression. For example, exp: 'diff(x^2/2,x);
apply_nouns(exp); returns x. This returns the same result as ev(exp, nouns); except that it can be faster and use less storage.

Specific nouns to apply can be specified: apply_nouns(expr, name1, ..., name_n);
or apply_nouns(expr, [name1, ..., name_n]);

The function apply_nouns also can be used in translated code, where ev may cause problems. Note that it is called apply_nouns, not “ev_nouns,” because what it does is apply the rules corresponding to the noun-form operators, which is not the same as evaluation.

Examples:
(c1) exp: 'diff(x^2,x)+'integrate(x^2,x);
 /
 d 2 [2
 -- (x) + I x dx
 dx]
(d1) apply_nouns(exp,'integrate);
 3
 d 2 x
 -- (x) + --
 dx 3
(c2) apply_nouns(exp,'diff);
 /
 [2
 I x dx + 2 x
]
(d3) apply_nouns(exp,'diff,'integrate);
 3
 x
 -- + 2 x
(c4) apply_nouns(exp,'diff,'integrate);

verbify(function-name)

Function

Returns the function name function-name in its verb form.

box(exp {label})

Function

Returns exp enclosed in a box. The box is actually part of the expression. box(exp, label) encloses exp in a labeled box. label is a name that is truncated in display if it is too long. Simplification occurs within and outside of a boxed expression but simplifications that require interactions across the box boundary does not take place.

boxchar default: *

Option Variable

Is the character used to draw the box in the result returned by box, dpart and lpart.

dpart(exp, n1, ..., nk)

Function

Selects the same subexpression as part, but instead of just returning that subexpression as its value, it returns the whole expression with the selected subexpression displayed inside a box. The box is actually part of the expression.

If the last argument to dpart is a list of indices, then several subexpressions are picked out, each one corresponding to an index of the list. Thus dpart(x+y+z,[1,3]); returns a box containing z+x. If the part selected by the arguments to dpart does not exist, an error results. This can be controlled by setting the option variable partswith, described above. dpart also recognizes the form allbut.
See Section 10.2.1, page 325. \texttt{dpart} is affected by the setting of \texttt{inflag}. See Section 10.2.1, page 325. \texttt{dpart} also binds \texttt{piece}. See Section 10.2.1, page 323.

\begin{verbatim}
(c1) dpart(x+y/z^2,1,2,1);
 y
 ------ + x
 2

 * z *

\end{verbatim}

\texttt{rembox}(exp, \texttt{arg}) \hspace{1cm} \textit{Function}

Removes boxes from \texttt{exp} according to \texttt{arg}. If \texttt{arg} is \texttt{unlabeled}, then all unlabeled boxes are removed. If \texttt{arg} is the name of some label, then only boxes with that label are removed. If \texttt{arg} is omitted, then all boxes, labeled and unlabeled, are removed.

\texttt{assoc}(key, list, \texttt{default}) \hspace{1cm} \textit{Function}

Returns the right hand side of the first equation encountered in \texttt{list} that has a left hand side of \texttt{key}. If Macsyma does not encounter such an equation, it returns the value \texttt{default}. \texttt{default} is optional and defaults to \texttt{false}.

\textit{Examples}
\begin{verbatim}
(c1) assoc(x, [x=3,y=4]);
 3
(d1)
(c2) assoc(z, [x=3,y=4]);
 false
(d2)
(c3) assoc(z, [x=3,y=4],5);
 5
(d3)
\end{verbatim}

10.2.2 Extracting Parts of Mathematical Expressions

\texttt{listofvars}(\texttt{exp}) \hspace{1cm} \textit{Function}

Returns a list of the variables in \texttt{exp}.

\texttt{listconstvars} \texttt{default: false} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, \texttt{listofvars} includes \texttt{%e}, \texttt{%pi}, \texttt{%i}, and any variables declared constant in the list it returns if they appear in \texttt{exp}. The default is to omit these. See \texttt{declare}.

\texttt{listdummyvars} \texttt{default: true} \hspace{1cm} \textit{Option Variable}

If \texttt{false}, dummy variables in the expression is not included in the list returned by \texttt{listofvars}. “Dummy variables” are mathematical things like the index of a sum or product, the limit variable, and the definite integration variable.

\textit{Examples}
\begin{verbatim}
(c1) listofvars(f(x[1]+y)/g^(2+a));
 [g, a, x, y]
 1
(d1)
(c2) listofvars('sum(f(i), i, 0, n));
 [i, n]
(d2)
(c3) listdummyvars:false$
(c4) listofvars('sum(f(i), i, 0, n));
 [n]
(d4)
\end{verbatim}
\texttt{coeff}(\textit{exp}, \textit{var}, \textit{n}) \\
\textit{Function}

Obtains the coefficient of \textit{var}^n in \textit{exp}. The argument \textit{n} can be omitted if it is 1. The value of \textit{var} can be an atom or complete subexpression of \textit{exp}, such as \textit{x}, \texttt{sin(x)}, \texttt{a[i+1]}, \textit{x*y} and so on. In the last case, the expression \((x+y)^*c*d*e\), but \texttt{c*d} is not. Similarly, \textit{x*y} is a complete subexpression of \textit{x*y} + \texttt{c*d*e}, but \texttt{c*d} is not. Sometimes it may be necessary to expand or factor \textit{exp} in order to make \textit{var}^n explicit. This is not done automatically by \texttt{coeff}. See Section 10.2.2, page 328. If \textit{exp} is in CRE form, then \texttt{coeff} just calls \texttt{ratcoef}.

\begin{verbatim}
(c1) coeff(2*a*tan(x)+tan(x)+b=5*tan(x)+3,tan(x));
(d1) 2 a + 1 = 5
(c2) coeff(y+x%^x+1, x, 0);
(d2) y + 1
\end{verbatim}

\texttt{ratcoef}(\textit{exp}, \textit{var}, \textit{n}) \\
\textit{Function}

Returns the coefficient, \(c\), of the expression \textit{var}^n in the expression \textit{exp}. The argument \textit{n} can be omitted if it is 1. The coefficient \(c\) is free of the variables in \textit{var}, except possibly in a nonrational sense. If no coefficient of this type exists, zero is returned. The function \texttt{ratcoef} expands and rationally simplifies its first argument. Thus, it can produce answers different from those of \texttt{coeff} which is purely syntactic. For example, \texttt{ratcoef((x+1)/y+x,x)} returns \((y+1)/y\) whereas \texttt{coeff} returns 1. The expression \texttt{ratcoef(exp, var, 0);}, viewing \textit{exp} as a sum, returns a sum of those terms that do not contain \textit{var}. If \textit{var} occurs to any negative powers, \texttt{ratcoef} should not be used. Since \textit{exp} is rationally simplified before it is examined, coefficients may not appear quite the way they were envisioned.

An alternative name for \texttt{ratcoef} is \texttt{ratcoef}.

\begin{verbatim}
Example
(c1) s:a*x+b*x+5$
 (c2) ratcoef(s, a+b);
(d2) x
\end{verbatim}

\texttt{bothcoef}(\textit{exp}, \textit{var}) \\
\textit{Function}

Returns a list whose first member is the coefficient of \textit{var} in \textit{exp}. It is found by \texttt{ratcoef} if \textit{exp} is in CRE form, and by \texttt{coeff} if not. The second member of the list is the remaining part of \textit{exp}. That is, \texttt{bothcoef(a+var + b, var)}; returns \([a, b]\).

An alternative name for \texttt{bothcoef} is \texttt{bothcoef}.

\begin{verbatim}
Example
(c1) islinear(exp, var):=block(
 [c:bothcoef(rat(exp, var),var)],
 is(freeof(var, c) and c[1][#0])$
 (c2) islinear((x^2-(x-x)^2)/x,x);
(d2) true
\end{verbatim}

\texttt{pickapart}(\textit{exp}, \textit{depth}) \\
\textit{Function}

Assigns \texttt{E-LINES} to all subexpressions of \textit{exp} down to the specified integer \textit{depth}. This is useful for dealing with large expressions and for automatically assigning parts of an expression to a variable without having to use the \texttt{part} functions. This function is affected by the setting of \texttt{inflag}. See \texttt{inflag}.

\texttt{reveal} provides a similar capability, but it is intended mainly for abbreviating display to enable you to examine the structure of large expressions conveniently. See \texttt{reveal}.

\begin{verbatim}
Example
(c1) exp:(a+b)/2+sin(x^2)/3-log(1+sqrt(x+1));
(d1) sin(x) b + a
\end{verbatim}
(c2) `pickapart(%,1);
(e2) - log(sqrt(x + 1) + 1)
 2
 sin(x)
(e3) -------
 3
 b + a
(e4) -------
 2
(d4) e4 + e3 + e2

numfactor(exp)

Returns the numerical factor multiplying the expression exp, which should be a single term.

Example
(c1) gamma(7/2);
(d1) 15 sqrt(%pi)

 8
(c2) numfactor(%);
 15
(d2) --
 8

numaugend(exp)

Returns the numerical term in the sum exp.

Example
(c1) numaugend(x+2*y+%i+%pi+1/2);
(d1) 1
(d2) -
 2

hipow(exp, var)

Returns the highest explicit exponent of var in exp. Sometimes it is necessary to expand exp, since this is not done automatically by hipow. For example, `hipow(a^3*x^2+a^4*x,x)` returns 2.

lopow(exp, var)

Returns the lowest exponent of var that explicitly appears in exp, taking the constant term of exp with respect to var, if any, into account. For example, `lopow((x+y)^2+(x+y)^3+n,x+y)` returns min(n,2), and `lopow(a*x^2+a^2*x+a^3,x)` returns 0.

derivdegree(exp, dv, iv)

Finds the highest degree of the derivative of the dependent variable dv with respect to the independent variable iv occurring in exp.

Example
(c1) 'diff(y,x,2)+'diff(y,x,3)*2+'diff(y,x)*x^2$
(c2) derivdegree(%,y,x);
(d2) 2

lhs(eqn)

Returns the left side of the equation eqn. If eqn is not an equation, then `lhs(eqn)` returns `eqn`.

rhs(eqn)

Returns the right side of the equation eqn. If eqn is not an equation, then `rhs(eqn)` returns 0.
first\((\text{exp})\)

Returns the first part of \text{exp} which may result in the first element of a list, the first term of a sum, etc.

Note: first and its related functions, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, rest, and last, work on the form of \text{exp} that is displayed, not the form that is typed on input. If the variable \text{inflag} is set to \text{true}, however, these functions look at the internal form of \text{exp}. Note that the simplifier reorders expressions. See Section 10.1, page 321. Thus, first\((x+y)\); returns \text{x} if \text{inflag} is \text{true} and \text{y} if \text{inflag} is \text{false}. Note that first\((y+x)\); returns the same result as first\((x+y)\) (see \text{inflag}). If the argument to first, \text{exp}, is an atom, Macsyma signals the error \text{Argument to first was atomic: exp}.

second\((\text{exp})\)

Returns the second part of \text{exp}.

third\((\text{exp})\)

Returns the third part of \text{exp}.

fourth\((\text{exp})\)

Returns the fourth part of \text{exp}.

fifth\((\text{exp})\)

Returns the fifth part of \text{exp}.

sixth\((\text{exp})\)

Returns the sixth part of \text{exp}.

seventh\((\text{exp})\)

Returns the seventh part of \text{exp}.

eighth\((\text{exp})\)

Returns the eighth part of \text{exp}.

ninth\((\text{exp})\)

Returns the ninth part of \text{exp}.

tenth\((\text{exp})\)

Returns the tenth part of \text{exp}.

rest\((\text{exp}, \text{n})\)

Returns \text{exp} with its first \text{n} elements removed if \text{n} is positive and its last \text{-n} elements removed if \text{n} is negative. If \text{n} is 1 it may be omitted. \text{exp} can be a list, matrix, or other expression. If \text{inflag: true} the internal form of \text{exp} is used. See \text{inflag}.

last\((\text{exp})\)

Returns the last part (term, row, element, etc.) of the \text{exp}. If \text{inflag: true} the internal form of \text{exp} is used. See \text{inflag}.

partition\((\text{exp}, \text{var})\)

Returns a list of two expressions. They are:

1. The factors of \text{exp} (if it is a product), the terms of \text{exp} (if it is a sum), or the sublist of \text{exp} (if it is a list) not containing \text{var}.

2. The factors, terms, or sublist containing \text{var}.
Examples
(c1) partition(2*a*x*f(x), x);
(d1) [2, a, x, f(x)]
(c2) partition(a+b, x);
(d2) [b + a, 0]
(c3) partition([a, b, f(a), c], a);
(d3) [[b, c], [a, f(a)]]

10.2.3 Deleting Parts of Expressions

delete(exp1, exp2)

Function
Removes all occurrences of exp1 from exp2. The expression exp1 can be a term of exp2 (if exp2 is a sum) or a factor of exp2 (if exp2 is a product).

Example
(c1) delete(sin(x), x+sin(x)+y);
(d1) y + x

delete(exp1, exp2, n)

Function
Removes the first n occurrences of exp1 from exp2. Of course, if there are fewer than n occurrences of exp1 in exp2 then all occurrences are deleted. n must be an integer.

rempart(expr, n)

Function
If n is an integer less than or equal to length(expr), then rempart returns expr with the nth part removed. If n is a list of two integers [l, m] with 1 ≤ l ≤ m ≤ length(expr), then rempart returns expr with parts l through m removed. Generally, if n is a list of integers [l, m] with 1 ≤ l and m ≤ length(expr), then rempart combines two pieces of expr: the first piece is from part(expr, l - 1); the second is from part(expr, m + 1) through last(expr).

10.2.4 Measuring the Size of Expressions

length(exp)

Function
Returns the number of parts in the external displayed form of exp. For lists, this is the number of elements; for matrices, it is the number of rows; and for sums, it is the number of terms. See dispform, page 325. The length command is affected by the setting of inflag. For example, length(a/(b*c)); returns 2 if inflag is false, assuming expdispflag is true, but 3 if inflag is true, because the internal representation is essentially ab⁻¹c⁻¹. See inflag.

string_length(exp)

Function
This function returns the number of characters in the expression exp when represented in string form.

Example
(c1) string_length("x+2*a");
(d1) 5

nterms(exp)

Function
Returns the number of terms that exp would have if it were fully expanded out and no cancellations or combination of terms occurred.

Note: Expressions like sin(exp), sqrt(exp), exp(exp), etc. count as just one term, regardless of how many terms exp has.
\textbf{cons_size}(\textit{expr}) \hspace{1cm} \textit{Function}

Returns an integer which is the size of \textit{expr} in “Macsyma cells”. This is the same as the Lisp cons-size of the expression, except that atomic operators (+, *, sin, f, for example) count as 1, even if they take more than one Lisp cell. (\textit{I.e.}, \texttt{simp} flags, etc., on the operators are ignored.)

\texttt{cons_size} of an atom is 0.

\texttt{cons_size} provides a metric for the complexity of expressions. Since relative complexity is usually what’s important here, the number \texttt{cons_size} returns is for the internal representation of the expression, for the sake of efficiency. If the \texttt{cons_size} of the external representation is desired, \texttt{cons_size(dispform(expr,’all));} can be used.

\textbf{count_ops}(\textit{expr}) \hspace{1cm} \textit{Function}

Counts the number of floating point and other operations in \textit{expr}. The \texttt{count_ops} function returns a list composed of two sublists. The first sublist is comprised of all of the operators (such as +, -, *, /, etc.) contained in \textit{expr}. The second list contains the corresponding number of times each operator would be applied in \textit{expr} to compute a numerical value.

\textbf{Note:} “\texttt{-}” refers to negation, not subtraction, so that \texttt{x - y} is considered to really be \texttt{x + (-y)}. Do \texttt{example(count_ops)}; to see an executable example.

\textbf{complexity}(\textit{expr}) \hspace{1cm} \textit{Function}

Produces a measure of the complexity of the Macsyma expression \textit{expr}. The result returned is a list of the classification of \textit{expr}, followed by its complexity within that classification. The possible classifications are \texttt{rational} (rational number or integer), \texttt{float} (floating point number), \texttt{bigfloat} (extended precision floating point number) and \texttt{expression} (expression that is not a simple number). The corresponding complexities are, respectively: the sum of the absolute value of the numerator plus the denominator of a rational number (integers are considered to have a denominator of one); the absolute value of a regular or extended precision floating point number; and the number of operators and atomic operands of a general expression. See also \texttt{ndigits}.

Do \texttt{example(complexity)}; for an example and \texttt{demo(complexity)}; for a longer demonstration.

10.3 Substitution

This section describes the basic methods for making substitutions. There are three main groups of substitution commands in Macsyma. The first group consists of the commands which use syntactic methods for substitution. \texttt{subst} is the most common command of this type. The behavior of these commands is easily affected by the syntactic form of the expression to be altered. The second group consists of commands which use more semantic information about the structure of the expression to be changed. \texttt{ratsubst} is the most common command of this type. The third group consists of specialized commands which assign a value to a function for a specific value of its arguments.

10.3.1 Subst and Related Commands

\textbf{subst}(\textit{a, b, c}) \hspace{1cm} \textit{Function}

Substitutes \textit{a} for all occurrences of \textit{b} in \textit{c}. \textit{b} must be an atom or a complete subexpression of \textit{c}. For example, \texttt{x+y+z} is a complete subexpression of \texttt{2*(x+y+z)/u} while \texttt{x+y} is not. When \textit{b} does not have these characteristics, you can use \texttt{subpart} or \texttt{ratsubst}. See \texttt{subpart}, Section 10.3.1, page 334 and \texttt{ratsubst}, Section 10.3.2, page 335. Alternatively, if \textit{b} is of the form e/f then you could use \texttt{subst(a*f, e, c)}; while if \textit{b} is of the form e^\texttt{(1/f)}, then you could use \texttt{subst(a^f, e, c)}. \texttt{subst} also discerns the \texttt{x/y} in \texttt{x^y}, so that \texttt{subst(a,sqrt(x),1/sqrt(x))}; becomes \texttt{1/a}.

The arguments a and b can also be operators of an expression enclosed in quotes or they may be function names. If you want to substitute for the independent variable in derivative forms, then use \texttt{at}. See Section 10.3.3, page 337.

Other permissible forms are:

\begin{verbatim}
subst(eq, exp) Function
subst([eq1, ..., eqn], exp) Function
\end{verbatim}

The eq_i are equations indicating substitutions to be made. For each equation, the right side is substituted for the left in the expression exp. These substitutions are performed in series, left to right, beginning with eq_1.

For expressions in CRE representation, \texttt{subst}, like many of the general simplification functions, works on the \texttt{ratdisrep}ed form of the expression.

\textbf{Note:} \texttt{substitute} is an alternative name for \texttt{subst}.

\begin{verbatim}
ops subst(operator1, operator2, exp) Function
ops subst(eq, exp) Function
ops subst([eq1, ..., eqn], exp) Function
\end{verbatim}

\texttt{ops subst} is just like \texttt{subst}, except it only substitutes for the operators of expressions. The syntax of \texttt{ops subst} is the same as that of \texttt{subst}. The operators it substitutes for must be symbolic atoms, \textit{e.g.}, \texttt{ops subst(a, b[1], b[1](x))}; is not supported.

\textit{Examples:}

\begin{verbatim}
(c1) ops subst(g, f, f(f(x)));
(d1) g(g(x)) + f
(c2) ops subst([cot = lambda([x], cos(x)/sin(x)),
 tan = lambda([x], sin(x)/cos(x))],
 cot(tan) + tan(b));
 cos(tan) sin(b)-------- +--------
 sin(tan) cos(b)
(d2)
\end{verbatim}

\texttt{deriv} \texttt{subst} \textit{default: false} \textit{Option Variable}

If \texttt{true}, this option variable enables substitutions such as \texttt{subst(x,'diff(y,t),'#diff(y,t,2))}; to return \texttt{'diff(x,t)}.

\texttt{expt} \texttt{subst} \textit{default: false} \textit{Option Variable}

If \texttt{true}, this option variable enables substitutions such as y for a^x in a^{bx} to take place.

\texttt{ops subst} \textit{default: true} \textit{Option Variable}

If \texttt{false}, \texttt{subst} does not attempt to substitute into the operator of an expression. For example, \texttt{(ops subst: false, subst(x^2, r, r+r[0]))}; works.

\textit{Examples}

\begin{verbatim}
(c1) subst(a, x+y, x+y(x+y)^2+y); 2
(d1) y + x + a
(c2) subst(-%i, %i, a+b*%i);
(d2) a - %i b
\end{verbatim}
Note: (c2) is one way of obtaining the complex conjugate of an analytic expression. The following examples illustrate the difference between substitution (as performed by subst) and binding, as performed by ev.

\[(c3)\) subst\((x=0,\text{diff}(\sin(x),x))\);
\[(d3)\] 1
\[(d4)\] \(\text{diff}(\sin(x),x),x=0;\)

Non-variable 2nd arg to diff:
0

\[(c5)\] matrix\([a,b],[c,d]\);
\[(d5)\] \[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]

\[(c6)\] subst\("[[",matrix,"]];\);
\[(d6)\] \[
[[a, b], [c, d]]
\]

 substpart\((x, \text{exp}, n_1, \ldots, n_k)\)

Function
Substitutes \(x\) for the subexpression picked out by the rest of the arguments as in part. It returns the new value of \(\text{exp}\). \(x\) can be some operator to be substituted for an operator of \(\text{exp}\). In this case you must enclose it in " " . See c4 below.

If the last argument to substpart is a list of indices, then several subexpressions are picked out, each one corresponding to an index of the list. Thus, \(\text{substpart}(a,x+y+z,[1,3])\) returns \(y+a\). Note that substpart also recognizes the form allbut. Note also that substpart is affected by the setting of inflag (see inflag), and also binds piece.

Examples
\[(c1)\] \(1/(x^2+2);\)
\[(d1)\]
\[
\begin{array}{l}
1 \\
2 \\
x + 2
\end{array}
\]
\[(c2)\] substpart\((3/2, \%, 2, 1, 2);\)
\[(d2)\]
\[
\begin{array}{l}
1 \\
3/2 \\
x + 2
\end{array}
\]
\[(c3)\] \(a*x+f(b,y);\)
\[(d3)\] \(a \times f(b, y)\)
\[(c4)\] substpart\("*", \%, 1, 0);\)
\[(d4)\] \(x + f(b, y) + a\)
\[(c5)\] \(x^2 + x + 1\$\)
\[(c6)\] substpart\("[", \%, 0);\)
\[(d6)\] \[
[x , x, 1]
\]

 substinpert\((x, \text{exp}, n_1, \ldots, n_k)\)

Function
Is like substpart, but works on the internal representation of \(\text{exp}\).

Examples
\[(c1)\] \(x.'\text{diff}(f(x), x, 2);\)
\[(d1)\]
\[
\begin{array}{l}
d \\
x . \text{---} (f(x)) \\
2 \\
dx
\end{array}
\]
(c2) substinpart(d^2, x, 2);

(d2) x . d

(c3) substinpart(f1, f[1](x+1), 0);

(d3) f1(x + 1)

\textbf{sublis(list, expr)}

\textit{Function}

Allows multiple substitutions into an expression in parallel.

\texttt{sublis([sym1=exp1, ..., symn=expn], form)}: substitutes for each occurrence of \texttt{symi} in \texttt{form} the appropriate \texttt{expi}. Each \texttt{sym} must be a symbol. \texttt{exp} can be any expression. \texttt{Form} can be any expression.

The new expression, with appropriate substitutions made, is the value returned.

\texttt{sublis} preserves sharing where possible. For example, \texttt{sublis([a=b], c+d)}; returns the original c+d since no substitution is needed. \texttt{sublis} does substitutions in parallel. For example, \texttt{sublis([a=b, b=a], sin(a)+cos(b))}; returns sin(b)+cos(a). The function \texttt{sublis} preserves CRE form.

\textbf{Example}

(c1) \texttt{rat(x^3+a*x+b)}

(c2) \texttt{sublis([a=b, b=a], x^3+a*x+b)}

(d2)/R/

\texttt{x + b x + a}

If a form is in CRE form, \texttt{ratdisrep} is called on it, the substitution is done, and if there is no change, the original CRE form is returned; if there was a change, \texttt{rat} is called on the result of the substitution to return the CRE form.

\texttt{sublis} can make substitutions for functions in \texttt{exp}. If the replacement function is a \texttt{lambda} expression, it is applied. This behavior can be controlled by \texttt{sublis_apply_lambda}, described below.

\texttt{sublis_apply_lambda} default: \texttt{true}\n
\textit{Option Variable}

Controls whether \texttt{lambda}’s substituted are applied in simplification after the \texttt{sublis} or whether you have to do an \texttt{ev} to get things to apply. \texttt{true} means do the application.

\texttt{neg_a_part(exp,n1,..,nk)}

\textit{Function}

Changes a part to its negative. Takes arguments like \texttt{part} does. \textit{E.g.}, \texttt{exp: (a-b)*(c-d)} and then \texttt{neg_a_part(exp,1)}; gives \texttt{-(b-a)*(c-d)} while \texttt{neg_a_part(exp,2)};

gives \texttt{-(a-b)*(d-c)}.

\texttt{neg_a_subst(sum,expr)}

\textit{Function}

“Neg a subst of sum in expr”. \textit{E.g.}, \texttt{neg_a_subst(a-b, (a-b)^10001)}; gives \texttt{-(b-a)^10001}.

\section{10.3. Substitution}

\texttt{ratsubst(a, b, c)}

\textit{Function}

Substitutes \texttt{a} for \texttt{b} in \texttt{c}. \texttt{b} can be a sum, product, power, etc. \texttt{ratsubst} knows something of the meaning of expressions whereas \texttt{subst} does a purely syntactic substitution. Thus, \texttt{subst(a,x+y,x+y+z)}; returns \texttt{z+y+x} while \texttt{ratsubst(a,x+y,x+y+z)}; returns \texttt{z+a}.

\texttt{ratsubstflag default: false}\n
\textit{Option Variable}

This stands for “RADical SUbSTitution FLAG”. If \texttt{true}, this option variable permits \texttt{ratsubst} to make substitutions such as \texttt{u} for \texttt{sqrt(x)} in \texttt{x}.
Examples

(c1) \(\text{rsubst} (a, x^2 y^2, x^4 y^8 + x^4 y^3) \);

\[
3 \quad 4
\]

(d1) \(a x^3 y + a \)

(c2) \(1 + \cos(x) + \cos(x)^2 + \cos(x)^3 + \cos(x)^4 \);

\[
4 \quad 3 \quad 2
\]

(d2) \(\cos(x) + \cos(x) + \cos(x) + \cos(x) + 1 \)

(c3) \(\text{rsubst} (1 - \sin(x)^2, \cos(x)^2, %) \);

\[
4 \quad 2 \quad 2
\]

(d3) \(\sin(x) - 3 \sin(x) + \cos(x) (2 - \sin(x)) + 3 \)

\text{lratsubst}(\text{list-of-equations}, \text{exp}) \quad \text{Function}

Is analogous to \text{subst}(\text{list-of-equations}, \text{exp}), except that it uses \text{ratsubst}, instead of \text{subst}. The first argument of \text{lratsubst} must be an equation or a list of equations identical in format to that accepted by \text{subst}. See Section 10.3.1, page 332. The substitutions are made in the order given by the list of equations, that is, from left to right.

Examples

(c1) \(\text{lratsubst} ([a^2 = b, c^2 = d], (a + e) * c * (a + c)) \);

(d1) \((d + a + c) e + a + d + b + c \)

(c2) \(\text{lratsubst} (a^2 = b, a^3) \);

(d2) \(a \ b \)

\text{fullratsubst}(a, b, c) \quad \text{Function}

Is the same as \text{ratsubst}, except that it calls itself recursively on its result until that result stops changing. This function is useful when the replacement expression and the replaced expression have one or more variables in common. \text{fullratsubst} also accepts its arguments as an equation or list of equations identical in format to \text{subst}. That is, the first argument can be a single substitution equation or a list of such equations, while the second argument is the expression being processed.

Examples

(c1) \(\text{ratsubst} (b * a, a^2, a^3) \);

\[
2 \quad 2
\]

(d1) \(a \ b \)

(c2) \(\text{fullratsubst} (b * a, a^2, a^3) \);

\[
2 \quad 2
\]

(d2) \(a \ b \)

(d3) \(\text{fullratsubst} ([a^2 = b, b^2 = c, c^2 = a], a^3 * b * c) \);

(d3) \(b \)

(c4) \(\text{fullratsubst} (a^2 = b * a, a^3) \);

\[
2 \quad 2
\]

(d4) \(a \ b \)

Since \text{fullratsubst} goes over the expression recursively, take care that deep recursion does not cause the calculation to signal an error with the message \text{namestack overflow}.

10.3.3 Substituting Function Values At Specific Points

\text{atvalue}(\text{form, list-of-equations, value}) \quad \text{Function}

assigns the boundary value \text{value} to \text{form} at the points specified by \text{list-of-equations}. The \text{form} must be a function, \(f(var_1, \ldots, var_n) \), or a derivative, \text{diff}(f(var_1, \ldots, var_n), var_i, n_i, var_j, n_j, \ldots) \) in which the functional arguments explicitly appear (except subscripted variables cannot be used). Here \(n_i \) is the order of differentiation with respect to \(var_i \). The input function cannot be a subscripted function. \text{list-of-equations}, which is a list of equations, determines the “boundary” at which the \text{value} is given; \text{list-of-equations} may be a list of equations, as above, or a single equation, \(var_i = \text{exp} \).
The symbols @1, @2, ... are used to represent the functional variables var1, var2, ... when atvalues are displayed.

printprops([f1, f2, ...], atvalue) displays the atvalues of the functions f1, f2, ... as specified previously by means of the function atvalue. See printprops. If the list contains just one element, then the element itself can be given directly as an argument to printprops. If a first argument of all is given, then atvalue for all functions that have them are displayed.

at(exp, list-of-equations)

Function

Replaces the variables in exp (which can be any expression) with the values specified in the list-of-equations or the single equation similar to that given to the atvalue function. If a subexpression depends on any of the variables in list-of-equations, but it hasn’t had an atvalue specified, then a noun form of the at will be returned which will display in a two-dimensional form.

Examples

(c1) atvalue(f(x,y),[x=0,y=1],a^2);

(d1) a

(c2) atvalue(diff(f(x,y),x),x=0,y+1);

(d2) @2 + 1

(c3) printprops(all, atvalue);

(d3) done

(c4) diff(4*f(x,y)^2-u(x,y)^2,x);

(d4) 8 f(x, y) (- (f(x, y))) - 2 u(x, y) (- (u(x, y)))

(c5) at(%, [x=0,y=1]);

(d5) 16 a - 2 u(0, 1) (- (u(x, y)))

!x = 0, y = 1
Chapter 11

User Defined Functions

11.1 Defining and Using Functions

This Chapter describes basic commands for defining and using functions in Macsyma. See also Part III on Programming in Macsyma, especially Chapter Chapter 18, page 445 on Debugging.

11.1.1 Basic Commands for Defining Functions

A function is written as a name followed by the arguments to the function separated by commas and enclosed in parentheses. The arguments can be any valid expressions. For example, \(\sin(x) \) and \(\text{mod}(7,3) \) are expressions that use functional syntax.

\[\text{function-name} := \text{definition} \]

Infix Operator

A function of a fixed number of arguments can be defined by means of the := operator. The left side of a function definition consists of the name of the function followed by the list of formal parameters enclosed in parentheses. The right side consists of the function body. When a function is called, the formal parameters are bound to the actual arguments. Any free variables in the function body take on the values that they have at the time of the call, and the function body is evaluated. It is permissible to define functions that are recursive to an arbitrary depth.

After a function is defined, its name is added to the list \texttt{functions}, which is described below. The name also receives a \texttt{function} property. See Section 13.1, page 360.

Problems can arise when passing to a function an expression that contains a variable with the same name as a formal parameter used in the definition of that function. These problems arise from name conflicts, but only if you use the operator “:=” or the special form \texttt{ev}. See Section 9, page 313.

You can use \texttt{dispfun} and \texttt{fundef} to display the definition of a function. See Section 12.1.2, page 353 and see Section 12.1.2, page 353.

To remove the definition of a function, use either \texttt{kill} or \texttt{remfunction}. The difference between these two approaches is that \texttt{kill} destroys all information associated with that name, including, for example, the function definition, properties, and the value, while \texttt{remfunction} removes only the function definition. See \texttt{kill}, page 472 and the description of \texttt{remfunction} below.

\texttt{define}(f(x_1, \ldots, x_n), \text{body})

The command \texttt{define}(f(x_1, \ldots, x_n), \text{body}) is almost equivalent to \(f(x_1, \ldots, x_n) := \text{''body} \) but with an important difference when it is not presented directly to top level. Consider two functions, g and g_prime, which are identical in all respects except that g contains an expression \texttt{define}(f(x_1, \ldots, x_n), \text{body}), while g_prime contains \texttt{f.prime}(x_1, \ldots, x_n) := \text{''body}. There are two conditions to consider for each of g and g_prime: definition-time and execution time.
Definition Time: Both functions g and g_{prime} are defined identically, with one exception. The occurrence of the ‘’ causes body to be evaluated at definition time of g_{prime}. The two functions g and g_{prime} are therefore different.

Execution Time: During execution, g and g_{prime} define functions f and f_{prime} respectively. These two functions, f and f_{prime}, may not be identical. f is defined with a body that is the value body has at execution time, while f_{prime} has a body that was the value of body at definition time. These two may be different.

The `define` special form may also be used to define an array associated ("subscripted") function via the syntax `define(’f[x_1, \ldots, x_n], body)`.

For more information on using `define`, see Section 9.2.

functions default:

Lists all user defined nonsubscripted functions. The variable `functions` is one of the `infolists`.

remfunction(f_1, \ldots, f_n)

Removes the user defined functions or macros f_1, \ldots, f_n. (See Section 17.5.1, page 442.) If Macsyma succeeds in removing the definitions, it returns the names of the functions in a list. It returns `false` for any functions that do not exist. If there is only one argument of all, then all functions and macros are removed. See Section 17.5, page 441. The function `remfunction` does not evaluate its arguments.

Examples

(c1) $f(x):=x^2+y$
(c2) $f(2)$;
(d2)
(c3) $y:7$
(c4) $f(2)$;
(d4) 11

If you now define another function, using y as a dummy variable, the effect of the dynamic binding scheme can be seen. Each time y is evaluated, it uses the *most recent* binding.

(c5) $g(y,z):=f(z)+3*y$
(d5)
(c6) $g(2*y+z, -5)$;
(d6)
(c7) `functions`;
(d7)
(c8) `kill(f)`;
(d8)
(c9) $f(x)$;
(d9) $f(x)$

The function g is being evaluated as follows: The value of y is of particular importance. Note the following sequence of events.

1. The arguments to g are evaluated giving $z+14$ and -5. The variable y has the value 7.
2. The function g is then invoked and has its formal parameters bound. y to $z+14$ (the first argument) and z to -5 (the second argument). The evaluation of g then causes f to be invoked on the argument -5.
3. The function f has its formal parameter x bound to -5 and returns the result of the evaluation x^2+y with the current bindings which gives $z+14.25$.
4. The evaluation of g continues with $3*y$ which yields $3*(z+14)$. This is added to the result from (3) and returned.
11.1.2 Functions with a Variable Number of Arguments

It is also possible to define a function that takes a variable number of arguments. This is done by using a list of one name as the trailing parameter in the parameter list of the function definition, as follows:

- \(f([1]):= \ldots \) means that \(f \) takes zero or more arguments and \(1 \) is bound to the list of the arguments \(f \) is called on. Thus, \(f() ; f(1) ; f(1, 2) \) are all proper calls to \(f \). The parameter \(1 \) will be bound respectively to \([1], [1], \) and \([1, 2] \).

Example In the example below, we define a function that computes the average of a list.

\[
\begin{align*}
(c1) \quad \text{average([1]):=} & \text{apply("+",} 1)/\text{length}(1)\\
(c2) \quad \text{average}(3,5,9) ;
\end{align*}
\]

- \(f(a, [1]):= \ldots \) means that \(f \) takes one or more arguments and that \(a \) is bound to the first argument \(f \) is called on, and \(1 \) is bound to a list of the rest. Similarly for \(f(a,b,[1]):= \ldots \), etc.

The above scheme does not work for array function definitions. That is, one cannot define an array function of a variable number of subscripts. However, it is possible to define an array function of a fixed number of subscripts and a variable number of arguments.

11.1.3 Lambda Expressions

Lambda Notation is used to define unnamed functions. Lambda expressions allow you to define, on the fly, a special purpose function that you do not intend to use in other contexts. Since the new function is unnamed, it cannot be called at a later time.

\[\text{lambda}(\text{arglist}, \text{form} 1, \ldots, \text{form} n) \]

Special Form

The special form \text{lambda} is useful for passing functional arguments to other functions or for defining a function to be applied just once (instead of using \(:=\)). \text{arglist} is the list of arguments, and the \text{form} \(i \) are forms to be evaluated in succession.

The syntax \text{lambda}([y], \ldots) is also acceptable and defines a lambda expression of 0 or more arguments.

Example

\[
\begin{align*}
(c1) \quad f: & \text{lambda}([x,y,z],x^2+y^2+z^2); \\
(d1) \quad \text{lambda}([x,y,z], z + y + x) \\
(c2) \quad f(1,2,a); \quad 2 \quad 2 \quad 2 \\
(d2) \quad a + 5 \\
(c3) \quad \text{lambda}([x],x+1)(3); \quad 4 \\
(d3) \quad \text{lambda}([x],x+1)(3); \\
\end{align*}
\]

Operators can also be used in a functional notation. However, to avoid syntax errors, operators used in this way must be surrounded by double quotes.

\[
\begin{align*}
(c4) \quad "+"(1,2,a); \\
(d4) \quad a + 3
\end{align*}
\]

11.2 Arrays of Functions

The value of an array element can be a lambda expression. Thus, if the assignment \(f[1]:=\text{lambda}([x],x^2+1) \); were performed, then \(f[1] \) could be used in the ordinary prefix functional sense
with its arguments following in parentheses. For example, \(f[1] (3) = 10 \). An alternative syntax is available for assigning a lambda expression to an array. Functions defined in this way are called subscripted functions.

In the example above, you also could have typed \(f[1] (x) := x^2 + 1 \). This would be equivalent to the assignment \(f[1] := \text{lambda}([x], x^2 + 1) \). Other elements of the array could be assigned different lambda expressions or any valid expressions. If there is an algorithm for computing the different functions to be stored in an array on the basis of the subscripts alone, then you can use an associated function, such as \(f[k] := \text{lambda}([x], x^k + 1) \). An alternative syntax is \(f[k] (x) := x^k + 1 \). The left side of the definition consists of the function name, followed by the subscripts, enclosed in brackets, followed by the arguments, enclosed in parentheses. The subscripts are not evaluated at definition time.

Note: Subscripted functions are treated exactly like arrays, so all of the information in Section 16.6 applies.

When a subscripted function is referenced, if it exists, the element is immediately retrieved and applied to its arguments. Otherwise, it is computed, this time only, and then applied to its arguments. Consequently, two evaluations of the definition are performed. Consider the definition \(f[k] (e) := \text{coeff}(e, x, k) \) and the call \(f[2] (3 * x^2 - 1) \). Although you may have thought that this would return 3, the coefficient of \(x^2 \) in \(3 * x^2 - 1 \), it returns 0. The reason is that \(f[2] \) is first computed by evaluating the definition yielding 0, since \(e \) has not been bound at this time.

Note: \(f[k] (e) := \text{subst}(k, 'j', (\text{coeff}(e, x, j))) \) would return the desired result as would \(f(k, e) := \text{coeff}(e, x, k) \). It is important to understand the distinction between subscripted functions (a type of array) and ordinary functions.

Except in special circumstances, you should use \texttt{kill} or \texttt{unarray} on an array name before redefining its array function so that “stale” data (computed and stored by the old definition) does not continue to be used if it is not desired.

The system variable \texttt{arrays} (default: []) also includes subscripted functions. See page 423.

The function \texttt{arrayinfo} can also be used on subscripted functions. See Section 13.1.1, page 364.

Examples

(c1) \(t[n](x) := \text{ratsimp}(2 * x * t[n-1](x) - t[n-2](x)) \)

This generates the Chebyshev polynomials.

(c2) \(t[0](x) := 1 \)

(c3) \(t[1](x) := x \)

(c4) \(t[4](y) ; \)

(d4) \[4 \]

\[\begin{array}{c}
\[2 \]
\[8 y - 8 y + 1 \]
\end{array} \]

(c5) \(g[n](x) := \text{sum}(\text{ev}(x), i, n, n+2) \)

(c6) \(h(n, x) := \text{sum}(\text{ev}(x), i, n, n+2) \)

(c7) \(g[2](i^2) ; \)

(d7) \[2 \]

\[\begin{array}{c}
\[3 i \]
\end{array} \]

(c8) \(h(2, i^2) ; \)

(d8) \[29 \]

The following illustrates a definition for the Legendre polynomials.

(c9) \(p[n](x) := \text{ratsimp}(1/(2^n * n!) * \text{diff}((x^2 - 1)^n, x, n)) \)

(c10) \(q(n, x) := \text{ratsimp}(1/(2^n * n!) * \text{diff}((x^2 - 1)^n, x, n)) \)

(c11) \(p[2] ; \)

(d11) \[2 \]

\[\begin{array}{c}
\[3 x - 1 \]
\end{array} \]

\[\text{lambda}([x], \ldots) \]

\[2 \]
11.3 Functions That Do Not Evaluate All Arguments

It is possible to define new functions that do not evaluate or simplify some of their arguments at the time the function is called. This is done by using a single quote (') in the parameter list of the function definition. For example, suppose \(a \) is assigned the value 2:

\[
\begin{align*}
(c1) \quad & a := 2; \\
(d1) \quad & a \\
\end{align*}
\]

\[
\begin{align*}
& \text{\begin{example}} \\
& (c2) \quad f(x) := \text{print}(x, "has value", \text{ev}(x)) \\
& (c3) \quad f(a); \\
& \text{\end{example}} \\
\text{\begin{goodbreak}} \\
& \text{\begin{example}} \\
& (c4) \quad f(x, y) := x + y \\
& (c5) \quad f(a, a); \\
& \text{\end{example}} \\
\text{\end{goodbreak}} \\
\begin{align*}
& \text{\begin{example}} \\
& (c6) \quad f(x) := \text{block([simp: false], print(\text{ev}(x)))} \\
& (c7) \quad f(a + a); \\
& \text{\end{example}} \\
\end{align*}
\]

\[
\begin{align*}
& \text{\begin{goodbreak}} \\
& (d3) \quad a \text{ has value } 2 \\
& (d5) \quad a + 2 \\
\end{align*}
\]

\[
\begin{align*}
& \text{\begin{example}} \\
& (c6) \quad f(x) := \text{block([simp: false], print(\text{ev}(x)))} \\
& (c7) \quad f(a + a); \\
& \text{\end{example}} \\
\end{align*}
\]

\[
\begin{align*}
& \text{\begin{goodbreak}} \\
& (d7) \quad 4 \\
\end{align*}
\]

Note: The syntax \(f(x, ['1]) := \ldots \) also works. You cannot translate or trace such function definitions. The above scheme does not work for array function definitions. Working with expressions which have not been evaluated or simplified can lead to difficulties, and care should be taken. In particular, the use of \text{ev} inside such function definitions can have unpredictable results.

11.4 Using Functions as Arguments

To pass a function as an argument to another function, you need only give its name in the argument list of the call. It can then be used in the called function by following the name of the corresponding formal parameter with a parenthesized list of arguments. Subscripted functions are passed by giving the name followed by the subscripts in brackets. See Section 11.2, page 341. Arrays can be passed by giving the name of the array in the argument list, and they can be referenced by subscripting the corresponding formal parameter.

In situations where the name of the function is known, it is best to precede the name with a single quote to avoid potential confusion with any variables which might have the same name. See Section 9.2, page 314.
To assign a value to a formal parameter of a function so that the corresponding actual parameter gets changed, and remains changed, when the function is exited, the operator :: rather than the operator := can be used. Such usages are discouraged, however, because the assignment will take place in the environment of the program and not in the environment of the caller. Generally, in this situation, macros would work better. See Section 17.5, page 441.

Examples

(c1) f(x) := x::2
(c2) f('a);
(d2) 2
(c3) a;
(d3) 2
(c4) f[i,j](x,y):=x"i + y";
(d4)
 f (x, y) := x + y
 i, j
(c5) g(fun, arg1, arg2)::=print(fun, "applied to", arg1,"and", arg2, "is", fun(arg1, arg2))$
(c6) g(f[2,1],sin(2%pi),2*a);
 2
Lambda([x,y],y+x) applied to 0 and 2 a is 2 a
(d6) 2 a

apply(function, arglist)

Returns the result of applying the function to the arglist, where function is a function, special form, lambda expression, or operator (e.g. "+"), and arglist is a list of arguments to function.

The special form apply is useful in the following situations:

1. When an extra evaluation of the arguments to a function (or special form) is desired. Example:

 (c1) g(x):=h(x);
 (d1) g(x) := h(x)
 If we now trace g, we can see how evaluation is controlled.
 (c2) trace(g);
 (d2) [g]
 (c3) tellsimp(f1(x),g(x));
 (d3) [f1rule1, false]
 (c4) f1(x);
 (d4) h(x)
 (c5) apply('tellsimp,[f2(x),g(x)]);
 (d5) [f2rule1, false]
 (c6) f2(x);
 (d6) h(x)
 (c7) disprule(all);
 (e7) f1rule1 : f1(x) -> g(x)
 (e8) f2rule1 : f2(x) -> h(x)

2. For convenience, when the arguments to a function are already available in the form of a list:

 (c1) l:=[1,5,8,3];
 (d1) [1, 5, 8, 3]
 (c2) max(l);
 (d2) [1, 5, 8, 3]
 (c3) apply('max,l);
 (d3) 8
3. For convenience, when applying an n-ary operator to a list of arguments. For example, the mean of a list of numbers is defined by:

\[(c16) \text{mean}([1]) := \text{apply}("+", l)/\text{length}(l);\]
\[(d16) \text{mean}(1) := \text{-------}
\text{length}(l)\]

\[(c17) \text{mean}(1,3,5,7);\]
\[(d17) 4\]

In general, the first argument to \texttt{apply} should be preceded by a ' to make it evaluate to itself. Since some symbols have the same name as certain functions, the value of the variable would be used rather than the function, because both arguments of \texttt{apply} are evaluated.

\[\text{infapply}(\text{fun}, \text{expr})\]
\[\text{Function}\]

Keeps applying the function \texttt{fun} to the expression \texttt{expr} until it stops changing. For example, \texttt{infapply(ratsimp, expr)\}; gives the same answer as \texttt{fullratsimp(expr)\}; .

Or, \texttt{infapply(halfangles, expr)\}; gives the same answer as \texttt{ev(expr, halfangles)\}; .

\[\text{Example}\]
\[(c1) \text{infapply('sqrtdenest, (408*sqrt(2)+577)^((1/24)));}\]
\[(d1) (12 sqrt(2) + 17)\]

\[(c2) \text{infapply('sqrtdenest, (408*sqrt(2)+577)^((1/24));}\]
\[(d2) (sqrt(2) + 1)\]

\[\text{funmake(function, [arg_1, ..., arg_n])}\]
\[\text{Function}\]

Returns \texttt{function(arg_1, ..., arg_n)} without calling the function \texttt{function}. The \texttt{arg_i} are evaluated at definition time without applying the function \texttt{function}.

Enter the command \texttt{example(funmake)}; to see how \texttt{funmake} can be used.

11.5 Mapping Functions over Arguments

\[\text{map(function, exp_1, ..., exp_n)}\]
\[\text{Function}\]

Returns an expression whose leading operator is the same as that of the \texttt{exp_i} but whose subparts are the results of applying \texttt{function} to the corresponding subparts of the \texttt{exp_i}. The parameter \texttt{function} is either the name of a function that can take \texttt{n} arguments, where \texttt{n} is the number of \texttt{exp_i}, or is a lambda form that can take \texttt{n} arguments. The function \texttt{map} is affected by the setting of \texttt{inflag}. See Section 10.2.1, page 325.

One of the uses of this function is to \texttt{map} a function, for example, \texttt{partfrac}, onto each term of a very large expression where it would be inefficient to use the function on the entire expression due to the requirement for large amounts of list storage space in the course of the computation.

\[\text{Examples}\]
\[(c1) \text{map}(f, x+a*y+b*z);\]
\[(d1) \text{--- + --- + ---} + x\]
\[(c2) \text{map(lambda ([u], partfrac(u, x)), x+1/(x^3+4*x^2+5*x+2));}\]
\[(d2) \frac{1}{x + 2} + \frac{1}{x + 1} + \frac{2}{(x + 1)}\]
(c3) map(ratsimp, x/(x^2+x)+(y^2+y)/y);
 1
(d3) y + ---- + 1
 x + 1
(c4) map("=",[a,b],[-0.5,3]);
(d4) [a = - 0.5, b = 3]

maperror
default: true

Option Variable

Controls the behavior of the mapping functions as follows:

1. If *false*, they stop when they finish going down the shortest `exp_i` if not all of the `exp_i` are of the same length. The message **MAP is truncating**. is then printed. If **maperror** is **true**, then Macsyma signals the error **Arguments to MAP are not of the same length**.

2. If *false*, they **apply** the first argument of the mapping function, `function` to the list of the other arguments, `[exp_1, ..., exp_n]` if the `exp_i` are not all the same type of object. The message **MAP is doing an APPLY**. is then displayed. If **maperror** is **true**, then Macsyma signals the error: **Arguments to MAP not uniform - cannot map**.

A **mapatom** is either an atom, a rational number, or a subscripted variable.

mapatom(expr)

Function

Returns **true** if, and only if, `expr` is a **mapatom**.

maplist(function, exp_1, ..., exp_n)

Function

Returns a list of the applications of `function` to the parts of the `exp_i`. This differs from `map(function, exp_1, ..., exp_n)` which returns an expression with the same main operator as `exp_i`, except for simplifications and the case where **map** does an **apply**. See Section 11.5, page 346. The parameter `function` is either the name of a function that can take `n` arguments, where `n` is the number of `exp_i` or a **lambda** form that can take `n` arguments. The function **maplist** is affected by the setting of **inflag**. See Section 10.2.1, page 325.

fullmap(function, exp_1, ..., exp_n)

Function

The function **fullmap** is similar to **map**, but this function maps over all subexpressions until the main operators of the `exp_i` (if there are more than one) are no longer the same or until mapatoms are met. See Section 11.5, page 346.

The function **fullmap** is used by the simplifier for certain matrix manipulations. Thus, you might see an error message concerning **fullmap**, even though you do not explicitly call it. The function **fullmap** is affected by the setting of **inflag**. See Section 10.2.1, page 325.

Example

(c1) a+b*c;
(d1) b c + a
(c2) fullmap(g, %);
(d2) g(b) g(c) + g(a)
(c3) map(g,d1);
(d3) g(b c) + g(a)

fullmapl(function, list_1, ..., list_n)

Function

Is similar to **fullmap**, but this function maps only onto lists and matrices.

Example

(c1) fullmapl("*",[3,[4,5]],[[a,1],[0,-1.5]]);
(d1) [[a + 3, 4], [4, 3.5]]
outermap(function, list1, ..., listn)

Function

A generalization of fullmapl, which maps over lists and matrices. With just two arguments, it is the same as fullmapl. With more than two arguments, if at least one of its latter arguments is a list or matrix, then it forms the Cartesian (or outer) product of list1 through listn, and maps function onto each element of the product.

(c1) fullmapl("n", [a, b], [1, 2]);
(d1) [a = 1, b = 2]
(c2) outermap("n", [a, b], [1, 2]);
(d2) [[a = 1, a = 2], [b = 1, b = 2]]
(c3) outermap(f, [a, b], c+d);
(d3) [f(a, d + c), f(b, d + c)]
(c4) outermap(f, a+b, [c, d]);
(d4) [f(b + a, c), f(b + a, d)]

scanmap(function, exp)

Function

Recursively applies function to exp in a “top-down” manner. For example, this can be useful in conjunction with the factor function to achieve a “complete” factorization.

Example

(c1) exp: (a^2+2*a+1)*y + x^2$
(d2) scanmap(factor, exp);

Note: The way in which scanmap applies the given function factor to the constituent subexpressions of exp. If another form of exp is presented to scanmap, then the result may be different. Thus, (d2) is not recovered when scanmap is applied to the expanded form of exp:

(c3) scanmap(factor, expand(exp));
(d3) a y + 2 a y + y + x

Here is another example of the way in which scanmap recursively applies a given function to all subexpressions, including exponents:

(c4) expr: u*v*(a*x+b) + c$
(c5) scanmap('f, expr);
(f(f(f(a) f(x)) + f(b))
(d5) f(f(f(u) f(f (v)) + f(c))

The function scanmap also accepts a keyword bottomup.

bottomup

Keyword for: scanmap

Evaluating scanmap(function, exp, bottomup); applies function to exp in a bottom-up manner. For undefined function, this is equivalent to scanmap(function, exp), but for specified functions, the results may differ:

Example

(c1) scanmap('gcfactor, x^2+1);
1
(d1) ----------------- + 1
2
%1 (1 %1 + 1)
%2 x
(c2) \texttt{scanmap('gcfactor, x^2+1, bottomup)};
\begin{align*}
\text{2} & \\
\%i (\%i + 1) & \\
\text{x} & + 1
\end{align*}

(d2)
\begin{align*}
\text{2} & \\
\%i (\%i + 1) & \\
\text{x}
\end{align*}
Chapter 12

Displaying and Ordering Functions

This chapter describes the many functions you can use to modify how Macsyma displays expressions and other items, as well as functions for ordering expressions. See also the *Macsyma Graphics and User Interface Manual* for information about the option variables which control Macsyma’s fancy display of mathematical expressions.

12.1 Functions for Display

12.1.1 General Display Commands

disp(\(exp_1, \ldots, exp_n\))

Function

Displays the value of each expression \(exp_i\) centered on the line. This function is useful in blocks and *for* statements to display intermediate results. The arguments to *disp* are usually atoms, subscripted variables, or function calls. Use *display*, described on page 349, to display values in an equation format. Use *ldisplay* or *ldisp* if the intermediate line labels are needed.

ldisp(\(exp_1, \ldots, exp_n\))

Function

Displays the value of each expression \(exp_i\) centered on the line. Each expression is assigned an intermediate label, which is added to the *labels* list. This function is useful in blocks and *for* statements to display intermediate results. Unlike *disp*, it also provides a means of accessing the results, since they are the values of the intermediate line labels generated during *ldisp*. The arguments to *ldisp* are usually atoms, subscripted variables, or function calls. Use *ldisplay*, described on page 350, to display values in an equation format. Use *display* or *disp* if the intermediate line labels are not needed. See also *lpart*, page 323.

display(\('exp_1, \ldots, 'exp_n\))

Special Form

Displays equations whose left side is *expr* unevaluated, and whose right side is the value of the expression. This function is useful in blocks and *for* statements to display intermediate results. The arguments to *display* are usually atoms, subscripted variables, or function calls. Use *disp*, described on page 349, to display values only, without the equation format provided by *display*.

(c1) b[1,2]:=x-x^2$
(c2) display(b[1,2]);
2
b = x - x
1, 2
(d2) done
ldisplay('exp', ..., 'expn')

Special Form

Displays equations whose left side is \(\text{exp} \) unevaluated, and whose right side is the value of the expression centered on the line. Each equation is assigned an intermediate label, which is added to the labels list. This function is useful in blocks and for statements to display intermediate results. Unlike display, it also provides a means of accessing the results, since they are the values of the intermediate line labels generated during ldisplay. The arguments to ldisplay are usually atoms or subscripted variables. Use ldisp, described below, to display values only, without the equation format provided by ldisplay. Use disp or display if the intermediate line labels are not needed.

leftjust default: false

Option Variable

If true, this option causes expressions to be displayed left-justified, rather than centered.

dispterms(exp)

Function

Displays its argument in parts one below the other. That is, first the operator of exp is displayed; then each term in a sum, or factor in a product, or part of a more general expression is displayed separately. This is useful if exp is too large to be otherwise displayed. For example, if \(p_1, p_2, \ldots, p_n \) are very large expressions, then the display program may run out of storage space in trying to display \(p_1 + p_2 + \ldots + p_n \) all at once. However, dispterms\((p_1 + p_2 + \ldots + p_n)\); displays \(p_1 \); then below it displays successive expressions.

reveal(exp, depth)

Function

Displays \(\text{exp} \) to the specified integer depth with the length of each part indicated. Sums are displayed as \(\text{sum}(n) \) and products as \(\text{product}(n) \) where \(n \) is the number of subparts of the sum or product. Exponentials are displayed as \(\text{expt} \). Negative terms are displayed as \(\text{negterm} \). reveal is affected by the setting of inflag. See Section 10.2.1, page 325.

Examples
(c1) integrate\((1/(x^3+2),x)\);
\[
\begin{array}{c}
1/3 \\
2 x - 2 \\
\text{atan}(-) \\
2 & 1/3 \\
\text{log}(x - 2) & 2 & \text{sqrt}(3) \\
\text{atan}(---) & \text{log}(x + 2) & 1/3 \\
\text{log}(x - 2) + \text{sqrt}(3) & 2 & 3/2 \\
\text{atan} & \text{log} \\
\text{log}(x + 2) & 2 & \text{sqrt}(3) \\
\text{atan}(---) & 3 & 2 \\
\end{array}
\]

(d1) reveal(%,2);
\(\text{negterm} + \text{quotient} + \text{quotient} \)

(c2) reveal(%,3);

(d2) reveal(d1,3);
\(\text{atan} + \text{log} \)

(c3) reveal(d1,3);

(d3) - \text{quotient} + \text{product}(2) + \text{product}(2)

string(exp)

Function

Converts \(\text{exp} \) to a string in the form of the input syntax for the given expression. If grind is true, the resulting string may contain line breaks to make the expression more readable.

grind(exp)

Function

Displays \(\text{exp} \) in a more readable format than the function string. It returns done as its value. See string function, page 350.

grind default: false

Option Variable

If true, this option variable causes string, stringout, and playback to use grind mode instead of string mode. Grind mode displays forms with indentation of multiple lines in a very readable format.
12.1. FUNCTIONS FOR DISPLAY

String mode displays forms as character strings. For **playback**, grind mode can also be turned on for processing input lines by specifying **grind** as an option variable.

print(*expr1*, ..., *exprn*)

Function

Evaluates and displays its arguments, one after the other, “on a line” starting at the leftmost position. If *expri* is unbound, preceded by a single quote, or enclosed in double quotes, then it is displayed literally. For example, `print("The value of x is ", x);` The value returned by **print** is the value of its last argument. No intermediate lines are generated.

cursordisp default: true

Option Variable

If **true**, this option variable causes expressions to be drawn by the displayer in logical sequence. This only works with a console which can do cursor movement. If **false**, expressions are simply displayed line by line. **cursordisp** is **false** when a **writefile** is in effect.

playback(*'arg1*', ..., *'argn'*)

Special Form

Redisplays input and output lines. **playback** accepts a number of keywords and keyword forms for arguments, as described below.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>n, an integer</td>
<td>The last n expressions are played back. Input, intermediate, and output lines count as one each.</td>
</tr>
<tr>
<td>all or no argument</td>
<td>All lines are played back.</td>
</tr>
<tr>
<td>input</td>
<td>All input lines are played back.</td>
</tr>
<tr>
<td>output</td>
<td>All output lines are played back.</td>
</tr>
<tr>
<td>[m, n]</td>
<td>All lines with numbers from m to n inclusive are played back. If m = n then m is sufficient for arg.</td>
</tr>
<tr>
<td>slow</td>
<td>playback uses a slow mode similar to demo, as opposed to the fast batch. After each line is displayed, playback waits for you to type a space, which allows time for examination of the display. See Section 19.3.1, page 467. This is useful in conjunction with save or stringout when creating a secondary-storage file in order to pick out useful expressions.</td>
</tr>
<tr>
<td>time</td>
<td>The computation times as well as the expressions are displayed.</td>
</tr>
<tr>
<td>gctime or totaltime</td>
<td>A complete breakdown of computation times is displayed, as with showtime:all;: See Section 18.3, page 453.</td>
</tr>
<tr>
<td>nostring</td>
<td>Causes playback to use output display for all input lines when playing back rather than stringing them.</td>
</tr>
<tr>
<td>grind</td>
<td>playback displays a more readable format. The same effect can be achieved by executing grind:true;:</td>
</tr>
</tbody>
</table>

For example, to redisplay in a slow mode lines labeled (c5) through (d10) and (c80) through (c100) (the last 20 lines), along with the computational time for each expression, you would type:

```lisp
(c100) playback([5,10],20,time,slow);
```
Setting the option variable `pause_promise` affects the prompt used in slow mode. See page 13.

`display2d default: true`
Option Variable

If set to `false`, this option variable causes the standard display to be a string (1-dimensional) form rather than a display (two-dimensional) form. This is useful if you want to conserve paper on printing consoles.

`linedisp default: true`
Option Variable

Enables line graphics in drawing equations on those systems which support them. This can be disabled by setting `linedisp` to `false`. It is automatically disabled during `writefile`.

`stardisp default: false`
Option Variable

If `true`, this option variable causes multiplication to be displayed explicitly with an asterisk between operands.

`pfeformat default: false`
Option Variable

If `true`, this option variable causes rational numbers to display in a linear form and denominators which are integers to display as rational number multipliers.

`noundisp default: false`
Option Variable

If `true`, this option variable causes nouns to display with a single quote. This option variable is always `true` when displaying function definitions.

`linenum default: 1`
Option Variable

Displays the line number of the last expression.

`linel default: 78`
Option Variable

This option variable sets the length (in characters) of the displayed line on the screen. It is also useful for plotting. The option variable `linel` has no effect when `fancy_display` is `true`. See Section 12.2.

`display_case default: reverse_case`
Option Variable

Controls the case of Macsyma output display.

There are four possible settings: `reverse_case`, `lower_case`, `upper_case`, and `initial_caps`.

The value `reverse_case` causes all Macsyma output symbols to appear in lower case, except that any symbol preceeded by a backslash (`\`) has its case reversed.

The value `lower_case` causes all Macsyma output symbols to appear in lower case letters.

The value `upper_case` causes all Macsyma output symbols to appear in upper case letters. The name `upper_case` is to some extent a misnomer, since upper case is the normal case for standard Common Lisp applications. No case change actually occurs in this situation. Therefore, it is the only setting that truly supports mixed case output, for example, when you type `alias(e,%E)`.

The value `initial_caps` causes all Macsyma output symbols to appear with the first letter of each word (and the first letter after each underscore `_`) to appear in upper case, and all other letters to appear in lower case.

The function `display_case` affects display only. It cannot affect linearizations (e.g. `string` or `medit` or the linearized parts of mouse presentations) because these objects have multiple purposes and may be used in further machine processing which may produce an error if you modify their case. Do `example(display_case)`; to see an executable example of `display_case`.

`set_font(font)`
Function

This function is available only on the Symbolics Lisp Machine. It changes the font for the current window to `font`. The default is `cptfont`, the standard size font. Other possible choices are: `bigfnt` (large
font), \emph{medfnt} (medium font, which is slightly larger than the standard size), and \emph{tvfont} (the smallest font).

See \texttt{fancy_font_name}, page 356 and \texttt{fancy_font_size}, page 356 to obtain similar functionality on other versions of Macsyma.

12.1.2 Display of Functions and Rules

\texttt{dispfun('fcn_1, \ldots, 'fcn_n)} \hspace{1cm} \textit{Special Form}

Returns the definitions of the user defined functions. $\texttt{fcn_1, \ldots, fcn_n}$ can also be the names of array associated functions, subscripted functions, or functions with constant subscripts, which are the same as those used when the functions were defined. \texttt{dispfun(all)}; returns all user defined functions as given on the infolists \emph{functions} and \emph{arrays} except subscripted functions with constant subscripts. For example, if you have defined a function $f(x)$, then \texttt{dispfun(f)}; displays the definition. See Section 11.1.1, page 339 and see Section 16.6, page 420.

Note: If more than one function has been defined with the same name (such as $f(x)$ and $f[n](x)$), then \texttt{dispfun} will only return one of them. However, each can be accessed separately by being fully specified, or all functions can be returned with \texttt{dispfun(all)};.

\texttt{fundef('function_name)} \hspace{1cm} \textit{Special Form}

Returns the function definition of \emph{function_name}. \texttt{fundef(function_name)}; is similar to \texttt{dispfun(function_name)}; except that \texttt{fundef} does not make use of intermediate \texttt{E-LINES}.

\texttt{disprule('rulename_1, \ldots, 'rulename_n)} \hspace{1cm} \textit{Special Form}

Returns the rules with the names \emph{rulename_1, \ldots, rulename_n} given by \texttt{defrule}, \texttt{tellsimp}, or \texttt{tellsimpafter}, or a pattern defined by \texttt{defmatch}. (See Section 14.1.2, page 386 for an explanation of rule names.) \texttt{disprule(all)}; returns all rules.

12.1.3 Display of Particular Mathematical Expressions

\texttt{absboxchar default: !} \hspace{1cm} \textit{Option Variable}

Is the character used to draw absolute value signs around expressions which are more than a single line high.

\texttt{expt(base, exponent)} \hspace{1cm} \textit{Function}

If an exponential expression is too wide to be displayed as a^b, it appears as $\texttt{expt}(a, b)$, unless display is being done by \texttt{dispterms} and ^ is the leading operator. In that case, \texttt{dispterms} displays the leading operator, the \emph{base}, and the \emph{exponent} on separate lines.

\texttt{ncexpt(base, exponent)} \hspace{1cm} \textit{Function}

If a noncommutative exponential expression is too wide to be displayed as a^b, it appears as $\texttt{ncexpt}(a, b)$; unless display is being done by \texttt{dispterms}, and "" is the leading operator. In that case, \texttt{dispterms} displays the leading operator, the \emph{base}, and the \emph{exponent} on separate lines.

\texttt{bftrunc default: true} \hspace{1cm} \textit{Option Variable}

This option variable causes trailing zeroes in nonzero bigfloat numbers not to be displayed. Thus, if \texttt{bftrunc: false, bfloat(1)}; displays as $1.00000000000000b0$ when \texttt{bfprecision} is 16. Otherwise, this is displayed as $1.0b0$. See \texttt{float_print_digits_after_point}, page 24.
The `trunc` function causes `exp`, which is in general representation, to be displayed as if its sums are truncated Taylor series.

Example

- (c1) `exp1:x^2+x+1;
- (d1) `2 x + x + 1`
- (c2) `exp2:trunc(x^2+x+1);
- (d2) `1 + x + x + . . .`
- (c2) `is(exp1=exp2);`
- (d3) `true`

The `dispflag` option variable inhibits the display of output generated by `solve` with `programmode: false`. See Section 5.7.4, page 130 for detailed information on `solve`; see Section 15.3, page 404 for `block`. Another function similarly affected is `isolate`, which is also described Section 5.5.4, page 109.

Terminating a command line with a dollar sign ($) sets `dispflag` to `false`. Terminating a command line with a semicolon (;) sets `dispflag` to `true`.

The `powerdisp` option variable causes sums to be displayed with their terms in the reverse order. Thus polynomials display as truncated power series, with the lowest power first.

The `exptdisp` option variable of Macsyma displays expressions with negative exponents using quotients. For example, \(x^{-1} \) appears as \(\frac{1}{x} \).

The `negsumdisp` option variable displays \(x - y \) instead of \(-y + x \). Setting it to `false` inhibits the special check in display for the difference of two expressions. One application of the `false` setting is in the display of \(a + \frac{1}{b} \) and \(a - \frac{1}{b} \), which are displayed as \(\frac{1}{b} + a \) and \(\frac{1}{b} - a \) under the `true` setting, and as \(\frac{1}{b} a \) and \(-\frac{1}{b} a \) under the `false` setting.

The `%e dispflag` option variable displays \(%e \) to a negative exponent as a quotient. For example, \(%e^{-x} \) appears as \(\frac{1}{%e^x} \).

The `sqrt dispflag` option variable of Macsyma displays `sqrt` with exponent 1/2.

12.1.4 Displaying the Internal Structure of Expressions

The `display_format_internal default: display_format_internal` option variable causes expressions to be displayed without being transformed in ways that hide the internal mathematical representation. The display then corresponds to what `inpart` returns rather than what `part` returns. The first column in Table 12.1 below corresponds to user input. The remaining two columns are the `part` format and `inpart` format. See also `part`, `inpart`, `substpart`, and `substinpart`.

trunc(exp)

Function

Causes `exp`, which is in general representation, to be displayed as if its sums are truncated Taylor series.

Example

```
(c1) exp1:x^2+x+1;
2
(d1) x + x + 1
(c2) exp2:trunc(x^2+x+1);
2
(d2) 1 + x + x + . . .
(c2) is(exp1=exp2);
(d3) true
```
Table 12.1: The Effect of display_format_internal on part and inpart

<table>
<thead>
<tr>
<th>User part inpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-bx a-b a+(-1)b</td>
</tr>
<tr>
<td>a/bx a b⁻¹</td>
</tr>
<tr>
<td>sqrt(x); x¹/₂</td>
</tr>
<tr>
<td>x⁴/₃ ⁴/x</td>
</tr>
</tbody>
</table>

12.1.5 Aliases for Names of Macsyma Objects

```
alias('newname1, 'oldname1, ..., 'newnamen, 'oldnamen)  Special Form
```

Provides an alternate name for a (user or system) function, variable, array, etc. Any even number of arguments can be used. Nouns are handled via aliases. The special form alias adds the newname to the list aliases, described below. It also adds an alias property to the oldname. To remove an alias, type remove(oldname, alias); See Section 13.1.1, page 361. The special form alias does not evaluate its arguments.

Note: Aliases are handled during parsing and displaying.

```
aliases System Variable
```

Lists all aliases currently in effect. The variable aliases is one of the infolist. See Section 13.1.1, page 361.

12.2 Macsyma’s Fancy Display Facility

Macsyma’s fancy display facility provides the drawn math symbols (such as integral, summation, product, and radical signs), smaller sized exponents and subscripts, appropriately sized parentheses, Greek letters, and other display features which do not use fixed width and height ascii text.

```
fancy_display default: true  Option Variable
```

If true, then screen output is in fancy display mode. If false, then screen output is in ASCII text mode using a fixed width font.

Fancy display mode enables Macsyma to draw symbols for integral signs, summation signs, product signs, radical signs, %e, %pi, and Greek letters. Exponents, superscripts and subscripts appear at half-height and in a reduced size. The display makes decisions about when to break long lines and when to scroll horizontally. Users are able to choose which font to use from among those installed in the window system. Many other display features are included in this display mode.

To enter a Greek letter into Macsyma, simply enter the name of the letter, and its symbol will be displayed. This system will display all letters except for omicron and pi. You can enter capital Greek letters by entering the capital name of the letter. See also display_case, page 352

```
(c1) alpha;
(d1) α
(c2) beta;
(d2) β
```
Enter the command `example(fancy_display)`; to see an example of Macsyma’s display features.

fancy_writefile default: false

If true, then `writefile` output is in fancy display mode. If false, then `writefile` output is in ASCII text mode using a fixed width font. It defaults to true for Macsyma 419 and successors.

fancy_font_name default: Times New Roman

This variable holds the name of the font used for fancy display mode. Any font which is installed in the windows system can be used for fancy display. The default value may vary across versions of Macsyma.

fancy_font_size default: 15

The point size of the font used in fancy display mode. The default value may vary across versions of Macsyma.

fancy_width default: 0

The width of the fancy display output, expressed in pixels. This number is used to determine where to break long lines. When it is set to zero, the line-breaking software uses its estimate of the width of the screen to decide where to line-break. The option variable `linel` performs this function for non-fancy display.

12.3 Functions for Ordering

Besides declaring a variable to be constant, or using option variables like `powerdisp` (see page 354), the only other way you can alter the ordering of parts of an expression is to set up special aliases for variables which cause them to be alphabetically less than or greater than any other variables. Functions that do this are described below. This technique requires care because, although the names have been aliased, they display with their original name. Aside from the input/output phase, the two names represent two different symbols, and thus expressions which contain both the original name and the alias are not simplified as you might desire.

The complete ordering scale, from least to most important is:

- Numbers.
- Numerical constants.
- Declared constants.
- Scalars.
- First argument to `orderless`.
- Last argument to `orderless`.
• Variables beginning with A.
• Variables beginning with Z.
• Last argument to ordergreat.
• First argument to ordergreat.
• Declared mainvars. See Section 13.1.4, page 373.

ordergreat(`'var1, ... , 'varn`) \textit{Special Form}

Sets up aliases for the variables \(var_1, \ldots, var_n \) such that \(var_1 > var_2 > \ldots > var_n > \) any other variable not mentioned as an argument.

Once you have called **orderless** or **ordergreat**, subsequent calls to **orderless** or **ordergreat** signal errors, accompanied by the message \textit{Reordering is not allowed}. An intervening call to **unorder** is necessary before you can use **orderless** or **ordergreat** again.

orderless(`'var1, ... , 'varn`) \textit{Special Form}

Sets up aliases for the variables \(var_1, \ldots, var_n \) such that \(var_1 < var_2 < \ldots < var_n < \) any other variable not mentioned as an argument.

Once you have called **orderless** or **ordergreat**, subsequent calls to **orderless** or **ordergreat** signal errors, accompanied by the message \textit{Reordering is not allowed}. An intervening call to **unorder** is necessary before you can use **orderless** or **ordergreat** again.

Note: The functions **ordergreat** and **orderless** do not affect the mathematical comparisons “<” and “>”, only the ordering predicates **ordergreatp** and **orderlessp**. The ordering is cancelled by **unorder**.

unorder() \textit{Function}

Holds the aliasing created by the last use of the ordering functions **ordergreat** or **orderless**. **ordergreat** and **orderless** may not be used more than one time each without calling **unorder**.

Example

(c1) \(a^2 + b x \);

(d1) \(b x + a \)

(c2) \textbf{ordergreat}(a);

(d2) \textbf{done}

(c3) \(a^2 + b x \);

(d3) \(a + b x \)

(c4) \%-d1;

(d4) \(a - a \)

(c5) \textbf{unorder}();

(d5) \([a]\)

ordergreatp(\(exp_1, exp_2 \)) \textit{Function}

Returns \textbf{true} if \(exp_2 \) precedes \(exp_1 \) in the ordering induced by the variable ordering described above.

orderlessp(\(exp_1, exp_2 \)) \textit{Function}

Returns \textbf{true} if \(exp_1 \) precedes \(exp_2 \) in the ordering induced by the variable ordering described above.
sort(list, optional, predicate)

Function

Returns a new, reordered list in a form such that \(\text{pred}(\text{list}[i], \text{list}[j]) = \text{true} \) for all \(1 \leq i \leq j < \text{length}(\text{list}) \).

The function sort uses a suitable optional-predicate of two arguments such as “<” or orderlessp. If the optional-predicate is not given, then sort uses a built-in ordering predicate equivalent to orderlessp.

Example

(c1) sort([3, 6, 2, 8], "<");
(d1) [2, 3, 6, 8]
Chapter 13

Declaring and Using Information in the Macsyma Database

This chapter covers Macsyma’s database for storing and using a wide variety of information about objects. The information in the database enables Macsyma to give you more correct results and to include in computations, more information than is contained in ordinary algebraic expressions.

Information stored in the Macsyma database is of two types: properties of objects, and relations between objects. Consider the following examples:

```
(c1) (-1)^n;
   n
(d1) (-1)
(c2) declare (n, odd)$
(c3) (-1)^n;
(d3) -1
(c4) properties(n);
(d4) [Database info, kind, (n, odd)]
(c5) remove(n, odd)$
(c6) properties(n);
(d6) □
```

In the example above, `odd` is a property of the variable `n`. Properties of objects in Macsyma are called `features` of the objects. A feature is a fact about an object and can be considered to be a predicate of one argument.

```
(c1) sqrt(x^2);
(d1) |x|
(c2) assume(x<0)$
(c3) sqrt(x^2);
(d3) -x
(c4) facts(x);
(d4) [x<0]
(c5) forget(x<0)$
(c6) facts(x);
(d6) □
```

The above example illustrates a relationship between objects. The statement `x<0` is a relation between the variable `x` and the number 0. The relation is stated in the form of a predicate (such as `x<0`), which is a statement you assert to Macsyma to be true.

Functions and option variables for defining and using `properties`, both mathematical and nonmathematical, are described in Section 13.1. Tools for treating `relations` between objects are described in Section 13.2.
13.1 Manipulating Properties of Atomic Variables

The functions in this section are used to manipulate properties of atomic variables.

- Property specification functions install information into the Macsyma database for later use.
- Property retrieval functions retrieve information from the database for display or for use in a computation.
- Property removal functions remove information from the database.

Macsyma has three systems for manipulating three types of properties of atomic variables.

- System properties with Boolean values.
- System properties with general values.
- User-defined properties with general values.

Table 13.1 summarizes the command names for manipulating these three types of properties and relational information in the database.

<table>
<thead>
<tr>
<th>System Property with a Boolean Value</th>
<th>System Property with a General Value</th>
<th>User-Defined Property</th>
<th>Relational Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>declare(var,prop)</code></td>
<td><code>put(var,propvalue,prop)</code></td>
<td><code>assume(relation)</code></td>
<td></td>
</tr>
<tr>
<td>Retrieve List of All Properties of a Symbol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>properties(var)</code></td>
<td><code>properties(var)</code></td>
<td><code>properties(var)</code></td>
<td><code>properties(var)</code></td>
</tr>
<tr>
<td>Retrieve a Property Value of a Symbol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>getprop(var,prop)</code></td>
<td><code>getprop(var,prop)</code></td>
<td><code>get(var,prop)</code></td>
<td><code>facts(var)</code></td>
</tr>
<tr>
<td><code>printprops(var,prop)</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieve Properties Deduced by Database</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>featurep(var,prop)</code></td>
<td><code>featurep(var,prop)</code></td>
<td><code>maybe</code></td>
<td><code>is</code></td>
</tr>
<tr>
<td>Retrieve All Symbols with a Given Property</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>propvars(prop)</code></td>
<td><code>propvars(prop)</code></td>
<td><code>props</code></td>
<td></td>
</tr>
<tr>
<td><code>infolistname(prop)</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove Properties From Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>remove(var,prop)</code></td>
<td><code>remove(var,prop)</code></td>
<td><code>rem(var,prop)</code></td>
<td><code>forget(relation)</code></td>
</tr>
</tbody>
</table>

Table 13.1: Summary of Commands for Manipulating Properties and Relations in the Macsyma Database

1. Some of the commands mentioned above are not restricted to symbols. E.g., `f[1](x):=x+1$; getprop(’(f[1]),'function); or `declare(n,integer); featurep(n#1,’integer);`.

2. For Boolean properties, a property value of `true` indicates that the symbol has the indicated property. A property value of `false` means that the symbol or operator has not been assigned the indicated property and does not mean that the symbol or operator definitely does not have the property.

3. Predefined property types that have property values (e.g. `atvalue`, `gradef`, `depends`) are installed with their own commands.
4. If the relationship involves only one variable (e.g. \(\text{var} > 0 \)), then it will appear on the \texttt{properties} list.

5. The function \texttt{printprops} displays the requested information but does not create a value which can be accessed. It currently works only for \texttt{atvalue}, \texttt{atomgrad}, \texttt{gradef}, and \texttt{matchdeclare}.

6. For those properties for which an infolist exists, the infolist name evaluates to the list of symbols which possess the corresponding property.

7. The function \texttt{props} returns a list of all symbols which have any property for which there is no other infolist.

For most types of properties there exists a name which is an indicator of that property. For example, the command \texttt{gradef(f(x),\sin(x^2))}; causes \(f \) to receive a \texttt{gradef} property of \(\text{lambda}([x],\sin(x^2)) \). The indicator is \texttt{gradef} and the property is the lambda expression.

The presence of some properties is signified merely by the presence of the indicator and requires no additional information. These indicators are sometimes known as \texttt{tags}. For example, \texttt{Predefined} properties are properties that are built into Macsyma. For user-defined properties, see Section 13.1.2

\texttt{declare}(\texttt{\textbackslash a_1}, \texttt{\textbackslash f_1}, \ldots, \texttt{\textbackslash a_n}, \texttt{\textbackslash f_n})

\textit{Special Form}

Declares each \(a_i \) to have the corresponding feature \(f_i \). For example, \texttt{declare(f,increasing)}; declares \(f \) to be an increasing function. Either \(a_i \) or \(f_i \) can also be a list of objects or features, in which case each of the atoms in the list \(a_i \) gets all of the properties in the list \(f_i \). \texttt{declare} recognizes a large number of features. The mathematical features are described in Section 13.1.3, and the nonmathematical ones are described in Section 13.1.4. Features installed with \texttt{declare} can be removed with \texttt{remove}.

\texttt{remove}(\texttt{\textbackslash a_1}, \texttt{\textbackslash f_1}, \ldots, \texttt{\textbackslash a_n}, \texttt{\textbackslash f_n})

\textit{Special Form}

Removes each feature \(f_i \) from the corresponding object \(a_i \). The \(a_i \) and \(f_i \) can also be lists of objects or features. Features recognized by \texttt{remove} include \texttt{value}, \texttt{function}, \texttt{macro}, \texttt{array}, \texttt{alias}, \texttt{noun}, \texttt{matchdeclare}, \texttt{rule}, \texttt{evfun}, \texttt{evflag}, \texttt{special}, \texttt{nonarray}, \texttt{bindtest}, \texttt{autoload}, \texttt{assign}, \texttt{mode}, \texttt{modedeclare}, \texttt{atvalue}, \texttt{feature}, \texttt{alphabetical}, \texttt{transfun}, \texttt{grade}, \texttt{atomgrad}, \texttt{grad}, \texttt{dependency}, \texttt{operator}, \texttt{deftaylor}. The special form \texttt{remove} also recognizes any of the elements of the \texttt{features} list. See page 367.

Since each of these features is recognized by \texttt{remove}, it is possible to issue commands of the form \texttt{remove(var, atomgrad)}, or \texttt{remove(var, bindtest)}. The effects of all these commands are explained below.

The value of \(a_i \) can also be specified as \texttt{all}. In this case, the property indicated by \(f_i \) is removed from all atoms which have it. Unlike the more specific remove functions, \texttt{remvalue}, \texttt{remarray}, \texttt{remfunction}, and \texttt{remrule}, \texttt{remove} does not indicate when a given property is nonexistent. It always returns \texttt{done}.

To determine what properties are present, refer to the appropriate information list. You can display all information lists with the system variable \texttt{infolists}:

\texttt{infolists default: [labels, values, functions, macros, arrays, myoptions, props, aliases, rules, gradefs, features, dependencies, let_rule_packages]}

The variable \texttt{infolists} holds the list of all the information lists. These are described below.

- \texttt{labels} All bound \(c \), \(d \), and \(e \) labels. See Section 1.3.1, page 6.
- \texttt{values} All bound user variables, not option or system variables, set up by \(: \), \(=\), or functional binding. See Section 16.5, page 419.
functions
All user defined functions set up by :=. See Section 11.1.1, page 339.

macros
Any macros you have defined. See Section 17.5.1, page 442.

arrays
declared and undeclared arrays set up by :, ::, or ::. See Section 16.6.4, page 423.

myoptions
All options you have ever reset, whether or not they get reset to their default value. See Section 19.6, page 473.

rules
User defined pattern matching and simplification rules set up by tellsimp, tellsimpafter, defmatch, or defrule. See Section 14.1.3, page 390.

aliases
Atoms that have a user defined alias set up by the functions alias, ordergreat, orderless, or by using declare to declare the atom a noun. See Section 12.1.5, page 355.

dependencies
Atoms that have functional dependencies set up by the functions depends or gradef. See dependencies, page 149.

gredefs
Functions that have user defined derivatives set up by the function gradef as shown in this example: gradef(f(x1, ... , xn), g1, ... , gn); See gredefs, page 150.

features
The list of features that special symbols can have. See Section 13.1.3, page 367.

props
Atoms that have any property other than those mentioned above, such as atvalues, matchdeclare, etc. as well as properties specified by means of declare. See Section 13.1.1, page 363.

let_rule_packages
A list of all the user-defined let rule packages, plus the special package
default_let_rule_package. default_let_rule_package is the name of the rule package used when you do not set one explicitly. See Section 14.2.2, page 392.

Initially, all these information lists are empty, except features and let_rule_packages. As you proceed with your Macsyma session, you may examine these lists with the function getprop.

getprop(symbol, property)

Function

Returns the property property of symbol. The properties it can locate are:

- function (or fundef)
- dependency (or depends or depend)
- matchdeclare, tellrat, noun, and feature
- rule (for defrule, defmatch, tellsimp, or tellsimpafter rules)
- members of opproperties
- members of features
- possible_values for Option Variables
- constant, nonscalar, scalar, mainvar, evfun, evflag, special, nonarray, bindtest, noun, feature, tellrat and operator (or op)
- rule_of, rules_for

Type example(getprop); for examples.

getprop(rulename, rule_of)

Function

Returns the function or operator for which rulename is a rule. The argument rulename is the name of a tellsimp(after) rule.
13.1. MANIPULATING PROPERTIES OF ATOMIC VARIABLES

getprop(symbol, rules_for)

Function

Returns a list of the names of the tellsimp(after) rules for the function or operator symbol. Unlike the other calls to getprop, if getprop (symbol, rules_for); comes up empty, it returns [] instead of false.

(c1) (tellsimp(f(x),g(x)), tellsimp(f(y),g(y)));
(d1) [frule2, frule1, false]
(c2) (tellsimpafter(a*b,c), tellsimpafter(aa*b,cc));
(d2) ["rule2", "rule1", simpexpt]
(c3) getprop(f, rules_for);
(d3) [frule2, frule1]
(c4) getprop("~", rules_for);
(d4) ["rule2", "rule1"
(c5) getprop(frule1, rule_of);
(d5) f
(c6) getprop("~rule2", rule_of);
(d6) false

featurep(exp, feature)

Function

Tests whether the object exp has the feature feature on the basis of the facts in the current database. If so, it returns true, else false.

Example

(c1) declare(j, even)$
(c2) featurep(j, integer);
(d2) true

props default: []

System Variable

The system variable props holds a list of symbols that have any property other than those for which infolists exist. Initially, the list is empty. The properties treated specially are given below:

<table>
<thead>
<tr>
<th>Property</th>
<th>Infolist and References</th>
</tr>
</thead>
<tbody>
<tr>
<td>gradef</td>
<td>See gradefs, page 150.</td>
</tr>
<tr>
<td>Array Function</td>
<td>See arrays, page 420.</td>
</tr>
<tr>
<td>Complete Array</td>
<td>See arrays, page 420.</td>
</tr>
<tr>
<td>Declared Array</td>
<td>See declared arrays, page 420.</td>
</tr>
<tr>
<td>Hashed Array</td>
<td>See hashed arrays, page 422.</td>
</tr>
<tr>
<td>dependency</td>
<td>See dependencies, page 149.</td>
</tr>
<tr>
<td>rule</td>
<td>See rules, page 390.</td>
</tr>
<tr>
<td>feature</td>
<td>See features, page 367.</td>
</tr>
<tr>
<td>alias</td>
<td>See aliases, page 355.</td>
</tr>
<tr>
<td>let_rule_package</td>
<td>See let rule packages, page 392.</td>
</tr>
<tr>
<td>function</td>
<td>See function, page 339.</td>
</tr>
<tr>
<td>macro</td>
<td>See macros, page 442.</td>
</tr>
<tr>
<td>value</td>
<td>See values, page 413 and labels, page 6.</td>
</tr>
</tbody>
</table>

Symbols that have any property other than the ones mentioned in column 1 above are found on props. The variable props is one of the infolists.

propvars(prop)

Function

In addition to the information on infolists, similar lists can be generated by the function propvars. The function propvars returns a list of those atoms on the props list which have the property indicated
by \textit{prop}. Thus \texttt{propvars(atvalue)}; returns a list of atoms which have atvalues. In effect, \texttt{propvars} provides a way of extracting subsets of the \texttt{infolist props}.

\texttt{arrayinfo('arrayname)} \hfill \textit{Special Form}

Returns a list of information about the array \texttt{arrayname}. For hashed arrays it returns a list of “hashed,” the number of subscripts, and the subscripts of every element which has a value. For declared arrays it returns a list of “declared,” the number of subscripts, and the declared bounds. The special form \texttt{arrayinfo} does not evaluate its argument. If its argument is not the name of an array, Macsyma signals the error \texttt{Not an array -ARRAYINFO: 'arrayname}.

\texttt{Examples}

\begin{verbatim}
(c1) b[1,x]:1$
(c2) array(f,2,3)$
(c3) arrayinfo(b);
 \hspace{1cm} [hashed, 2, [1, x]]
(d3)
(c4) b[2,y]:laplace$
(c5) arrayinfo(b);
 \hspace{1cm} [hashed, 2, [1, x], [2, y]]
(c6) arrayinfo(f);
 \hspace{1cm} [declared, 2, [2, 3]]
\end{verbatim}

\texttt{properties(symbol)} \hfill \textit{Function}

Returns a list that is the union of properties for all spellings of \texttt{symbol}.

Thus, \texttt{properties(integrate)}; returns the properties for \texttt{integrate} (the “verb” form) and for \texttt{integral} (the “noun” form), corresponding, \textit{e.g.}, to the difference between \texttt{integrate(sin(x),x)}; and \texttt{'integrate(sin(x),x)}; The list can include:

\begin{tabular}{ll}
\hline
Property & Comment \\
additive & See \texttt{additive}, page 370. \\
alias & See \texttt{alias}, page 355. \\
alphabetic & See \texttt{alphabetic}, page 373. \\
antisymmetric & See \texttt{antisymmetric}, page 370. \\
atomgrad & See \texttt{atomgrad}, page 373. \\
atvalue & See \texttt{atvalue: function}, page 336. \\
bindtest & See \texttt{bindtest}, page 374. \\
commutative & See \texttt{commutative}, page 369. \\
constant & See \texttt{constant}, page 372. \\
constantfun & See \texttt{constantfun}, page 372. \\
context & See \texttt{context}, page 381. \\
deftaylor & See \texttt{deftaylor}, page 158. \\
dependency & See \texttt{dependency}, page 372. \\
evenfun & See \texttt{evenfun}, page 369. \\
evflag & See \texttt{evflag}, page 373. \\
evfun & See \texttt{evfun}, page 373. \\
feature & See \texttt{feature}, page 374. \\
gradef & See \texttt{gradef}, page 149. \\
lassociative & See \texttt{lassociative}, page 370. \\
linear & See \texttt{linear}, page 370. \\
macro & See \texttt{macro}, page 441. \\
matchdeclare & See \texttt{matchdeclare}, page 386. \\
mode_declare & See \texttt{mode_declare}, page 431. \\
\hline
\end{tabular}
13.1. MANIPULATING PROPERTIES OF ATOMIC VARIABLES

- multilinear
 See multilinear, page 371.
- multiplicative
 See multiplicative, page 371.
- nary
 See nary, page 501.
- nonscalar
 See nonscalar, page 372.
- noun
 See noun, page 373.
- numer
 See numer, page 316.
- oddfun
 See oddfun, page 368.
- operator
 See operator, page 374.
- outative
 See outative, page 371.
- rassociative
 See rassociative, page 370.
- rule
 See defrule, page 389.
- scalar
 See scalar, page 372.
- special
 See special, page 439.
- symmetric
 See symmetric, page 370.
- transfun
 See translate, page 434. This property results from translating a Macsyma function.
- value
 See Section 16.5, page 418. This property comes about as the result of assigning a value.

Array Function
See Section 11.2, page 341.

Assign Property
See Section 17.4, page 439. Certain system variables have an Assign Property. An Assign Property also arises as a result of using define_variable.

Complete Array
See Section 16.6, page 420.

Database Info
See Section 13.2, page 375.

Declared Array
See Section 16.6.1, page 420.

Hashed Array
See hashed arrays, page 422.

Special Evaluation Form
See Section 11.3, page 343 and Section 16.1.3, page 412.

System Function
See Section 17.4, page 439. A system function is either a built-in Macsyma function, or one provided at user level through the use of packaging tools, including translation and compilation.

System Value
See Section 16.1.6, page 413 and Section 17.4, page 439. A system Option or a user-defined Option constructed through the use of packaging tools, including translation and compilation, has a System Value property.

User Autoload Function
See Section 17.4, page 440.

User Properties
See Section 13.1.2, page 366. User Properties are returned as lists.

printprops('atom, 'indicator)
Special Form

Displays the property with the indicator indicator associated with the atom atom. The argument atom can be a list of atoms or the symbol all, in which case all of the atoms with the given property are used. For example, printprops([f,g],atvalue);. The special form printprops is to be used for the properties atvalue, atomgrad, gradef, and matchdeclare.
13.1.2 Manipulating User-defined Properties

Atoms can have properties as attributes. Properties, or lists of properties, can be assigned, retrieved, or removed from atoms, or lists of atoms, with a single command.

put(atom, property, indicator)

Function

Associates with the atom, or list of atoms, atom the property property with the indicator, or list of indicators, indicator. This enables you to give a symbol any arbitrary property.

qput(atom, property, indicator)

Special Form

Is similar to put, but has its arguments implicitly quoted.

get(atom, indicator)

Function

Retrieves the user property indicated by indicator, or the list of indicators, indicator associated with the atom, or list of atoms, atom, or returns false if atom doesn’t have property indicator.

Example

(c1) put(%e, 'transcendental, 'type);
(d1) transcendental
(c2) put(%pi, 'transcendental, 'type)$
(c3) put(%i, 'algebraic, 'type)$
(c4) typeof(x):=block([q],
 if numberp(x) then return('algebraic),
 if not atom(x) then return(maplist(typeof, x)),
 q:get(x, type),
 if q=false
 then error("not numeric.
 else q)$
(c5) typeof(2*%e+x*%pi);
Not numeric.
(c6) typeof(%pi+2*%e);
(d6) [transcendental, [algebraic, transcendental]]

rem(atom, indicator)

Function

Removes the property indicated by indicator from the atom or list of atoms, atom. This function returns done, if the property is successfully removed, and false if the atom does not have the property.

<table>
<thead>
<tr>
<th>function</th>
<th>atom(s)</th>
<th>ind(s)</th>
<th>value returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>put (or qput)</td>
<td>atom</td>
<td>atom</td>
<td>property</td>
</tr>
<tr>
<td>list</td>
<td>atom</td>
<td>property</td>
<td></td>
</tr>
<tr>
<td>rem</td>
<td>atom</td>
<td>atom</td>
<td>done or false</td>
</tr>
<tr>
<td>list</td>
<td>atom</td>
<td>list</td>
<td></td>
</tr>
<tr>
<td>atom</td>
<td>list</td>
<td>list</td>
<td></td>
</tr>
<tr>
<td>list</td>
<td>list</td>
<td>list of lists</td>
<td></td>
</tr>
</tbody>
</table>

Table 13.2: Manipulating User-defined Properties

Note:

- For the “value returned,” lists whose elements are done or false are returned.
- For the “list of lists” case, you get one list for each atom, in order, left-to-right.
numerval(var\(_1\), \(exp_1\), \ldots, var\(_n\), \(exp_n\))

Function

Declares \(var_i\) to have a numerical value of \(exp_i\), which is evaluated and substituted for the variable in any expressions in which the variable occurs if the option variable \(\text{numer}\) is \text{true}. See \text{ev}, page 316 and \text{numer}, page 316.

13.1.3 Mathematical Properties

Macsyma currently recognizes and uses the following features of objects and functions:

features *default*:
\[\{\text{integer}, \text{noninteger}, \text{even}, \text{odd}, \text{rational}, \text{irrational}, \text{real}, \text{imaginary}, \text{complex}, \text{analytic}, \text{increasing}, \text{decreasing}, \text{oddfun}, \text{evenfun}, \text{posfun}, \text{commutative}, \text{lassocative}, \text{rassociative}, \text{symmetric}, \text{antisymmetric}, \text{threadable}\}\]

This is the list of features that symbols can have which are known by the Macsyma database. Items can be added to this list by means of the Special Form \text{declare}. For example, \text{declare (myfeature, feature)}; adds symbol to the list \text{features}, and makes possible subsequent declarations like \text{declare (mysym, myfeature)}; See Section 13.1.4, page 374. The variable \text{features} is one of the \text{infolists}. To determine whether a particular symbol or expression \(exp\) has a particular feature \text{feature}, use the command \text{featurep}(exp, feature);. Features can be removed with \text{remove}.

opproperties *default*:
\[\{\text{additive}, \text{linear}, \text{multilinear}, \text{multiplicative}, \text{outative}, \text{evenfun}, \text{oddfun}, \text{commutative}, \text{symmetric}, \text{antisymmetric}, \text{nary}, \text{lassociative}, \text{rassociative}, \text{idempotent}, \text{involution}, \text{skew_dot_mult}\}\]

This is the list of operator-properties handled by the simplifier. To determine whether a particular operator \text{operator} has a particular feature \text{feature}, use the command \text{getprop(atom, feature)}; An operator can be given an \text{opproperty} by means of \text{declare}. The property can be removed with \text{remove}.

heuristic_precision_limit *default*: 200

Option Variable

When a positive integer, this authorizes using an unproven, numerical heuristic to decide inequalities and integer properties of constant expressions.

\[
\text{(c1) block([heuristic_precision_limit: false], \text{csign(1+cos(355/113))});}
\]

\[
\text{Time= 22 msecs}
\]

\[
\text{(d1) pvz}
\]

\[
\text{(c2) block([heuristic_precision_limit: 22], \text{csign(1+cos(355/113))});}
\]

\[
\text{Time= 182 msecs}
\]

\[
\text{(d2) pos}
\]

Note the time cost for this case.

13.1.3.1 Members of the Features List

integer

Property

When a symbol is declared \text{integer}, automatic simplifications can exploit this fact. For example, \text{sin(n*\pi)} simplifies to 0 if \(n\) is declared \text{integer}. A symbol can be declared \text{integer} if it is known to represent a number that is an integer or a function that takes only integral values. The property \text{integer} is a member of the \text{features} list. It can be asserted with \text{declare}, withdrawn with \text{remove}, and detected with \text{featurep}.

noninteger

A symbol can be declared **noninteger** if it is known to represent a number that is not an integer or a function that takes only nonintegral values. The property **noninteger** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

even

A symbol can be declared **even** if it is known to represent an even integer or a function that takes only even integral values.

odd

A symbol can be declared **odd** if it is known to represent an odd integer or a function that takes only odd integral values. The property **odd** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

rational

A symbol can be declared **rational** if it is known to represent a rational number or a function that takes only rational values. The property **rational** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

irrational

A symbol can be declared **irrational** if it is known to represent an irrational number or a function that takes only irrational values. The property **irrational** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

real

A symbol can be declared **real** if it is known to represent a real number or a function that takes only real values. The property **real** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

imaginary

A symbol can be declared **imaginary** if it is known to represent an imaginary number or a function that takes only imaginary values. The property **imaginary** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

complex

A symbol can be declared **complex** if it is known to represent a complex number or a function that takes only complex values. The property **complex** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

increasing

A symbol can be declared **increasing** if it is known to represent a strictly increasing function. The property **increasing** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

decreasing

A symbol can be declared **decreasing** if it is known to represent a strictly decreasing function. The property **decreasing** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**.

oddfun

A symbol can be declared **oddfun** if it is known to represent an odd function. The property **oddfun** is a member of the **features** list. It can be asserted with **declare**, withdrawn with **remove**, and detected with **featurep**. It is also a member of **opproperties**.

(c1) declare(f,oddfun)$
evenfun

A symbol can be declared evenfun if it is known to represent an even function. The property evenfun is a member of the features list. It can be asserted with declare, withdrawn with remove, and detected with featurep. It is also a member of opproperties.

\[(c1) \text{declare}(g, \text{evenfun})\]
\[(c2) g(-x)\]
\[(d2) g(x)\]

posfun

A symbol can be declared posfun if it is known to represent a positive function. The property posfun is a member of the features list. It can be asserted with declare, withdrawn with remove, and detected with featurep.

threadable

When a function is declared threadable, it is applied to the parts of equations, lists, and matrices. For example, if we enter \(\text{declare}(f, \text{threadable})\)$, then we have:

\[
\begin{array}{|c|c|}
\hline
\text{f(a=b);} & \rightarrow f(a) = f(b) \\
\text{f[a,b,c];} & \rightarrow [f(a), f(b), f(c)] \\
\text{f(ident(2));} & \rightarrow \text{matrix}([f(1), f(0)], [f(0), f(1)]) \\
\hline
\end{array}
\]

Table 13.3: Behavior of User Declared Threadable Functions

The major math functions are threadable by default. These functions include the 24 trigonometric, hyper-trigonometric, inverse-trigonometric, and inverse-hyper-trigonometric functions of one argument, log, floor, ceiling, round, fix, abs, signum, csignum.

\[
\begin{array}{|c|c|}
\hline
\text{sin(1.0*ident(2));} & \text{gives} \text{ matrix}([0.841471, 0], [0, 0.841471]) \\
\text{log([1,%e,%e^2]);} & \text{gives} [0, 1, 2] \\
\text{cos(a=b);} & \text{gives} \cos(a) = \cos(b) \\
\hline
\end{array}
\]

Table 13.4: Behavior of Major Macsyma Threadable Functions

The property threadable is a member of the features list. It can be asserted with declare, withdrawn with remove, and detected with featurep. It is also a member of opproperties.

13.1.3.2 Members of the Features and Opproperties Lists

commutative

A symbol can be declared commutative if it is known to be a symmetric function of its arguments. This tells the simplifier to treat the function as a commutative function. For example, \(g(x, z, y)\) simplifies to \(g(x, y, z)\). This is the same as symmetric. The property commutative is a member of the features list. It can be asserted with declare, withdrawn with remove, and detected with featurep. It is also a member of opproperties.
symmetric

Tells the simplifier to treat the function \texttt{atom} as a symmetric function. For example, \(g(x, z, y) \) simplifies to \(g(x, y, z) \). This is the same as \texttt{commutative}. The property \texttt{symmetric} is a member of the \texttt{features} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{featurep}. It is also a member of \texttt{opproperties}.

antisymmetric

Tells the simplifier to treat the function \texttt{atom} as antisymmetric. For example, \(g(x, z, y) \) simplifies to \(-g(x, y, z)\). That is, it returns \((-1)^{n}\) times the result given by \texttt{symmetric} or \texttt{commutative}, where \(n \) is the number of interchanges of two adjacent arguments necessary to convert it to that form. The property \texttt{antisymmetric} is a member of the \texttt{features} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{featurep}. It is also a member of \texttt{opproperties}.

13.1.3.3 Members of the \texttt{opproperties} List

lassociative

A function or operator which is declared \texttt{lassociative} is associative from the left. For example, \(g(g(a, b), g(c, d)) \) simplifies to \(g(g(a, b), c, d) \). To specify a fully associative function or operator, see the \texttt{nary} property on page 371.

The property \texttt{lassociative} is a member of the \texttt{opproperties} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove} and detected with \texttt{featurep}. The property \texttt{lassociative} is a member of the \texttt{features} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{featurep}. It is also a member of \texttt{opproperties}.

rassociative

A function or operator which is declared \texttt{rassociative} is associative from the right. For example, \(g(g(a, b), g(b, c)) \) simplifies to \(g(a, g(b, g(c, d))) \). To specify a fully associative function or operator, see the \texttt{nary} property on page 371.

The property \texttt{rassociative} is a member of the \texttt{opproperties} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove} and detected with \texttt{featurep}. The property \texttt{rassociative} is a member of the \texttt{features} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{featurep}. It is also a member of \texttt{opproperties}.

additive

Makes the simplifier treat the function \texttt{atom} so that:

1. If \texttt{atom} is univariate, whenever the simplifier encounters \texttt{atom} applied to a sum, \texttt{atom} is distributed over that sum. That is, \(f(y+x) \); simplifies to \(f(y)+f(x) \).

2. If \texttt{atom} is a function of two or more arguments, additivity is defined as additivity in the first argument to \texttt{atom}, as in the case of \texttt{sum} or \texttt{integrate}. That is, \(f(h(x)+g(x), x) \); simplifies to \(f(h(x), x)+f(g(x), x) \). This simplification does not occur when \texttt{atom} is applied to expressions of the form \texttt{sum(x[i], i, lower-limit, upper-limit)}.

The property \texttt{additive} is a member of \texttt{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

linear

Makes the simplifier treat the function \texttt{atom} so that:
1. If \(\text{atom} \) is univariate, \textit{expansion} of the form \(f(x+y) \Rightarrow f(x)+f(y) \), \(f(a\times x) \Rightarrow a\times f(x) \) takes place where \(a \) is a “constant”.

2. If \(\text{atom} \) is a function of two or more arguments, \textit{linearity} is defined to be linearity in the first argument only, as in the case of ‘\text{sum}’ or ‘\text{integrate}’, that is, \(f(a\times x+b, x) \) becomes \(a\times f(x, x) + b\times f(1, x) \) for \(a, b \) free of \(x \).

\(\text{linear} \) is just \textit{additive} + \textit{outative}. The property \(\text{linear} \) is a member of \textit{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

\textbf{multilinear}

\textit{Property}

Makes the simplifier treat a function as \textit{multilinear} with respect to constants or scalars, in some or all of its arguments, and have automatic simplification in a manner analogous to the \textit{linear} property, except that it applies to more than one argument, and it uses a \texttt{scalarp} test instead of \texttt{constantp} when bringing factors out. The outative property for \textit{multilinear} will bring factors with the \texttt{scalar} property (this includes \texttt{constants}) outside of the body of the function. The property \textit{multilinear} is a member of \textit{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}. Do usage\texttt{(multisp)}; for more information. Execute the command demo\texttt{(multisp)}; for some examples.

\textbf{multiplicative}

\textit{Property}

Makes the simplifier treat the function \textit{atom} so that:

1. If \textit{atom} is univariate, whenever the simplifier encounters \textit{atom} applied to a product, \textit{atom} is distributed over that product. That is, \(f(x*y) \); simplifies to \(f(x)*f(y) \).

2. If \textit{atom} is a function of two or more arguments, \textit{multiplicativity} is defined as multiplicativity in the first argument to \textit{atom}. For example, \(f(g(x)*h(x), x) \); simplifies to \(f(g(x), x)*f(h(x), x) \). This simplification does not occur when \textit{atom} is applied to expressions of the form \texttt{product(x[i], i, lower-limit, upper-limit)}.

The property \textit{multiplicative} is a member of \textit{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

\textbf{outative}

\textit{Property}

Makes the simplifier treat the function \textit{atom} so that:

1. If \textit{atom} is univariate, whenever the simplifier encounters \textit{atom} applied to a product, that product is partitioned into factors that are constant and factors that are not, and the constant factors are pulled out. For example, \(f(a*\times x) \); simplifies to \(a\times f(x) \) where \(a \) is a constant. Nonatomic constant factors are not extracted.

2. If \textit{atom} is a function of two or more arguments, \textit{outativity} is defined as in the case of the noun forms of \textit{sum} or \textit{integrate}. For example, \(f(a\times g(x), x) \); simplifies to \(a\times f(g(x), x) \) for \(a \) free of \(x \). By default, the noun forms of \textit{sum}, \textit{integrate}, and \textit{limit} are declared to be \textit{outative}, but you can change this if you like.

The property \textit{outative} is a member of \textit{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

\textbf{nary}

\textit{Property}

Tells the simplifier to treat the function or operator \textit{atom} as an \(n \)-ary function. For example, \(g(g(a, b), g(c, d)) \); simplifies to \(g(a, b, c, d) \). For a full discussion of \textit{nary} operators, see Section \texttt{21.2.4}, page 500.

The property \texttt{rassociative} is a member of the \textit{opproperties} list. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove} and detected with \texttt{feature}. The property \textit{nary} is a member of \textit{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.
idempotent

If the function \(f \) is declared to be \textbf{idempotent}, then \(f(f(x)) \); simplifies to \(f(x) \). The property \textbf{idempotent} is a member of \textbf{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

involution

If the function \(g \) is declared to be \textbf{involution}, then \(g(g(x)) \); simplifies to \(x \). (Such functions include \texttt{transpose}, \texttt{invert}, and \texttt{conjugate}.) The property \textbf{involution} is a member of \textbf{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

\texttt{skew_dot_mult}

Tells the simplifier to treat the function as being skew dot multiplicative. These functions have the properties: \(h(x^1, x^2, \ldots, x^n) \); returns \(h(x^n) \); \(h(x^1) \); and \(h(x^{1\ldots n}) \); returns \(h(x)^{1\ldots n} \), for \(n \) an integer. (Such functions include \texttt{transpose}, \texttt{determinant}, and \texttt{inverse}.) The property \texttt{skew_dot_mult} is a member of \textbf{opproperties}. It can be asserted with \texttt{declare}, withdrawn with \texttt{remove}, and detected with \texttt{getprop}.

13.1.3.4 Mathematical Properties not on Features or Opproperties Lists

A number of mathematical properties, which are not members of the features list or the opproperties list, can be asserted by means of \texttt{declare} and withdrawn by means of \texttt{remove}.

\texttt{scalar}

You can \texttt{declare} an object \texttt{scalar} if you want it to be treated as a scalar with respect to the built-in field. This affects simplification of expressions involving the dot operator. This property can be removed with \texttt{remove}. It can be detected with \texttt{scalarp}. See Section 14.3, page 393.

\texttt{nonscalar}

You can \texttt{declare} an object \texttt{nonscalar} if you do not want it to be treated as a scalar with respect to the built-in field. This affects simplification of expressions involving the dot operator. This property can be removed with \texttt{remove}. It can be detected with \texttt{nonscalarp}. See Section 14.3, page 393.

\texttt{constant}

If you \texttt{declare} an object \texttt{constant}, it is treated specially in certain simplifications. For example, if \(a \) is \texttt{constant}, and \(f \) is linear, \(f(ax) \); \(\Rightarrow a f(x) \). This property can be removed with \texttt{remove}. It can be detected with \texttt{constantp}. See Section 14.3, page 393.

\texttt{constantfun}

If you \texttt{declare} a function \(f \) to be \texttt{constantfun}, it means that \(f(x_1, x_2, \ldots, x_n) \); is a \texttt{constant} for all arguments \(f \) is called on. This is analogous to the notions of \texttt{opscalar} and \texttt{opscalarfun}. So, \(e.g. \) \texttt{declare(f,constantfun)} $\\Rightarrow \texttt{constantp(f(x,y))}$; returns \texttt{true} . This property can be removed with \texttt{remove}. It can be detected with \texttt{constantfun}. See Section 14.3, page 393.

A number of mathematical properties, which are not members of the features list or the opproperties list, are asserted by separate commands, and withdrawn by remove.

\texttt{deftaylor}

The \texttt{deftaylor} property is declared using \texttt{deftaylor}. It can be removed with \texttt{remove} and displayed with \texttt{powerseries}. Refer to \texttt{deftaylor} on page 157 for more information.

\texttt{dependency}

The \texttt{dependency} property is declared using \texttt{depends}. It can be removed with \texttt{remove} and displayed by examining the infolist \texttt{dependencies}. See \texttt{depends}, page 148.
atomgrad

The **atomgrad** property is declared with `gradef`. See `gradef`, page 149. It can be removed with `remove` and displayed with `printprops`. See Section 13.1.1, page 365. Atoms that have an **atomgrad** property are on the infolist `gradefs`.

atvalue

The **atvalue** property is declared with `atvalue`. It can be removed with `remove` and displayed with `printprops`. See Section 13.1.1, page 365.

13.1.4 Non-mathematical Properties

The special form `declare` can be used to install certain kinds of non-mathematical information about objects. The full list is: **noun**, **alphabetic**, **evfun**, **evflag**, **mainvar**, **bindtest** and **feature**. The command `declare(atom, feature)` has the effect described below, in the entry for each property.

noun

The command `declare(atom, noun)` makes the function `atom` a **noun**, which means that it is not applied automatically. See Section 9.3, page 316. The concepts of noun and verb forms are discussed in Section 9.2, page 314 The noun-ness applies to both the function use and array use of the name.

Note: Nounifying a function name `f` does not affect occurrences of `f` that existed before `f` was nounified.

alphabetic

The command `declare(character, alphabetic)` adds `character` to Macsyma's alphabet, which by default is `a-z, % and _`. Thus, `declare("&", alphabetic)` enables `newvalue` to be used as a name.

evfun

The command `declare(function, evfun)` makes `function` known to `ev` so that it is applied if its name is mentioned. Default functions are listed in Table 13.5.

```
bfloat,      dfloat,       factor, 
fullratsimp, logcontract, polarform,  
radcan,      rateexpand,   ratsimp,   
rectform,    rootconcontract, sfloat,   
trigreduce. 
```

Table 13.5: Predefined Macsyma Eval Functions for Function `ev` (evfun)

evflag

The command `declare(atom, evflag)` makes `atom` known to `ev` so that it is bound to `true` during the execution of `ev` if it is mentioned. Default `evflags` are list in Table 13.6.

Certain variables in the optional `tensor` package are also evflags. They are listed in Table 8.1.1.1.

mainvar

The command `declare(symbol, mainvar)` makes `symbol` a **mainvar**. This influences the variables position in the default ordering scheme. The ordering scale for atoms then is essentially: numbers < constants < scalars < other variables < mainvars. See Section 12.3, page 356. Compare `expand((x+y)^4)` with `(declare(x,mainvar), expand((x+y)^4));`.
%emode, %enumerator, atrigswitc h, atrigswitc h,
algebraic, atrigswitc h, atrigswitc h,
cauchysum, demoivre, dotsrules,
exponentialize, expptsol, factorflag,
float, genfloat, halfangles,
infeval, isolate_wrt_times keepf loat
letrat, listarith, logs,
logarc, logexpand, lognegint,
lognume r, m1pbranch numer_pbranch
programmode, radexpand, ratalgdenom,
ratfac, ratsimp exp ons, ratsimpexpons,
return_nummod, simp simpsum trigexpand use_grobner

Table 13.6: Predefined Macsyma Eval Flags for Function \texttt{ev} (evflag)

If you use this feature, be careful. If you subtract an expression in which \(x\) is a \texttt{mainvar} from one in which \(x\) isn't a \texttt{mainvar}, re-simplification may be necessary if cancellation is to occur. To re-simplify, you might do, for example, \texttt{ev(expression, simp)}; Also, if you \texttt{save} an expression in which \(x\) is a \texttt{mainvar}, you probably should also \texttt{save} \(x\).

\texttt{bindtest} \hspace*{10cm} Property

The command \texttt{declare(symbol, bindtest);} causes \texttt{symbol} to signal an error if ever it is used in a computation unbound. This works only if the symbol is globally unbound.

\texttt{feature} \hspace*{10cm} Property

The command \texttt{declare(symbol, feature);} adds \texttt{symbol} to the list of properties recognized by \texttt{declare} and \texttt{remove}. It can be removed with \texttt{remove} and detected by examining the infolist \texttt{features}.

\texttt{operator} \hspace*{10cm} Property

The command \texttt{infix(atom);} makes \texttt{atom} an infix operator. See Section 21.2.3.2, page 500. The other syntax functions behave similarly. Section 21.1.1. They also give \texttt{atom} an \texttt{operator} property. It can be removed with \texttt{remove} and detected with \texttt{properties}.

The function \texttt{remove} recognizes a number of properties for removal. They are described below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Effect of remove(var, property)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>Removes any aliases associated with (var). See Section 12.1.5, page 355.</td>
</tr>
<tr>
<td>alphabetic</td>
<td>Removes the alphabetic property of (var). See Section 13.1.4, page 373.</td>
</tr>
<tr>
<td>assign</td>
<td>Removes the assign property of (var).</td>
</tr>
<tr>
<td>atomgrad</td>
<td>Removes the atomgrad property of (var). See atomgrad, page 373.</td>
</tr>
<tr>
<td>atvalue</td>
<td>Removes the atvalue property of (var). See Section 13.1.3.4, page 373.</td>
</tr>
<tr>
<td>autoload</td>
<td>Removes the autoload property of (var). See setup autoload, Section 17.4 and user-autoload-function, Section 17.4.</td>
</tr>
<tr>
<td>bindtest</td>
<td>Removes the bindtest property of (var). See Section 13.1.4, page 374.</td>
</tr>
<tr>
<td>evflag</td>
<td>Removes the evflag property of (var). See Section 13.1.4, page 373.</td>
</tr>
<tr>
<td>evfun</td>
<td>Removes the evfun property of (var). See Section 13.1.4, page 373.</td>
</tr>
<tr>
<td>feature</td>
<td>Removes the feature property of (var). See Section 13.1.4, page 374.</td>
</tr>
<tr>
<td>function</td>
<td>Removes the function property of (var), but does not remove the macro property. See Section 17.5.1, page 442.</td>
</tr>
</tbody>
</table>
13.2 Manipulating Relational Information in the Database

Macsyma has an elementary relational database in which you can assert facts with \texttt{assume}. The predicates asserted with the function \texttt{assume} can be tested with \texttt{is} and removed with \texttt{forget}. The features asserted with the function \texttt{declare} can be tested with \texttt{featurep} and removed with \texttt{remove}.

The Macsyma simplifier uses the facts in the relational database as well as other functions, like \texttt{sign}, the \texttt{if} statement, and \texttt{integrate} (certain integrations require sign information). There is a rudimentary inference capability enabling limited deductions from the database. It excels at taxonomic deductions, for example, \texttt{featurep(n, even)}; \texttt{implies featurep(n, integer)}. It can also perform simple expression comparisons. For example, \(x < 0 \) and \texttt{featurep(n, even)}; imply \(y^2 + x^n > 0 \). The only sort of inequality information used by the inference mechanism at the moment is relations between variables and other variables and numbers.

\textbf{Note}: All variables are assumed by the relational routines to take on real values exclusively unless they are \texttt{declared} to be \texttt{complex}.

The operator \texttt{=} is a relation that holds between two expressions if, and only if, the expressions are syntactically identical. It is not a mathematical comparison. Thus, \(\text{is}((x+1)^2=x^2+2*x+1) \); would return \texttt{false}. The relation \texttt{equal}, on the other hand, is a mathematical comparison of its two arguments. A predicate involving \texttt{equal} is true if, and only if, its arguments are mathematically equivalent in light of the current database. Thus, \(\text{is}((\text{equal}(x+1)^2=x^2+2*x+1)) \); would return \texttt{true}. The operators \texttt{">"}, \texttt{"\ge"} (written \texttt{>=}), \texttt{"<"}, and \texttt{"\le"} (written \texttt{<=}) are also mathematical comparisons.

\texttt{assume(pred_1, \ldots, pred_n)}

\textit{Special Form}

The special form \texttt{assume} takes as arguments one or more predicates, and first checks the specified predicates for redundancy and consistency with the current database. If the predicates are consistent and nonredundant, they are added to the database. If they are inconsistent or redundant, no action is taken. The special form \texttt{assume} returns a list whose entries are the predicates added to the database and the redundant or inconsistent atoms where applicable.

If any facts are installed in the database by \texttt{assume}, the variables involved are given the property \texttt{Database Info}.

A group of assumptions can be collected in a context. See Section 13.4, page 380.
assume_pos default: false

When using \texttt{integrate} and certain other functions, you might want to use parameters that are real and positive or your calculations can often be constructed so that this is true. If this option variable is set to \texttt{true}, your parameters are assumed positive. The intention here is to reduce the number of questions \textsc{macsyma} must ask. Other information already introduced by means of \texttt{assume}, or any contextual information already present, takes precedence. By default, parameters are either symbols or subscripted variables. You can control what is considered to be a parameter for this purpose by means of the option variable \texttt{assume_pos_pred}, described below.

assume_pos_pred default: false

By default, \texttt{assume_pos} uses a definition of “parameter” that specifies symbols or subscripted variables. You can change this by setting this option variable to the name of a predicate function of one argument. If you want only symbols to be parameters, you can type \texttt{assume_pos: true; assume_pos_pred: 'symbolp}. Then \texttt{sign(a)}; returns \texttt{pos}, but \texttt{sign(a[1])}; returns \texttt{pnz}.

\texttt{forget(pred_1, \ldots, pred_n)}

Removes the specified predicates from the database. Note that \texttt{forget} does not guarantee that equivalent facts are removed. The special form \texttt{forget} also accepts lists of predicates as arguments.

\texttt{is(pred)}

Attempts to determine whether the specified predicate is provable from the facts in the current database. \texttt{is} returns \texttt{true} if the predicate is true for all values of its variables consistent with the database and returns \texttt{false} if it is false for all such values. Otherwise, its action depends on the setting of the option variable \texttt{prederror} (default: \texttt{true}). The special form \texttt{is} signals an error if the value of \texttt{prederror} is \texttt{true} and returns \texttt{unknown} if \texttt{prederror} is \texttt{false}.

\texttt{maybe(pred)}

Attempts to determine whether the specified predicate is provable from the facts in the current database. The special form \texttt{maybe} returns \texttt{true} if the predicate is true for all values of its variables consistent with the database and returns \texttt{false} if it is false for all such values. Otherwise, it returns \texttt{unknown}.

\texttt{get_var_domain(var, \{ tolerance\})}

Displays an approximation of the current real region that \texttt{var} is restricted to, or \texttt{false} if there are no restrictions. The variable \texttt{tolerance}, which is optional and defaults to 0.1, is a floating-point number that represents the acceptable error tolerance for end point approximation.

You can also supply a second floating-point argument (default 0.1) to specify the acceptable error tolerance for end point approximation.

\texttt{get_var_domain_definition(var)}

Displays the constructor formula for the current real region to which \texttt{var} is restricted.

\textit{Examples}

\begin{verbatim}
(c1) assume((x-1)*(x-2)*(x-4)>0)$(c2) get_var_domain(x,1.e-8); (d2) [1.0, 2.0] u [4.0, inf]
The function \texttt{sign} uses these domain restrictions:
(c3) [sign(x), sign(x-1)]; (d3) [pos, pz] Since (x-1)*(x-2)*(x-4)>0 implies (x-1)*(x-2)*(x-3)>0:
(c4) assume((x-1)*(x-2)*(x-3)>0); (d4) [redundant] Let’s restrict x’s domain by removing zeros:
(c5) assume((x-1)*(x-2)*(x-4)>0)$
\end{verbatim}
Note: The zeros (end points) have been removed:

(c6) \text{get_var_domain}(x, 1.0e-8);
(d6) \{1.0, 2.0\} u \{4.0, \inf\}

Both signs are now positive:

(c7) \text{[sign}(x), \text{sign}(x-1)];
(d7) \{\text{pos, pos}\}

To further restrict \(x\), type

(c8) \text{assume}(x>2)$

To display the new domain checks, type

(c9) \text{get_var_domain}(x);
(d9) \{4.0, \inf\}

(c10) \text{get_var_domain_definition}(x);

\[
\begin{array}{ccc}
3 & 2 & 3 \\
-7 & x & +14 & x - 8 & \geq 0 \\
\end{array}
\]

\(x - 2 > 0\)

\(sign(exp)\)

The function \texttt{sign} attempts to determine the sign of its specified expression on the basis of the facts in the current database. It returns one of the following:

<table>
<thead>
<tr>
<th>Value Returned</th>
<th>Meaning of exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>positive</td>
</tr>
<tr>
<td>neg</td>
<td>negative</td>
</tr>
<tr>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>pz</td>
<td>positive or zero</td>
</tr>
<tr>
<td>nz</td>
<td>negative or zero</td>
</tr>
<tr>
<td>pn</td>
<td>positive or negative</td>
</tr>
<tr>
<td>pzn</td>
<td>positive, negative, or zero</td>
</tr>
</tbody>
</table>

The function \texttt{sign} can operate on nonatomic expressions that have been explicitly stored in the database. For example, \texttt{assume(a+b>0)}; \texttt{sign(a+b)}; results in pos.

\textit{Examples}

(c1) \texttt{assume(a>=b,b>=c,c>=d,d>=a)};
(d1) \{a >= b, b >= c, c >= d, d >= a\}

(c2) \texttt{sign(b-c)};
(d2) \texttt{zero}

(c3) \texttt{declare(k, integer, 1, odd, f, increasing)}$
(d4) \{x > 0\}

(c5) \texttt{f(x+3*y^2*(1+24*k+1))-f(0)};
(d5) \texttt{f(3*y} \times x + f(0)}

(c6) \texttt{sign(f);}
(d6) \texttt{pos}

(c7) \texttt{assume(a>0, b>0)}$
(c8) \texttt{is(a+b>0)};
(d8) \texttt{true}

You can now recognize positive definite polynomials:

(c9) \texttt{sign(p:(y+10)^2+1)};
(d9) \texttt{pos}
This function returns the “complex sign” of \(exp \). That is, if \(exp \) is complex, it returns \texttt{complex}; otherwise, it returns whatever \texttt{sign(exp)} returns.

The variable \(exp \) is taken to be complex: if \texttt{featurep(exp,'complex)} returns \texttt{true}, or if the function \texttt{sign} determines that \(exp \) is complex.

\texttt{asksign(exp)}

Function

The function \texttt{asksign} first attempts to determine whether the \(exp \) is positive, negative, or zero. If it cannot, it asks you the necessary questions to complete its deduction. Your answer is recorded in the database for the duration of the current computation (one c-line). The value returned by \texttt{asksign} is \texttt{pos}, \texttt{neg}, or \texttt{zero}. If \(exp \) is a complex number, \texttt{asksign} displays an error message.

At times, it is necessary to analyze the expression presented by \texttt{asksign}. If you want to look more closely at the expression before replying, examine the variable \texttt{askexp}, which is set to it. Typing \texttt{c-c} results in a Macsyma Break. You can then analyze the expression to give an appropriate answer. Type \texttt{exit;} to return from the Break and answer the question. See Section 13.2, page 378 and Section 18.2.1, page 448.

\texttt{askcsign(exp)}

Function

The function \texttt{askcsign} returns one of \texttt{pos}, \texttt{neg}, \texttt{zero}, or \texttt{complex}. The value \texttt{complex} is returned if \(exp \) is a complex expression.

Example:

\begin{verbatim}
(c1) askcsign(%i);
complex
(d1) asksign(%i);
Error: sign called on an imaginary argument: %i
\end{verbatim}

\texttt{askexp default: false}

Option Variable

Occasionally, you are asked for information about a given expression displayed for examination. If you want to look more closely at the expression before replying, examine the variable \texttt{askexp}, which is set to it. Typing \texttt{c-c} results in a Macsyma Break. You can then analyze the expression to give an appropriate answer. See Section 18.2.1, page 448.

\texttt{askinteger(exp, \texttt{optional-arg})}

Function

Attempts to determine from the database if \(exp \) is \texttt{even}, \texttt{odd}, or \texttt{integer}. The argument \(exp \) is any valid expression and \texttt{optional-arg} is \texttt{even}, \texttt{odd}, or \texttt{integer} and defaults to \texttt{integer} if omitted. It returns \texttt{yes} or \texttt{no} where the answer can be determined. Where it cannot, it asks you to choose among \texttt{yes}, \texttt{no}, and \texttt{unknown} and attempts to install the information in the database if possible.

\texttt{domain default: real}

Option Variable

Controls the simplification of expressions containing radicals when \texttt{radexpand} is \texttt{true}. See \texttt{radexpand}, page 37. More particularly, consider \texttt{sqrt(x^2)}.

\begin{table}[h]
\begin{tabular}{|c|c|}
\hline
Condition & \texttt{sqrt(x^2)} \\
\hline
\texttt{Either radexpand::all or assume(x>0)} & \texttt{x} \\
\texttt{radexpand::true and domain::real} & \texttt{abs(x)} \\
\texttt{Either radexpand::false or radexpand::true and} & \texttt{sqrt(x^2)} \\
\texttt{domain::complex} & \\
\hline
\end{tabular}
\caption{Table 13.7: Simplification of \texttt{sqrt(x^2)}}
\end{table}

The option \texttt{domain} also affects the behavior of \texttt{m1pbranch (default: false)}. See \texttt{m1pbranch}, page 39. The notion of \texttt{domain} with settings of \texttt{real} or \texttt{complex} is still in its infancy.
The following function, when applicable, gives you relational information. However, it does not use the database.

\texttt{zeroequiv}(exp, var)

Tests whether the expression \texttt{exp} in the single variable \texttt{var} is equivalent to zero. It returns either \texttt{true}, \texttt{false}, or \texttt{don'tknow}. For example

\texttt{zeroequiv(sin(2*x)-2*sin(x)*cos(x),x); returns true and}
\texttt{zeroequiv(%e^x+x,x); returns false. On the other hand}
\texttt{zeroequiv(log(a*b)-log(a)-log(b),a); yields don'tknow because of the presence of an extra variable. The restrictions are:}

1. If you use functions that Macsyma does not know how to differentiate and evaluate, \texttt{zeroequiv} will probably return \texttt{don'tknow}.

2. If the expression has poles on the real line, there may be incorrect information in the result, but this is unlikely to occur.

3. If the expression contains functions which are not solutions to first order differential equations, results may be incorrect.

4. The algorithm uses floating-point evaluation at randomly chosen points using a corresponding “\varepsilon” for carefully selected subexpressions. This is always somewhat hazardous, although the algorithm tries to minimize the potential for error.

13.3 Provisos Capability

One of Macsyma's strengths as a symbolic software system is its use of the symbol database to determine needed information. When Macsyma needs information to perform a computation, it will generally ask the user for that information. Sometimes, however, Macsyma will make an assumption (a “proviso”) and tell the user about it.

Provisos are of two types:

1. Assumptions that are outside of the domain of the sign or feature information maintained by the Macsyma database.

 For example \texttt{ilt('limit(s*f(s),s,0),s,t); prints Proviso: Assuming s f(s) is analytic in the right half plane. and returns limit(ilt(f(s),s,t),t,inf).}

2. Assumptions that are made automatically by Macsyma because asking the user about them would be too irksome.

The simplest example is \texttt{laplace(f(t),t,s);}. This command used to ask the user \texttt{Is s positive, negative, or zero?}. Now it just prints the proviso \texttt{Proviso: Assuming s > 0.} and adds this assumption to the database in \texttt{provisos}.

\texttt{provisos}

The system variable \texttt{provisos} contains all of the assumptions generated in the course of processing the last \texttt{c-line}. The \texttt{provisos} list is emptied only when new provisos are made in the course of processing a new \texttt{c-line} (or by \texttt{kill(all);} or \texttt{reset(provisos);}.)
print provisos default: true

Option Variable

When set to false, the switch `print provisos` turns off the printing of provisos.

(c1) \[
\text{integrate}(\exp(-a*t)*t^2,t,0,\text{inf});
\]

Proviso: assuming \(a > 0\).

(d1)

\[\]

(c2) \[
\text{provisos};
\]

(d2) \[
[\text{proviso: assuming } a > 0.]
\]

(c3) \[
\text{block}([\text{intanalysis:false}],\text{integrate}(\exp(-a*t)*t^{(z-1)},t,0,\text{inf}));
\]

Proviso: assuming \(a > 0\).

Proviso: assuming \(z > 0\).

\[
\gamma(z)
\]

(d3)

\[
\]

(c4) \[
\text{provisos};
\]

(d4) \[
[\text{proviso: assuming } a > 0., \text{proviso: assuming } z > 0.]
\]

(c5) \[
\text{integrate}(\exp(-a*t)*t^{(z-1)},t,0,\text{inf});
\]

Proviso: assuming \(a > 0\).

Is \(z\) positive, negative, or zero?

Pos;

\[
\gamma(z)
\]

(d5)

\[
\]

(c6) \[
\text{provisos};
\]

(d6) \[
[\text{proviso: assuming } a > 0.]
\]

13.4 Contexts

The context mechanism enables you to collect under one context name a set of user-assumed facts, and to turn each named set of assumed facts as a group on or off while simplifying expressions by referring to the name of the context.

Each database context is a collection of user-assumed facts (such as `assume (x>0)$`) which can be turned on or off as a group by referring to the name of the context. If the specified context does not exist it will be created by an invisible call to `newcontext`.

The current context can be set by assigning its name as the value of the variable `context`. When a context is the current context,

- All assumptions in the current context are applied when simplifying expressions; however, the name of the current context is not added to the list `activecontexts`.
- All new facts added with `assume` (or forgotten with `forget`) are added to the current context.
- The command `facts();` displays the facts in the current context.

A context can be made an active context using the command `activate` and can be deactivated with the command `deactivate`. When a context is active,
• The name of the context is added to the list \texttt{activecontexts}.

• All assumptions in the active context(s) are applied when simplifying expressions.

• All new \texttt{facts} added with \texttt{assume} (or forgotten with \texttt{forget}) are added to the current context, and not to the active context(s).

• The command \texttt{facts() ;} displays the \texttt{facts} in the current context, and not those in the active context(s).

 \textbf{Note}: This can be a source of confusion because assumptions in active contexts affect simplifications but do not appear on the list \texttt{facts}.

Only one context can be the current context at a given time, although any number of contexts can be active at the same time.

The facts contained in a context will be retained in storage until either that context is made the current context and the user destroys the \texttt{facts} individually by using \texttt{forget}, or the user destroys all the \texttt{facts} in a context as a group by using \texttt{killcontext}.

\textbf{Note}: It is necessary to \texttt{deactivate} a context before removing it with \texttt{killcontext}.

When a fresh Macsyma is started up, the user is in a context called \texttt{initial}, which has \texttt{global} as a subcontext. Contexts exist in a formal hierarchy, with the root always being the context \texttt{global}, which contains information that some Macsyma functions need. Larger contexts can be defined which contain a smaller context using the command \texttt{supcontext}.

Enter the command \texttt{demo(contexts)}; for a demonstration of how to define and use various contexts of user-defined facts and to switch contexts during a computation.

\texttt{facts(variable)} \quad \textit{Function}

If \textit{variable} is the name of a context, then \texttt{facts} returns a list of the facts in the specified context. If no argument is given, it lists the facts in the current context. If \textit{variable} is not the name of a context, then \texttt{facts} returns a list of the facts known about \textit{variable} in the current context. Facts about these variables are returned only if they are active in the current context.

\texttt{kind(var, type)} \quad \textit{Function}

Facts are represented within a context as expressions of the form \texttt{kind(var, Type)}. Such expressions are merely representations of facts. They evaluate to themselves. See the example on page 382.

\texttt{newcontext(name)} \quad \textit{Function}

Creates a new empty context, called \textit{name}, which has \texttt{global} as its only subcontext. The new context created becomes the currently active context.

\texttt{supcontext(name, context)} \quad \textit{Function}

Creates a new context (called \textit{name}) whose subcontext is \textit{context}. If context is not specified, the current context is assumed. If it is specified, \textit{context} must exist.

\texttt{context default: initial} \quad \textit{Option Variable}

Whenever a user stores a new fact in the database using \texttt{assume}, that information is placed in the context named as the current value of the variable \texttt{context}. Similarly, \texttt{forget} references the current value of \texttt{context}. To change contexts, simply set or bind \texttt{context} to the desired context. If the specified context does not exist, it is created by an invisible call to \texttt{newcontext}. The context specified by the value of \texttt{context} is automatically activated.

\texttt{contexts default: \{initial, global\}} \quad \textit{System Variable}

The value of this variable is a list of the contexts which currently exist, including the currently active context.
killcontext\((\text{context}_1, \ldots, \text{context}_n)\)

Function

Kills the specified contexts. If one of them is the current context, the new current context becomes the first available subcontext of the current context that has not been killed. If the first available unkillable context is **global**, then **initial** is used instead. If the **initial** context is killed, a new **initial** is created, which is empty of facts. **killcontext** does not allow you to kill a context that is currently active. Active contexts are active either because they are subcontexts of the current context or because they have been activated directly by the function **activate**. See Section 13.4, page 382.

activate\((\text{context}_1, \ldots, \text{context}_n)\)

Function

Causes the specified contexts **context**\(_i\) to be activated. The facts in these contexts are used in making deductions and retrieving information. The facts in these contexts are not returned by **facts();**. The function **activate** does not check for contradictions when it activates old contexts. The variable **activecontexts** holds a list of contexts which are active by way of the **activate** function.

deactivate\((\text{context}_1, \ldots, \text{context}_n)\)

Function

Causes the specified contexts **context**\(_i\) to be deactivated.

activecontexts

System Variable

The value of this variable is a list of the contexts which are active by way of the function **activate**, as opposed to being active because they are subcontexts of the current context.

Examples

\[
\begin{align*}
(c1) & \text{ context: con1}\$ \\
(c2) & \text{ declare(m, integer)}\$ \\
(c3) & \text{ featurep(m, integer)}; \\
(d3) & \text{ true} \\
(c4) & \text{ facts(m);} \\
(d4) & \text{ [kind(m, integer)]} \\
(c5) & \text{ context: con2}\$ \\
(c6) & \text{ featurep(m, integer)}; \\
(d6) & \text{ false} \\
(c7) & \text{ declare(n, integer)}; \\
(d7) & \text{ done} \\
(c8) & \text{ context: con1}\$ \\
(c9) & \text{ featurep(m, integer)}; \\
(d9) & \text{ true} \\
(c10) & \text{ featurep(n, integer)}; \\
(d10) & \text{ false} \\
(c11) & \text{ activate(con2)}\$ \\
(c12) & \text{ featurep(n, integer)}; \\
(d12) & \text{ true} \\
(c13) & \text{ contexts;} \\
(d13) & \text{ [con2, con1, initial, global]} \\
\end{align*}
\]

local\((\text{var}_1, \ldots, \text{var}_n)\)

Special Form

Causes the information about the objects **var**\(_1, \ldots, \text{var}_n\) to be forgotten for the duration of the enclosing **block**. With the single exception of value, any information about **var**\(_1, \ldots, \text{var}_n\) declared, assumed, or installed in any way within the **block** containing the **local** is forgotten upon exit. **local** can be used only in a **block**, in the body of a function definition or **lambda** expression, or in the function **ev**. Only one occurrence is permitted in each. See Section 15.3, page 404.

Examples

\[
\begin{align*}
(c1) & \text{ declare(p, integer)}\$ \\
(c2) & \text{ block(local(p), print(featurep(p, integer)),} \\
& \quad \text{ declare(p, irrational))}\$ \\
\end{align*}
\]
False
(c3) featurep(p, integer); (d3) true
(c4) featurep(p, irrational); (d4) false
Chapter 14

Pattern Matching and Related Functions

The pattern matching commands provide a way to test whether any parts of an expression match a specified pattern and to replace each part that matches with a specified replacement expression. The pattern matcher behaves like a very powerful, very intelligent subst (substitution) command. It is also possible to add simplification rules which apply to user-defined or system-defined functions or operators. Table 14.1 contains a summary of Macsyma’s pattern matching commands.

<table>
<thead>
<tr>
<th>Action</th>
<th>Type #1</th>
<th>Type #2</th>
<th>Type #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define a pattern matching variable</td>
<td>matchdeclare(var,pred)</td>
<td>matchdeclare(var,pred)</td>
<td>matchdeclare(var,pred)</td>
</tr>
<tr>
<td>Define a pattern matching rule</td>
<td>tellsimp¹, tellsimp[after]</td>
<td>defrule, defmatch</td>
<td>let</td>
</tr>
<tr>
<td>Display pattern matching criterion</td>
<td>printprops(var, matchdeclare)</td>
<td>printprops(var, matchdeclare)</td>
<td>printprops(var, matchdeclare)</td>
</tr>
<tr>
<td>for a variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display names of all rules</td>
<td>rules</td>
<td>rules</td>
<td>letrules(pkgname)</td>
</tr>
<tr>
<td>Display a pattern matching rule</td>
<td>disastrule¹</td>
<td>disastrule²</td>
<td>disastrule²</td>
</tr>
<tr>
<td>Apply a rule</td>
<td>(automatically applied)</td>
<td>apply1, apply2, applyb1, applyb2</td>
<td>letsimp</td>
</tr>
<tr>
<td>Remove a rule</td>
<td>remrule</td>
<td>remrule</td>
<td>remrule</td>
</tr>
</tbody>
</table>

Table 14.1: Summary of Pattern Matching Commands

1. Rules of Type #1 are assigned names automatically. You can determine the name of a rule by displaying the value of the System Variable rules, then verifying the rule associated with each name using disastrule. See rules, page 390.
2. When the name of a rule is a string, disastrule and remrule can be case sensitive.
14.1 General Pattern Matching

This section is divided into four parts. The first part describes the method for defining a pattern variable using `matchdeclare`. The second part contains the methods for defining rules, using `tellsimp`, `tellsimpafter`, `defmatch` and `defrule`. The third part discusses displaying rules. The fourth part describes the methods for applying rules, using `apply1`, `apply2`, and `applyb1`.

These methods are not recommended for patterns that involve matching parts of rational expressions. Use `let` for that purpose. See Section 14.2.1, page 391.

14.1.1 Defining Pattern Variables

This section explains how pattern variables are defined to be used in pattern matching rules.

`matchdeclare(patternvar, predicate, ...)`

Function

Defines `patternvar` to match only expressions for which `predicate` is not `false`. The odd numbered arguments of `matchdeclare` can also be lists of pattern variables, all of which are to have the associated predicate. Any even number of arguments can be given.

The matching is accomplished by one of the functions described below. For example, after `matchdeclare(q, freeof(x, %e));;;;` is executed, `q` matches any expression not containing `x` or `%e`. If the match succeeds, then the variable is set to the matched expression. The predicate, in this case `freeof`, is written without the last argument, which should be the one against which the pattern variable is to be tested.

Note: The `patternvar` and the arguments to the `predicate` are evaluated at the time the match is performed.

Note: The arguments to `matchdeclare` are supposed to be matched with expressions, not operators. Operators, namely items in the operator position of expressions, including names of subscripted variables, are assumed to be constant. For a pattern matcher to work, it has to assume something is constant.

For pattern matching, predicates refer to functions which are either `false` or not `false` (any non `false` value acts like `true`).

The command `matchdeclare(var, true);` permits `var` to match any expression.

The command `printprops([var1, ..., varn], matchdeclare);` displays the `matchdeclare` properties of the variables `var1, ..., varn`. See Section 13.1.1, page 365.

14.1.2 Defining and Removing Patterns

This section explains how to define rules which can then be used by the commands defined in the next section. See page 390. There are two kinds of rules: those defined by `tellsimp` or `tellsimpafter` and those defined by `defrule`. Rules defined by `tellsimp` or `tellsimpafter` are used automatically by the simplifier after they are defined, while those defined by `defrule` are explicitly applied by the user.

`tellsimpafter(pattern, replacement {,condition})`

Special Form

Defines a `replacement` for `pattern` that the simplifier uses after it applies the built-in simplification rules. The `pattern` can be any expression except a single variable or a number. Rules installed by means of `tellsimpafter` can be removed with `remrule`, described below on page 389. Rules installed by means of `tellsimpafter` are added to the list `rules`. See page 390.

The optional argument `condition` is described on page 387.
14.1. GENERAL PATTERN MATCHING

tellsimp(pattern, replacement {condition})

Is similar to **tellsimpafter** but places new information before old so that it is applied before the built-in simplification rules. The special form **tellsimp** is used when it is important to modify the expression before the simplifier works on it, for instance if the simplifier “knows” something about the expression, but what it returns is not to your liking. If the simplifier “knows” something about the main operator of the expression, but is not doing enough for you, you probably want to use **tellsimpafter**. The **pattern** cannot be a sum, product, single variable, or number. Pattern matching for rational expressions can be accomplished with **let**. See Section 14.2.1, page 391. Rules installed by means of **tellsimp** can be removed with **remrule** (See page 389). Rules installed by means of **tellsimp** are added to the list **rules**. See page 390.

The optional argument **condition** is described below.

The simplifier has been extended to allow recursive application of rules. Previously, this was not allowed because of the possibility of an infinite recursion resulting from ill-defined rules. However, this is actually a needless restriction. **tellsimp** and **tellsimpafter** avoid infinite recursion caused by a rule returning its input form by accepting an optional third argument **condition** which indicates the conditions necessary for the rule to be applied. More precisely, the rule will be applied only when **is**(condition) evaluates to **true**. Such evaluation will not occur until all the pattern variables upon which **condition** depends have successfully been bound as matched.

Examples

(c1) matchdeclare([a, a1, a2, a3, a4, a5, a6], true)$

(c2) tellsimpafter(f(a), -f(-a), sign(a)='neg)$

(c3) disprule(frule1);

(d3) FRULE1 : IF SIGN(A) = 'NEG THEN F(A) -> -F(-A)

(c4) if(f(x), f(-x), f(1), f(-1));

\[F(X), F(-X), F(1), -F(1) \]

The calculation of negative subscript polylogarithms is easily implemented as a rule when the simplifier permits recursive applications of rules. Here, the identity \(\text{dln}_{n+1}(x)/dx = \text{li}_n(x)/x \) is used to compute \(\text{li}_{n}(x) \) for \(n \leq 0 \).

(c5) (tellsimpafter(li[al](a), a*subst('x, diff(li[1+a](x), 'x)), integerp(a1) and a1 <1),

\[\text{li}[0](x), \text{li}[-1](x) \];

\[x, x, 1 \]
\[1 - x, 2, 1 - x \]
\[(1 - x) \]

In another example, a definition of the derivative of product is used to make a differential form.

Examples

(c1) matchdeclare([xx, a, b], true);

(d1) done

(c2) tellsimp(d[xx](a, b), b(xx)*diff(a(xx), x)

- a(xx)*diff(b(xx), xx));

(d2) [subvarrule1, simpsqapply]

Note that **subvarrule1** is the name assigned to the **tellsimp** rule from (c2).

(c3) d[z](x,y);

\[d \]
\[y(z) \frac{dx}{dz} \]
\[\frac{d}{dx} \]

Another use of **tellsimp** is shown in the following example which deals with indefinite forms:

(c4) 0*0;

\[0 \]
0 has been generated

To override such default simplification, use the following paradigm:

```lisp
(block([simp: false],
tellsimp(0^0, 1));
(0^0) 1
remrule("\^", "rule1");
```

```lisp
(defun defmatch (progname, pattern, parm1, ..., parm_n)
  Special Form
  Creates a function, progname, that tests an expression to see if it matches pattern. The pattern is some expression containing pattern variables and parameters. The parm_i are the formal parameters in the argument list of progname and are given explicitly as arguments to defmatch. The pattern variables (if supplied) were given implicitly in a previous matchdeclare function.

For example:
```
(defun nonzeroandfreeof (x, e) :=
 if e#0 and freeof(x, e)
 then true else false$
```

This defines a function to test if the expression e is non-zero and free of x. The command is (e#0 and freeof(x, e)) is an equivalent function definition for nonzeroandfreeof. (Macsyma already has a function nonzero_and_freeof which is described in Section 14.3.2, page 395.)

Now, define some pattern variables: a to match an expression that is non-zero and free of x, and b to match an expression that is free of x:
```
defmatch(a, nonzeroandfreeof(x), b, freeof(x))$
```

Now, use defmatch to create a function, linear:
```
defmatch(linear, a*x+b, x)$
```

This function makes use of the pattern variables a and b set up in the matchdeclare to create a pattern for an expression that is linear in x, where x is the functional argument to linear.
```
defmatch(linear(3*z+(y+1)*z+y**2, z));
```

```lisp
[2]
```
```
defmatch(linear(3*z+(y+1)*z+y**2, z));
```

The command linear(3*z+(y+1)*z+y**2, z); is matched against a*x+b, where b matches y^2, a matches y+4, and x matches z.

If the match is successful, defmatched functions return a list of equations whose left sides are the pattern variables and parameters and whose right sides are the expressions which the pattern variables and parameters matched.
```
defmatch(linear(3*z+(y+1)*z+y**2, z));
```

```lisp
[a;]
```
```
defmatch(linear(3*z+(y+1)*z+y**2, z));
```

The pattern variables, but not the parameters, are set to the matched expressions. If the match fails, the function returns false.

If a variable which occurs in pattern is not declared a pattern variable with matchdeclare or as a parameter in defmatch, then it matches only itself. For example, if the third argument to defmatch in (c3) had been omitted, then linear would only match expressions linear in x, not in any other variable.

A pattern which contains no parameters or pattern variables returns true if the match succeeds. Rules installed by means of defmatch can be removed with remove. See page 361. Rules installed by means of defmatch are added to the list rules. See page 390.
14.1. GENERAL PATTERN MATCHING

Examples
(c1) matchdeclare([a,f],true)$
(c2) constinterval(1,h):=constantp(h-1)$
(c3) matchdeclare(b, constinterval(a))$
(c4) matchdeclare(x, atom)$
(c5) block(remove(integrate, outative),
    defmatch(checklimits, 'integrate(f,x,a,b)),
    declare(integrate, outative))$
(c6) 'integrate(sin(t), t, x+%pi, x+2*%pi)$
(c7) checklimits(%);
(d7) [b = x + 2 %pi, a = x + %pi, x = t, f = sin(t)]
(c8) 'integrate(sin(t), t, 0, x)$
(c9) checklimits(%);
(d9) false

defrule('rulename, 'pattern, 'replacement) Special Form

Defines and names a replacement rule for the given pattern. If the rule named rulename is applied to an expression (by one of the apply functions below), every subexpression matching the pattern is replaced by the replacement. All variables in the replacement that have been assigned values by the pattern match are assigned those values in the replacement, which is then simplified. The rules themselves can be treated as functions that transform an expression by one operation of the pattern match and replacement. If the pattern fails, the original expression is returned.

For example, here is a rule atan2_to.atan which converts atan2 forms into atan forms:

(c1) matchdeclare([y,x],true)$
(c2) defrule(atan2_to.atan,
    atan2(y,x),
    atan(y/x))$
(c3) apply1(2*atan2(v,u),
    atan2_to.atan);
    v
    u
(d3) 2 atan(-) 

Rules installed by means of defrule can be removed with remove. See page 361.
(c4) remove(atan2_to.atan,rule)$

Rules installed by means of defrule are added to the list rules. See page 390.

remrule(function, rulename) Function

Removes a rule with the name rulename from the function, (or main operator) which was placed there by tellsimp, or tellsimpafter. The name of the rule is generated by tellsimp or tellsimpafter and is in three parts: a prefix, the fragment “rule” and a suffix. The prefix is either a symbol fragment representing the name of the function or a string representing the main operator of the expression. The suffix simply numbers rules which have the same prefix. (See the example on page 387.) If rulename is all, then all rules are removed. remrule also updates the rules list by removing from it any rules it eliminates.

compile_rule('rulename1, 'rulename2, ...) Special Form

Compiles the rules with the names rulename1, rulename2, ... as given by defrule, tellsimp, tellsimpafter or defmatch.
For example, the first rule modifying f is called frule1. To compile it, type compile_rule(frule1);. To compile all of the rules on the list rules, use either compile_rule(all); or compile_rule(rules);.
CHAPTER 14. PATTERN MATCHING AND RELATED FUNCTIONS

**compile_rules_in_tr_files** default: true

Option Variable

Controls the automatic compilation of rules in translated files upon loading. If it is set to false, rules are not compiled. In some versions of Macsyma, especially Unix Macsymas, this speeds up loading out-of-core files.

### 14.1.3 Displaying Rules

To examine the list of names of all the rules currently defined, use the System Variable **rules** described below.

**rules** default: []

System Variable

The system variable **rules** holds a list of names having simplification rules added to them by **defrule**, **defmatch**, **tellsimp**, or **tellsimpafter**. The variable **rules** is one of the infolists. Enter the command **rules();** to see a list of the names of all rules currently defined.

Use **disprule** to display rules you have already defined. See **disprule**, page 353 for additional details.

Enter the command **disprule(rulename);** to display the definition of a given rule.

### 14.1.4 Using Rules

**apply1**(exp, rule1, ..., rule_n)

Special Form

Repeatedly applies the first rule to exp until it fails, then repeatedly applies the same rule to all subexpressions of exp, from left to right until the first rule has failed on all subexpressions. Call the result of transforming exp in this manner exp'. Then the second rule is applied in the same fashion starting at the top of exp'. When the final rule fails on the final subexpression, the application is finished. The depth to which **apply1** searches is controlled by **maxapplydepth**, described below.

**apply2**(exp, rule1, ..., rule_n)

Special Form

Differs from **apply1** in that if the first rule fails on a given subexpression, then each of the other rules in the argument list is applied. Only if all the rules fail on a given subexpression is the whole set of rules applied to the next subexpression. If one of the rules succeeds, then the same subexpression is reprocessed, starting with the first rule.

**maxapplydepth** default: 10000

Option Variable

Is the maximum depth to which **apply1** and **apply2** delve.

**applyb1**(exp, rule1, ..., rule_n)

Special Form

The special form function **applyb1** is similar to **apply1** but works from the “bottom up” instead of from the “top down”. It repeatedly applies the first rule to the lowest level of the first subexpression of exp until it fails, then repeatedly applies the same rule to all subexpressions of exp at that level, until the first rule has failed on all subexpressions at that level. Call the result of transforming exp in this manner exp'. Then the second rule is applied in the same fashion starting at the bottom of exp'. When the final rule fails on the final subexpression, the application is finished. The height to which **applyb1** searches is controlled by **maxapplyheight**, page 391.

**applyb2**(exp, rule1, ..., rule_n)

Special Form

The special form **applyb2** is similar to **apply2** but, like **applyb1**, it works from the “bottom up” instead of from the “top down”. It starts with the lowest level of the first subexpression. If the first rule fails on a given subexpression, then each rule in the argument list is applied. Only if all the rules fail on a given subexpression is the whole set of rules applied to the next subexpression. If one of the rules succeeds, then the same subexpression is reprocessed, starting with the first rule.
maxapplyheight default: 10000

Is the maximum height to which applyb1 ascends before giving up.

14.2 Pattern Matching for Rational Expressions

linear_match(expr,x)  
If expr is linear in x (expr:a*x+b), then expr is returned in the form  
(fn_b=b, fn_a=a, fn_x=x). Otherwise, false is returned. Note that a is expected to be nonzero.  
Also, fn_x is not bound while fn_a and fn_b are bound.

quadratic_match(expr,x)  
If expr is quadratic in x (expr:a*x^2+b*x+c), then expr is returned in the form  
(fn_c=c, fn_b=b, fn_a=a, fn_x=x). Otherwise false is returned. Note that a is expected to be nonzero.  
Also, fn_x is not bound while fn_a, fn_b, and fn_c are bound.

Enter the command demo(letrules); for an executable demonstration of the capabilities described below.

14.2.1 Defining And Removing Rules

let(prod, repl, predname, arg1, \ldots, argn)  
Defines a substitution rule for letsimp such that prod gets replaced by repl. The first argument to let  
is the only argument to let which is evaluated. The argument prod is a product of positive or negative  
powers of the following types of terms:

1. If the term is a symbol, letsimp searches for it literally unless you have already given it a  
matchdeclare property using matchdeclare. The matchdeclare property associates a predicate with the  
symbol. In this case, letsimp matches the atom to any term of a product satisfying  
that predicate. See Section 14.1.1, page 386.

2. If the term is a kernel such as sin(x), n!, or f(x,y), letsimp looks for a literal match, unless  
matchdeclare is used to associate a predicate with one or more arguments of the kernel.

A term to a positive power matches only a term having at least that power in the expression being  
letsimped. A term to a negative power, on the other hand, matches only a term with a power at least  
as negative. In the case of negative powers in prod, the option variable letrat, described below, must  
be set to true.

If a predicate is included in the let function followed by a list of arguments, a tentative match, which  
would be accepted if the predicate were omitted, is accepted only if predname(arg1', \ldots, argn') evaluates  
to true where argi' is the value matched to argi. The argi can be the name of any atom or the argument  
of any kernel appearing in prod. repl can be any rational expression. If any of the atoms or arguments  
from prod appears in repl the appropriate substitutions are made.

letrat default: false  
When false, letsimp simplifies the numerator and denominator of expr independently and returns the  
result. Substitutions such as n!/n to (n-1)! fail. To handle such situations, letrat should be set to  
true; then the numerator, denominator, and their quotient are simplified in that order.

These substitution functions allow you to work with several rule packages at once. Each rule package can  
contain any number of let rules and is referred to by a user supplied name. In this case, a more general form  
of the let command is used.
current_let_rule_package default: default_let_rule_package

Holds the name of the rule package presently in use. You can reset this variable to the name of any rule package previously defined by the function let. Whenever any of the functions comprising the let package are called with no package name, the value of current_let_rule_package is used. If a call such as letsimp(exp, rule_pkg_name); is made, the rule package rule_pkg_name is used only for the execution of that letsimp. The value of current_let_rule_package is not changed.

Whenever a let includes a rule package name, that rule package is used as the current_let_rule_package.

You can add a rule to any let rule package by specifying the name of the rule package in the invocation of let.

let(prod, repl, predname, arg1, ..., argn, name)

To insert a rule into the rule package name, type let([prod, repl, pred, arg1, ..., argn], name);. To apply the rules in rule package name, use letsimp(exp, name). The function letsimp(exp, name1, ..., name2); is equivalent to typing letsimp(exp, name1); followed by letsimp(%!, name2); etc.

remlet(prod, name)

Deletes the substitution rule, prod ≥ repl, most recently defined by the let function. The first argument to let is the only argument to let which is evaluated. If name is supplied, the rule is deleted from the rule package name. remlet(); and remlet(all); delete all substitution rules from the current rule package. If name is supplied, as in remlet(all, name);, the rule package, name, is also deleted.

If a substitution is to be changed using the same product, remlet need not be called; just redefine the substitution using the same product (literally) with the let function and the new replacement and/or predicate name. If remlet(prod); is now called, the original substitution rule is revived.

14.2.2 Displaying Rules

letrules(name)

Displays the rule package name. This is a special form because the first argument to let is the only argument to let which is evaluated. The command letrules(); displays the rules in the current rule package, which defaults to default_let_rule_package.

let_rule_packages default: [default_let_rule_package]

The value of let_rule_packages is a list of all the user defined let rule packages plus the special package default_let_rule_package. Macsyma will use the package default_let_rule_package if a rule package is not explicitly set by the user. The variable let_rule_packages is one of the infolists.

There is a default rule package, default_let_rule_package which is assumed when no other name is supplied to any of the let functions.

14.2.3 Using Rules

letsimp(exp)

Repeatedly applies the substitution rules previously defined by the function let until no further change is made to exp. This is a special form because the first argument to let is the only argument to let which is evaluated. The rule package used is the value of current_let_rule_package. The command letsimp(exp, rule_pkg_name); applies only those rules defined within the rule package rule_pkg_name. The special form letsimp does not change the value of current_let_rule_package.
14.3  Type Testing Predicates

A predicate is a function which returns either true or false. The simplest form of pattern matching is testing to see whether a predicate, applied to an expression, yields true or false. Below is a list of predicate functions which test their arguments for specific properties.

14.3.1  Testing for Properties of Numbers

**numberp(exp)**

*Function*

Returns true if exp is an integer, rational number, floating-point number, or a bigfloat, else false.

**integerp(exp)**

*Function*

Returns true if exp is an integer else false.

**floatp(exp)**

*Function*

Returns true if exp is a floating-point number (i.e. single-float or double-float) else false.

**Note:** In particular, if x is a bigfloat number, floatp(x) is false but bfloatp(x) is true. See also bfloatp, page 394.

**sfloatp(exp)**

*Function*

Returns true if exp is a single float number else false.

**dfloatp(exp)**

*Function*

Returns true if exp is a double float number else false.

Simplification rules for differential operators can be specified using the pattern-matching functions.
CHAPTER 14. PATTERN MATCHING AND RELATED FUNCTIONS

bfloatp(exp)

Function
Returns true if exp is a bigfloat number else false.

primep(n)

Function
Returns true if n is a prime, false if not. For convenience, primep(n) = primep(-n) = primep(1/n). When the integer is so large that primep might take too long, the following syntax for primep can be used.
The command primep(n, odds); returns true if it can prove n is a prime, false if it can prove n is composite, and probably if it was only able to establish the specified odds against compositeness. Thus, primep(-euler(38), 10^6); returning probably means the odds are greater than a million to one against factoring. In fact, although they certainly exist, we have never seen a composite n for which primep(n, 1); returns probably, and never expect to see one which fools primep(n, 10^6); We are told that the Generalized Riemann Hypothesis implies that primep(n, 2^(4 ln n)^2) is infallible, but would be willing to bet that so is primep(n, n); primep(n, odds); will never return probably for n less than 2607800071, nor for odds greater than n.

As a special case intended to save time for very large n, odds equal to 0 attempts only a quick check for small factors before giving up and returning probably.
(c1) primep(10\car6+51);
   false
(d1)
(c2) num(bern(42));
(d2) 1520097643818070602691
(c3) primep(?);
(d3) true
(c4) primep(?th(2),1000000);
(d4) probably

ratnump(exp)

Function
Returns true if exp is a rational number else false. Integers are ratnump.

evenp(exp)

Function
Returns true if exp is an even integer. false is returned in all other cases.

oddp(exp)

Function
Returns true if exp is an odd integer. false is returned in all other cases.

zerop(expr)

Function
Returns true if expr is a ‘zero’ of some type, i.e. member(expr,[0,0,0,0d0,0b0]); is true; else zerop(expr) returns false. zerop could be defined as zerop(expr) := numberp(expr) and equal(expr, 0)$

14.3.2 Testing for Mathematical Properties of Expressions

algebraicp(expr)

Function
Returns true if expr is considered to be an algebraic relative to the rational function package.

constantp(expr)

Function
Returns true if exp is a constant. exp is constant if it is composed of numbers, %pi, %e, %phi, %gamma, %i or any variables or functions declared constant. See Section 13.1.1, page 361. If exp contains other objects not declared constant, constantp returns false. Arithmetic functions whose arguments are constant, as well as functions and arrays that are declared constant, are also considered to be constants. If exp contains other objects not declared constant, constantp returns false.
equationp\(\text{(arg)}\)

Returns \textcode{true} if \textcode{arg} is an equation. Otherwise, \textcode{equationp} returns \textcode{false}.

\textbf{Examples}

\begin{itemize}
\item \textcode{testing for an equation}
  \begin{itemize}
  \item \textcode{c1 equationp(x+5=y)\; true}
  \item \textcode{c2 equationp(x+5)\; false}
  \end{itemize}
\end{itemize}

\textcode{freecof(x_1\ldots,x_n,\text{exp})}

Returns \textcode{true} if the \textcode{x_i} do not occur in \textcode{exp} and \textcode{false} otherwise. The \textcode{x_i} are atoms, or they can be subscripted names, functions such as \textcode{sin(x)}, or operators enclosed in double quotes. If \textcode{var} is a dummy variable of \textcode{exp}, then \textcode{freecof(var, \text{exp})} returns \textcode{true}. Dummy variables are things like the index of a sum or product, the limit variable, and the definite integration variable. For example, \textcode{freecof(i,'sum(f(i),i,0,n))\; returns \textcode{true}}.

\textbf{Examples}

\begin{itemize}
\item \textcode{is an expression free of a variable}
  \begin{itemize}
  \item \textcode{c1 freecof(y, sin(x+2*y))\; false}
  \item \textcode{c2 freecof(cos(y), ",", sin(y)*cos(x))\; true}
  \end{itemize}
\end{itemize}

\textcode{non_zero_and_freecof(x,e)}

Returns \textcode{true} if \textcode{e} is nonzero and \textcode{x} does not occur in \textcode{e}, else returns \textcode{false}.

\textcode{scalarmp(exp)}

Returns \textcode{true} if \textcode{exp} is a number, constant, or variable \textcode{declared scalar} or \textcode{constant}, or if \textcode{exp} is composed entirely of numbers, constants, and such variables, but does not contain matrices or lists. See Section 13.1.3.4, page 372.

\textcode{nonscalarp(exp)}

Returns \textcode{true} if \textcode{exp} is a nonscalar. An object is nonscalar if it contains atoms declared as nonscalars, lists, or matrices. See Section 13.1.3.4, page 372.

\textcode{simple_vector_p default: false}

\textbf{Option Variable}

If the value of \textcode{simple_vector_p} is \textcode{true}, nonscalars are assumed to be "simple vectors", \textit{i.e.,} vectors all of whose components are scalars. This is the setting used by the \textcode{vect} package.

If \textcode{simple_vector_p} is \textcode{true} and \textcode{declare([v,v1,v2], nonscalar)\$} has been done, then

\begin{itemize}
\item \textcode{scalarmp(v[x])\; is \textcode{true}, since \textcode{v[x]} represents a component of the vector \textcode{v}}.
\item \textcode{scalarmp(v1.v2)\; is \textcode{true}, since this is just the dot product of two vectors. In general, \textcode{scalarmp(v1.v2 ... vn)\; is \textcode{true} for \textcode{n even}, and if the \textcode{vi} are all declared \textcode{nonscalar}.}
\end{itemize}

\textcode{matrixp(exp)}

Returns \textcode{true} if \textcode{exp} is a matrix; otherwise, it returns \textcode{false}.

\textcode{square_matrixp(x)}

Returns \textcode{true} if \textcode{x} is a square matrix; otherwise, it returns \textcode{false}.

\textcode{operatorp(expr, one_or_more_ops)}

\textbf{Function}

The function \textcode{operatorp} accepts as its first argument, an expression, and as its second argument, either a single operator or a list of operators. If given a single operator, \textcode{operatorp} returns \textcode{true} if the operator is the main operator in the expression \textcode{expr}. If given a list of operators, it returns \textcode{true} if
one of the operators in the list is the main operator in the expression. This is defined elsewhere (see Section 6.9, page 216).

The function \texttt{operatorp} is affected by the \texttt{inflag} switch.

Examples:

The following all return \texttt{true}:

\begin{verbatim}
operatorp(x+y, "*"));
operatorp(sin(x), ["sin", 'cos]);
operatorp(f[i](x), f[i]);
block([inflag:true], operatorp(x/y, "*"));
\end{verbatim}

The following all return \texttt{false}:

\begin{verbatim}
operatorp(1,"+"));
operatorp(x+y, "*"));
\end{verbatim}

\section*{14.3.3 Testing for Properties of Strings}

\textbf{stringp}(arg) \hfill \textit{Function}

Returns \texttt{true} if arg is a string. Otherwise, \texttt{stringp} returns \texttt{false}.

\textit{Examples}

\begin{verbatim}
(c1) x:"enter a number:"$
(c2) stringp(x); $true$
(c3) x:5$ $false$
\end{verbatim}

\textbf{substringp}(substring, string) \hfill \textit{Function}

Returns \texttt{true} if substring is a substring of string.

\textbf{string_equal}(string1, string2) \hfill \textit{Function}

Predicate which returns \texttt{true} if \texttt{string1} and \texttt{string2} are identical, ignoring case.
14.3.4 Testing for Other System Properties

atom\( (\text{exp}) \)  \hspace{1cm} \text{Function}

Returns true if \text{exp} is a special symbol, string or number, else false. Thus \text{atom}(5); returns true while \text{atom}(a[1]); and \text{atom}(\sin(x)); return false, assuming that \text{a}[1] and \text{x} are unbound.

arrayp\( (\text{arg}) \)  \hspace{1cm} \text{Function}

Returns true if \text{arg} is a symbol that designates an array. Otherwise, arrayp returns false.

\begin{align*}
(\text{c1}) & \text{arrayp}(\text{foo}); \\
(\text{d1}) & \text{false} \\
(\text{c2}) & \text{array}(\text{foo}, 3, 3); \\
(\text{c3}) & \text{arrayp}(\text{foo}); \\
(\text{d3}) & \text{true}
\end{align*}

subvarp\( (\text{exp}) \)  \hspace{1cm} \text{Function}

Returns true if \text{exp} is a subscripted variable, such as \text{a}[i].

listp\( (\text{exp}) \)  \hspace{1cm} \text{Function}

Returns true if \text{exp} is a list otherwise, it returns false.

ratp\( (\text{exp}) \)  \hspace{1cm} \text{Function}

Returns true if \text{exp} is in CRE or extended CRE form else false.

symbolp\( (\text{exp}) \)  \hspace{1cm} \text{Function}

Returns true if \text{exp} is a symbol or name, else false. An equivalent definition of symbolp is: symbolp(\text{x}):=\text{atom(}}\text{x}\text{) and not numberp(\text{x}).
Part III

Programming in Macsyma
Chapter 15

The Macsyma Programming Language

This chapter discusses some of the programming structures Macsyma provides. Macsyma includes many of the classical programming structures, such as conditional statements, loops and recursive functions. However, it differs from writing in purely numerical languages, such as Fortran. For example, Macsyma requires no type declaration.

15.1 Conditionals and Logical Operators

The if statement is used for conditional execution. The syntax is

\[ \text{if} \ condition \ \text{then \ expression1 \ else \ expression2} \]

An if statement returns the value of \( expression1 \) if \( condition \) is true and the value of \( expression2 \) if it is false. \( expression1 \) and \( expression2 \) are any expressions, including nested if statements, and \( condition \) is an expression, known as a predicate, that evaluates to true or false and is composed of relational and logical operators, displayed in table 15.1.

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Symbol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>greater than</td>
<td>&gt;</td>
<td>relational infix</td>
</tr>
<tr>
<td>equal to</td>
<td>=</td>
<td>relational infix</td>
</tr>
<tr>
<td>not equal to</td>
<td>#</td>
<td>relational infix</td>
</tr>
<tr>
<td>less than</td>
<td>&lt;</td>
<td>relational infix</td>
</tr>
<tr>
<td>greater than or equal to</td>
<td>&gt;=</td>
<td>relational infix</td>
</tr>
<tr>
<td>less than or equal to</td>
<td>&lt;=</td>
<td>relational infix</td>
</tr>
<tr>
<td>and</td>
<td>and</td>
<td>logical infix</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
<td>logical infix</td>
</tr>
<tr>
<td>not</td>
<td>not</td>
<td>logical infix</td>
</tr>
</tbody>
</table>

Table 15.1: Predefined Logical Operators

\[ exp_1 > exp_2 \]

Returns the expression \( exp_1 > exp_2 \). When used as the conditional in an if statement, or within is, the validity of this relation is determined, and either true or false may be returned. In these cases, \( exp_1 > exp_2 \) is valid if \( exp_1 \) is greater than \( exp_2 \). See Section 15.1, page 401 and Section 13.2, page 376.
\(\text{exp}_1 < \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp}_1 < \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of this relation is determined, and either \text{true} or \text{false} may be returned. In these cases, \(\text{exp}_1 < \text{exp}_2\) is valid if \(\text{exp}_1\) is less than \(\text{exp}_2\). See Section 15.1, page 401 and Section 13.2, page 376.

\(\text{exp}_1 >= \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp}_1 >= \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of this relation is determined, and either \text{true} or \text{false} may be returned. In these cases, \(\text{exp}_1 >= \text{exp}_2\) is valid if \(\text{exp}_1\) is greater than or equal to \(\text{exp}_2\). See Section 15.1, page 401 and Section 13.2, page 376.

\(\text{exp}_1 <= \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp}_1 <= \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of this relation is determined, and either \text{true} or \text{false} may be returned. In these cases, \(\text{exp}_1 <= \text{exp}_2\) is valid if \(\text{exp}_1\) is less than or equal to \(\text{exp}_2\). See Section 15.1, page 401 and Section 13.2, page 376.

\(\text{exp}_1 \# \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp}_1 \# \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of this relation is determined, and either \text{true} or \text{false} may be returned. In these cases, \(\text{exp}_1 \# \text{exp}_2\) is valid if \(\text{exp}_1\) is not equal to \(\text{exp}_2\). See Section 15.1, page 401 and Section 13.2, page 376.

\(\text{exp}_1 = \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp}_1 = \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of this relation is determined, and either \text{true} or \text{false} may be returned. In these cases, \(\text{exp}_1 = \text{exp}_2\) is valid if \(\text{exp}_1\) is equal to \(\text{exp}_2\). See Section 15.1, page 401 and Section 13.2, page 376.

The difference between “=” and \text{equal} is discussed in Chapter 13, on page 375.

\(\text{exp}_1 \mathbf{or} \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp}_1 \mathbf{or} \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of \(\text{exp}_1\) and \(\text{exp}_2\) are determined, one by one, from left to right, until the validity of the entire expression is known. If the validity of a needed \(\text{exp}_1\) cannot be determined, an error will be signaled, unless \text{prederror (default: true)} is false. See Sections 15.1, 13.2, and 18.1

\(\text{exp} \mathbf{and} \text{exp}_2\)  

Infix Operator

Returns the expression \(\text{exp} \mathbf{and} \text{exp}_2\). When used as the conditional in an if statement, or within is, the validity of \(\text{exp}_1\) and \(\text{exp}_2\) are determined, one by one, from left to right, until the validity of the entire expression is known. If the validity of a needed \(\text{exp}_1\) cannot be determined, an error will be signaled, unless \text{prederror (default: true)} is false. See Sections 15.1, 13.2, and 18.1

\(\text{not} \ \text{exp}\)  

Prefix Operator

Returns the Boolean negation of \(\text{exp}\). The argument \(\text{exp}\) must evaluate to \text{true} or \text{false}, unless \text{prederror (default: true)} is false. See \text{prederror}, page 446.

The relational operators all have equal priorities that are less than the priorities of the arithmetic operators and greater than that of the logical operators. The priority of \text{not} is greater than that of \text{and}, which is greater than that of \text{or}.

Omitting the \text{else} clause of an if statement is the same as specifying \text{else false}. The \text{then} or \text{else} clauses can consist of compound statements. See Section 15.2. Care should be taken to return the desired value. The option variable \text{prederror (default: true)} determines the action taken if a clause is not universally true or universally false. See Section 18.1.
### Examples

(c1) \( \text{fib}[n] := \text{if } n=1 \text{ or } n=2 \text{ then 1 else fib}[n-1]+\text{fib}[n-2] \)$
(c2) \( \text{fib}[1]+\text{fib}[2] \)$
(d2) 2
(c3) \( \text{fib}[3] \)$
(d3) 2
(c4) \( \text{fib}[5] \)$
(d4) 5
(c5) \( \text{eta}(\mu, \nu) := \text{if } \mu=\nu \text{ then } \mu \\
\quad \quad \quad \quad \text{else if } \mu>\nu \text{ then } \mu-\nu \\
\quad \quad \quad \quad \text{else } \mu+\nu \)$
(c6) \( \text{eta}(5,6) \)$
(d6) 11
(c7) \( \text{eta}(\text{eta}(7,7),\text{eta}(1,2)) \)$
(d7) 4
(c8) \( \text{if not } 5>2 \text{ and } 6<=5 \text{ or } 4+1.3 \text{ then a else b} \)$
(d8) a

The macro case is a conditional that chooses one of several clauses to execute by comparing a value to various constants.

\[
\text{case}(\text{keyword}, \text{list-of-indicators}_1, \text{form}_1, \ldots, \text{list-of-indicators}_n, \text{form}_n)
\]

Evaluates keyword and compares it with the list of indicators in the subsequent arguments. The indicators are not evaluated. If keyword is a member of the list of indicators, then the corresponding form is evaluated and the result is returned. If a single indicator is given, then it need not be a list. If the final indicator is either otherwise or true, then the final form is evaluated. For example, you could define a kind function to determine the "type" of an object and use this result in a "case" statement:

(c1) \( \text{kind}(\text{expr}) := \text{if not}(\text{mapatom}(\text{expr})) \text{ then op}(\text{expr}) \\
\quad \quad \quad \quad \text{else if integerp}(\text{expr}) \text{ then } \text{'integer} \\
\quad \quad \quad \quad \text{else if floatp}(\text{expr}) \text{ then } \text{'float} \\
\quad \quad \quad \quad \text{else if bfloatp}(\text{expr}) \text{ then } \text{'bfloat} \\
\quad \quad \quad \quad \text{else if symbolp}(\text{expr}) \text{ then } \text{'symbol} \\
\quad \quad \quad \quad \text{else if stringp}(\text{expr}) \text{ then } \text{'string} \\
\quad \quad \quad \quad \text{else } \text{'unknown} \)$
(c2) \( \text{kind}(3.5) \)$
(d2) float
(c3) 3.2
(d3) 3.2
(c4) \( \text{case}(\text{kind}(\%), \text{integer}, [\text{"It was an integer."}], \\
\quad \quad \quad \quad \text{[float, } \text{"It was a floating-point number."}], \\
\quad \quad \quad \quad \text{[bfloat, } \text{"It was a bigfloat."}] \\
\quad \quad \quad \quad \text{[otherwise, } \text{"It was something else."}] \)$
(d4) It was a floating-point number.

If case does not autoload in your Macsyma, enter the command load(basic); to access this macro.

### 15.2 Compound Statements

To execute a sequence of statements in a context where only a single statement is permitted, group these statements into a compound statement by separating them with commas and enclosing the whole group in parentheses. The value of a compound statement is the value of the last statement in the group.
Compound statements are also useful for grouping together a sequence of related calculations when a computation cannot easily be expressed in a single statement.

The system variable \texttt{\%\%} can be used in compound statements in the \textit{n}th statement to refer to the value of the \textit{(n-1)}th statement.

\texttt{\%\% default: \%\%}

Contains the value of the last computation performed in a Macsyma break. You can also use \texttt{\%\%} in compound statements or blocks in the \textit{n}th statement to refer to the value of the \textit{(n-1)}th statement. For example, \texttt{f(n):=(integrate(x^n,x), subst(3,x,%), subst(2,x,%));} is equivalent to \texttt{f(n):=block([x], x:=integrate(x^n,x), subst(3,x,x)-subst(2,x,x));}. In blocks, \texttt{\%\%} is assigned the value of the last nonatomic statement. Translating and compiling \texttt{\%\%} is not supported.

\textit{Example}

\begin{verbatim}
(c1) (a:3, b:4, a+b);
(d1)
(c2) if x=y then (x:x+1, y:y-1)
else (a:0, for i:1 thru x do (s:s+f(i), y:y-g(y)))
\end{verbatim}

\section{15.3 Program Blocks}

A block is a fragment of code that establishes a binding contour for certain kinds of local operations. That is, the effects of some actions (such as the binding of block variables and the execution of local statements) are undone when the block is executed. A block is also a reference point for return and go statements.

Blocks are like compound statements in that they allow you to group a number of statements and to use them where only one statement is allowed. A block also provides a way to tag statements within the block and to assign "dummy" variables to values that are local to the block. The syntax is:

\texttt{block([var, ... , var], statement, ... , statement})

Where \texttt{var}, is an atomic variable, optionally with an initial assignment (see below) that is local to the block and \texttt{statement} is any valid expression. If no variables are to be made local, then the list can be omitted.

A block uses these local variables to avoid conflict with variables having the same names used outside of the block. Such outside variables are said to be global with respect to the block. Local variables are also used to force automatic reclamation of storage used by local computation, upon exit from the block. In this case, upon entry to the block, the global values are saved onto a stack and are inaccessible while the block is being executed. The local variables then are unbound so that they evaluate to themselves. They may be bound to arbitrary values within the block, but when the block is exited, the saved values are restored to these variables. The values created in the block for these local variables are lost. Where a variable is used within a block and is not in the list of local variables for that block, it will be the same as the variable used outside of the block. You can use a global value in a block.

\textit{Example}

\begin{verbatim}
(c1) x:a$
(c2) block([x:b, y:x+1], x*y);
(d2)
\end{verbatim}

Sometimes, you want to localize more than just the value of an object. To save and restore other properties, use a local statement. See Section 13.4.
Example  The example below computes the Hessian of a cubic curve, the Folium of Descartes, which turns out to be invariant under this transformation.

\[
\text{hessian}(f) := \begin{bmatrix}
\text{hessian}(f, 'x', 2), \text{hessian}(f, 'x', 1, 'y', 1), \\
\text{hessian}(f, 'y', 2), \text{hessian}(f, 'x', 1, 'z', 1), \\
\text{hessian}(f, 'z', 2), \text{hessian}(f, 'y', 1, 'z', 1)
\end{bmatrix}
\]

\[
\text{expand} (\text{determinant} (\text{matrix} ([\text{hessian}(f, 'x', 2), \text{hessian}(f, 'x', 1, 'y', 1), \\
\text{hessian}(f, 'y', 2), \text{hessian}(f, 'x', 1, 'z', 1), \\
\text{hessian}(f, 'z', 2), \text{hessian}(f, 'y', 1, 'z', 1)])))$
\]

(c2) \text{hessian}(x^3 - 3*a*x^2*y^2 + z^3);$

(d2) \begin{bmatrix}
3 & 2 & 3 & 2 & 3 \end{bmatrix}$

(c3) \text{subst}(1, z, \text{quotient}(% - 54*a^2));

(d3) \begin{bmatrix}
3 & 3 \end{bmatrix}$

The example below illustrates the saving and restoring of values described above. If \text{local}(a) had not been used, the value on line (d8) would have been 9.

(c4) \text{f(x)} := \text{block}([y:4], \text{local}(a), a[y]:x, \text{display}(a[y]))$

(c5) y:2$

(c6) a[y+2]:0$

(c7) \text{f(9)}; 

a = 9

(d7) done

(c8) a[y+2];

(d8) 0

The value of the \text{block} is the value of the last statement or the value of the argument to the function \text{return} which may be used to exit explicitly from the \text{block}.

The system variable \% can be used in \text{blocks} in the \text{n}th statement to refer to the value of the \text{(n-1)}\text{th} statement. See Section 15.2.

\text{prog}(\text{exp}_1, \ldots, \text{exp}_n)$

Macro

The macro \text{prog} is similar to the function \text{block} in that it evaluates each expression in the argument list in turn, but unlike \text{block}, which returns the result of the last expression, \text{prog} returns the result of the first expression.

\text{go}(\text{tag})$  

Special Form

The special form \text{go} can be used to transfer control to the statement of the \text{block} that is tagged with \text{tag}, the argument to \text{go}. To tag a statement, precede it by a symbol as another statement in the \text{block}. For example: \text{block}([\text{x:1}, \text{loop}, \text{x:x+1}, \ldots, \text{go(loopt)}, \ldots]): The argument to \text{go} must be the name of a tag appearing within the \text{block}. You cannot use \text{go} to transfer to a tag in a \text{block} other than the one containing the \text{go}. The special form \text{go} cannot be used to exit from a \text{do} into a surrounding \text{block}.

\text{return}(\text{exp})$  

Function

\text{return} can be used inside a \text{block} or the body of a \text{do} to exit from the \text{block} or \text{do}. This function allows you to exit from a nonstandard point in the \text{block} or \text{do}. For a \text{block}, the standard exit point is the last statement. For a \text{do}, the exit point is determined by the termination condition, which terminates the \text{do} and causes it to return the atom \text{done}. Thus, to return from some point within a \text{block}, or to cause a \text{do} to return a value other than \text{done} prior to satisfying the termination condition, use \text{return}.

Note: A \text{return} within a \text{do} that occurs in a \text{block} exits only the \text{do} and not the \text{block}. The special form \text{go} cannot be used to exit from a \text{do} into a surrounding \text{block}.
When a \texttt{return} is executed, the value returned by the containing \texttt{do} or \texttt{block} is the result of first evaluating \texttt{exp}, which may be a compound statement or any valid expression.

The argument to the function \texttt{return} is optional. If you do not supply an argument, \texttt{return} defaults to \texttt{false}. As a point of style, we suggest that you not supply the argument only if you will not be using the default value \texttt{false} for a further computation. If you do intend to use the default value \texttt{false}, you should explicitly specify this with \texttt{return(false)}.

Here’s an example of a use of \texttt{return} “for effect” (that is, not “for value”). In this case, \texttt{return} should not get an argument.

\begin{verbatim}
(c1) alleven(l):= /* returns true if l is a list with only even numbers */
  block([],
    for x in l do if oddp(x) then (ans:=false, return()),
    ans);
\end{verbatim}

Here’s an example of a use of \texttt{return} “for value.” In this case, \texttt{return} should get an argument.

\begin{verbatim}
(c2) alleven(l):= block(top,
      if l=[] then return(true),
      if oddp(first(l)) then return(false),
      l:=rest(l),
      go(top));
\end{verbatim}

\texttt{abort()}

Aborts the ongoing computation and returns to the innermost command loop.

The following two commands, \texttt{catch} and \texttt{throw}, can be used in blocks or in other contexts.

\texttt{catch(exp\textsubscript{1}, \ldots, exp\textsubscript{n})}

Evaluates its arguments one by one. If the structure of the \texttt{exp\textsubscript{i}} leads to the evaluation of an expression of the form \texttt{throw(arg)}, then the value of the \texttt{catch} is the value of \texttt{throw(arg)}. This “nonlocal return” thus goes through any depth of nesting to the nearest enclosing \texttt{catch}. There must be a \texttt{catch} corresponding to a \texttt{throw}, else an error is generated. If the evaluation of the \texttt{exp\textsubscript{i}} does not lead to the evaluation of any \texttt{throw}, then the value of the \texttt{catch} is the value of \texttt{exp\textsubscript{n}}.

\texttt{Example}

\begin{verbatim}
(c1) g(l):=catch(map(lambda([x],
    if x<0 then throw(x) else f(x)),l))
(c2) g([1,2,3,7]);
(d2) [f(1), f(2), f(3), f(7)]
(c3) g([1,2,-3,7]);
(d3) - 3
\end{verbatim}

The function \texttt{g} returns a list of \texttt{f} of each element of \texttt{l} if \texttt{l} consists only of nonnegative numbers; otherwise, \texttt{g} “catches” the first negative element of \texttt{l} and “throws” it up.

\texttt{throw(exp)}

Evaluates \texttt{exp} and throws the value back to the most recent \texttt{catch}. The \texttt{throw} function is used with \texttt{catch} as a structured nonlocal exit mechanism.

\texttt{unwind\_protect(form, guardform\textsubscript{1}, guardform\textsubscript{2}, \ldots, guardform\textsubscript{n})}

Executes \texttt{form} and returns its result.

The \texttt{guardform\textsubscript{i}} are guaranteed to execute, no matter how \texttt{form} is exited (normal exit, call to \texttt{return} or \texttt{throw}, or call to \texttt{exit} or \texttt{abort}).

For example, if you do

\begin{verbatim}
(c1) unwind\_protect(read(),print('done))
\end{verbatim}

and then press \texttt{abort}, \texttt{done} will still be printed before you return. In general, this can be used to implement arbitrary kinds of cleanup operations.
15.4 THE DO STATEMENT

Examples

(c2) foo:[a,b,c]$
(c3) block([[old_foo_first:foo[1]],
               unwind_protect((foo[1]:d,
                             print(foo),
                             'done),
               foo[1]:old_foo_first)));
   [d, b, c]
(d3) done
(c4) foo;
(d4) [a, b, c]

Note that although the guardforms are guaranteed to evaluate, the form is not. That means that expressions like the following are strongly discouraged:

(c5) unwind_protect((x:x+1,print(x)),x:x-1)$ /* very poor style! */

The reason is that if evaluation is interrupted before x is incremented, the decrement will still occur. It is better to first read the value and then restore the value later, as in

(c6) block([[old_x:x],unwind_protect((x:x+1,print(x)),x:old_x)])$

Of course, in cases this simple you can (and generally should) just use block to bind your variable. For example,

(c7) block([x:x+1],print(x))$

But sometimes things may be much more complicated than this, and for such situations unwind_protect can be useful.

Form but_upon_return guardform

An infix form of unwind_protect for the common situation where there is only one guardform.

Example

(c1) foo:[a,b,c]$
(c2) block([[old_foo_first:foo[1]],
              (foo[1]:d,print(foo),'done)
              but_upon_return foo[1]:old_foo_first));
   [d, b, c]
(d2) done
(c3) foo;
(d3) [a, b, c]

15.4 The Do Statement

The do statement is used for performing iteration. Because of its general-purpose use, the do statement is described in two parts. Section 15.4.1 describes uses of the form that are analogous to several other programming languages. Section 15.4.2 describes additional ways to use the do statement.

15.4.1 Commonly Used Forms

There are three variants of this form that differ only in their terminating conditions. They are:

- for variable: initial-value step increment thru limit do body
- for variable: initial-value step increment while condition do body
- for variable: initial-value step increment unless condition do body
Alternatively, the step can be given after the termination condition or limit. Any number of while or unless clauses can appear.

The initial-value, increment, limit, and body can be any expressions. To iterate over several statements, the body can be made into a compound statement. (See Section 15.2 or Section 15.3.) The condition, or predicate, is as in the if statement. If the increment is 1, then step 1 can be omitted.

The execution of the do statement proceeds by first assigning the initial-value to the variable, henceforth called the control variable. Then:

1. If the control variable exceeds the limit of a thru specification, or if the condition of any of the unless clauses is true, or if the condition of any of the while clauses is false, then the do terminates.

2. The body is evaluated.

3. The increment is added to the control variable.

4. The process from (1) to (3) is performed repeatedly until the termination condition is satisfied. You can also give several termination conditions, in which case the do terminates when any of them is satisfied.

In general, the thru test is satisfied when the control variable is greater than the limit if the increment was nonnegative, or when the control variable is less than the limit if the increment was negative. The increment and limit can be non-numeric expressions, as long as this inequality can be determined. However, unless the increment evaluates to a negative number at the time the do statement is input, it is assumed that it is positive when the do is executed. If it is not positive, then the do cannot terminate properly.

**Note:** The limit, increment, and termination condition are evaluated each time through the loop. Thus, if any of these involve much computation, and yield a result that does not change during any of the executions of the body, then it is more efficient to set a variable to their value prior to the do and use this variable in the do form.

The value normally returned by a do statement is the atom done, as every statement returns a value. However, the function return can be used inside the body to exit the do prematurely and give it any desired value. See Section 15.3.

**Note:** A return within a do that occurs in a block exits only the do and not the block. The special form go cannot be used to exit from a do into a surrounding block.

The control variable is always local to the do, and thus any variable can be used without affecting the value of a variable with the same name outside of the do. Naturally, care should be taken to avoid conflict between the names of control variables in nested do loops. After the do terminates, the control variable is either unbound or resumes its global value, if it had one.

**Examples** The first example below displays the successive values of a control variable. The function ldisplay generates intermediate labels; display does not.

```
(c1) for a:=-3 thru 26 step 7 do ldisplay(a)$
 (e1) a = -3
 (e2) a = 4
 (e3) a = 11
 (e4) a = 18
 (e5) a = 25
```

In this next example, note that the condition in (c7) is equivalent to unless i > 10 and to thru 10.

```
(c6) s:0$
(c7) for i:1 while i<=10 do s:s*i;
(d7) done
(c8) s;
```
55
You can calculate the first eight terms of the Taylor series for \(e^{\sin x}\) using a do loop, as shown below. Of course, the function \texttt{taylor} is already available, and much more convenient. Refer to \texttt{taylor} on page 153 for more information.

```
(c9) series:1$
(c10) term:exp(sin(x))$
(c11) for p:1 unless p>7 do
 (term:diff(term, x)/p,
 series:series+subst(x=0,term)*x^p)$
(c12) series;
 7 6 5 4 2
(d12) x x x x x
 -- - -- - -- + ++ x + 1
 90 240 15 8 2
```

This final example computes the negative square root of 10 using the Newton-Raphson iteration a maximum of 10 times. If the convergence criterion had not been met, the value returned would have been \texttt{done}.

```
(c13) poly:0$
(c14) for i:1 thru 5 do
 for j:i step -1 thru do
 poly:poly+i*x^j$
(c15) poly;
 5 4 3 2
(d15) 5 x + 9 x + 12 x + 14 x + 15 x
(c16) guess:-3.0$
(c17) for i:1 thru 10 do (guess:subst(guess, x, .5*(x+10/x)),
 if abs(guess^2-10)<.00005 then return(guess));
(d17) - 3.1622807
```

### 15.4.2 Additional Forms of the Do Statement

Instead of always adding a quantity to the control variable, you can change it in some other way for each iteration. In this case, use \texttt{next expression} instead of \texttt{step increment}. This causes the control variable to be set to the result of evaluating \texttt{expression} each time through the loop.

**Example**
```
(c1) for count:2 next 3*count thru 20
da display(count)$
 count = 2
 count = 6
 count = 18
```

As an alternative to \texttt{for variable:value ... do ... the syntax for variable from value ... do ...}
can be used. This permits the \texttt{from value} to be placed after the step or next value or after the termination condition. If \texttt{from value} is omitted, then 1 is used as the initial value.

It is not necessary to specify a control variable for \texttt{do}. When you are interested in performing an iteration where the control variable is never actually used, it is permissible to give only the termination conditions, omitting the initialization and updating information. In the following example, we compute the square root of 5 using a poor first guess.

**Example**
```
(c1) x:1000$
(c2) thru 10 while x#0.0 do x:.5*(x+5.0/x)$
(c3) x;
(d3) 2.282429
```
You can even omit the termination conditions entirely, and just give \texttt{do body}, which continues to evaluate the body indefinitely. In this case the function \texttt{return} should be used to terminate execution of the \texttt{do}. See \texttt{return}, Section 15.3, page 405.

\textit{Example}

\begin{verbatim}
(c1) newton(f,guess):=
  block([numer:true, y],
    local(df),
    define(df(x), diff(f(x),x)),
    do (y:df(guess),
      if y=0.0
        then error("derivative at:", guess, " is zero.")
        else guess:guess-f(guess)/y,
      if abs(f(guess))<5.0e-6 then return(guess))$

(c2) sqr(x):=x^2-5.0$
(c3) newton(sqr, 1000); 2.236068
\end{verbatim}

\textbf{Note: } The \texttt{return} function, when executed, causes the current value of \texttt{guess} to be returned as the value of the \texttt{do}. The \texttt{block} is exited and this value of the \texttt{do} is returned as the value of the \texttt{block} because the \texttt{do} is the last statement in the \texttt{block}.

One other form of the \texttt{do} is available. The syntax is:

\texttt{for variable in list [end-tests] do body}

The members of the \texttt{list} can be any legal Macsyma expressions. They are successively assigned to the variable on each iteration of the \texttt{body}. For a discussion of lists, see Section 16.7. The optional \texttt{end-tests} can be used to terminate execution of the \texttt{do}; otherwise it terminates when the \texttt{list} is exhausted or when a \texttt{return} is executed in the \texttt{body}.

\textit{Example}

\begin{verbatim}
(c1) for f in [log, rho, atan] do ldisp(f(1))$
(e1)  0
(e2)  rho(1)
(e3)  %pi/4
\end{verbatim}

In fact, \texttt{list} can be any nonatomic expression, and successive parts are taken.

\begin{verbatim}
(c2) for x in a*b*c do print(x);
an
b
c
\end{verbatim}
Chapter 16

Data Types and Objects in Macsyma

This chapter describes the different kinds of data which Macsyma understands, the expected formats for that data, and the terminology used in this manual to talk about data types and structures.

16.1 Overview of Macsyma Objects

Macsyma is made up of nine types of objects: symbols, functions, special forms, operators, option variables, system variables, properties, keywords, and keyword forms. The purpose of this section is to familiarize you with the objects themselves and the format in which they will be displayed throughout the manual. The definition of each object type is followed by a definition of a typical object of this type, and by an example of its use.

16.1.1 Symbols

A symbol is used in Macsyma to name a variable, a constant, or function, or for some other special purpose. For example, the expression \( x^2 + \pi = f(y) \) contains the symbols \( x \), \( \pi \), \( f \), and \( y \).

A special symbol is a symbol which has some predefined property in Macsyma. See property, page 413. A typical special symbol definition looks like this:

\[ \text{inf} \]

Real positive infinity. The symbol \text{inf} has the \text{constant} property.

16.1.2 Functions

A function is a procedure that accepts zero or more arguments, performs some computation, and returns a result.

The first line of a function definition contains the name of the function in a \text{bold} font and the function’s arguments in \text{italics}, separated by commas. A function can have arguments which are optional. That is, they need not be included for the function to run successfully. In this reference manual, optional arguments are either surrounded by curly braces in the function definition, or are described as optional in the function description. Additionally, the object type, such as \text{Function}, is indicated in \textit{italics} on the right side of the first line. When functions or arguments are mentioned in any type of definition, they appear in the bold and italic fonts respectively.

A typical function definition looks like this:
Delete \((exp_1, exp_2)\)  

Function

Removes all occurrences of \(exp_1\) from \(exp_2\). The expression \(exp_1\) can be a term of \(exp_2\) if it is a sum, or a factor of \(exp_2\), if it is a product.

Example

\((c1) \text{ delete}(\sin(x), x + \sin(x) + y)\);
\((d1) \quad y + x\)

16.1.3 Special Forms

A special form is like a function in all respects except that the evaluation of a special form’s arguments is handled in special ways. One or more of the arguments of a special form may not be evaluated at the time the special form is called, and in some cases are not evaluated at all. In this documentation, the names of those arguments to special forms that are subject to such special evaluation rules are preceded by a single quotation mark in the syntax description.

A typical special form definition looks like this:

\text{declare}(\ 'a_1, \ 'f_1, \ldots, \ 'a_n, \ 'f_n)\)  

Special Form

Declares each \(a_i\) to have the corresponding feature \(f_i\). For example, \text{declare}(f, increasing); declares \(f\) to be an increasing function. The \(a_i\) and \(f_i\) may also be lists of objects or features.

16.1.4 Operators

Operators are functions or special forms that have a stylized syntax. For example, \text{factorial}(n)\) is in functional notation, whereas \(n!\) is in operator notation. The seven kinds of operators are infix, matchfix, postfix, prefix, nary, nofix, and special.

A typical operator definition looks like this:

\(exp!\)  

Postfix Operator

"! Invoking \(exp!\) returns the product of all the integers from 1 up to its argument. Thus \(5! = 1\times2\times3\times4\times5 = 120\). If \(exp\) is not an integer, \(exp!\) is returned. This expansion is controlled by the option variable \text{factorial_limit}. Refer to \text{factorial_limit} on page 54 for more information.

16.1.5 Option Variables

An option variable is a variable that affects or controls the behavior of one or more functions, special forms, or other parts of the system. An option variable can typically be set to one of several possible values, which are listed in its description.

Some option variables, like system variables, have a default value. When an option variable has a default value, that value is indicated just after the name of the object. The type of the object, \text{Option Variable}, is indicated in the upper right corner. You set option variables to various alternative values to influence the behavior of one or more functions. The definition of each option variable explains the alternative settings and the respective results.

A typical option variable definition looks like this:

\text{exponentialize default: false}\)  

Option Variable

If \text{true}, this option variable causes all circular and hyperbolic functions to be converted to exponential form.
16.1.6 System Variables

A system variable is one whose value is determined by the system, and normally cannot be set directly by the user. Some system variables may be assigned values implicitly when you use certain predefined Macsyma functions, special forms, or operators. See option variables, page 412.

Some system variables have a default value. When a system variable has a default value, that value is indicated just after the name of the object. If the default value is the empty list, that is indicated by square brackets, as in the example below. The object type, System Variable, is indicated on the right side of the first line of the description.

A typical system variable definition looks like this:

values default: []

Lists all atomic variables that have assigned values. The variable values is one of the infolists.

16.1.7 Properties

A property is a named attribute of a symbol. Macsyma has two separate facilities for attaching properties to a symbol. One uses declare, featurep, and remove to allow you to manipulate a set of system-defined properties. The other uses put, get, rem to allow you to manipulate the association between symbols and arbitrarily-named properties.

A typical property definition looks like this:

real

A symbol can be declared real if it is known to represent a real number or a function that takes only real values.

16.1.8 Keywords

A keyword is an optional argument to a function or special form that is specially recognised and modifies the behavior of the function or special form.

A typical keyword definition looks like this:

pred

The keyword pred causes predicates, which are expressions that evaluate to true or false, to be evaluated.

Entries for keywords display the list of functions or special forms that recognize that keyword in the specified way. In this case, only ev recognizes the specified keyword.

16.1.9 Keyword Forms

A keyword form is similar to a keyword but consisting of something other than a simple argument.

A typical keyword form definition looks like this:

derivlist(var1...var_n)

Causes differentiations with respect to the indicated variables only.
16.2 Numbers

16.2.1 Types of Numbers

In this section we discuss integers, rational numbers, floating-point numbers, and “bigfloats,” all of which are considered types of numbers. You can find more information on the many predefined constants in Macsyma in Section 3, page 31.

An integer consists of a string of digits not containing a decimal point. Macsyma is able to represent mathematical integers of any magnitude. The integer type is the union of the type fixnum and the type bignum. Except for a few well-documented situations, you do not need to know whether a number is internally represented as a fixnum or bignum. Macsyma allows you to deal with the abstract mathematical notion of an integer without regard to issues of machine precision or representation.

The data type fixnum is a subtype of integer and specifies a range of integers that are efficient to represent. Usually fixnums are those integers which can be stored in a single machine word. Although the range of fixnums is machine dependent, integers of type fixnum will always be of smaller magnitude than integers of type bignum.

The data type bignum is the subtype of integer containing those integers which are so large they cannot be stored in a single machine word. The only bound on the size of a representable integer is the total available virtual address space that is accessible to Macsyma.

A rational number is a number that is represented as an exact ratio of two integers and is written as numerator/denominator. Macsyma can represent any rational number whose numerator and denominator can be represented as integers.

A floating-point number or float is either a single float number or a double float number. A single float number is written as a string of digits containing a decimal point and optionally followed by an integer exponent beginning with the letter e. A double float number has a larger mantissa, and the exponent is designated by the letter d. Using floats, you can obtain quick numerical approximations to certain problems, up to a bounded precision that depends on your machine. Floating-point results are approximate and may be compromised by round-off errors, so Macsyma typically does not generate a floating-point approximation unless you explicitly request it. Instead, Macsyma manipulates symbolic quantities, which are exact.

A bigfloat is a floating-point number of arbitrary but definite precision. Bigfloats are written exactly like floating-point numbers, except that the letter b is used instead of the letter e or d. The b must be included to indicate a bigfloat. Like a float, a bigfloat is typically used as an approximation to a particular real number. Mathematical computations involving bigfloats, however, produce answers with the number of significant digits specified by the user. Unlike a bignum, which must always have greater magnitude than any fixnum, a bigfloat may have any sign or magnitude. Although conceptually similar to floating point numbers, bigfloats are not a subclass of numbers of type float in Macsyma.

There is no practical limit on the number of digits in an integer or rational number; nonzero single float (double) numbers must have an absolute value between 2.9e−37 and 1.7e38 and are limited to approximately 16 digit precision. Bigfloats can have any number of digits. The precision is governed by the value of \texttt{bfprecision} (default: 16). Bigfloats should be used only when needed, because of the higher cost of using them.

Although Macsyma does not have a data type corresponding to complex numbers, it manipulates complex numbers as symbolic expressions, in which the imaginary unit is written as \%i. For example, the mathematical expression $3 + 4i$ is written as $3+i$ in Macsyma.

Table 16.1 displays some examples of numbers.

The following variables are useful in controlling numbers in Macsyma.

\begin{verbatim}
ibase default: 10

Input integers or rational numbers are assumed to be in base \texttt{ibase}. The value assigned to this variable must be an integer between 2 and 36 inclusive. If \texttt{ibase} is assigned a value greater than 10, Macsyma
\end{verbatim}
<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>-17253733574534 227</td>
</tr>
<tr>
<td>single float</td>
<td>3.14159          6.02e23</td>
</tr>
<tr>
<td></td>
<td>-1.6e-19</td>
</tr>
<tr>
<td>double float</td>
<td>8.63877340217378d85</td>
</tr>
<tr>
<td>Bigfloat</td>
<td>37.567834987250832568b-98</td>
</tr>
<tr>
<td></td>
<td>-7b0</td>
</tr>
<tr>
<td>Rational Number</td>
<td>-3354665557331/66724255465544</td>
</tr>
</tbody>
</table>

Table 16.1: Examples of Numbers

provides no way to specify digits above 9. This does not affect floating-point numbers or bigfloats.

**obase** default: 10

Type obase; to display the base for display or output of integers or rational numbers. The value assigned to this variable must be an integer between 2 and 36 inclusive. If obase is assigned a value greater than 10, letters of the alphabet are used to represent digits above 9. This option variable does not affect floating-point numbers or bigfloats.

### 16.2.2 Limits on Fixnums in Macsyma

**most_positive_fixnum** default: unspecified

This system variable contains the positive fixnum in the current implementation with the greatest magnitude.

**most_negative_fixnum** default: unspecified

This system variable contains the negative fixnum in the current implementation with the greatest magnitude.

### 16.2.3 Limits on Single Float Numbers in Macsyma

**most_positive_float** default: unspecified

This system variable contains the floating-point number in the current implementation that is closest to positive infinity.

**most_negative_float** default: unspecified

This system variable contains the floating-point number in the current implementation that is closest to negative infinity.

**least_positive_float** default: unspecified

This system variable contains the positive floating-point number in the current implementation that is closest to (but not equal to) 0.

**least_negative_float** default: unspecified

This system variable contains the negative floating-point number in the current implementation that is closest to (but not equal to) 0.
float_plus_epsilon default: unspecified
This system variable contains the smallest positive floating-point number such that
is(1.0 + float_plus_epsilon = 1.0); returns false.

float_minus_epsilon default: unspecified
This system variable contains the smallest positive floating-point number such that
is(1.0 - float_minus_epsilon = 1.0); returns false.

16.2.4 Limits on Double Float Numbers in Macsyma

most_positive_dfloat default: unspecified
This system variable contains the double float number in the current implementation that is closest to
positive infinity.

most_negative_dfloat default: unspecified
This system variable contains the double float number in the current implementation that is closest to
negative infinity.

least_positive_dfloat default: unspecified
This system variable contains the positive double float number in the current implementation that is
closest to (but not equal to) 0.

least_negative_dfloat default: unspecified
This system variable contains the negative double float number in the current implementation that is
closest to (but not equal to) 0.

dfloat_epsilon default: unspecified
This system variable contains the smallest positive double float number, eps, such that is(1.0 + eps
= 1.0); returns false.

dfloat_minus_epsilon default: unspecified
This system variable contains the smallest positive double float number, eps, such that is(1.0 - eps
= 1.0); returns false.

See Chapter 5 for more information about computing with numbers.
Do demo(floatnums); and demo(complex); for demonstrations of floating point and complex numbers
respectively. Do example(tellrat); for an example of the definition and use of algebraic numbers in
Macsyma.

16.3 Strings

A string is an ordered sequence of characters enclosed in a pair of double quotation marks. To enter a
string, simply type the desired characters between a pair of double quotation marks. The empty string can
be constructed by typing two consecutive quotation marks ("""). Strings are useful as messages, such as those
giving instructions for entering data, as descriptive titles for printed data, and as file pathnames. To include
a double quotation mark (") as part of the text of the string, it is necessary to precede it with a backslash
\). Examples of strings are:

"input amount in pounds:"  "riemann's zeta function"  ""
Certain special forms (like do, thru, and or) and operators (such as "+", "-", "+", "/", "/", "\^", "\^") are reserved because of their use as keywords, operators or delimiters. They are listed in Section 21.1.1. If these are used out of their normal context, they must be enclosed in quotation marks as strings.

16.3.1 Building Strings

The following functions are provided for constructing strings.

**string**(exp)  
Converts exp to a string. If the option variable **grind** is set to **true**, the resulting string may contain line breaks, which make the expression more readable.

**substring**(string, start, {end})  
Extracts a substring from the given string. The extent of the substring is determined by the argument start and the optional argument end, which are integers. If end is not specified, then the length of the string is used. If either start or end is non-positive, then it is indexed backwards from the end.

**concat**(arg1, \ldots, argn)  
Evaluates its arguments and returns the concatenation of their values resulting in a name or a quoted string. The type that is returned is determined by the first argument. Thus, if x is bound to 1 and d is unbound, then concat(x, 2); yields "12", a quoted string. Evaluating concat(d, x+1); returns d2, a name.

**getchar**(string-or-name, n)  
Returns the nth character of the quoted string or atomic name string-or-name. The argument n must be a positive integer. If the number of characters in string-or-name is less than n, getchar returns false. You can use this behavior to check for the end of a string or name. This function is useful in manipulating the labels list.

**getcharn**(string-or-name, n)  
Returns the octal character code of the nth character of the quoted string or atomic name string-or-name. The argument n must be a positive integer. If the number of characters in string-or-name is less than n, getcharn returns false.

**ordinal_string**(integer)  
Returns the string representing the ordinal value of integer.

(c1) ordinal_string(42);  
(d1) forty-second

**cardinal_string**(integer)  
Returns the string representing the cardinal value of integer.

(c1) cardinal_string(42);  
(d1) forty-two

16.3.2 Identifying Strings

**stringp**(arg)  
Accepts a single argument and returns **true** if the argument is a string and **false** otherwise.

**substringp**(substring, string)  
Returns **true** if substring is a substring of string and **false** otherwise.
string_equal(string1, string2)  
Function  
Predicate which returns true if string1 and string2 are identical, ignoring case. If you want to take case into account, you can compare strings using the = predicate, which is discussed in Chapter 13, page 375.

16.3.3    Changing the Appearance of Strings

string_downcase(string)  
Function  
Returns a string containing only lower-case characters.

string_upcase(string)  
Function  
Returns a string containing only upper-case characters.

string_capitalize(string)  
Function  
Returns a string with only the leading character of each word capitalized.

string_trim(string)  
Function  
Removes leading and trailing characters space, tab, and newline from string.

string_left_trim(string)  
Function  
Removes leading characters space, tab, and newline from string.

string_right_trim(string)  
Function  
Removes trailing characters space, tab, and newline from string.

16.3.4    Evaluating Strings

The contents of a string can be evaluated by Macsyma using the eval_string function.

eval_string(string)  
Function  
Parses the string argument and sends the result to the Macsyma evaluator. For example, a:2$ followed by eval_string("a+b*c"); results in bc+2.

16.4    Symbols

You can use symbols to designate variables, functions, arrays, and other data structures. A symbol consists of a sequence of characters that can include letters, percent signs (%), underscores (_), and digits. A symbol can also include other characters, but they must be preceded with a backslash (\) when typed in. Symbols can be of any length and must begin with a letter, a percent sign (%), or an underscore (_), unless the leading character is preceded by a backslash (\). You can use the same symbol to name a function and a variable and an array at the same time. Macsyma will decide from the context which type of object you are using.

Examples of symbols are

%pi  epsilon  x10y30isastrangename  \*special  standard_deviation

16.5    Variables

A symbol which is associated with a value is called a variable. A variable may or may not be subscripted. As in standard mathematical notation, a subscripted variable is one of a collection of variables denoted by
16.5. VARIABLES

The same symbol and distinguished by a subscript. Subscripts must be enclosed in square brackets following the name of the variable. The variables \( x[n] \) and \( a[1, 2] \) are examples of subscripted variables. See Section 16.6, page 420. An unsubscripted variable is called an atomic variable. Variables, both subscripted and non-subscripted, are given values by means of the assignment operator, described below.

\[
\text{variable-name : value-to-be-assigned}
\]

Variables are assigned values by writing the name of the variable followed by a colon (:) and the expression representing the value to be assigned to the variable. The first argument, \text{variable-name}, is not evaluated, while \text{value-to-be-assigned} is. See Section 9. For example, after executing \( z:3 \); the value of \( z \) is 3. Then, \( a:z \); assigns to \( a \) the value of \( z \) at that time, that is, 3. After \( z:5 \); the value of \( z \) is 5, but the value of \( a \) is still 3. A variable can be assigned a new value at any time. The value of a variable can be any valid expression. If a symbol is not assigned a value, then it just represents itself. Since the value assigned can be any expression, it can in particular be another assignment, and therefore multiple assignments are permitted. Thus \( a:b:c:x+1 \) assigns \( x+1 \) to \( a, b, \) and \( c \).

\[\text{Note:}\] When a value assignment is made, the expression assigned as a value to the variable is not recopied; only a pointer from the variable to the expression is assigned. Thus, in the multiple assignment above, only one copy of \( x+1 \) is created.

When a non-subscripted variable has a value, its name appears on the \text{values} list, described below. Many variables are pre-defined by Macsyma, such as system variables and option variables. They are provided to give you some control over the way operations are performed. You should choose names other than these for your applications.

To remove the value of a variable, use either \texttt{kill} or \texttt{remvalue}. The difference between these two approaches is that \texttt{kill} destroys all information associated with that symbol, while \texttt{remvalue} removes only the value. Examples of other information removed by \texttt{kill} are properties, function definitions, and macro definitions. See Section 19.6, page 472. The function \texttt{remvalue} is described below.

\[\text{values default: } []\]

Holds a list of all atomic variables that have assigned values. The variable \text{values} is one of the infolists.

\text{remvalue('name1, . . . , 'name_n)}

Removes the values of the named variables, atomic or subscripted, from the system. (For subscripted variables, also see Section 16.6.4, page 425.) If any argument is \texttt{all}, then the values of all (and only) non-subscripted user variables are removed. \texttt{remvalue} returns \texttt{false} for any variables that do not have values. Values are those items that you have given names as opposed to those which are automatically labeled as (c1), (d1), or (e1). If any of the arguments of \texttt{remvalue} are not subscripted, \texttt{remvalue} also removes them from the \text{values} list, described above. \texttt{remvalue} also removes the values of line labels, but only if they are explicitly included as arguments. These specified labels are then removed from the list \texttt{labels}. See Section 1.3.1, page 6.

Some simple examples of assignment follow.

(c1) \( a:16\$\)
(c2) \( \text{lambda}: -3/37\$\)
(c3) \( x:d1\);
(d3) \( \frac{16}{16}\)
(c4) \( \text{rho:sigma};\)
(d4) \( \text{sigma}\)
(c5) \( \text{sigma} : 0.005\$\)
(c6) \( \text{rho};\)
(d6) \( \text{sigma}\)

\[\text{Note:}\] In the above example, since the value of \texttt{rho} is assigned to be \texttt{sigma}, and never re-assigned, it remains \texttt{sigma} even after \texttt{sigma} has been assigned the value .005.
\[ exp :: value-to-be-assigned \]

The assignment operator `::` assigns the value of the expression on its right, `value-to-be-assigned`, to the value of the quantity on its left, \( exp \), which must evaluate to a variable. See Section 16.6.3, page 422. Thus, if \( a \) evaluates to \( b \), and \( y \) evaluates to \( z \), executing \( a::y; \) assigns \( z \) as the value of \( b \). At times, it may be necessary to enclose \( exp \) in parentheses if the order of precedence of the operator `::` is too high to bind it to the whole of \( exp \). See Section 21.1.2, page 494.

\[
(c7) \ \text{rho}::\text{lambda};
\]

\[
(c8) \ \text{sigma};
\]

\[
(d8) \ - \ -- \ - \ -- \ 3\ 37
\]

\[
(c9) \ \text{values};
\]

\[
(d9) \ [a, \text{lambda}, x, \text{rho}, \text{sigma}]
\]

**Note:** The `::` causes the value of \( \text{lambda} \), \(-3/37\), to be assigned to the value of \( \text{rho} \), namely \( \text{sigma} \).

### 16.6 Subscripted Variables and Arrays

Arrays enable you to refer to a collection of elements using a single name. An element of an array is referred to by a subscripted variable entered as an array name symbol, followed by a list of subscripts enclosed in square brackets.

Table 16.2 contains a summary of Macsyma’s array features.

#### 16.6.1 Declared Arrays

Arrays are declared to provide more efficient storage. Declared arrays are similar to fixed size arrays, which can be declared in other languages such as FORTRAN. You declare the number of dimensions and indicate the maximum value of each subscript. In Macsyma, declared arrays have indices running from 0 (not 1) to the dimension size. The system then allocates space for the entire array. To declare an array, use the following special form:

\[
\text{array}(name, \{type\}, \text{dim}_1, \ldots, \text{dim}_k\{\text{\texttt{function}}\})
\]

This sets up a \( k \)-dimensional array. A maximum of five dimensions can be used, so \( k<6 \). The subscripts for the \( i^\text{th} \) dimension are the integers running from 0 to \( \text{dim}_i \). If you have more than one array to be set up the same way, they can all be set up at the same time by typing `array([name_1, \ldots, name_j], \text{dim}_1, \ldots, \text{dim}_k);`.

Arrays can be removed with `remarray`, described below. The system variable `arrays` is a list of all existing arrays.

For more efficient translation into Lisp, you can also declare that an array consists entirely of elements of a single type, such as `integer`, or `float`, or that its elements are all known before being referenced. The latter type is called a complete array. See Section 17.3, page 437.

The array type is inserted after the array name but before the dimensions. Possible types and their names are given in table 16.3. If you want to declare a `float` array, then the form `array(abc, float, n)` initializes the array `abc` of dimension `n` with 0.0 for each element. Array elements of type `float` can be assigned single or double precision floating point numbers, but not bigfloats. For integer arrays, the form `array(abc, integer, 10)` initializes the 10 element, one dimension array `abc` with 0 for each element. These initializations are done even if you have previously made a different declaration, but they are not done if the array already has a related array function. In that case, the array is initialized with “unbounds” so that the array definition is used when necessary. If you intend to use an array function for `abc` but you want to declare
<table>
<thead>
<tr>
<th>Array Feature</th>
<th>Alternatives</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank and Dimension</td>
<td><strong>Declared Array</strong></td>
<td><code>array(arrayname, dim_1, ..., dim_r)</code></td>
</tr>
<tr>
<td></td>
<td>Declaring array rank and dimension increases efficiency of array storage and access time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Undeclared Array</strong></td>
<td>Default if no rank and dimensions are specified.</td>
</tr>
<tr>
<td></td>
<td>Undeclared arrays offer the flexibility of choosing the rank at the first reference to the array, and enlarging dimensions during execution.</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td><strong>Declared Mode</strong></td>
<td><code>mode Declare(arrayname, modename)</code></td>
</tr>
<tr>
<td></td>
<td>Declared modes are more efficient, just as for non-array variables. Where <code>modename</code> is one of: any, boolean, fixnum, float, number, or rational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Undeclared Mode</strong></td>
<td>Default if no rank and dimensions are specified.</td>
</tr>
<tr>
<td></td>
<td>Undeclared modes offer users the flexibility to mix modes in one array, and to change modes of array elements during execution.</td>
<td></td>
</tr>
<tr>
<td>Completeness</td>
<td><strong>Complete Array</strong></td>
<td><code>array(arrayname, arraytype, dim_1, ..., dim_r)</code></td>
</tr>
<tr>
<td></td>
<td>An array is complete if all of its elements are known before being referenced. Where <code>arraytype</code> is one of: complete, fixnum, or float.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Incomplete Array</strong></td>
<td>Default, if the array is not declared complete.</td>
</tr>
<tr>
<td>Local or Global</td>
<td><strong>Local</strong></td>
<td><code>block([arrayname], ...)</code></td>
</tr>
<tr>
<td></td>
<td>Array is local to a block.</td>
<td>This localizes the value of the variable <code>arrayname</code> to the block.</td>
</tr>
<tr>
<td></td>
<td><strong>Global</strong></td>
<td><code>Declare(arrayname, special)</code></td>
</tr>
<tr>
<td></td>
<td>Global arrays can be accessed from outside the block.</td>
<td></td>
</tr>
</tbody>
</table>

Table 16.2: Summary of Programming with Arrays in Macsyma
**abc float** or **integer** first, use a command such as `array(abc, float, 10, function)`. Simply include the symbol `function` as one of the latter arguments to `array`, after the array type. For array functions, See Section 16.6.3, page 422.

<table>
<thead>
<tr>
<th>Type of array</th>
<th>Name of Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed point integer</td>
<td>integer</td>
</tr>
<tr>
<td>Floating-point number</td>
<td>float or flonum</td>
</tr>
</tbody>
</table>

Table 16.3: Possible Types of Declared Arrays

Do `demo(array);` for an on-line demonstration of arrays in Macsyma.

### 16.6.2 Hashed Arrays

Undeclared arrays, otherwise known as hashed arrays (because hash coding is done on the subscripts), are more general than declared arrays. You do not declare their maximum size, and they grow dynamically by hashing as more elements are assigned values. The subscripts of undeclared arrays need not even be numbers. However, unless an array is rather sparse, it is probably more efficient to declare it when possible than to leave it undeclared. The function `array` can be used to transform an undeclared array into a declared array. If you assign a value to a subscripted variable without declaring the corresponding array, an undeclared or hashed array is set up.

To use a subscripted variable as a single entity, rather than as an array, and without ever assigning a value to it, prefix a single quote to avoid confusion with a nonsubscripted variable of the same name. For example:

```lisp
subst(0, w, w'w[0]);
```

**Function**

```lisp
rehash_array(array_name)
```

Recomputes the encoding of the array `array_name` if `array_name` is a hashed array and returns **done**. If `array_name` is a declared array, `rehash_array` returns **false**. Otherwise, `rehash_array` signals an error.

Macsyma comes with a built in Lisp compiler. Different manufacturer's compilers are used on different platforms. If you transfer a hashed array with non-integer subscripts from one platform to another, you must use the function `rehash_array` to make the array compatible on the new platform. If `array_name` is a declared array, `rehash_array` does nothing.

### 16.6.3 Array Functions

Array functions are functions whose value depends on array subscripts and function arguments. See Section 11.2 for more information.

### 16.6.4 Creating and Manipulating Arrays

Array elements can be assigned values explicitly with the operator ":=" or implicitly by means of an associated function, if one has been defined, and the values assigned can be any valid expressions. To understand implicit assignment, you must understand what happens when a subscripted variable is evaluated. Macsyma first evaluates the subscripts left to right. Then it does an array access to see if the requested array element already has a value. If it does, the value is returned. If it does not, Macsyma checks to see whether the array has an associated function (see below). If not, the subscripted variable (with the subscripts evaluated) is returned. (This is standard practice for evaluating variables. If there is no value for a variable, the variable itself is returned when an evaluation is done.) If there is an associated function, the parameters of the...
function are bound to the given subscripts, and the function body is evaluated. The value of the function
call is stored in the appropriate array element and returned.

Note: Once an element is computed by the associated function, it is stored, so that the next time it is
needed, it will not be recomputed. Therefore, unless you use the functions \texttt{kill}, \texttt{remvalue}, or \texttt{remarray} to
kill an array element, or the entire array, the associated function will never be called a second time on the
same arguments. See Section 19.6, page 472. Even if you redefine the associated function, those values that
already exist will remain. Of course individual array elements can be changed by assignment at any time.

Functions associated with arrays are defined with the \texttt{:=} operator. Their definition is written just like
ordinary function definitions, except that the parameters in the left side of the definition are enclosed in
brackets instead of parentheses. Once the function is defined, it is not re-evaluated for the same arguments,
even when those arguments are re-defined.

To pass a value from a function to a specified array element, it is necessary to use the function \texttt{arraymake}
since the method which works for scalars and matrices does not work for arrays.

Enter the command \texttt{demo(pass.out);} for a demonstration of passing array values out of a function.

Table 16.4 contains a summary of Maecyma’s array commands.

\begin{verbatim}
arraymake(namevar, list_of_indices)  Function

If list_of_indices is $[i_1, \ldots, i_n]$, \texttt{arraymake(namevar, [i_1, \ldots, i_n])} evaluates the variable
namevar and returns the $[i_1, \ldots, i_n]$ element of the array whose name is the value of 'namevar' (and not an
element of the array whose name is 'namevar').
\end{verbatim}

The method of passing values to an array uses \texttt{arraymake} and \texttt{::}, as shown in the example below, where
the value assigned in \texttt{set1} is passed to the undeclared array \texttt{b} and the declared array \texttt{c}.

Examples
\begin{verbatim}
 (c1) set1(a,v):=arraymake(a,[1]):=v$
 (c2) remarray(all);
 (d2) 
 (c3) set1(b,x);  
 (d3) x  
 (c4) b[1];      
 (d4) x  
 (c5) array(c,3); 
 (d5) c      
 (c6) set1(c,y); 
 (d6) y      
 (c7) c[1];    
 (d7) y
\end{verbatim}

arrays default: [ ]  System Variable

Contains a list of all existing arrays, declared and undeclared, and all array functions. The variable
\texttt{arrays} is one of the \texttt{infolists}.

\begin{verbatim}
listarray(array)  Function

Returns a list of the elements of a declared or hashed array. The order is row-major. For declared
arrays, elements that have not been defined are represented by an object that displays as ###
#. There is no notion of undefined elements for hashed arrays.
\end{verbatim}

The special form \texttt{dispfun} can be used to display the definition of an array function. See Section 12.1.2,
page 353. The special form \texttt{arrayinfo} can be used to determine whether an array is declared or undeclared,
how large it is, how many subscripts it has, and in the case of an undeclared array, which of its elements
have values.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Command</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access the value of an array element.</td>
<td>arrayname[$i_1, \ldots, k]$</td>
<td>Used when arrayname is not declared to be an array in the local block. Sometimes needed to make a block compile correctly.</td>
</tr>
<tr>
<td></td>
<td>arrayapply(arrayname,$[i_1, \ldots, k]$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>arraysetapply(arrayname,$[i_1, \ldots, k], value$)</td>
<td>Sets value to the value of arrayname[$i_1, \ldots, k$].</td>
</tr>
<tr>
<td>Access an element of an array to bind it to a value.</td>
<td>arrayname($i_1, \ldots, k$)</td>
<td>Sometimes needed in code to make it compile correctly.</td>
</tr>
<tr>
<td>Define an array function</td>
<td>arrayname[$i_1, \ldots, k] := (body)$</td>
<td>Like a user-defined function, except that the computed values are stored for future reference; and the $[i_1, \ldots, k]$ must be valid array indices.</td>
</tr>
<tr>
<td></td>
<td>array(arrayname, $i_1, \ldots, k$, function)</td>
<td>Optional declaration of functional property.</td>
</tr>
<tr>
<td>Define an array of functions</td>
<td>arrayname[$i_1, \ldots, k](x_1, \ldots, x_n) := (body)$</td>
<td>The value of arrayname[$i_1, \ldots, k$] is a function of $(x_1, \ldots, x_n)$.</td>
</tr>
<tr>
<td>Assign values to all elements of an array</td>
<td>fillarray(arrayname, list_or_array)</td>
<td></td>
</tr>
<tr>
<td>Convert to other indexed data structures</td>
<td>listarray(arrayname)</td>
<td>Returns a list of values of all elements of an array.</td>
</tr>
<tr>
<td></td>
<td>genvector(arrayname)</td>
<td>Generates a column vector from an array of rank one.</td>
</tr>
<tr>
<td></td>
<td>genmatrix(arrayname, dim$_1$, dim$_2$)</td>
<td>Generates a rectangular matrix from an array of rank two.</td>
</tr>
<tr>
<td>Reorganize elements of an array</td>
<td>rearray(arrayname, dim$_1$, \ldots, dim$_n$)</td>
<td>Reorganizes the elements of the array with different rank and dimensions.</td>
</tr>
<tr>
<td>Check whether a symbol is bound to an array</td>
<td>arrayp(arrayname)</td>
<td>Returns true or false.</td>
</tr>
<tr>
<td>Generate a list of all arrays</td>
<td>arrays</td>
<td>Returns a list of all symbols which have the array property.</td>
</tr>
<tr>
<td>Get information about an array</td>
<td>arrayinfo(arrayname)</td>
<td>Tells whether the array is declared or undeclared. For declared arrays, it gives the rank and dimensions, and for undeclared arrays, it gives the indices which have values.</td>
</tr>
<tr>
<td>Remove an array</td>
<td>remarray(arrayname)</td>
<td>Removes all array properties from the symbol arrayname, and removes the values of the array elements.</td>
</tr>
</tbody>
</table>

Table 16.4: Summary of Macsyma’s Array Commands
Examples

(c1) \( a[n] := n \cdot a[n-1] \)

(c2) \( a[0] := 1 \)

(c3) \( a[5] ; \)

(d3)

(c4) \( a[n] := n \)

(c5) \( a[6] ; \)

(d5)

Note: The definition in (c4) is being used because \( a[6] \) has no value up to this time.

Since \( a[4] \) was assigned a value as a result of \( a[5] \) being computed, the new definition is not used.

To define a recursive function to be called several times, it may be more efficient to use an array with an associated function for initialization. Once an array element is computed, it is stored, and thus need not be computed again. Each recursive call of a nonsubscripted function may cause repetition of a past computation.

\( \text{remarray}(name_1, \ldots, name_n) \)  

Special Form

For each \( name_i \), removes arrays and array associated functions and frees the storage occupied. Use this function to redefine the values in a hashed array. If \( \text{remarray} \) succeeds in removing the definitions, it returns the names of the arrays in a list. It returns \( \text{false} \) for any arrays that do not exist. If \( name \) is \( \text{all} \), then all arrays are removed.

\( \text{fillarray}(array, \text{list-or-array}) \)  

Function

Fills \( array \) from \( \text{list-or-array} \). If \( array \) is a floating-point (integer) array, then \( \text{list-or-array} \) should be either a list of floating-point (integer) numbers or another floating-point (integer) array. If the dimensions of the arrays are different, \( array \) is filled in row-major order. If there are not enough elements in \( \text{list-or-array} \), the last element is used to fill out the rest of \( array \). If there are too many, the remaining ones are ignored. \( \text{fillarray} \) returns its first argument.

\( \text{rearrange}(array, dim_1, \ldots, dim_n) \)  

Function

Can be used to change the size or dimensions of an array. The new array is filled with the elements of the old one in row-major order. If the old array is too small, then \( \text{false} \), 0. 0 or 0 is used to fill the remaining elements, depending on the type of the array. The type of the array cannot be changed.

\( \text{arrayapply}(array, \text{list-of-subscripts}) \)  

Function

The variable \( \text{list-of-subscripts} \) is a list of the subscripts of the intended array element. It is of the form \([sub_1, \ldots, sub_n]\). The function \( \text{arrayapply} \) returns the value of \( array[sub_1, \ldots, sub_n] \).

Note: Elements of arrays and elements of lists can both be referred to with the notation \( array, list \). To avoid ambiguity, you can use \( \text{arrayapply}(array, [i]) \) and \( \text{part}(list, i) \).

\( \text{arraysetapply}(array, \text{list-of-subscripts}, value) \)  

Function

The variable \( \text{list-of-subscripts} \) is a list of the subscripts of the intended array element. It is of the form \([sub_1, \ldots, sub_n]\). The function \( \text{arraysetapply} \) sets \( value \) to the value of \( array[sub_1, \ldots, sub_n] \).

16.7 Lists

A list is a data structure used to store an ordered set of elements. The elements of a list can be any valid expression. Lists are written enclosed in brackets with elements separated by commas. It is convenient to
make a list the value of a variable. Then the elements of the list can be accessed by using the variable name with subscripts. Lists are very versatile and are manipulated by a rich set of functions, but lists are not as efficient as arrays for handling huge amounts of data.

Example

(c1) [1, 2, 3];
(d1) [1, 2, 3]
(c2) list1[x^2,y/3,-2];
(c3) list1[1]*x;
(d3) x
(c4) [a, d2, d3];
(d4) [a, [x, , - , - 2], x]

If abc is both the name of an array and the name of a list, its use as an array takes precedence. In certain cases, lists are treated like vectors (row or column matrices). See Section 16.8, page 428. Lists are sometimes used as arguments to functions, such as matrix or solve. Section 16.7.1 describes functions for many list operations, including deleting elements, selecting an element, reversing a list, and many others.

16.7.1 Manipulating Lists

\textbf{append(list_1, \ldots, list_n)} \hspace{1cm} \textit{Function}

Returns a single list of the elements of list_1 followed by the elements of list_2, list_3, and so on. append also works on general expressions.

Example

(c1) append([y+x, 0, -3.2], [2.5e20, x]);
(d1) [y + x, 0, -3.2, 2.5e20, x]
(c2) append(f(a,b), f(c,d,e));
(d2) f(a,b,c,d,e)

\textbf{cons(exp, list)} \hspace{1cm} \textit{Function}

Returns a new list constructed of the element exp as its first element, followed by the elements of list. cons also works on other expressions.

Example

(c1) cons(y+x, [0, -3.2, 2.5e20, x]);
(d1) [y + x, 0, -3.2, 2.5e20, x]
(c2) cons(a, f(b,c,d,e));
(d2) f(a,b,c,d,e)

\textbf{endcons(exp, list)} \hspace{1cm} \textit{Function}

Returns a new list consisting of the elements of list followed by exp. endcons also works on general expressions.

Example

(c1) endcons(x, [y+x, 0, -3.2, 2.5e20]);
(d1) [y + x, 0, -3.2, 2.5e20, x]
(c2) endcons(e, f(a,b,c,d));
(d2) f(a,b,c,d,e)

\textbf{member(exp, list)} \hspace{1cm} \textit{Function}

Returns true if exp is an element of list. Otherwise false is returned. It is not sufficient for exp to be found within an element of list. member also works on nonlist expressions.
Example
(c1) member(y+x, [y+x, 0, -3.2, 2.5e20, x]);
     true
(c2) member(a, f(a,b,c,d,e));
     true

**set_element**(list-or-matrix,i,{j},value)  

*Function*

Sets the \(i^{th}\) element of list or the \((i, j)^{th}\) element of matrix to value.

The function **set_element** corresponds to the : method of setting as follows: where row is a list of the appropriate length.

However, unlike the : method for assignment, which returns value or row, **set_element** returns the altered list or matrix.

The function **set_element** avoids the ambiguous subscripted syntax of the : method for assignment, so it is better for use in programs. **set_element**(matrix,i,j,value) is the same as **setelmz**(value,i,j,matrix) except with a more rational order of arguments.

**sublist**(list, function)  

*Function*

Returns the list of elements of list for which the function function returns true. function must be able to accept a single argument.

Example
(c1) sublist([1,2,3,4],evenp);
     [2,4]

**reverse**(list)  

*Function*

Reverses the order of the members of list (not the members themselves). The function **reverse** also works on general expressions.

Example
(c1) reverse([y+x, 0, -3.2, 2.5e20, x]);
     [x, 2.5e20, -3.2, 0, y+x]
(c2) reverse(f(a,b,c,d,e));
     f(e,d,c,b,a)

The following functions also work on lists:

- delete
- first
- last
- length
- rest

**set_element**(list,i,value)	is interpreted as	list[i]:value
**set_element**(matrix,i,j,value)	is interpreted as	matrix[i,j]:value
**set_element**(matrix,i,row)	is interpreted as	matrix[i]:row

Table 16.5: Behavior of **set_element** on Lists and Matrices
**makelist**\( (\text{exp}, \; \text{var}, \; \text{lo}, \; \text{hi}) \)  

*Special Form*

Returns a list as value. *lo* and *hi* must evaluate to integers. In this case *makelist* is analogous to *sum*.  

*makelist*\( (\text{exp}, \; \text{var}, \; \text{list}) \); returns a list as value. In this second case *makelist* is similar to *map*.  

**Examples**  
\[
\begin{align*}
(c1) & \quad \text{makelist}\,(\text{concat}(x,i),i,1,6); \\
(d1) & \quad [x1, \; x2, \; x3, \; x4, \; x5, \; x6] \\
(c2) & \quad \text{makelist}\,(x=y,y,[a,b,c]); \\
(d2) & \quad [x = a, \; x = b, \; x = c]
\end{align*}
\]

**Note:** In the example in c2, the equation is mapped over the list \([a, b, c]\).

**push**\( (\text{val}, \; \text{list}) \)  

*Macro*

The *push* macro adds the expression *val* to the beginning of the list *list* and returns the new list as the result. Do \texttt{example(push)}; for an executable example.

**pop**\( (\text{list}) \)  

*Macro*

The *pop* macro removes the first element from the list *list* and and returns the element. Do \texttt{example(pop)}; for an executable example.

### 16.8 Matrices

A *matrix* is a two-dimensional ordered set of elements. Matrices are represented internally using a list of lists all of the same length that stand for the rows of the matrix. Matrices can be constructed by using the function *matrix* whose arguments are lists representing the rows of the matrix.

The operators \(+\), \(-\), *, and / can be used between two matrices and take effect elementwise. They can also be used between a scalar and a matrix, with the result that the scalar will be operated on with each element of the matrix. A Macsyma scalar is an expression consisting of numbers, constants, and atoms declared *scalar*. A matrix minus itself gives the zero matrix of the same size.

Matrix multiplication is signified by using the dot operator (noncommutative product). Raising a matrix to a power (multiplying it by itself) is accomplished by use of the \(^\wedge\) operator. That is, \(m \cdot m\) is equivalent to \(m^{\wedge}2\). Use \(m^{\wedge}-1\) to obtain the inverse of \(m\).

If the option variable *listarith* (default: *true*) is *true* then

1. Lists behave arithmetically. For example, they can be added to one another.
2. In matrix operations they can be used as row or column vectors and are converted to such when necessary.

You can reference an element of a matrix by subscripting the matrix as you would an array. Avoid using the same name for both a matrix and an array, because the array use will take precedence.

There are many functions for operating on matrices, as well as many option variables that can be set to give you much flexibility and control over matrix operations. See Chapter 7 for more information on commands to manipulate matrices.

**Examples**  
\[
\begin{align*}
(c1) & \quad m:\text{matrix}([a,0], [b,1]); \\
(d1) & \quad [ \quad a \quad 0 \quad ] \\
                [ \quad b \quad 1 \quad ]
\end{align*}
\]
(c2) m[1,1]*%; [ 2 ]
(d2) [ a 0 ]
[ ]
[ a b a ]
(c3) m*m;
[ 2 ]
[ a 0 ]
(d3)
[ 2 ]
[ b 1 ]
(c4) m*m;
[ 2 ]
(d4)
[ a 0 ]
[ ]
[ a b + b 1 ]
(c5) d2-d4+1;
[ 1 1 ]
(d5)
[ ]
[ 1 - b a ]
(c6) m^-1;
Division by 0
(c7) m^-^-1;
[ 1 ]
[ - 0 ]
[ a ]
(d7)
[ ]
[ b ]
[ - 1 ]
[ a ]
(c8) [x,y].m;
(d8) [ b y + a x y]
Chapter 17

Translation and Compilation, Special Forms, and Macros

Macsyma has the ability to translate frequently used groups of Macsyma commands or user-defined functions into Lisp and then compile the Lisp code. This is recommended to produce faster running routines. This chapter discusses some techniques for writing more efficient code and for decreasing running time for frequently used packages.

17.1 Type Declarations and Optimization

Translating functions and packages written in Macsyma into Lisp, and then compiling the Lisp code, results in faster running code. This is recommended for frequently used, established routines. When Macsyma code is going to be translated or compiled, declarations as to data types should be made to increase speed and improve memory management. The first two functions below do this.

\[\text{\texttt{mode\_declare\left(} y_1, '\texttt{mode}_1, \ldots, y_n, '\texttt{mode}_n \right) \quad \text{Special Form}}\]

Declares the modes of variables and functions for subsequent translation or compilation of functions. The special form \texttt{mode\_declare} does not evaluate its arguments. Its arguments are pairs, consisting of a variable \( y_k \), and a mode which is one of \texttt{boolean}, \texttt{fixnum}, \texttt{float}, \texttt{list}, \texttt{number}, \texttt{rational}, or \texttt{any}. Each \( y_k \) can also be a list of variables, all of which are declared to have \texttt{mode}_i.

If \( y_k \) is an array, and if every element of the array that is referenced in the function has a value, then \texttt{array\left(} y_k, \texttt{complete}, \texttt{dim}_1, \texttt{dim}_2, \ldots \right); should be used, rather than \texttt{array\left(} y_k, \texttt{dim}_1, \texttt{dim}_2, \ldots \right); when first declaring the bounds of the array. If all the elements of the array are of mode \texttt{fixnum (float)}, use \texttt{fixnum (float)} instead of \texttt{complete}. If every element of the array is of the same mode, say \( m \), then \texttt{mode\_declare\left(} \texttt{complete\_array\left(} y_k \right), m \right); should be used for efficient translation. Numeric code using arrays can be made to run faster by declaring the expected size of the array. For example:

\[\text{\texttt{mode\_declare\left(} \texttt{complete\_array\left(} a[10,16]\right), \texttt{float} \right); \quad \text{for a 10 x 10 array of floating point numbers.}}\]

Array functions translate and compile correctly. This includes the simple array function \texttt{fa[j]:=j^2}; and the complex one \( \texttt{fc}[j]\left( x \right) := \texttt{exp}^\ast j \), which is actually a definition of a class of functions. However, subscripted (complex array) functions do not translate into efficient code.

You can also declare the mode of the result of a function by using \texttt{function\left(} f_1,f_2, \ldots \right) \) as an argument; here \( f_1, f_2, \ldots \) are the names of functions. For example the expression,

\[\text{\texttt{mode\_declare\left(} \texttt{function\left(} f_1,f_2, \ldots \right), x\right), \texttt{fixnum}, q, \texttt{complete\_array\left(} q \right), \texttt{float} \right); \]

declares that \( x \) and the values returned by \( f_1, f_2, \ldots \) are single-word integers and that \( q \) is an array of floating-point numbers. Use \texttt{mode\_declare} either immediately inside of a function definition (see below) or at toplevel for global variables.
There is an option variable, `undeclaredwarn (default: compile)` to warn about undeclared variables. It is recommended to do `mode_declare (variable, any)` to declare a variable to be a general Macsyma variable, not limited to being `float` or `fixnum`. The extra work in declaring all your variables in code to be compiled should pay off. However, there are four relevant settings for `undeclaredwarn`.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>Suppresses warning messages.</td>
</tr>
<tr>
<td>compile</td>
<td>Warns when in <code>compile</code>.</td>
</tr>
<tr>
<td>translate</td>
<td>Warns when in <code>translate</code> and when <code>translate:true</code>.</td>
</tr>
<tr>
<td>all</td>
<td>Warns in <code>compile</code> and <code>translate</code>.</td>
</tr>
</tbody>
</table>

Table 17.1: Effect of Settings for `undeclaredwarn`

`mode_identity (mode-name, variable)`  

`mode_identity` is a primitive value `mode-name` as given to `mode_declare`, namely `[boolean, fixnum, float, list, number, rational, or any]`, and the second argument is an expression that is evaluated and returned as the value of `mode_identity`. However, if the return value is not allowed by the mode declared in the first argument, an error or warning is signaled. The important thing is that the mode of the expression, as determined by the Macsyma-to-Lisp translator, is that given as the first argument. It is not affected by the second argument.

If we enter the following command, `x: 3.3;`, then `mode_identity (fixnum, x);` is an error. The command `mode_identity (flonum, x);` => 3.3

This special form has a number of uses. If you know that `first (list);` returns a number then you might write `mode_identity (number, first (list));`. However, a more efficient way to do it would be to define a new primitive,

```lisp
Firstnumb (x) := buildq ([x], mode_identity (number, first (x)));
```

and use `firstnumb` every time you take the first of a list of numbers. This is the simplest example, and it doesn’t show the full power of the method.

To make sure that the Macsyma code is reasonably efficient, the following commands are useful:

`optimize (exp)`  

`optimize` returns an expression that produces the same value and side effects as `exp` but does so more efficiently by avoiding the recomputation of common subexpressions. `optimize` also has the side effect of “collapsing” its argument so that all common subexpressions are shared.

**Note**: `optimize` does not return a fully simplified result, as illustrated below:

**Example**

```lisp
(c1) optimize ([%a + 2*(a+b)+2*(a-b), 3*(a-b)+2*(a+b)]);
(d1) block ([%1, %2], [%1: a - b, %2: 2 (b+a), [%2 + 2 %1 + a, %2 + 3 %1])
(c2) lastform : last (%);
(d2) [%2 + 2 %1 + a, %2 + 3 %1]
(c3) simplified_lastform : ' %1;
(d3) [%a + %2 + 2 %1, %2 + 3 %1]
```

`lastform` and `simplified_lastform` are not identical, because `optimize` does not simplify the result it returns inside the `block`. This is a necessary characteristic, as illustrated by the following example. `optimize (integrate (x+y)*f(x+y), x)`; returns a form in which the integration variable is optimized away, and the simplifications on `integrate` would lead to wrong answers.
optimwarn default: true

Option Variable

When optimwarn is set to false, warnings given out by the optimize function are suppressed.

Example

(c1) (print(i), for i thru 3 do print(i));
1
2
3
(d1) done
(c2) optimize(c1);
Optimize has met up with a special form - answer may be wrong.
(d2) block([%i1, %i1 : print(i), (%i1, for i thru 3 do %i1))
(c3) 'd2;
1
(d3) done

optimprefix default: %

Option Variable

The prefix used for symbols generated by optimize.

(c1) %e^((y+x^2)/(y+x));
2
y + x

(d1)

(c2) diff(%i, x, 2);
2 2 2 2
2 y + x y + x y + x y + x
4 x %e 2 %e 4 x %e 2 %e

(d2) y + x y + x 2 3

(c3) optimize(%);

(d3) block([%i1, %i2, %i3, %i4], %i1 : y + x, %i2 : x, %i3 : %e 4 x %i3 2 %i3
%i4: - - - 4 %i2 %i3 + 2 %i4 %i3 - ---- + ----)
1
2 3

%1 %1

collapse(exp)

Function

Collapses the argument exp by causing all of its common subexpressions to share memory, thereby saving space. collapse is a function used by optimize. Thus, calling collapse can be useful after loading in a save file. You can collapse several expressions together by typing collapse([exp1, ..., expn]). Similarly, you can collapse the elements of the array a by doing collapse(listarray('a));

17.2 Translation From Macsyma Language into Lisp

This section deals with translation to Lisp for execution or compilation. If you wish to translate to Gentran, FORTRAN, C, or TeX, see Chapter 20.

Translation is the transformation of an expression in one language to an expression in another language, without altering its meaning. Unless you specifically request otherwise, the Macsyma interpreter executes
Macsyma code directly, without any translation. A Macsyma expression may be translated to Lisp and executed by the Lisp interpreter rather than the Macsyma interpreter; this may run slightly faster. Compilation implicitly invokes the translator.

### 17.2.1 Main Translation Commands

**translate_file(file, {output-file})**

- Translates a file of Macsyma code (a batch file) called `file` into a file of Lisp code. The argument `output-file` is optional and is the name of the translated file.
- If you do not specify `output-file`, Macsyma names the translated file `file.lisp` where the file extension is determined by the value of the option variable `tr_output_file_default(true:lisps)`.
- For example, `translate_file(test)`, translates a file called `test.mac` into `test.lisp`. It also produces a file of translator warning messages of various degrees of severity. This file contains valuable information for tracking down bugs in translated code. This file also includes the name of the user, the date, and the version of Macsyma. In this case, it is called `test.unlisp`.

**translate(f1, ..., fn)**

- Translates the user-defined functions `f1, ..., fn` from the Macsyma language to Lisp. This results in a gain in speed when they are called. The functions should include a call to `mode_declare` at the beginning when possible in order to produce more efficient code. For example:

  ```lisp
 f(x1,x2,...):=block([v1,v2, ...],
 mode_declare(v1, mode1, v2, mode2, ...),
 ...);
  ```

  where the `x1, x2, ...` are the parameters to the function and the `v1, v2, ...` are the local variables. The names of translated functions are added to the `props` list. See Section 13.1.1, page 363. Functions should not be translated until they have been tested and appear to work satisfactorily.

  ```lisp
 translate(functions); or translate(all); means translate all functions.
  ```

You can translate functions stored in a file by giving `translate` an argument which is a file specification such as `file.macsyma`. Such a file can contain declarations involving `declare`, `mode_declare`, or `matchdeclare`, in addition to the function definitions. The file should not use `%`, since `%` is not maintained when the translated file is loaded.

The special form `translate` returns `done` when translation is accomplished. In the case of a file translation, the file containing the translated code is named `file.unlisp`. This file of Lisp code can be read by using the functions `loadfile` or `load`.

### 17.2.2 Translator Options

**translate default: false**

- If `true`, this option variable causes automatic translation of your function to Lisp.

**Note:** Translated functions may not run identically to the way they did before translation, because certain incompatibilities may exist between the Lisp and Macsyma versions. Principally, the function `rat` with more than one argument and the function `ratvars` should not be used if any variables are mode declared CRE. Refer to `rational-functions` on page 97 for more information.

**transcompile default: false**

- If the value of `transcompile` is `true`, then `translate` generates the declarations necessary for compilation. The function `compfile` uses `transcompile:true`; See `compfile`, page 435.
**17.2. TRANSLATION FROM MACSYMA LANGUAGE INTO LISP**

**savedef default: true**

If `true`, this option variable causes the Macsyma version of a user function to remain when the function is **translated**. This permits the definition to be displayed by `dispfun` and allows the function to be edited. If `savedef` is `false`, the names of translated functions are removed from the `functions` list. If `savedef` is set to `all`, and if a **translated** function is redefined, its **translated** definition remains, although the Macsyma version of its definition is changed. If the function had been **traced**, then the tracing is deleted.

**transrun default: true**

If `false`, this option variable causes the interpreted version of all functions to be run (provided they are still around) rather than the translated version.

**compfile([filename], f_1, ..., f_n)**

Translates Macsyma function definitions into Lisp (if necessary) and writes out Macsyma function definitions and other expressions into a disk file, which can be read into the compiler. The optional argument `filename` specifies the file to be written. The default is the standard default file. The file written contains declarations used by the compiler. When `compgrind` (default: `false`) is `true`, the function definitions are pretty-printed. The remaining arguments are atomic function names. `compfile([filename], functions)`; translates all functions on the infolist `functions`.

**eval_when(keywords, form_1, ..., form_n)**

This is a toplevel special form that is very useful to package writers. It has the following semantics: `keywords` is a single keyword or a list of keywords from the set `batch`, `loadfile`, `translate`. The `forms` are evaluated when **batching** if the keyword `batch` is present; they are evaluated when the file is being translated with `translate_file` when the keyword `translate` is present; and the forms are evaluated when the translated file is **loadfiled** if the keyword `loadfile` is present. This feature can only be used at toplevel. Here is sample usage:

```lisp
 eval_when(batch, ttyoff:true)$
 eval_when([batch, loadfile],
 if not status(feature,"my package")
 then loadfile(foo, fasl, dsk, bar),
 sstatus(feature,"my package"),
 initialize_my_package())$
/* special things might need to be in the environment to translate my package. */
 eval_when(translate,
 if not status(feature,"my package modedeclarations"),
 then loadfile(foo, modes, dsk, bar),
 mode_declare(extra stuff...))$
 my package
 eval_when(batch, ttyoff:false);
```

**tr_array_as_ref default: true**

If `true`, runtime code uses the value of the variable as the array.

**tr_bound_function_applyp default: true**

Gives a warning if a bound variable is used as a function.

**tr_file tty_messagesp default: false**

Determines whether messages generated by `translate_file` during translation of a file are sent to the terminal. If the option variable is `false` (the default), messages about translation of the file are only inserted into the `.twarns` file. If the option variable is `true`, the messages are sent to the terminal and also inserted into the `.twarns` file.
3. float_can_branch_complex  
   States whether the arc functions might return complex results. The arc functions are \(\sqrt{}\), \(\log\), \(\acos\), etc. When this option variable is \textbf{true}, \(\acos(x)\) is of mode \texttt{any} even if \(x\) is of mode \texttt{float}. When this option variable is \textbf{false}, \(\acos(x)\) is of mode \texttt{float} if, and only if, \(x\) is of mode \texttt{float}.

4. function_call  
   This variable can have a value of \textbf{false, expr, or general}. The value of \textbf{false} means give up and call \texttt{meval}; the value of \textbf{expr} means assume Lisp fixed argument function. The value \textbf{general} (the default) gives code good for functions, but not for macros. \textbf{general} assures variable bindings are correct in compiled code. In \textbf{general} mode, when translating \(f(x)\), if \(f\) is a bound variable, then it assumes that \texttt{apply}(f,[x]) is meant, and translates as such, with appropriate warning. There is no need to turn this off. With the default settings, no warning messages implies full compatibility of translated and compiled code with the Macsyma interpreter.

5. numer  
   If \textbf{true}, \texttt{numer} properties are used for atoms that have them, including \%e, \%pi, \%phi, and \%gamma.

6. optimize_max_loop  
   The maximum number of times the macro-expansion and optimization pass of the translator loops in considering a form. This is to catch macro expansion errors, and nonterminating optimization properties.

7. output_file  
   This is the file type (or extension) used for translated Lisp files.

8. semicompile  
   If \textbf{true}, \texttt{translate_file} and \texttt{compfile} output forms which are macroexpanded but not compiled into machine code by the Lisp compiler. With this you can produce an object file with all macros expanded, and still run translated code interpreted.

9. true_name_of_file_being_translated  
   Is bound to the quoted string form of the true name of the file most recently translated by \texttt{translate_file}.

10. version  
    The version number of the translator.

11. warn_bad_function_calls  
    Gives a warning when function calls are made that are not correct due to improper declarations that were made at translate time.

12. warn_expr  
    Gives a warning if any unknown special forms are encountered. Such special forms should not normally be output in translated code. All legitimate special program forms are translated.

13. warn_meval  
    Gives a warning if the function \texttt{meval} gets called. If \texttt{meval} is called, that indicates problems in the translation.

14. warn_mode  
    Gives a warning when variables are assigned values inappropriate for their mode.
tr_warn_undeclared default: compile

Determine when to send warnings about undeclared variables to the terminal.

tr_warn_undefined_variable default: all

Gives a warning when undefined global variables are seen. Possible settings of this option variable are:

- all, compile, compilefile, translate, false, controlling when warnings are seen. The value false disables the feature. This feature picks up many spelling errors in variable names which could cause obscure errors once code is translated/compiled. The case where you accidently use a symbol as a variable, is also picked up. For example, apply(append, 1) when apply('append, 1) is intended.

tr_warnings_get()

Returns a list of warnings that were given by the translator during the current translation.

tr_windy default: true

Generates helpful comments and programming hints (verbose).

mode_checkp default: true

If true, mode_declare checks the modes of bound variables.

mode_check_warnp default: true

If true, mode errors are described.

mode_check_errorp default: false

If true, mode_declare calls error.

For information on debugging your functions once they are translated, see Section 18.2.

17.3 Compilation

Compilation typically involves translation from a higher level, more abstract language to a lower level, more implementation-specific language, such as assembly or machine language. In Macsyma's two-step compilation process, Macsyma code is first translated to Lisp by Macsyma, then the Lisp code is translated into machine code using the Lisp compiler.

compile(fcn1, ..., fcn_n)

Compiles the functions using the name of fcn_1 as the first name of the file to put the Lisp output.

The special form compile is a convenient feature in Macsyma. It handles the calling of the function compilefile, which translates Macsyma functions into Lisp, the calling of the Lisp compiler on the file produced by compilefile, and the loading of the output of the compiler, known as an object file, into Macsyma. It also checks the compiler comment listing output file for certain common errors. All these things can be done manually, of course, but using compile, with its convenient default actions, makes some work go much faster. In particular, plot, plot2, and numerical integration will benefit from using compile.

The command compile(all); or compile(functions); compiles all functions. The command compile(); causes Macsyma to prompt for arguments.

compile_file(file, output-file)

Compiles a file of Macsyma code (a batch file) or a file of Lisp code, called file, into a binary output-file. If file contains Macsyma code, Macsyma first uses translate_file to translate file from Macsyma code to Lisp code, then compiles the Lisp code into binary.

If you do not specify output-file, Macsyma names the compiled file "file.fas". For example, compile_file(test); translates a file called "test.mac" into the Lisp file "test.lisp", then into the binary file "test.fas".
In order to get the most out of compilation, declarations must be made to describe your function types and variables. The basic idea of compilation is for the computer to make certain calculations only once, that is, at compile time.

Consider the definition: \( f(x,y) := x^2 \). If what you want to do is call \( f(3.2, 2.2) \), then there is some inefficiency, because you could have also done \( f(x, 'x') \) and expected to obtain \( x^2 \), and it takes many times longer for Macsyma to figure out that it needs to call the machine floating-point multiply instruction, than it does for the machine to execute this instruction.

The command \( f(x,y) := \text{mode} \text{declare}(x, \text{float}, y, \text{float}, x^2) \); tells Macsyma that \( x \) and \( y \) are the equivalent of the FORTRAN real. When you compile or translate the function, it can use that information to decide to use the machine multiply instruction.

In general, \text{mode} \text{declare} should appear as the first "function call" wherever new variables are introduced. Variables should be \text{mode} \text{declared} as soon as they are introduced, not before, or after. The following operators create new lexical contours. Mode declare expressions can occur at the head of the body of such expressions or at toplevel Macsyma.

Certain constructs, such as sum, have an implied contour of limited scope. An example is \( \text{sum}(j^2, j, 1, n) \). In this case, it is not your responsibility to declare the mode of the variable \( j \), which is bound by the construct. The code which handles the sum can look at those modes of the lower and upper limits and infer the mode of \( j \).

### Examples

\[
\begin{align*}
f(x,y) &= \text{mode} \text{declare}([x,y], \text{float}), \\
& \quad \text{sin}(4x^2) + \sqrt{1+x^2} \cos(x)
\end{align*}
\]

\[
\begin{align*}
f(x,y) &= \text{mode} \text{declare}([x, y, a, b], \text{float}, n, \text{fixnum}), \\
& \quad \sqrt{a\times b\times x+y^2}
\end{align*}
\]

\[
\begin{align*}
f(x) &= \text{mode} \text{declare}(x, \text{float}), \\
& \quad \text{block}([p: \sin(x)\times x^2, q: 4\times x^2 - x + 14], \\
& \quad \quad \text{mode} \text{declare}([p, q], \text{float}), \\
& \quad \quad \text{if} x > 0 \\
& \quad \quad \quad \text{then} \sqrt{p^2 + \text{abs}(p\times q) + \sin(q)+1} \\
& \quad \quad \quad \text{else} p\times q/10)
\end{align*}
\]

In the example below, we declare that the function \( f \) returns a floating-point number.

\[
\begin{align*}
euler(f,x0,y0,x_\text{fin}, dx) &= \text{mode} \text{declare}([x_0, y0, x_\text{fin}, dx], \text{float}, \text{function}(f), \text{float}), \\
& \quad \text{block}([y: y0, x: x0], \\
& \quad \quad \text{mode} \text{declare}([y, x], \text{float}), \\
& \quad \quad \text{loop}, \text{if} x = x_\text{fin} \text{ then return}(y), \\
& \quad \quad y: y + dx \times \text{apply}(f, [x]), \quad x: x + dx, \\
& \quad \quad \text{go}(\text{loop}))
\end{align*}
\]

In the following example, we declare that the array \( a \) returns some number.

\[
\begin{align*}
\text{sum_array}(a) &= \text{mode} \text{declare}(\text{array}(a), \text{number}), \\
& \quad \text{if} \text{length}(\text{arraydims}(a)) \neq 1 \\
& \quad \quad \text{then error}("\text{takes only 1 dim array}"), \\
& \quad \quad \text{block}([n: \text{arraydims}(a)[1], \text{sum}: 0], \\
& \quad \quad \quad \text{mode} \text{declare}([n, j], \text{fixnum}, \text{sum}, \text{number}), \\
& \quad \quad \quad \text{for} j: 1 \text{ thru } n \text{ do} \text{sum} + \text{sum} + \text{a}[j], \text{sum})
\end{align*}
\]

### Operator Action

\[:=\] Starts a contour for all the formal parameters and for all free variables used in the function.

\[\text{block}\] Starts a contour for all of the "block" variables.
do
Starts a contour for its control variable. The control variable should be declared in
the including contour. Then a proper example would be for x:x1 thru xn step
dx do(mode Declare(x,float),sum=sum+f(x)*dx)
lambda
Starts a contour for its lambda variables.

17.4 Methods for Package Writers

define_variable('name, default-binding, 'mode, optional-doc)

Special Form
Introduces a global variable into the environment. This is for user-written packages, which are often
translated or compiled. For example, define_variable(foo, true, boolean); does the following:

1. mode Declare(foo, boolean);: This sets it up for the translator, so that the resultant code is
more efficient.

2. If the variable is unbound, it sets it: foo:true. When you use a package, you can set the values
of various option variables before the file which contains the package is loaded, so that these
values take effect, rather than being overwritten by ";," which would otherwise happen. This is
especially convenient for autoloading packages (packages which get loaded automatically when a
function is invoked, rather than having to be explicitly loadfiled.) The first and third arguments
to define_variable are not evaluated.

3. The command declare(foo, special); declares it special. This is vital to have if code referring
to the variable is to be compiled.

4. Sets up an assign property for it, to make sure that it never gets set to a value of the wrong
mode. For example, foo:44 would signal an error once foo is defined boolean. This is important
for proper error checking. For example, in the code "if foo then 7 else 8", the value of foo
should be either true or false, that is, a boolean. Suppose you set it to 4.44. If you used
define_variable, then it would catch the error as "Error: Trying to assign variable foo
of mode boolean to 4.44 " instead of "Macsyma was unable to evaluate the predicate:
4.44", which might be misunderstood as a bug in the package instead of a misuse of the variable.

The possible modes are as for mode Declare. See mode Declare, page 431.

The optional fourth argument is a documentation string. When translate_file is used on a package
that includes documentation strings, a second file is output in addition to the Lisp file. This file has
trdoc as its file type or extension. It contains the documentation strings, formatted suitably for use in
manualls, .usage files, or by describe.

Any variable that has been define_variable'd with mode other than any can have a value_check
property, which is a function of one argument that, at the time of binding, is called on the value you
are trying to bind to the variable.

put('g5,lambda([u],if u#g5 then error("Don't set g5.")), 'value_check);
Use define_variable(g5, 'g5, any_check, "This isn't supposed to be set
by anyone but me.")

The mode any_check means the same as any, but keeps define_variable from optimizing away the
assign property.

declare_description(topic, string)

Special Form
Allows you to add online documentation about topics such as new functions you've defined. You
can then obtain the information using the commands apropos and describe. If string is a string,
this sets things up so that `apropos` will include `topic` in the list of symbols which it searches and `describe(topic)`; will print the given string.

If `string` is `false`, e.g. `declare_description(topic,false);`, the documentation associated with `topic` is removed.

If `string` is `unknown`, `apropos` finds the given topic without making you write a documentation string. This is intended primarily for use during development work. Commands or packages being released to other users are encouraged to have properly declared documentation strings.

```
Example
(c1) union(x,y):=if x = [] then y else
 if member(t: first(x), y) then union(rest(x), y)
 else cons(t, union(rest(x), y))$
(c2) union([a,b,1/2,x^2],[-x^2,a,y,1/2]);
 2 2
 [2, b, 1, x , - x , a, y, -]
 2
(d2) [b, 1, x , - x , a, y, -]
 2
(c3) declare_description(union,
 "union(list1, list2) joins two lists w/out duplicating elements.")$
(c4) describe(union)$
 Union --
 Union(list1, list2) joins two lists w/out duplicating elements.
(c5) apropos(union);
(d5) [union]
```

`setup_autoload(\[filename, 'fcn_1,\ldots, 'fcn_n\])` Special Form

Makes the `fcn_i` auto loading. The special form `setup_autoload` takes two or more arguments: a file specification, and one or more function names, `fcn_i`, which indicate that if a call to `fcn_i` is made and `fcn_i` is not defined, that the file specified by `filename` is to be automatically loaded in via `load`. This is achieved by giving each of the `fcn_i` an `autoload` property of the file `filename`. This file should contain a definition for `fcn_i`. This is the process by which calling out of core functions in a fresh Macsyma causes various files to be loaded in. If the full pathname of `filename` is not specified, then the standard search for file types of `bin`, `lisp`, and `macsyma` is done. Preferred usage is to specify `filename` fully. As with most of the other file-handling functions and special forms in Macsyma, the arguments to `setup_autoload` are not evaluated. Functions arranged to autoload are given a property of system function.

```
Example
setup_autoload(\['bessel, j1\]);
```

**Note:** The option variable `change_filedefaults (default: false)` determines whether files loaded in by a package change `filedefaults`.

`packagefile default: false` Option Variable

If you use `save` or `translate` to create packages of files for others, you may want to set `packagefile` to `true` to prevent information from being added to Macsyma's `infolists`, such as `values` and `functions` except where necessary when the file is loaded in. In this way, the contents of the package do not get in the way of your users, when they add their own data to Macsyma in the presence of your package. This does not solve the problem of possible name conflicts. Also, the option variable simply affects what is output to the package file. Setting the option variable to `true` is also useful for creating initialization files.
17.5 Macros

The macro facility allows you to define forms that are similar to functions in appearance but whose evaluation and simplification can be more carefully controlled. This high degree of control provides you with many powerful capabilities, such as the ability to write definitions of operators which act as extended control structures, which implicitly quote certain of their arguments, or which establish special environments for the evaluation of their arguments. Additionally, macros are highly efficient from a compilation standpoint. Macro references can be made to yield extremely good code when compiled.

17.5.1 Defining Macros

A macro is a definition of a transformation between some syntactic construct you can type in and a form that can be interpreted by the evaluator. Suppose you have several lists x, y, and z, and you want to display their values in the following way:

For i thru length(x) do print(’x[i]=x[i]);
For i thru length(y) do print(’y[i]=y[i]);
For i thru length(z) do print(’z[i]=z[i]);

This is tedious to type. You might want to define an operator which did most the work for you, so that you could type showme(x); and have the same thing happen as if you had typed out the for loop. Without using macros, trying to write a definition for showme which allows this syntax is tedious at best, and in any case would require you to type showme(’x); to get the name of the form being displayed.

Here is an example of how it could be done as a macro: showme will be an operator with just one thing in its argument position, so we’ll want to write

showme(listname) := ...something...;

macro-name := definition Infix Operator

The “:=” is used instead of “=” to indicate that the definition that follows is a macro definition, rather than an ordinary functional definition. The left side of a macro definition consists of the name of the macro, followed by the list of formal parameters enclosed in parentheses. The right side consists of the macro body. It is possible to define a macro that takes a variable number of arguments, just as a function may. See Page 340.

After a macro is defined, its name is added to the macros list, which is described below. It also receives the macro property.

Next, you must write a definition. The definition should do something to create the form that you really want to evaluate, returning that form as a value. In this case, you want

for i thru length(listname) do print(’listname[i]=listname[i]);

This is the form returned by showme.

Note: You don’t want to do this action; you only want to return the new (“expanded”) form. The interpreter will take care of any evaluation later. One way to do this might be to use funmake and substpart, but that can be pretty hard to do, especially with a form like for. An easier way is to use the function buildq. Using buildq, the definition would look like:

(cl) showme(listname)::=
   buildq([listname],
   for i thru length(listname)
   do print(’listname[i]=listname[i])$)

The special form buildq is a generalized substitution operator used to create forms.

buildq(variable_list, expression) Special Form

Where variable_list is similar to the variable list for a block. It can contain both atomic variables and assignment-forms. The right hand sides of any assignment-forms in the variable list are evaluated left
to right, and the resulting variable bindings are substituted in parallel into the *expression*. Actually, the process is more complicated than what *subst* would provide, as we shall see. The *expression* can be any valid expression, including a nested *buildq*. The new expression is returned as is, not evaluated.

*Example*

(c1) $s\!:\!a\!+\!b$
(c2) *buildq*([s,a\!\!:\!=\!c,fun:bar],
        $s\!^\!2\!+\!g(a,\!\!:\!=\!a)\!+\!f(s)\!$);
       
(d2) 2

$(a + b) + g(b \ c, \ 'b c) + bar(a + b)$

The parallel nature of the substitution can probably be most easily seen in the following example:

(c1) *buildq*([a: b,b: \!\!:\!=\!a], sin(a)\!\!:\!=\!cos(b))
(c2) \!\!:\!=\!sin(b) + cos(a)

\[ \text{splice(form} _{1}, \ldots, \text{form} _{n}) \]

The special form *buildq* also recognizes specially the keyword form *splice* when it is used within the expression. If *splice* is used with only one argument and that argument is the name of one of the variables being substituted for, then the value of the variable is spliced into the expression instead of being substituted. The spliced variable must evaluate to a list.

(c1) \!\!:\!=\!l:\![a,b,c]
(c2) *buildq*([l],f(l,splice(l)));
(d2) \!\!:\!=\!f([a, b, c], a, b, c)

Returning to our definition:

(c1) \!\!:\!=\!showme(listname)::=\n    \!\!:\!=\!buildq([listname],\n    for i thru length(listname)
    do print('listname[i]=listname[i])$

What happens when the evaluator encounters a macro? First it calls the macro definition on the appropriate parts of the form; for example, in the case of *showme(x)*, the *showme* macro would be called with *listname* bound to *x*.

**Note:** No evaluation of arguments is done prior to application of the macro—that will come later. The *showme* definition will then create a new form, which looks like

\[
\text{for } i \text{ through length(x) do print('x[i]=x[i])}
\]

and return that to the evaluator. The evaluator then takes the new form, and evaluates that in place of the original *showme* form, finally returning the value of this second evaluation as the value of the *showme*. So you might actually type:

(c2) \!\!:\!=\!x:\![a_1,b]
(c3) showme(x)$

\[
X = a
\]

1

\[
X = b
\]

2

A symbol can have either the *macro* property or the *function* property but not both at the same time. Defining an atom with \!\!:\!=\! removes the atom's function property and vice versa.

**macros default:** [ ]

The system variable *macros* holds a list of all macros defined in the current environment. The variable *macros* is one of the *infolists*.

Macro definitions can be displayed with *dispfun(name)*; and *grind(name)*. See Section 12.1.2, page 353 and Section 12.1.1, page 350.
The command `stringout(functions)` can be used to stringout all functions and macros in the current environment.

The special form `remfunction(func)` removes all functional properties and macro properties from `func`. The command `remfunction(all)` removes all functions and macros from the current environment. The command `remove(name, function)` removes the function property of `name`, if one exists, but does not remove macro properties. The command `remove(name, macro)` removes the macro property of `name`, if one exists, but does not remove function properties. The command `kill(functions)` affects only the functions in the current environment and has no effect on any macros. Similarly, `kill(macros)` only affects macros and has no effects on any defined functions.

**macroexpansion default: false**

Controls advanced features which affect the efficiency of macros. Possible settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>Macros expand normally each time they are called.</td>
</tr>
<tr>
<td>expand</td>
<td>The first time a particular call is evaluated, the expansion is “remembered” internally, so that it doesn’t have to be recomputed on subsequently, making subsequent calls faster. The macro call still grinds and displays normally; however extra memory is required to remember all of the expansions.</td>
</tr>
<tr>
<td>displace</td>
<td>The first time a particular call is evaluated, the expansion is substituted for the call. This requires slightly less storage when <code>macroexpansion</code> is set to <code>expand</code> and is just as fast, but has the disadvantage that the original macro call is no longer remembered and hence the expansion will be seen if <code>display</code> or <code>grind</code> is called.</td>
</tr>
</tbody>
</table>

Macros always expand and displace at the time of translation when calls to them are translated. See Section 17.3, page 437.

### 17.5.2 Forcing Macro Expansion

The following functions are useful for debugging macros:

**macroexpand1(form)**

Function

Expands `form` exactly once if `form` is a macro call without doing the automatic evaluation. If `form` is not a macro call, `form` is returned, again unevaluated.

**macroexpand(form)**

Function

Expands `form` repeatedly until it is no longer a macro call. The final expansion is returned without doing the automatic evaluation.

For examples of usage, type `demo(macroexpand)`.

**Examples**

(c1) `push(value, stackname)::=buildq([value, stackname], stackname:cons(value, stackname))$`

(c2) `pop(stackname)::=buildq([stackname], block([temp:first(stackname)], stackname:rest(stackname), temp))$

(c3) `a:[]$`

(d3) `[]$

(c4) `push('foo, a);`  

(d4) `[foo]$

(c5) `push('bar, a);`  

(d5) `[bar, foo]`
(c6) a;
(d6) [bar, foo]
(c7) pop(a);
(d7) bar
(c8) a;
(d8) [foo]
(c9) pop(a);
(d9) foo
(c10) a;
(d10) []
Chapter 18

Writing and Debugging Programs in Macsyma

This Chapter discusses error handling and debugging Macsyma programs. It also includes writing interactive programs, menus, and timing and metering.

18.1 Error Handling

\texttt{error(\textit{arg1}, \ldots, \textit{argn})}

\textit{Function}

Evaluates the arguments and then signals an error, causing a return to top level or to the nearest enclosing \texttt{errcatch}. While exiting, \texttt{errorp} displays the values of \textit{argn1}, \ldots, \textit{argn}. This is useful for breaking out of nested functions if an error condition is detected. The most recent error message can be redisplayed by typing \texttt{errormsg();}. See Section 18.1, page 445.

\begin{verbatim}
(c1) f(x):= if x<0 then error("Argument ",x," is negative.")
    else sqrt(x)$
\end{verbatim}

\texttt{errorfun default: \texttt{false}}

\textit{Option Variable}

Setting \texttt{errorfun} to the name of a function of no arguments forces execution of that function when any error occurs. A useful function for unattended \texttt{batch} files is \texttt{quit}.

\texttt{errormsg()}

\textit{Function}

Redisplays the last error message. This is very helpful if you are using a display console and the message has left the screen.

When an error occurs, Macsyma sets the variable \texttt{error_list} to a list describing the error. The first element of the list is a string of text, and the rest of the elements are the objects involved in the error condition.

\texttt{error_string default: \texttt{No error.}}

\textit{System Variable}

This system variable contains the most recent error message in the form of a Macsyma string.

\texttt{error_list default: \texttt{[No error.\ldots]}}

\textit{System Variable}

This system variable contains the most recent error message in its raw form as a Macsyma list, first the error message text with its embedded format directives, followed by the arguments to the format statement.
**errcatch** \( (exp_1, \ldots, exp_n) \)

Special Form

Evaluates its arguments one by one and returns a list of the value of the last one if no error occurs. If an error occurs in the evaluation of any arguments, **errcatch** “catches” the error and immediately returns \([-\text{[]}\] (the empty list). This special form is useful in **batch** files where you suspect an error might occur which would otherwise have terminated the **batch** if the error weren’t caught.

(c1) **errcatch**(romberg(log(x),x,0,1))$

(d1) \[
\log(0) \text{ has been generated}
\]

**errmsg** default: true

Option Variable

If **true**, this option variable causes the error message to be printed when an error occurs inside an errcatch. When **false**, the printing of the error message from inside an **errcatch** is suppressed.

**prederror** default: true

Option Variable

If this option variable is **true**, Macsyma signals an error whenever the predicate of an **if** statement or an **is** form fails to evaluate to **true** or **false**. If **prederror** is **false**, **unknown** is returned.

The **prederror**: **false** mode is not supported in translated code. See Section 17.2.1, page 434.

**parsewindow** default: 10

Option Variable

The option variable **parsewindow** controls the maximum number of lexical tokens that are displayed on each side of the error-point when a syntax (parsing) error occurs.

Lexical tokens are character groups from an input expression that are determined by the parser. For example, in the expression \( f(\alpha, -3)^{-1} \), the tokens are “\( f \)”, “\( ( \)”, “\( \alpha \)”, “\( ^{-1} \)”, “\(-3 \)”, “\)”, “\( - \)”, “\( \)”, and “\( 1 \)”. If Macsyma encounters a problem parsing an input expression, it tries to show only the immediate context of the problem to help you locate the source of the error. The variable **parsewindow** controls how much context is given. Its value is the maximum number of lexical tokens that can be used in the presentation.

This option variable is especially useful on slow terminals. Setting **parsewindow** to \(-1\) causes Macsyma to display the entire input string when an error occurs.

**error_size** default: 10

Option Variable

Controls the size of the expression that is printed in an error message. The size is given as **cons_size**, or the number of cells the expression takes up. For example, \( a:(c^2+d+e)b+a)\)/(cos(x-1)+1); a has an error size of 24. So if **error_size** has value \(<24\) then

(c1) **error**("The function", foo,"doesn't like", u,"as input.");

displays as:

The function foo doesn't like errexp1 as input.

If **error_size** \(>24\) then as:

\[
e
\]

\[
d
\]

\[
c + b + a
\]

The function FOO doesn't like \---------- as input.

\[
\cos(x - 1) + 1
\]

The default value for **error_size** is 10.

**error_syms** default: [errexp1, errexp2, errexp3]

Option Variable

The option variable **error_syms** holds a list of symbols that Macsyma uses as replacements for expressions larger than **error_size**. The symbols are set to the expressions so you can inspect them. You can set **error_syms** to a different list of symbols.
18.1.1 Special Error Conditions

The following error catches deal with special conditions.

**catch_divergent** default: false  

*Option Variable*  

If true, then the message divergent is displayed if a definite integral is divergent, and the result otherwise.

**catch_taylor_essential_singularity** default: false  

*Option Variable*  

If true, then the message essential singularity is displayed if taylor finds an essential singularity, and the result otherwise.

**catch_taylor_unfamiliar_singularity** default: false  

*Option Variable*  

If true, then the message unfamiliar singularity is displayed if taylor finds an unfamiliar singularity, and the result otherwise.

**catch_mathematical_error** default: false  

*Option Variable*  

If true, then certain mathematical errors, such as division by zero, are catchable. If false, they remain errors.

*Examples* ()

(c1) catch_divergent:true$

(c2) catch(integrate(1/x,x,0,1));

(d2) divergent

(c3) catch_taylor_essential_singularity:true$

(c4) catch(taylor(exp(1/x),x,0,1));

(d4) essential singularity

(c5) catch_taylor_unfamiliar_singularity:true$

(c6) catch(taylor(abs(x),x,0,1));

(d6) unfamiliar singularity

(c7) catch_mathematical_error:true$

(c8) catch(1/0);

(d8) division by 0

(c9) catch_cre_error:true$

(c10) (rat(0),catch(1%));

(d10) quotient by zero

18.2 The Macsyma Debugger

This section describes the debugging commands available to you at Macsyma level. Debugging tools are helpful if you are writing functions and block programs, allowing you to trace functions, look for certain conditions, and investigate the environment where an error occurs.

*Note:* All Macsyma objects are represented internally with names that begin with a dollar sign ($). Thus in a lisp break you can expect to see $error instead of error.

*Example*

(c1) foo+bar=foobar$

(c2) find_symbol("foo");

(d2) [foo, foobar]

**refcheck** default: false  

*Option Variable*  

If this option variable is true, Macsyma informs you the first time each variable that has a value comes up for evaluation during a computation.
Setting this option variable to \texttt{true} lets you chronologically trace the value of variables when they first appear in a computation. This is useful for locating errors. You may also find that variable assignments made long ago are entering your computation.

You can also \texttt{declare} a symbol \texttt{bindtest}. See Section 13.1.4, page 374.

\texttt{optionset \ default: false}

\emph{Option Variable}

If \texttt{true}, Macsyma prints a message whenever a Macsyma option is reset. The message is of the form: \emph{option-name is being reset}. This is useful if you are uncertain of the spelling of some option and you want to make sure that the variable to which you have assigned a value was really a Macsyma option.

\subsection*{18.2.1 User–Settable Program Break Points}

\texttt{break(\arg_1, \ldots, \arg_n)}

\emph{Function}

Evaluates and displays its arguments; then enters a Macsyma break.

For information on exiting from a Macsyma break, see the symbol \texttt{exit} on page 449 and the symbol \texttt{abort} on page 449. [Abort], [Exit], [Toplevel], and [Lisp] appear in the command menu.

\texttt{Example}

\begin{verbatim}
(c18) x:10$
(c19) y:20$
(c20) break(x,y,z);
10 20 Z
Macsyma Break level 1 (Type exit; to exit.)
\end{verbatim}

Changing the value of the following option variable allows you to change the prompt you see when entering a Macsyma break.

\texttt{break\_prompt \ default: _}

\emph{Option Variable}

This option variable contains the string that Macsyma prompts you with during a Macsyma Break. To change the break prompt, assign this option variable to a different string.

\texttt{Example}

\begin{verbatim}
(c1) break();
Macsyma Break level 1 (Type EXIT; to exit.)
_exit;
Exited from Macsyma Break level 1
(d1) false
(c2) break\_prompt:"\$"$
(c3) break\_prompt;
(d3) =>
(c4) break();
Macsyma Break level 1 (Type EXIT; to exit.)
=>
\end{verbatim}

\texttt{toplevel}

\emph{Special Symbol}

Typing \texttt{toplevel}; during a Macsyma break allows you to enter toplevel Macsyma recursively. This environment is identical to the previous toplevel state, except that the computation that was interrupted is saved. Labels are bound as usual. You can exit from this toplevel to the previous break by typing \texttt{exit();}. 


exit

Typing `exit` during a Macsyma break allows you to return to the computation in progress at toplevel Macsyma.

abort

Typing `abort` during a Macsyma break aborts the suspended computation.

### 18.2.2 Tracing Function Calls

`trace(fcn_1, \ldots, fcn_n)`

The special form `trace` allows you to trace those Macsyma or user-defined functions specified by `'fcn_1, \ldots, 'fcn_n`.

When Macsyma encounters a function `fcn_i` during a computation, it displays the following information:

- The function’s name and arguments upon entry.
- The function’s name and return value upon exit.
- A count of the levels of recursion.

To see which functions you are currently tracing, type `trace();`. To stop tracing a function, use the special form `untrace`.

Usually, this is all the tracing power you need, although Macsyma offers the full capabilities of the Lisp tracing package, including conditional and breakpoint tracing. Macsyma uses trace-syntax very similar to that of Lisp.

`trace` (System Variable)

Returns a list of the functions currently under trace. This variable is maintained by Macsyma and cannot be altered explicitly by the user.

`trace_options(function, option_1, \ldots, option_n)` (Function)

Gives the function `function` the option variables indicated. An option variable is either a keyword or an expression. The possible keywords are:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning of return value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>noprint</code></td>
<td>If <code>true</code> do no printing.</td>
</tr>
<tr>
<td><code>break</code></td>
<td>If <code>true</code> give a breakpoint.</td>
</tr>
<tr>
<td><code>lisp_print</code></td>
<td>If <code>true</code> use Lisp printing.</td>
</tr>
<tr>
<td><code>info</code></td>
<td>Extra info to print.</td>
</tr>
<tr>
<td><code>errorcatch</code></td>
<td>If <code>true</code> errors are caught.</td>
</tr>
</tbody>
</table>

These keywords can be used as symbols meaning that the designated option variable is in effect. To deactivate an option, enter `trace_options(function, option: false)` . Alternatively they can be used as functions, such as `noprint(predicate_function)`, which means to apply `predicate_function` (which is user defined) to some arguments to determine if the option variable is in effect. The argument list to this `predicate_function` is always `[level, direction, function, item]` where `level` is the recursion level for the function, `direction` is either `enter` or `exit`, `function` is the name of the function, `item` is either the argument list or the return value.

(c1) `f(n):=if n = 0 then 1 else n*f(n-1);`
(d1) `f(n) := if n = 0 then 1 else n*f(n - 1)`
\(\text{(c2) trace(f)};\)
\(\text{(d2) } [f]\)
\(\text{(c3) f(2);}\)
\(\text{1 Enter } f [2]\)
\(\text{2 Enter } f [1]\)
\(\text{3 Enter } f [0]\)
\(\text{3 Exit } f 1\)
\(\text{2 Exit } f 1\)
\(\text{1 Exit } f 2\)
\(\text{(d3)}\)
\(\text{(c4) trace\_options(f,lisp\_print)}$\)
\(\text{(c5) f(2);}\)
\(\text{(1 Enter } $f (2))\)
\(\text{(2 Enter } $f (1))\)
\(\text{(3 Enter } $f (0))\)
\(\text{(3 Exit } $f 1)\)
\(\text{(2 Exit } $f 1)\)
\(\text{(1 Exit } $f 2)\)
\(\text{(d5)}\)
\(\text{(c6) foo(level,direction,name,item):=if direction = 'enter then timedate()}$\)
\(\text{(c7) trace\_options(f,info(foo));}\)
\(\text{(d7)} [\text{info(foo)}]\)
\(\text{(c8) f(2);}\)
\(\text{1 Enter } f [2] \rightarrow \text{Thursday, September 2, 1993, 10:23am}\)
\(\text{2 Enter } f [1] \rightarrow \text{Thursday, September 2, 1993, 10:23am}\)
\(\text{3 Enter } f [0] \rightarrow \text{Thursday, September 2, 1993, 10:23am}\)
\(\text{3 Exit } f 1\)
\(\text{2 Exit } f 1\)
\(\text{1 Exit } f 2\)
\(\text{(d8)}\)

\text{untrace(fcn_1, \ldots, 'fcn_n)}

Special Form

Removes tracing for a function \text{fcn}_i invoked by the function \text{trace}. Type \text{untrace()}; to remove tracing from all functions.

\text{debugmode default: false}

Option Variable

The function \text{debugmode} determines the flow of control after Macsyma encounters an error. When \text{debugmode} is \text{false}, the default, Macsyma signals an error by printing a message and terminating the computation, returning you to toplevel Macsyma.

If you want to investigate the environment where an error occurs, you should set \text{debugmode} to one of the following arguments and repeat the computation:

\text{true} Enters the Macsyma debugger.

\text{false} Returns to toplevel Macsyma.

\text{all} Enters the Macsyma debugger.

\text{lisp} Enters the standard Lisp debugger.

If you type \text{debugmode: true;} or \text{debugmode: all;} and repeat the computation, Macsyma enters a Macsyma break. You can type any command just as at toplevel. The command lines are evaluated in the environment of the error. If \text{debugmode} is \text{all}, then you can examine \text{backtrace} for the list of functions currently entered. See Section 18.2.2, page 451.
If the option variable \texttt{batch\_make\_notebook} is \texttt{false}, you can use the notebook facility to track down command line errors. See Section 19.3.1, page 467.

\texttt{backtrace default: backtrace} \hspace{1cm} \textit{Option Variable}

When \texttt{debugmode} (\texttt{default: false}) is set to \texttt{all}, \texttt{backtrace} contains a list of all functions currently entered, together with the unevaluated arguments they were called with, ordered from most recent to earliest.

If you reverse the list, it shows a trace beginning from the initial function and ending at the last call entered, including only those function calls from which it still has not exited.

18.2.3 Tracking Assignments of Variable Values

\texttt{find\_symbol\(\left(\text{string}\right)\)} \hspace{1cm} \textit{Function}

The function \texttt{find\_symbol} returns a list of all symbols in your current Macsyma session that have \texttt{string} in their names. Existing symbols include any symbols you’ve typed and any predefined Macsyma symbols you have loaded into your environment.

The function \texttt{find\_symbol} is related to \texttt{apropos}. See page 9.

\texttt{setcheck default: false} \hspace{1cm} \textit{Option Variable}

If \texttt{setcheck} is set to a list of variables, Macsyma displays these variables and their bindings whenever they (or subscripted occurrences of them) are bound by means of \texttt{=} or \texttt{::} or function argument binding.

To include all variables, bind \texttt{setcheck} to \texttt{all} or \texttt{true}.

\textbf{Note:} No display is generated when a variable is set to itself, as in \texttt{x: \textasciitilde x}. Variables can be subscripted.

\texttt{setcheckbreak default: false} \hspace{1cm} \textit{Option Variable}

If set to \texttt{true} or \texttt{all}, this option variable causes a Macsyma break to occur just prior to the binding of variables on the \texttt{setcheck} list. At this point, \texttt{setval} holds the value that the variable is about to be set to (\texttt{setval} is described below). If set to a subset of \texttt{setcheck}, then Macsyma breaks will occur before the binding of these variables (and not all of \texttt{setcheck}).

\texttt{setval default: setval} \hspace{1cm} \textit{Option Variable}

If \texttt{setcheckbreak} is \texttt{true}, and a Macsyma break is entered as a result of the binding of one of the variables in the \texttt{setcheck} list, \texttt{setval} has the actual binding. This is done because the break takes place before the actual binding is done. This mechanism facilitates several useful debugging techniques: you can either examine or change the value of \texttt{setval}, then proceed from the \texttt{break} to study the effect on the behavior of the program.

18.2.4 Debugging Your Own Functions

In the following example, an attempt is made to define a function \texttt{root} which finds an approximate root to an expression using Newton-Raphson iteration.

\begin{verbatim}
(c1) root(f,v):=block([fun, der:diff(f,v), val:0.0],
    test,
    fun:subst(val, v, f),
    if abs(fun)<5.0e-7 then return(val),
    der:subst(val, v, der),
    val:val-fun/der,

\end{verbatim}
\begin{verbatim}

go(test))$
(c2) numer:true$
(c3) f:sin(\%pi*x)-\%pi*(x-1)$
(c4) root(f,x);
Division by 0
(c5) refcheck:true$
(c6) debugmode:true$
(c7) 'c4;
f has value
v has value
val has value
fun has value
der has value
Division by 0
error-break (Type exit; to exit.)
_val;
1.0541436e+8
_der;
- 2.98023224e-8
_trace(subst);
_''c4;
The numerical value of \%pi is present below due to numer being set to true above.
1 enter subst [0.0, x, sin(3.1415927 x) - 3.1415927 (x - 1)]
1 exit subst: 3.1415927
1 enter subst [0.0, x, 3.1415927 cos(3.1415927 x) - 3.1415927]
1 exit subst: 0.0
1 enter subst[0.0, x, sin(3.1415927 x) - 3.1415927 (x - 1)]
division by 0
This message is due to an error-break occurring within another error break.
_exit;
Exited from the break
(c8) er{}
_''c4;
myfroot eer{}
\end{verbatim}

Here we used the compound command \texttt{myf} of the editor to insert the definition of \texttt{root} into the edit buffer. The editor is then used to insert an \texttt{if} statement to test for \texttt{der} being close to 0. The actual editing work is not shown.

\begin{verbatim}
(c8) root(f,v):=block([fun, der:diff(f, v), val:0.0],
  test,
  fun:subst(val, v, f),
  if abs(fun)<5.0e-7 then return(val),
  der:subst(val, v, der),
  if abs(der)<5.e-8
  then error("Derivative is zero"),
  val:val-fun/der,
  go(test))$
(c9) untrace();
(d9) [subst]
(c10) refcheck:false$
(c11) 'c4$
Derivative is zero
\end{verbatim}

This is due to the function \texttt{error} being called.
18.3 Timing and Metering

showtime : default: false

If true, this option variable causes display of the cpu time taken by each computation. This figure does not include I/O time except in the case of the time given at the end of running a batch file. Setting `showtime: all`, forces printing of the cpu time and the amount of time spent in garbage collection (GC), if nonzero, in the course of a computation. This time is, of course, included in the time displayed as “Totaltime=".

Since the “Time=” time includes only computation time, and not any intermediate display time, and since it is difficult to ascribe “responsibility” for GCs, the gctime displayed includes all `gctime` incurred in the course of the computation. Thus, in rare cases, the gctime may even be larger than “Time=".

time( Di1, Di2, ... )

Returns a list of the cpu times in milliseconds taken to compute the Di.

lasttime

Is a list of “time” and “gctime” used to compute the last expression. The units are milliseconds.

The following functions are part of the trace package and are useful for determining timings and benchmarks for different functions. For more information about trace, see Section 18.2.2, page 449.

timer( function {, function2, ... } )

Puts a timer-wrapp er on the function function, within the trace package. `timer` optionally accepts more than one function as arguments. It returns a list of the functions being timed. `timer_info` displays the cpu time information collected by `timer`. Enter the command `example(timer)`; for an example of this function.

untimer( function {, function2, ... } )

Removes the timer-wrapp er from the function function. `untimer` optionally accepts more than one function as arguments.

The conventions for `timer` and `untimer` are like those for `trace` and `untrace`. The function `timer` tells you how man y calls a function got, and to a moderate degree of accuracy (there might be a few percent error in the timing figures), how much time was spent during the call.

timer_info( function )

Displays the timing information that is stored also as `get('function, 'calls); get('function, 'runtime); and get('function, 'gctime);`

timer_devalue : default: false

When set to true, this option variable causes the `timer` functions to report the time charged against a function as the time spent dynamically inside the function, devalued by the time spent inside other timed functions. When false, the timer functions report CPU time spent inside each function from entry to exit, including time spent in other functions.

tim edate()

Returns a string containing the current date and time.

timedate_format : default: long

This option variable controls the format in which Macsyma displays the time and date, using the function `timedate`. There are two formats: long and short.
Examples
(c1) timedate();
(d1) Monday, April 22, 1996, 5:43pm
(c2) timedate_format:short$
(c3) timedate();
(d3) 4/22/96 17:43:40

18.4 Writing Interactive Programs

Several Macsyma commands are available to you for creating your own menus for writing interactive programs.

18.4.1 Defining Your Own Command Menu

When you find yourself using certain Macsyma functions frequently, you should define your own command menu by creating a file that contains the following (in this order):

1. The definitions of the menu items that you want on your command menu.
2. The definition of the mode that contains those menu commands.

To define a menu item, use the function define_macsyma_menu_command. For example, suppose you want to create a command menu for frequently-used matrix functions because you’ve noticed that you often use invert, determinant, and echelon.

To define these menu items, type

(c1) define_macsyma_menu_command(invert,"invert(%)",
"Find the inverse of the previous matrix.",invert)$
(c2) define_macsyma_menu_command(determinant,"determinant(%)",
"Find the determinant of the previous matrix.",determinant)$
(c3) define_macsyma_menu_command(echelon,"echelon(%)",
"Find the Echelon Form of the previous matrix.",echelon)$

The commands [invert], [determinant], and [echelon] now exist, but before you can use them, you need to define a mode that contains them.

To use the menu items that you’ve defined, you must define a mode that contains them using the function define_macsyma_menu_mode. Continuing the example, to add a new menu mode called “Matrix” that contains [invert], [determinant], [echelon], and the previously-defined menu command [exit], you would type

(c4) define_macsyma_menu_mode(Matrix, invert, determinant, echelon, exit)$

Now, when you click right on the current mode name, you’ll see a momentary menu that contains the mode [Matrix]. To select [Matrix], click left on it.

If you created this command menu in a file, you must load the file using the function load in order to use the command menu.

To redefine a command menu or a menu item, you just repeat the definition process. If you created your command menu in a file, edit and reload the file.
18.4.2 Using the Function choose_variable_values to Create Menus

choose_variable_values(variables, prompt) Function

Presents a menu containing the indicated variables and allows you to modify any or all of their values. The variables may be either a list of variables or a list of lists. If variables is a list of variables, a suitable prompt for each variable's value is automatically chosen by Macsyma. If variables is a list of lists, the first element of each list should be a variable and the second element should be a string which is to be used as the prompt for that variable's value.

The prompt is optional and is used to generate a message which introduces the menu. If supplied, it will appear in the sentence “You are editing prompt.” Depending on the setting of the option variable preferred_menu_style (default: mouse), Macsyma displays a pop-up or keyboard menu for you to respond to using the appropriate device: mouse or keyboard.

Note: If the actual argument is a list containing the actual variable names to be chosen, you should quote the argument. For example, to choose that values of a, b, or c, you have the following options:

choose_variable_values(['[a, b, c]);

or

choose_variable_values(['a', 'b', 'c]);

or

var1:a$
var2:b$
var3:c$
choose_variable_values([var1, var2, var3]);

or

vars:['a, b, c]$ choose_variable_values(vars);

18.4.3 Using one_of and select_one_of to Offer Menus

Certain menu commands such as [Demo], [Evflag], and [Trace] prompt you with momentary menus for necessary information in order to complete their operations. A momentary menu temporarily obscures part of the Macsyma Front End and list items that you can select using the mouse. If you do not want to select an item, move the mouse cursor off the menu, and it disappears.

Macsyma has two functions that allow you to create your own momentary menus in order to prompt for additional information or to resolve ambiguity.

select_one_of(list, prompt, abortp, style) Function

Displays a menu of the items in list and prompts you with the string prompt, which is optional. If there is only one item in list, the function still presents you with a menu containing that one item.

The argument abortp is optional. It allows you to control what happens if you do not choose an item (or if list is empty). If abortp is false (the default), select_one_of returns false. If abortp is true, select_one_of aborts from the active computation.

The argument style is also optional. This argument allows you to override the current setting of the option variable preferred_menu_style.

Refer to the description of preferred_menu_style (default: mouse) for more information. The description tells you how to select items from menus depending on the menu style.

See also Section Section 18.4.5, page 457.
When the preferred menu style is `keyboard`, you select an item by typing the option number followed by a semicolon (;) or a dollar sign ($). If you do not want an item, you can type `none;`. If you want to review your choices, you can type `choices;`. If you want help, type `help;`.

`one_of(list, prompt, abortp, style)`  
Function

Displays a menu with the items in `list` as choices and prompts you with the string `prompt`, which is optional. If there is only one item in `list`, `one_of` selects that item without prompting you. If there are no items in `list`, `one_of` automatically returns according to the setting of `abortp`.

The argument `abortp` is optional. It allows you to control what happens if you do not choose an item (or if `list` is empty). If `abortp` is `false` (the default), `one_of` returns `false`. If `abortp` is `true`, `one_of` aborts from the active computation.

The argument `style` is optional. It allows you to override the current setting of the option variable `preferred_menu_style`. Refer to the description of `preferred_menu_style` (default: `mouse`) for more information. The description tells you how to select items from menus depending on the menu style.

### 18.4.4 Other Interactive Input Commands

At certain times, Macsyma uses the command menu area to resolve ambiguous situations, such as whether a variable is positive, negative, or zero in a demonstration. illustrates such a situation.

To proceed, Macsyma prompts you with the three option variables both in the command menu and Macsyma Listener. You can respond from either area. To respond from the Macsyma Listener, type `positive;` or `negative;` or `zero;`. To respond from the command menu, click left on `[Positive]`, `[Negative]`, or `[Zero].

The `query` function allows you to resolve situations in your own applications by asking a yes/no question in both the Macsyma Listener and the command menu areas. This function is defined as follows:

`query(arg1, …, argn)`  
Function

Prints `arg1, …, argn` and then prompts you for an answer. To answer, type `yes, y, no` or `n`. If you answer `yes`, `query` returns `true`. If you answer `no`, `query` returns `false`.

You can also respond to the query from the command menu area by clicking left on either `[Yes]` or `[No].

`read(arg1, …, argn)`  
Function

Displays the arguments, then reads and evaluates one expression from the console. For example:

```
A:read(‘‘enter the number of values:’’);
```

Displays:

```
Enter the number of values:
```

Macsyma then waits for you to type a number followed by a semicolon (;). It returns the result of evaluating your input.

`readonly(string1, …, stringn)`  
Function

Displays its arguments, then reads in an expression from the console. In contrast to `read`, this expression is not evaluated.

### 18.4.5 Miscellaneous User Interface Control Functions

`use_tabs_for_display default: true`  
Option Variable

Controls whether tab characters or spaces are used in non-cursor-positioned Macsyma output.
pause(pause_message, continue_message, flush_message)

The function `pause` does demo-style pausing. The message `pause_message` is displayed as a user prompt to respond to the pause. If the user presses the return key or space bar, then the message `continue_message` is displayed. If the user enters any other response, then the message `flush_message` is displayed and the paused process aborts.

If `flush_message` is provided, and if the user asks to continue, then the returned value is `true`; otherwise, it is `false`. If `flush_message` is not provided, then `pause` always returns `true`.

dpagepause(pausemsg, continuemsg)

Function `pagepause(pausemsg, continuemsg)` performs end-of-page pausing. This means that when Macsyma pauses, `pausemsg` appears near the bottom of the screen, and when you continue, Macsyma displays `continuemsg` and begins a new page. Both arguments are optional. The default value of `pausemsg` is `--Pause--` or `--More Display--`. The default value of `continuemsg` is `--Continued--`.

When `--Pause--` or `--More Display--` are visible, either [Continue] or [Continue] and [Flush] appear on the command menu. To select one of these items, respond from the keyboard or click left on the item.

morewait default: false

Option Variable `morewait` controls the action of more processing.

In its default setting, SPACE typed at `--More Display?--` continues the display, a RUBOUT or DELETE flushes the display of the expression to both the terminal and any `writefile` that may be open, and anything else flushes only output to the terminal. Type-ahead is allowed. You can begin typing the next command line and the display to the console is flushed and your typing is saved and put on the `c-line`. RETURN is frequently used for this last function of flushing the output to the terminal. If `morewait` is set to `true`, then SPACE and RUBOUT work as above, but only RETURN is enabled to flush display to the terminal, and type-ahead is ignored. If `morewait` is set to `all`, then only SPACE (to continue output) and RETURN (to flush it) are enabled, and any other characters (including RUBOUT) are ignored. You may find this setting useful for noisy connections where typing RUBOUT over the phone line sometimes flushes output accidently.

preferred_greeting_style default: display

Option Variable `preferred_greeting_style` contains the preferred style of the Macsyma greeting. If this option variable is `display`, the function draws a fancy Macsyma greeting (if possible, otherwise a simple greeting). If this option variable is `print`, Macsyma displays a simple greeting.

In Macsyma 2.0 and successors, the default is `print`.

Note: On remote terminals and in small windows where drawing the screen is not feasible, the function `preferred_greeting_style` ignores the setting of `draw_macsyma_window` and responds as if the setting were `print`.

preferred_menu_style default: mouse

Option Variable `preferred_menu_style` suggests the style for Macsyma to present items referred to in menu functions such as `one_of`, `select_one_of`, and `choose_variable_values`. See also Section 18.4.3, page 455.

There are two menu styles: `mouse` and `keyboard`. In Macsyma 2.0 and successors, the default is `keyboard`.

Note: Some of the features described for `mouse` style are relevant only to the version of Macsyma for Symbolics Lisp Machines.

When `preferred_menu_style` is `mouse` (the default), menu functions display pop-up menus. You must respond by clicking on an item in the menu or by moving the mouse cursor off of the menu.
In keyboard style, menu functions display keyboard menus consisting of numbered items in the Macsyma Front End if possible. You can respond from the keyboard by typing the number of the item you want (include a semicolon (;) or a dollar sign ($) to complete your selection). You can also type none; to exit the function without selecting an item. You can also type choices; to redisplay the keyboard menu and review your choices.

You can type help; to display information about completing your selection. You can also press the HELP key, if available.

**Note:** This option variable is documented as a suggested menu style because Macsyma will automatically use a different style if it is necessary. For example, if you are on a remote terminal that does not have sophisticated window capabilities, you can still use files that set this option variable to mouse. Macsyma automatically presents keyboard menus instead of pop-up menus, in this case.

### 18.4.5.1 Options for Symbolics Lisp Machine

**Note:** the following commands and option variables are relevant only to the version of Macsyma for Symbolics Lisp Machines.

**change_screen_configuration**(type)  
*Function*

This function allows you to change the configuration of your Macsyma window. The optional argument type can be one of the following:

- **split** Splits the screen between the Macsyma Listener and the Macsyma Plotting Window.
- **main** Restores a full screen Macsyma Listener.

If you do not specify type, the function toggles between the two possible screen configurations.

**enable_more_processing**  
*Option Variable*

Turns more processing on and off. This switch is for Symbolics Lisp Machines only.

**define_macsyma_menu_command**(name, string, doc, topic-name)  
*Function*

Defines a menu command called name or redefines an existing menu command. When you use name, the argument string becomes the input into the command loop. The argument doc is the string that appears on the mouse documentation line when the mouse is over name on the command menu. The argument topic-name is optional; clicking right on name is equivalent to typing describe(topic-name)$.

**Note:** The command menu is available only if you are using a Symbolics 3600 Series machine.

**define_macsyma_menu_mode**(mode, item1, ..., itemn)  
*Function*

Adds a menu mode called mode to the command menu containing the items item1, ..., itemn, or redefines an existing mode. To see the set of available modes, click left on the current mode on the command menu. To select a different mode, click left on that mode.

### 18.5 Miscellaneous Functions

Each Macsyma version has two designations, one of which can be found by using version, and the other by using macsyma_release.
18.5. MISCELLANEOUS FUNCTIONS

version default: "current version number" 

Option Variable

Type version; to display the major version number. The default is the actual version number of your Macsyma. This could be useful if you want to label your output. You must specify the version number when you report a bug.

Note: Use the function version to display more information about the release.

version() Function

Returns a list of the following form:

\[\text{[version-string, major-version, minor-version, status, internal-code]}\]

The minor version, status and internal-code for reserved by use by Macsyma Inc.

The following example shows the result for Macsyma version 2.0.

Example

\(\text{(c1) version();}\)
\(\text{(d1) [macsyma 2.0.9, 2.0, 0.0, released, 9]}\)

load_patches() Function

Loads any Macsyma patches that have not already been loaded.

sleep(n) Function

Suspends the execution of the current Macsyma process for \(n\) seconds before proceeding with further computation. The argument \(n\) is a required argument.

who(host) Function

Note: This function is supported on the Symbolics Lisp machine only. It displays the name of the user currently logged in to \(host\). The argument \(host\) is optional. If you do not specify \(host\), Macsyma displays the names of all users logged in at your site.

status(keyword, arg) Function

Returns status information for the \(keyword\) and \(arg\) given. Specifying \(arg\) is illegal, optional, or required depending on the \(keyword\).

This function allows you to obtain a variety of information about Macsyma. For example, status(day); returns the day of the week while status(freecore); tells you about Macsyma’s memory usage.

Note: Not all implementations support all possible keywords to status. The expression status(status); returns a list of the keywords that are valid in the current implementation.

This is a complete list of keywords accepted by status in some or all implementations:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>The time used so far in the computation.</td>
</tr>
<tr>
<td>day</td>
<td>The day of the week.</td>
</tr>
<tr>
<td>date</td>
<td>A list of the year, month, and day.</td>
</tr>
<tr>
<td>daytime</td>
<td>A list of the hour, minute, and second.</td>
</tr>
<tr>
<td>runtime</td>
<td>Accumulated cpu time times the atom msec.</td>
</tr>
<tr>
<td>realtime</td>
<td>The real time elapsed since you started the Macsyma. The units are seconds.</td>
</tr>
<tr>
<td>gc time</td>
<td>The garbage collection time used so far in the current computation.</td>
</tr>
<tr>
<td>total gc time</td>
<td>Gives the total garbage collection time used so far.</td>
</tr>
</tbody>
</table>
freecore  Information about Macsyma’s memory usage.
feature true if the feature named by arg is currently on. Returns false if the feature named by arg is currently off. If you do not supply arg (for example, status(feature);), Macsyma returns a list of current features. This is the same as typing status(features);. Features can be turned on using sstatus.
features A list of features that are currently turned on.
sstatus A list of the keywords recognized by sstatus in the current implementation.
sstatus A list of the keywords recognized by status in the current implementation.

sstatus(keyword, arg) Function
Changes status information returned by status for the keyword and arg given. The expression status(sstatus); returns a list of the keywords that are valid in the current implementation.
The only keyword currently accepted by sstatus is feature. This turns on the feature arg so that future calls to status(feature,args); return true. This can be useful to package writers, to keep track of what features they have loaded.
Chapter 19

File Management

The first part of this chapter describes functions and option variables that allow you to perform a variety of file operations on files of Macsyma commands. These include

- Saving Macsyma commands in files.
- Editing files of Macsyma commands.
- Making a transcript of your Macsyma session and saving it in a file.
- Loading and executing files that are stored on other machines.
- Running demonstration files.

This chapter also includes functions that you can use to monitor and free storage.

19.1 File Naming Conventions

Before reading about the many file related functions and option variables, you should be familiar with the filenaming conventions of the operating system of the machine on which you are using Macsyma or the machine on which you intend to store files.

19.1.1 Specifying File Pathnames

When specifying file pathnames from the Macsyma environment, you can use the pathname syntax which is specific to your type of platform, enclosed in double quote marks. (DOS-Windows is an exception in that each backslash must be replaced by two backslashes.) For example, if Macsyma is stored on the directory named macgold, then the following commands load the Macsyma system file “functs” from the system directory, and the user file “myfile” from the user’s home directory (named homedir) on subdirectory mysubdir:

<table>
<thead>
<tr>
<th>platform</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS-Windows</td>
<td><code>load(&quot;c:\\macgold\\share\\functs.fas&quot;)$</code></td>
</tr>
<tr>
<td></td>
<td><code>load(&quot;c:\\homedir\\mysubdir\\myfile.mac&quot;)$</code></td>
</tr>
<tr>
<td>UNIX</td>
<td><code>load(&quot;c:/macgold/share/functs.o&quot;)$</code></td>
</tr>
<tr>
<td></td>
<td><code>load(&quot;/homedir/mysubdir/myfile.macsyma&quot;)$</code></td>
</tr>
<tr>
<td>VMS</td>
<td><code>load(&quot;c:[macgold.share]functs.fas&quot;)$</code></td>
</tr>
<tr>
<td></td>
<td><code>load(&quot;c:[homedir.mysubdir]myfile.mac&quot;)$</code></td>
</tr>
</tbody>
</table>

461
Symbolics

\texttt{load("c:\>macgold\>share\>functs.bin")} (or \texttt{.ibin})
\texttt{load("c:\>homedir\>mysubdir\>myfile.macsyma")}$

All Systems

\texttt{load("macsyma\>:share\>;functs.bin")}$
\texttt{load("macsyma\>:share\>;functs")}$
\texttt{load("functs")}$
\texttt{load(functs)$}
\texttt{load(functs)$}

19.1.2 Logical Pathnames

Under “All Systems,” the first line uses Macsyma’s generic pathname specification scheme which works across all platforms. Note that the logical directory name “macsyma” translates to the name of the directory where Macsyma software is located. A colon is used to separate directory names, and a semicolon separates the subdirectory name from the file name. The file type extension (see below for more information) is the logical name “.bin,” whose literal interpretation varies across platforms. The generic pathname specification scheme using “::” and “;;” is supported for pathnames in the macsyma directory.

Macsyma has a logical pathname scheme which uses logical names for the directory where Macsyma is installed, and for filename extensions. The logical pathname scheme is supported only for directories which are specified by the option variable \texttt{file_search}. The commands on the last three lines above use macsyma’s \texttt{file_search} facility. When you load a file by its name only, Macsyma checks for a file of that name in several directories. The directories currently on the \texttt{file_search} list are:

- your home directory (denoted by the symbol \texttt{false})
- \texttt{macsyma\>:demo;}
- \texttt{macsyma\>:example;}
- \texttt{macsyma\>:library1;}
- \texttt{macsyma\>:library2;}
- \texttt{macsyma\>:matrix;}
- \texttt{macsyma\>:ode;}
- \texttt{macsyma\>:share;}
- \texttt{macsyma\>:tensor;}

For example, if your user home directory is named \texttt{homedir}, you can load a file with either of the following commands.

\texttt{load("myfile.bin")}$
\texttt{load("myfile")}$

The system will search for binary first, then lisp, then macsyma.

\texttt{file_search default: false, filenames} \hspace{1cm} \textit{Option Variable}

Contains a directory list for functions that manipulate files to be searched if a filename is incompletely specified. You can use this option variable to display, add, or delete directories on this list. The default value will use the appropriate filename convention on each machine. To see the directories currently on the \texttt{file_search} list, type

\texttt{(c1) file_search;}
\texttt{(d1) \{false, macsyma\>:library1;, macsyma\>:share;, macsyma\>:library2;}}
To add a directory to the file_search list, type
(c2) file_search:cons(directory-name, file_search);

Macsyma supports both actual and logical filenames. The option variable file_types has as its value the three logical file types or extensions used by the load function.

**file_types  default: [bin, lisp, macsyma]**

The first three items in the file_types list are file extensions that Macsyma recognizes when searching for a file using the load command. They are the logical extensions for source, Lisp and Macsyma files, respectively.

**Note:** The logical file types correspond to different actual file types for different systems. See your Release Notes for the actual file names used by your system.

The order of the extensions in the list is important. Macsyma looks for files according to extensions in the list from left to right, so you shouldn’t change the order of the types in the list. For example, if you type load(circles);, Macsyma loads the object version of the file rather than the Lisp version (assuming both types of the file exist). If your Lisp files have the extension lisp, you can type
(c1) load("circles.lisp");
to load that particular file.

You can also modify the value of file_types so that Macsyma recognizes other file extensions. You do this by adding the new extensions to the default list. For example, to add the extension test to the end of the file_types list, you must type
(c2) file_types:endcons(filename_merge('test), file_types);
(d2) [bin, lisp, macsyma, test]

Now load looks for a file whose extension is test, searching through the extensions bin, lisp, or macsyma. For example, typing load(circles); will find the file circles.test, unless there is another file named “circles” with an extension that precedes test in the list of extensions.

**Note** If you frequently load files with extensions other than the defaults, you should consider resetting file_types in your init file. See page 14 for information on init files.

**Note** file_types is used only by the function load. It is not used by other file referencing functions such as batch, demo, and loadfile. See page 466.

### 19.1.3 Filename Extensions

Macsyma’s logical pathname scheme uses three logical pathnames extensions: .macsyma, .lisp, and .bin. These translate into literal pathname extensions as follows

<table>
<thead>
<tr>
<th>Logical Extensions</th>
<th>DOS-Windows</th>
<th>Actual Extensions</th>
<th>UNIX</th>
<th>VMS</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>.macsyma</td>
<td>.MAC</td>
<td>.macsyma</td>
<td>.MAC</td>
<td>.macsyma</td>
<td></td>
</tr>
<tr>
<td>.lisp</td>
<td>.LSP</td>
<td>.lisp</td>
<td>.LSP</td>
<td>.lisp</td>
<td></td>
</tr>
<tr>
<td>.bin</td>
<td>.FAS</td>
<td>.o</td>
<td>.FAS</td>
<td>.bin .ibin</td>
<td></td>
</tr>
</tbody>
</table>

Table 19.1: Literal Pathname Extensions from Logical Pathnames
The logical file extensions are contained in the Macsyma variable `file_types`. The default value of `file_types` is: `[bin, lisp, macsyma]`, where “bin” means one of `[.o .fas .bin .ibin]`, on different platforms, and “lisp” means `.lisp` on DOS, Windows, UNIX and VMS.

Other filename extensions used in Macsyma are:

<table>
<thead>
<tr>
<th>Extension</th>
<th>Shortened for Dos</th>
<th>Type of file</th>
</tr>
</thead>
<tbody>
<tr>
<td>.demo</td>
<td>.dem</td>
<td>Executable demonstration file written in the Macsyma language</td>
</tr>
<tr>
<td>.example</td>
<td>.exa</td>
<td>Executable example of a command, written in the Macsyma language</td>
</tr>
<tr>
<td>.pack</td>
<td>.pck</td>
<td>Packed demo or example files written in the Macsyma language</td>
</tr>
<tr>
<td>.gentran</td>
<td>.gen</td>
<td>Template files used in certain demonstrations of the Gentran package</td>
</tr>
</tbody>
</table>

Table 19.2: Default Pathname Extensions Used in Macsyma

1. Access the source code with `unpack_topic("name.demo")`; or `unpack_topic("name.example")`;

2. These files contain a mixture of Macsyma language and FORTRAN or C.

When you do not specify a filename extension, various Macsyma file commands check for a default filename extension. The table below describes these default extensions.

<table>
<thead>
<tr>
<th>Macsyma File Command</th>
<th>Default file types, in order of search</th>
</tr>
</thead>
<tbody>
<tr>
<td>load</td>
<td>from the <code>file_types</code> list, in that order</td>
</tr>
<tr>
<td>batch</td>
<td>.macsyma</td>
</tr>
<tr>
<td>compile_file</td>
<td>.macsyma .lisp</td>
</tr>
<tr>
<td>demo</td>
<td>.demo</td>
</tr>
<tr>
<td>example</td>
<td>.example</td>
</tr>
<tr>
<td>usage</td>
<td>.usage</td>
</tr>
</tbody>
</table>

Table 19.3: Other Pathname Extensions Used in Macsyma

### 19.2 Searching, Reading, and Manipulating Files

**edit**(arg)

Edits `arg` in an editor buffer. The argument `arg` is optional. If `arg` is a string or list, `edit` assumes it is a filename. Otherwise, `edit` assumes `argument` is the name of a function. If you do not specify `arg`, you enter the editor without disturbing its current state. This command may not work on versions of Macsyma where `CONTROL-E` opens the editor window.
19.3. READING AND WRITING COMMAND FILES AND DATA FILES

file_search(filename, {listp}, {types}, {directory})

Function

Searches for filename. The arguments listp, types, and directory are optional.

If listp is false or not specified, file_search returns the name of the first file it finds. If listp is true,
file_search returns a list of all the files it finds. The argument types is a list of file types (expressed
as strings) to search for. If you do not specify types, file_search uses the value of the option variable
file_types. See page 463. The argument directory is a list of directories to search through. If you do
not specify directory, file_search uses the value of the option variable file_search.

This function is invoked by the load function, which is why load("eigen"); finds and loads
"/usr/macsyma/share/fft.o".

code

filename length filename

Special Form

Returns the length in blocks of the designated file. The actual length in blocks may be depend on what
platform you are on.

For example,

(cl) filename length("foo.lisp");

(d1) 37 blocks

probefile(filename)

Function

Returns the name of the file if it exists; false otherwise. If you don't specify a directory, the default
directory will be assumed.

printfile(filename)

Special Form

Prints the contents of the file named filename on the terminal. The argument filename is not evaluated.

renamefile(oldfilename, newfilename)

Special Form

Gives a new name to a file. The first argument, oldfilename may name any file. Specify the filenames
as strings, using the correct forms for your system. The second argument, newfilename, must be a
filename on the same device and directory. Attempting to change the name of a file that does not exist,
or to rename a file to the name of a file that exists already, generates an error; hence, it is not possible
to inadvertently destroy a file using this command.

deletefile(file-specification)

Special Form

Deletes the file given by the file-specification from the given device.

user_homedir_pathname()

Function

Returns a pathname for your home directory. This is usually the directory where you keep personal
files, such as initialization files and mail.

code

filename_merge([filename[1], …, filename[n]])

Function

Merges together filenames, using the asterisk (*) wildcard for unspecified components of filenames, with
the leftmost filenames getting precedence. This function is useful when you are writing a package, want
to manipulate filenames, and need to merge a partially specified filename with default information to
produce an actual filename.

19.3 Reading and Writing Command Files and Data Files

19.3.1 Executing Files of Macsyma Commands

Macsyma can be used in both interactive and batch mode. In interactive mode, you begin a fundamental
transaction by typing on a command line. Macsyma then returns a result. In batch mode, Macsyma reads in
a file of commands, evaluating each one in turn. This section contains descriptions of commands for reading
and writing such command files.

The set of functions for working in batch mode, namely batch, demo, batchload, and batcon, provide
a facility for executing command lines stored in a disk file rather than in the usual interactive mode. This
facility has several uses:

- It provides a reservoir for working command lines.
- It provides a tool for generating error-free demonstrations
- It helps you organize your thinking in complex problem-solving situations where modifications can be
done in a text editor.

A batch file consists of a set of command lines, each with its terminating semicolon (;) or dollar sign ($),
which can be further separated by spaces, tabs, carriage-returns, and form-feeds.

Another function that can load files of Masyma forms is load.

**load** (*filename*)

Function

Takes one argument, a filename represented as a string (i.e. inside quotation marks). It then locates
and loads the indicated file. If no directory is designated, it searches the directories whose names are
found in the option variable file_search and loads the indicated file.

If a file is located in a directory listed in file_search, and has an extension listed in file_types, then
it can be loaded by typing only the file name, without quotation marks, directory or extension. See
Section 19.1.2, page 463. The function load works on both loadable and batchable files. It uses
batchload if it finds the file is batchable, which means that it batches the file silently, without terminal
output or labels. For example, typing load(eigen); loads the eigen package without your having to
know the details of whether the package was compiled, translated, or saved. See batch, page 466 and
batchload, page 467.

**batch** (*filename, arg1, arg2*)

Function

The function batch allows you to display and evaluate a file of Masyma commands at your console.
filename is the name or complete pathname of the file. arg1 and arg2, described below, are optional
arguments that control more precisely which lines of the file are processed. By combining both optional
arguments, you have more control over batch.

The argument arg1 controls where processing begins and can have of the following values:

<table>
<thead>
<tr>
<th>arg1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Processing begins at the command line where the interruption occurred. Specifying this argument is the same as specifying batcount + 1. This option is useful if you’ve edited the file.</td>
</tr>
<tr>
<td>false</td>
<td>Processing begins at the command line before the interruption. Specifying this argument is the same as specifying batcount.</td>
</tr>
<tr>
<td>tag</td>
<td>The value of tag must be non-numeric and neither true nor false. Any command line in a batch file may begin with tag&amp;&amp;. This labels that command line so that the file can be partitioned into subfiles. If not in a subfile mode, this prefix is treated as a comment. The value of tag can be any valid symbol. The command batch([filename], tag); causes file-processing to begin at tag&amp;&amp; and continue until the end of the file, making it unnecessary to count command lines as required above.</td>
</tr>
</tbody>
</table>
n

Processing begins at the \( n^{th} \) line of the interrupted file where \( n \) evaluates to an integer. \( n \) can be calculated from the system variable \texttt{batcount}. For example, \texttt{batcon(batcount-5);} continues processing at the point five lines previous to the interruption. See \texttt{batcount}, page 468 and \texttt{batcon}, page 467.

The argument \texttt{arg2} controls where processing ends. If you do not specify \texttt{arg2}, Macsyma assumes you want to batch to the end of the file. The value of \texttt{arg2} can be any of the following:

\begin{tabular}{ll}
\texttt{arg2} & Description \\
\texttt{true} & Processing ends at the end of the file. \\
\texttt{false} & Processing ends at the next tag. \\
\texttt{tag} & Processing ends at a tag \texttt{tag}. \\
\texttt{n} & Processing ends at the \( n^{th} \) line of the interrupted file where \( n \) evaluates to an integer. The value of \( n \) can be calculated from the system variable \texttt{batcount}. \\
\end{tabular}

Macsyma is dedicated to displaying and evaluating the commands in the file, unless you type \texttt{c-6} (\texttt{c-ABORT} on Symbolics) to interrupt the \texttt{batch} function. If the \texttt{batch} command fails or is interrupted, control is returned to your console. You can then correct the error and continue with the \texttt{batch} by using the function \texttt{batcon}. See \texttt{batcon}, page 467.

The first of the two examples which follow batches the entire \texttt{taylor} demonstration file, while the second displays and evaluates only the first 10 lines of the file.

\begin{verbatim}
(c1) batch([taylor, demo]);
(c2) batch([taylor, demo], 1, 10);
\end{verbatim}

To inhibit the binding of labels during \texttt{batch} processing, set the option variable \texttt{nolabels} to \texttt{true}. Labels will then appear in the unbound form \( (1), (2), \ldots, (n) \).

If the option variable \texttt{batch_make_notebook} is \texttt{false}, you can use the notebook facility to track down command line errors. See Section 19.3.1, page 467

\texttt{batch_make_notebook default: true} \hspace{1cm} Option Variable

When \texttt{false}, batch execution of a file causes input commands and comments to appear in text sections instead of input sections. This is useful for detecting the location of input errors. The notebook display stops at the point where the input parser detects an error such that the input string cannot be completed as a correct input command.

\texttt{demo(filename, arg1, arg2)} \hspace{1cm} Special Form

The function \texttt{demo} reads the Macsyma command lines from the file \texttt{filename}, pausing after each command line to display a prompt, which by default is an underscore character (\_).

To advance to the next command line, press \texttt{space} To terminate the demonstration, press any other character followed by \texttt{return}. The prompt character can be changed, as described below. If you accidentally terminate the demonstration, you can restart it by typing \texttt{batcon() ;}. See \texttt{batcon}, page 467.

The argument \texttt{filename} is optional. To see a complete list of available demonstration files, type \texttt{demo() ;}.

\texttt{batchload(filename)} \hspace{1cm} Function

Batches the Macsyma source file \texttt{filename} silently, without terminal output or labels. This is useful for when you do not care to watch the display of the file. See \texttt{batch}, page 466.

\texttt{batcon(arg1, arg2)} \hspace{1cm} Function

The function name \texttt{batcon} is a mnemonic for BATch CONTinue. This function allows you to continue a \texttt{batch} or \texttt{demo} operation that was interrupted in any way, by error, by accident, or intentionally.
Both arguments are optional. Without arguments, \texttt{batcon} performs the appropriate function, \texttt{batch} or \texttt{demo}, on the rest of the file, beginning at the next line after the interrupt. (Macsyma automatically saves the line number on the last command processed in the system variable \texttt{batcount} when an interrupt occurs.)

The function \texttt{batcon} always resumes processing on the latest version of an interrupted file. This feature exists so that you can correct an error in a file, save that file, and resume the \texttt{batch} or \texttt{demo} operation on the newest version with the \texttt{batcon} function. Additionally, you do not have to specify the file, since \texttt{batcon} already has this information.

The optional arguments, \texttt{arg1} and \texttt{arg2}, allow you to determine more precisely where processing of an interrupted file begins and ends.

The argument \texttt{arg1} controls where processing begins and can be any of the following:

<table>
<thead>
<tr>
<th>\texttt{arg1}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Processing begins at the command line where the interruption occurred. Specifying this argument is the same as specifying \texttt{batcount + 1}. This option is useful if you’ve edited the file.</td>
</tr>
<tr>
<td>false</td>
<td>Processing begins at the command line before the interruption. Specifying this argument is the same as specifying \texttt{batcount}.</td>
</tr>
<tr>
<td>tag</td>
<td>Processing begins at \texttt{tag}. (See Section 19.3.1, page 466.)</td>
</tr>
<tr>
<td>n</td>
<td>Processing begins at the \texttt{n}th line of the interrupted file where \texttt{n} evaluates to an integer. The argument \texttt{n} can be calculated from the system variable \texttt{batcount}. For example, \texttt{batcon(batcount-5)}; continues processing at the point five lines previous to the interruption.</td>
</tr>
</tbody>
</table>

The argument \texttt{arg2} controls where processing ends. \texttt{arg2} can be any of the following:

<table>
<thead>
<tr>
<th>\texttt{arg2}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Processing ends at the end of the file.</td>
</tr>
<tr>
<td>false</td>
<td>Processing ends at the next tag. (See \texttt{batch}, page 466)</td>
</tr>
<tr>
<td>tag</td>
<td>Processing ends at tag \texttt{tag}.</td>
</tr>
<tr>
<td>n</td>
<td>Processing ends at the \texttt{n}th line of the interrupted file where \texttt{n} evaluates to an integer. The value of \texttt{n} can be calculated from the system variable \texttt{batcount}.</td>
</tr>
</tbody>
</table>

If you specify \texttt{arg1}, but do not specify \texttt{arg2}, the default for \texttt{arg2} is \texttt{false}. If you specify neither \texttt{arg1} nor \texttt{arg2}, Macsyma assumes you want to batch from where the interruption occurred to the end of the file.

By combining both optional arguments, you have more control over \texttt{batcon}. For example, to resume processing an interrupted file from five lines before the point of interruption (and to the end of the file), you can type

\begin{verbatim}
batcon(batcount-5);
\end{verbatim}

To continue processing from the point of interruption (and to the end of the file), type

\begin{verbatim}
batcon();
\end{verbatim}

This is the same as typing \texttt{batcon(true, true)}; or \texttt{batcon(batcount, true)};

\texttt{batcount default: 0} \hspace{1cm} \textit{System Variable}

Macsyma automatically sets \texttt{batcount} to the line number of the last command processed with the function \texttt{batch} or \texttt{demo}.

You can use this system variable to specify where to resume processing, if a \texttt{batch} or \texttt{demo} operation is interrupted, by typing \texttt{batcon(batcount + n)}; . This system variable is also useful if you are incrementally building a file of commands to perform a calculation.
nolabels default: false

If true, then no labels are bound except for intermediate lines generated by solve functions. Refer to solve on page 121 for more information. This is useful in the batch mode where it eliminates the need to do kill(labels); to free storage.

19.3.2 Writing Files of Macsyma Commands

stringout(filename, \(a_1, \ldots, a_n\))

Outputs to a file given by filename. The output values are the values given by \(a_1, \ldots, a_n\) in a Macsyma readable format.

The \(a_i\) are usually c labels. In addition, they can be any of the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>The values of all input lines are strung out to the file.</td>
</tr>
<tr>
<td>functions</td>
<td>All of your function and macro definitions are strung out. See Sections 11 and 17.5.</td>
</tr>
<tr>
<td>values</td>
<td>All variables to which you have assigned values are strung out.</td>
</tr>
<tr>
<td>([m, n])</td>
<td>All input labels in the range (m) through (n) inclusive are strung out.</td>
</tr>
<tr>
<td>variable</td>
<td>The value of variable is strung out to the file filespec. The name of the variable can be subscripted.</td>
</tr>
</tbody>
</table>

If the variable grind is set to true, then grind format is used, instead of string format in the file, which may give a more easily readable result for long function definitions. See Section 12.1.1, page 350. The special form stringout may be run while a writefile is in process.

See also playback in Section 12.1.1.

19.3.3 Reading or Writing Numerical Data Files

There are two alternatives for importing and exporting data from Macsyma. The first uses the Macsyma Math Engine commands read_numerical_data and related file printing commands described in Sections Section 19.3.3.1 and Section 19.3.3.2. The second method uses the Macsyma Front End to exchange file data with Macsyma Front End variables. See the Macsyma Graphics and User Interface Manual for your version of Macsyma for a discussion of these facilities.

19.3.3.1 Reading Numerical Data Files

read_numerical_data(filename, startpoint, readlength)

Function

Reads the contents of the specified file and returns the results as a Macsyma list. The file can contain integers or floating-point numbers (single- or double-precision), separated by spaces, tabs, or returns.

The optional argument startpoint specifies which entry will be the first one read in, and the optional argument readlength specifies how many numbers to read from the file.

In order to be recognized by read_numerical_data, floating point numbers must appear with a digit after the decimal point. For example, use 1.0 not 1. (since 1. is treated as the integer 1).

Enter the command example(read_numerical_data); to see an online example of this function.

read_numerical_data_as_matrix(filename, numrows, numcols)

Function
read_numerical_data_as_array(filename, arrayname)

Function

Uses read_numerical_data to input numerical data into a declared array arrayname of compatible dimensions.

Do example(read_num_data_to_array); for an example.

19.3.3.2 Writing Numerical Data Files

To write numerical data files, you can use the functions writefile (See page 470), appendfile (See page 470), and print (See page 351). Execute the command example(read_numerical_data); to see an on-line example of writing a numerical data file.

19.4 Making a Transcript of Your Session

Making a transcript of your Macsyma session is useful if you want to record all or some of your transactions with Macsyma. The procedure is also useful when you want to record examples of bugs. To make a transcript of your session, use the following special forms. See also playback, page 351.

writefile(filename)

Special Form

Opens a file for writing. All interaction is then recorded in this file, just as it is on the console. The file is a transcript of the session and is not reloadable or batchable into Macsyma again. You can begin a writefile at any time. See closefile, page 470 for more information.

Note: Comments (i.e. text delineated by \texttt{/**/\ldots/**/}) are not written into the writefile. Use strings ("...") to get comments into writefiles. Comments that appear in batch files are written into the writefile. Only one file may be open at a time.

writefile_on

System Variable

The system variable writefile_on has the value of either true or false, indicating that a writefile is either open and receiving output from a Macsyma session or not. While a writefile operation is in progress, the user can set writefile_on to false to cause most output from the Macsyma session not to go to the file.

appendfile(filename)

Special Form

Is like writefile(filename) but appends to the file whose name is specified by the argument. A subsequent closefile deletes the original file and renames the appended file.

closefile(optional_filename)

Special Form

Closes a file opened by writefile and gives it the name specified by the corresponding writefile command. To save a file consisting of the display of all input and output during some part of a session, issue a writefile, perform your transactions with Macsyma, then issue a closefile. If you provide the optional_filename argument, Macsyma renames the current workfile and closes it.

You can also use the function playback after a writefile to save the display of previous transactions.

Note" Only a copy of the display of expressions (not the expressions themselves) is saved.

To save the actual expression in internal form, use the function save. See page 471. The expression can then be reloaded by the special form loadfile. See page 472. To save the expression in a linear form which can later be batched, use the function stringout. See page 469.
19.5 Saving Your Computations in Executable Form

The special form `save` enables you to explicitly state that certain expressions should be written onto the disk. You also specify the file into which these expressions should be written using this function. All types of information can be stored. These functions enable you to save expressions onto the disk so that they can be reloaded in future Macsyma sessions.

```
save(filename, 'arg1, ..., 'argn)
```

Special Form

Saves quantities described by its arguments on disk. The special form `save` returns a list of the form `[name of file, ...]` where ... are the things saved. Files generated by `save` can be reloaded with either `load` or `loadfile`. Warnings are printed in the case of large files or if an empty file is accidentally generated.

The following arguments are recognized by `save`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Saves the entire contents of your Macsyma. Every item associated with every infolist is saved to the disk.</td>
</tr>
<tr>
<td><code>[m, n]</code></td>
<td>When this list is given as an argument, every label whose line number lies between <code>m</code> and <code>n</code> inclusive is saved.</td>
</tr>
<tr>
<td><code>infolist-name</code></td>
<td>An argument that is one of the infolists results in saving all information about all of the items on <code>infolist-name</code>.</td>
</tr>
<tr>
<td><code>atom</code></td>
<td>When any other atom is an argument, it must be either an array, a function, a rule name, a context name, a macro name, a <code>let</code> rule package name, or have a property or value. It can also be an atom that has been used in an assumption, or it can be any of the atoms <code>elabels</code>, <code>dlabels</code>, and <code>elabels</code>. The item or items are written onto the disk.</td>
</tr>
<tr>
<td><code>a=b</code></td>
<td>Saves the value of <code>b</code> as the value of <code>a</code>. The effect is similar to saving <code>b</code>, in that <code>b</code> is written onto the disk. The only difference appears if the file is read into some future Macsyma. In that case, the expression referred to as <code>b</code> in the present Macsyma is referred to as <code>a</code> in the future Macsyma. Suppose you want to save some expression, say <code>(d7)</code>, for use in a future Macsyma. You can execute <code>save([filespec], oldd7 = d7);</code> (d7) is then stored onto the disk. To restore this expression in a fresh Macsyma you just <code>load(filespec);</code> and the variable oldd7 takes on the value that (d7) had in the first Macsyma. However, this renaming has no effect on the first Macsyma, where (d7) must still be referred to as “(d7)”.</td>
</tr>
</tbody>
</table>

**Note** If a saved file contains labeled expressions, they can conflict with expressions having the same label in the Macsyma into which the file is loaded. For example, if (d7) is in a file which is loaded into a Macsyma, it replaces the (d7) which was already in the Macsyma (if there was a (d7) generated), or it is itself replaced by (d7) when the new (d7) was generated. To avoid this difficulty, you should give labeled expressions a name as described above. You could also set `linenum (default: 1)` in the new Macsyma to some high value, or save it from the old one so that line numbers won’t conflict. See Section 12.1.1, page 352.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tellrats</code></td>
<td>All <code>tellrats</code> are saved.</td>
</tr>
<tr>
<td><code>features</code></td>
<td>All <code>features</code> you have declared are saved. Some additional features of built-in objects are also saved.</td>
</tr>
</tbody>
</table>

Each use of `save` causes exactly one file to be written, regardless of the number of arguments the function is given. You can restore a saved file with the command `load(filename);`.

```
convert_obsolete_save_file(filename, outfile)
```

Function

This function allows you to convert `filename`, which was saved with the `save` function in a former version of Macsyma, for loading into your current version of Macsyma.
The argument *outfile* is optional; it is the filename where Macsyma writes the converted file. If you do not specify *outfile*, the converted file is written over the original file.

**Note** We strongly recommend that you specify *outfile* if you are working with a file system that does not support file version numbers.

```lisp
loadfile(filename)
```

*Special Form*

Loads a file as designated by *filename*. This special form can be used to bring back quantities that were stored from a prior session by using the function `save`. When `loadfile` loads the file, it displays a message on the console. This display can be inhibited by setting `loadprint` to `false`, as described below.

The file must be a file of Lisp functions and expressions, not of Macsyma command lines. To load a file of commands, use `load` (Section 19.3.1, page 466), `batch` (Section 19.3.1, page 466), `batchload` (Section 19.3.1, page 467) or `demo` (Section 19.3.1, page 467).

```lisp
loadprint
```

*Option Variable*

Governs the display of messages that accompany file loading. The following options are available: `true` means always display the message; `'loadfile` means display only when `loadfile` is used; `'autoload` means display only when a file is automatically loaded; `false` means never display the loading message.

### 19.6 Freeing Storage

Macsyma provides a wide variety of functions for removing values, definitions and properties from objects you create. These are described in the same sections as the corresponding definition and specification functions. Table 19.4 summarizes the names of these utilities and the location of their descriptions in this manual.

<table>
<thead>
<tr>
<th>Name</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>remove</code></td>
<td>Remove a property</td>
<td>Section 13.1.1, page 361</td>
</tr>
<tr>
<td><code>remvalue</code></td>
<td>Remove a value</td>
<td>Section 16.5, page 419</td>
</tr>
<tr>
<td><code>remarray</code></td>
<td>Remove an array</td>
<td>Section 16.6.4, page 425</td>
</tr>
<tr>
<td><code>remfunction</code></td>
<td>Remove a function definition</td>
<td>Section 11.1.1, page 340</td>
</tr>
<tr>
<td><code>reerule</code></td>
<td>Remove a rule</td>
<td>Section 14.1.2, page 389</td>
</tr>
<tr>
<td><code>remlet</code></td>
<td>Remove a <em>let</em> rule</td>
<td>Section 14.2.1, page 392</td>
</tr>
<tr>
<td><code>kill</code></td>
<td>Remove an argument</td>
<td>Section 19.6, page 472</td>
</tr>
</tbody>
</table>

Table 19.4: Functions for Removing Values, Properties and Definitions

These various functions enable you to remove the specified property from the symbol in question without disturbing its other attributes. If you wish to remove all information about a symbol, use `kill`, described below.

```lisp
kill(arg1, \ldots, arg_n)
```

*Special Form*

Eliminates arguments from Macsyma. If *arg_i* is a variable, a single array element, a function, or an array, the designated item with all of its properties is removed from memory. The special form `kill` also accepts a number of keywords and keyword forms which are described below:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>labels</code></td>
<td>All input, intermediate, and output lines, but not other named items, are eliminated.</td>
</tr>
<tr>
<td><code>clabels</code></td>
<td>All input lines are eliminated.</td>
</tr>
<tr>
<td><code>elabels</code></td>
<td>All intermediate lines are eliminated.</td>
</tr>
</tbody>
</table>
19.6. **FREEING STORAGE**

- **dlabels**
  All output lines are eliminated.

- **infolist-name**
  Where `infolist-name` is the name of any of the `infolists`, causes every item in that class to be eliminated.

- **all**
  Every label and every item on every information list is eliminated.

- **ratweights**
  All `ratweights` are eliminated.

- **features**
  All `features` you have **declared** are eliminated.

- **tellrats**
  All `tellrats` are eliminated.

- **n**, an integer
  The last `n` lines are deleted. Input, intermediate, and output count as one each.

- **[m, n]**
  All lines with numbers between `m` and `n` inclusive are killed.

- **allbut**
  Every item except for those named is killed. The argument `name_i` means a name such as `u, v, f, g`, not an `infolist` such as `functions`.

Note: `kill(values);` or `kill(variable-name);` does not free the storage occupied unless the labels which are pointing to the same expressions are also killed. Thus, if a large expression was assigned to `x` on line `(c7)`, you should do `kill(d7);` as well as `kill(x);` to release the storage occupied. The special form `kill` removes all properties from the given argument. Thus `kill(values);` kills all properties associated with every item on the `values` list. When done, `kill` always returns the value `done`, even if the named item doesn’t exist. The removal functions, `remvalue`, `remfunction`, `remarray`, `remrule`, remove a specific property. These functions return either a list of names or `false`, if the specific argument doesn’t exist.

You cannot `kill` option variables. You must type `reset();` to reset Macsyma option variables to their default values. See Section 19.6, page 473.

- **reset(arg)**
  Special Form

  The special form `reset` causes Macsyma to restore one or more option variables to their default values. The optional argument `arg` allows you to specify more precisely which option variables you want to reset. It can have the following values:

  - **myoptions**
    Resets all user option variables to their default values. This is the default if you type `reset();`.

  - **all**
    Resets all option variables to their default values, including many internal variables that are not documented.

  - **var**
    Resets the option variable `var` to its default.

  - **[var_1, ..., var_n]**
    Resets the list of option variables to their default values.

- **myoptions**
  System Variable

  The system variable `myoptions` holds a list of names of options that you have set. The variable `myoptions` is one of the `infolists`.

  The following function allows you to check how much internal storage your computation has used.

- **show_space(option)**
  Function

  Prints information about the state of internal storage. This might include descriptions of the amount of memory in use, etc. Possible values for `option` are:

  - `false` prints out a minimal amount of information.

  - `true` prints out an intermediate amount of information.
all prints out a maximal amount of information.

What show_space prints depends on your operating system. On some operating systems show_space(true); may print the same information as show_space(false); or show_space(all);.

grow_space(space, increment) Special Form

Allows you to increase the size of some of the working spaces in Macsyma. This function is available only in PC Macsyma. The argument space may be one of bignum, list, array, symbol, string, fixed_length_array, or variable_length_array. The argument increment is either the number of objects or the number of bytes by which the space is to be increased, depending on whether or not the object is of fixed size. For example:

(c1) grow_space(bignum, 50000)$

The function grow_space should be used in conjunction with show_space to optimize space sizes.
Chapter 20

Interfaces to Other Languages

This chapter discusses Macsyma’s interfaces with FORTRAN, C, and \texttt{T\TeX}.

20.1 The Basic FORTRAN Generator

The basic FORTRAN generator is described here. GENTRAN, a more powerful generator of FORTRAN and other languages is described in Section 20.2.2.

\texttt{fortran}(exp) \hspace{1cm} \textit{Special Form}

Converts \texttt{exp} into a FORTRAN linear expression in legal FORTRAN with 6 spaces inserted at the beginning of each line, continuation lines, and ** rather than ^ for exponentiation. If \texttt{fortran} is called on a bound symbolic atom, as, say, \texttt{fortran(x)}; where \( x: a*b; \) has been done, then \( x = a*b \) is generated. In particular, if \( m: \text{matrix}(); \) has been done, then \texttt{fortran(m)}; causes the appropriate assignment statements to be generated. The command \texttt{fortran(name=matrix)}; converts a \texttt{matrix} into a sequence of FORTRAN assignment statements of the form:

\[ \text{name(i,j)} = \text{< the i,j matrix element>} \]

If the variable \texttt{name} is already bound, \texttt{fortran(’name=matrix)}; may be necessary.

The indentation of the forms in the output is controlled by \texttt{fortindent}. Filling to 80 columns is controlled by \texttt{fortspaces}. Both of these option variables are described below.

\texttt{fortran_float_precision} \hspace{1cm} \textit{Option Variable}

On all platforms \texttt{fortran_float_precision} affects what happens when FORTRAN is called on bfloats or rational numbers. It has two possible values: double and single.

\textbf{Note:} \texttt{fortran_float_precision} controls how FORTRAN prints floats, \textit{i.e.} with “d”’s or not. The Lisp Machine or VAX/VMS doesn’t need this help since you can choose to use sfloats or dfloats and the FORTRAN command will follow suit. On other platforms, especially Ibuki platforms, where dfloats are the only “machine” floats available in Macsyma, they are printed in Macsyma or Lisp as sfloats.

\texttt{fortran_linel} \hspace{1cm} \textit{Option Variable}

Is the override line length to use in FORTRAN code if default length is wrong. If this is \texttt{false}, the default will be the minimum of 72 and the current line length. See also \texttt{linel}.

\texttt{fortindent} \hspace{1cm} \textit{Option Variable}

This variable controls the left margin indentation of expressions displayed by \texttt{fortran}. Setting the variable as \texttt{fortindent:0}; gives normal indentation of 6 spaces. Positive values cause the expressions
to be displayed farther to the right. This is useful for structured FORTRAN code where the output is to be inserted into nested do loops.

**fortspaces default: false**

When the value of **fortspaces** is **true**, the special form **fortran** displays its output to 80 columns using spaces. When **false**, no spaces are added.

## 20.2 Gentran

**Original Authors:** Barbara Gates and Paul Wang

GENTRAN is a powerful generator of foreign language code. Currently, it can generate FORTRAN, C, and Ratfor code from Macsyma language code. GENTRAN can translate mathematical expressions, iteration loops, conditional branching statements, data type information, function definitions, matrices, arrays, and more.

Do `demo(gentran)`; for a demonstration. Do `usage(gentran)`; for more information.

Besides translating mathematical expressions into the FORTRAN, C, or Ratfor languages, GENTRAN is a program manufacturing system which can translate entire Macsyma programs into the target language. Its capabilities include:

- translating mathematical expressions into the target language, including assignments, matrices, and arrays.
- translating program flow control statements, such as iteration loops ("do loops"), conditional branching ("if-then") statements, and goto statements.
- translating function and subroutine definitions and data type declarations.

GENTRAN can also produce mixed-language files, thereby enabling you to perform computations in the middle of a program written in a numeric-only language. See Section 20.2.4

### 20.2.1 Translatable Statements

#### 20.2.1.1 Translatable Macsyma Statements and Expressions

Below are the kinds of Macsyma statements and expressions which can be translated by **gentran**.

```macsyma
var : exp;
name : matrix([exp11, exp12, ..., exp1n],
 [exp21, exp22, ..., exp2n],
 ...
 [expm1, expm2, ..., expmn])
for var : exp1 step exp2 thru exp3 do stmt;
for var : exp1 next exp2 thru exp3 do stmt;
while cond do stmt;
unless cond do stmt;
if cond then stmt;
if cond then stmt1 else stmt2;
go(label);
f(a1, a2, ..., an);
return(exp)
 (stmt1, stmt2, ..., stmtn);
block(stmt1, stmt2, ..., stmtn);
```
20.2. GENTRAN

var : readonly(string);
print(arg1, arg2, ..., argn);
f(a1, a2, ..., an) := block( stmt1, stmt2, ..., stmtn);

20.2.1.2 Comments and Literal Strings

Function

literal(arg1, arg2, ..., argn)

Where arg1, arg2, ..., argn is a list containing one or more arguments, each of which either is, or evaluates to, an atom. The atoms tab and cr have special meanings. The arguments to literal are not evaluated unless given as arguments to eval.

This function call is replaced by the character sequence resulting from concatenation of the given atoms. Double quotes are stripped from all string type arguments, and each occurrence of the reserved atom tab or cr is replaced by a tab to the current level of indentation, or an end-of-line character.

20.2.1.3 Other Translatable Forms

In addition to statements in the Macsyma programming language, the gentran command can also translate special arguments into numerical code. These special arguments are described in this section.

function({type,}name(p1, p2, ..., pn))

subroutine(name(p1, p2, ..., pn))

cprocedure({type,}name(p1, p2, ..., pn))

body(stmt1, stmt2, ..., stmtn)

The above forms are translated into FORTRAN or Ratfor function headings, subroutine headings, C procedure headings, and function, subroutine, or procedure bodies, respectively.

The argument name is an atom, and p1, p2, ..., pn is a sequence of zero or more atoms representing a subroutine, function or procedure name, and a list of parameter names, respectively; type is an optional argument which, if supplied to either function or cprocedure, is a string representing the function's or procedure's return value type (e.g., "real*8", "double", etc.); and stmt1, stmt2, ..., stmtn is a sequence of zero or more user level translatable Macsyma statements representing the body of a function, subprogram, or procedure.

The arguments given below allow numerical language statements to be generated which do not have semantically equivalent statements in the Macsyma programming language.

break()

stop()

end()

begin_group

end_group
20.2.2 The Main GENTRAN Command

\texttt{gentran}(\text{stmt}1, \text{stmt}2, \ldots, \text{stmt}n, [f1, f2, \ldots, fn]) \quad \text{Special Form}

Translates each \text{stmt} into formatted code in the target language. A substantial subset of expressions and statements in the Macsyma programming language can be translated directly into numerical code. The \texttt{gentran} command translates Macsyma statements or procedure definitions into code in the target language (the value of the \texttt{gentranlang} variable). Expressions may optionally be given to Macsyma for evaluation prior to translation.

The arguments \text{stmt}1, \text{stmt}2, \ldots, \text{stmt}n comprise a sequence of one or more \text{stmt}'s, each of which is any Macsyma user level expression, (simple, group, or block) statement, or procedure definition that can be translated into the target language. (See also Section 20.2.1.1 for a list of translatable expressions.) Each \text{stmt} may contain any of the special forms listed in Section 20.2.1.3. The list \[f1, f2, \ldots, fn\] is an optional argument list containing one or more of the following values:

\begin{itemize}
  \item \text{string} = \text{the name of an output file}
  \item \text{true} = \text{the terminal}
  \item \text{false} = \text{the current output file(s)}
  \item \text{all} = \text{all files currently open for output by gentran}
\end{itemize}

If the file list not given, generated code is simply written to the current output file. However, if it contains one or more file arguments, then the current output file is temporarily overridden. Generated code is written to each file represented by \textit{f1}, \textit{f2}, \ldots, \textit{fn} for this command only. Files which were open prior to the call to \texttt{gentran} will remain open after the call, and files which did not exist or were not open prior to the call will be created (if necessary), opened, written to (or appended onto), and closed. The output file stack will be exactly the same both before and after the call.

The \texttt{gentran} special form returns (a list of) the name(s) of file(s) to which code was written.

\texttt{gentranlang} \texttt{default: fortran} \quad \text{Option Variable}

Selects the target numerical language. Currently, the value of \texttt{gentranlang} must be \texttt{fortran}, \texttt{ratfor}, or \texttt{c}.

20.2.3 Directing GENTRAN Output to Files

\texttt{gentranout}(f1, f2, \ldots, fn) \quad \text{Special Form}

Where \textit{f1}, \textit{f2}, \ldots, \textit{fn} can have one of the following values:

\begin{itemize}
  \item \text{string} = \text{the name of an output file}
  \item \text{true} = \text{the terminal}
  \item \text{false} = \text{the current output file(s)}
  \item \text{all} = \text{all files currently open for output by gentran}
\end{itemize}

Gentran maintains a list of files currently open for output by \texttt{gentran} commands only. The \texttt{gentranout} special form inserts each file name represented by \textit{f1}, \textit{f2}, \ldots, \textit{fn} into that list and opens each one for output. It also resets the current output file(s) to include all files in \textit{f1}, \textit{f2}, \ldots, \textit{fn}.

The special form \texttt{gentranout} returns the list of files represented by \textit{f1}, \textit{f2}, \ldots, \textit{fn}; \textit{i.e.}, the current output file(s) after the command has been executed.
gentranshut\((f_1, f_2, \ldots, f_n)\)

Where \(f_1, f_2, \ldots, f_n\) is a list of one or more of the following:

- \textit{string} = the name of an output file
- \textit{true} = the terminal
- \textit{false} = the current output file(s)
- \textit{all} = all files currently open for output by \textsc{gentran}

The special form \textit{gentranshut} creates a list of file names from \(f_1, f_2, \ldots, f_n\), deletes each from the output file list, and closes the corresponding files. If all of the current output files are closed, then the current output file is reset to the terminal.

The special form \textit{gentranshut} returns (a list of) the current output file(s) after the command has been executed.

gentranpush\((f_1, f_2, \ldots, f_n)\)

Where \(f_1, f_2, \ldots, f_n\) is a list of one or more of the following:

- \textit{string} = the name of an output file
- \textit{true} = the terminal
- \textit{false} = the current output file(s)
- \textit{all} = all files currently open for output by \textsc{gentran}

The special form \textit{gentranpush} creates a list of file name(s) represented by \(f_1, f_2, \ldots, f_n\) and pushes that list onto the output stack. Each file in the list that is not already open for output is opened at this time. The current output file is reset to this new element on the top of the stack.

After the command has been executed, \textit{gentranpush} returns the list of files represented by \(f_1, f_2, \ldots, f_n\); i.e., the current output file(s).

gentranpop\((f_1, f_2, \ldots, f_n)\)

Where \(f_1, f_2, \ldots, f_n\) is a list of one or more of the following:

- \textit{string} = the name of an output file
- \textit{true} = the terminal
- \textit{false} = the current output file(s)
- \textit{all} = all files currently open for output by \textsc{gentran}

The special form \textit{gentranpop} deletes the top-most occurrence of the single element containing the file name(s) represented by \(f_1, f_2, \ldots, f_n\) from the output stack. Files whose names have been completely removed from the output stack are closed. The current output file is reset to the (new) element on the top of the output stack.

\textit{gentranpop} returns the current output file(s) after this command has been executed.

\subsection*{20.2.4 GENTRAN's Template Mode for Mixed Language Files}

\textsc{gentran}'s template mode permits you to process a mixed language file containing statements in the \textsc{fortran} and \textsc{macsyma} (or \textsc{c} and \textsc{macsyma}, or \textsc{ratfor} and \textsc{macsyma}) languages. The \textit{gentrain} command accepts the mixed language file, translates the \textsc{macsyma} code segments into the target language, and replaces the \textsc{macsyma} code with equivalent code in the target language. This capability gives you the ability to insert a symbolic computation inside an otherwise numerical program written in the target language.
**Special Form**

gentranin([f_1, f_2, \ldots, f_n], [f_1, f_2, \ldots, f_m])

Where \( f_1, f_2, \ldots, f_n \) is an argument list containing one or more of the following:

- \texttt{string} = the name of a template (input) file
- \texttt{true} = the terminal

The list \([f_1, f_2, \ldots, f_m]\) is an optional argument which, if supplied, contains one or more of the following:

- \texttt{string} = the name of an output file
- \texttt{true} = the terminal
- \texttt{false} = the current output file(s)
- \texttt{all} = all files currently open for output by \texttt{gentran}

The special form \texttt{gentranin} processes each template file \( f_1, f_2, \ldots, f_n \) sequentially. A template file may contain any number of parts, each of which is either an “active” or a “passive” part. Each active part starts with the delimiter \(<<\) and ends with \(>>\).

Inactive parts of template files are assumed to contain code in the target language (FORTRAN, Ratfor, or C, depending on the value of the global variable \texttt{gentranlang}). Each passive part is copied to the output. Each comment delimited by the appropriate characters is also copied in its entirety to the output. Thus the character sequences \(<<\) and \(>>\) have no special meanings within comments.

| \texttt{C} \ldots<\texttt{cr}> \quad \text{for FORTRAN (beginning in column 1) or} |
| \texttt{*} \ldots<\texttt{cr}> \quad \text{for FORTRAN (beginning in column 1),} |
| \texttt{#} \ldots<\texttt{cr}> \quad \text{for Ratfor, and} |
| \texttt{/}*\ldots*/ \quad \text{for C} |

Table 20.1: Table of Commenting Characters

Active parts may contain any number of Macsyma expressions and statements. They are not copied directly to the output. But they are given to Macsyma for evaluation. All output generated by each evaluation is sent to the output file(s). Returned values are only printed on the terminal.

Active parts will most likely contain calls to \texttt{gentran} to generate code, so the result of processing a template file will be the original template file with all active parts replaced by generated code.

If \([f_1, f_2, \ldots, f_m]\) is not supplied, then generated code is simply written to the current output file(s). However, if it is given, then the current output file is temporarily overridden. Generated code is written to each file represented by \(f_1, f_2, \ldots, f_n\) for this command only. Files which were open prior to the call to \texttt{gentranin} will remain open after the call, and files which did not exist prior to the call will be created, opened, written to, and closed. The output file stack will be exactly the same before and after the call.

The special form \texttt{gentranin} returns the name(s) of (all) file(s) written to by this command.

### 20.2.5 Control of Evaluation

#### 20.2.5.1 Control of Evaluation of Input Statements

The following special functions can be included in Macsyma statements (which are to be translated by the \texttt{gentran} command) to indicate that they are to be partially or fully evaluated by Macsyma before being translated into numerical code. Note that these functions have the described effect only when supplied in arguments to the \texttt{gentran} command.
eval(exp)  
*Function*

Where *exp* is any Macsyma expression or statement which, after evaluation by Macsyma, results in an expression that can be translated by *gentran* into the target language.

When *eval* is called from an argument that is to be translated, it tells GENTRAN to give the expression to Macsyma for evaluation first, and then to translate the result of that evaluation.

lsetq(var, exp)  
*Function*

Where *var* is any Macsyma user level matrix or array element with indices which, after evaluation by Macsyma, will result in expressions that can be translated by *gentran*, and *exp* is any Macsyma user level expression that can be translated into the target language.

This is equivalent to \( var \text{[eval(s1), eval(s2),...]} : \text{exp} \) where s1, s2, ... are indices.

rsetq(var, exp)  
*Function*

Where *var* is any Macsyma variable, matrix or array element, and *exp* is any Macsyma expression which, after evaluation by Macsyma, results in an expression that can be translated by *gentran* into the target language.

This is equivalent to \( var : \text{eval(exp)} \);

lrsetq(var, exp)  
*Function*

Where *var* is any Macsyma matrix or array element with indices which, after evaluation by Macsyma, will result in expressions that can be translated by *gentran*; and *exp* is any user level expression which, after evaluation, will result in an expression that can be translated by *gentran* into the target language.

This is equivalent to \( var \text{[eval(s1), eval(s2),...]} : \text{eval(exp)} \) where s1, s2, ... are indices.

---

20.2.5.2 Translation of Numerical and Boolean Values

**genfloat  default:** false  
*Option Variable*

When set to *true* (or any non-*false* value), *genfloat* causes integers in generated numerical code to be converted to floating point numbers, except in the following places: array subscripts, exponents, and initial, final, and step values in do-loops.

**genlogical  default:** false  
*Option Variable*

When set to *true* (or any non-*false* value), *genlogical* causes *true* and *false* to be translated to their logical equivalent representations (*i.e.*, .TRUE. and .FALSE. in FORTRAN & Ratfor; and 1 and 0 in C).

**gennumer  default:** true  
*Option Variable*

When set to *true* (or any non-*false* value), *gennumer* causes Macsyma variables beginning with % (*e.g.*, %pi) to be converted to their numerical representations before being translated.

---

20.2.6 Optimization and Segmentation of GENTRAN Output Code

**gentranopt  default:** false  
*Option Variable*

When set to *true* (or any non-*false* value), *gentranopt* causes GENTRAN to replace each block of straightline code by an optimized sequence of assignments obtained from Macsyma’s *optimize* command. (*The optimize command takes an expression and replaces common subexpressions by temporary variable names. It returns the resulting assignment statement, preceded by common-subexpression-to-temporary-variable assignments.*)
optim varname default: u  

The option variable `optim varname` holds the prefix which is used for temporary variable names created by the `optimize` command when `gentranopt` is true.

gentranseg default: true  

maxexpprintlen default: 800  

When `gentranseg` is true (or any non-`false` value), Gentran segments large expressions into subexpressions of manageable size.

The segmentation facility generates a sequence of assignment statements, each of which assigns a subexpression to an automatically generated temporary variable name. This sequence is generated in such a way that temporary variables are re-used as soon as possible, thereby keeping the number of automatically generated variables to a minimum. The maximum allowable expression size can be controlled by setting the `maxexpprintlen` variable to the maximum number of characters allowed in an expression printed in the target numerical language (excluding spaces and other whitespace characters automatically printed by the formatter).

When the segmentation routine generates temporary variables, it places type declarations in the symbol table for those variables if possible. It uses the following rules to determine their type:

1. If the type of the variable to which the large expression is being assigned is already known (i.e., has been declared by the user via a `type` command), then the temporary variables will be declared to be of that same type.

2. If the global variable `tempvartype` has a non-`false` value, then the temporary variables are declared to be of that type.

3. Otherwise, the variables are not declared.

## 20.2.7 Options for Control of GENTRAN

### 20.2.7.1 Switches

gentran on(sw)  

Turn the given switch, sw, on. (Names of recognized switches, or option variables, are given below.)

gentran off(sw)  

Turn the given switch, sw, off. (Names of recognized switches, or option variables, are given below.)

fortran default: off  

c default: off  

ratfor default: off  

These mode switches change the default mode of Macsyma from evaluation to translation by `gentran`. They can be turned on and off with the `gentran` commands `gentran on` and `gentran off`. Each time a new Macsyma session is started up, the system is in evaluation mode. It prints a prompt on the user’s terminal screen and waits for an expression or statement to be entered. It then evaluates the expression, prints a new prompt, and waits for the user to enter another expression or statement. You can change to translation mode by turning on either the `fortran`, `ratfor` or `c` mode switch. Once one of these switches is turned on, every expression or statement entered by the user is translated into the corresponding language just as if it had been given as an argument to the `gentran` command. Each of the special functions that can be used from within a call to `gentran` can be used at the top level until the switch is turned off.
When the `gendecs` switch is turned on, GENTRAN generates type declarations whenever possible. When `gendecs` is switched off, type information is stored in GENTRAN's symbol table, but is not retrieved in the form of declarations unless and until the `gendecs` command is called or the `gendecs` flag is switched back on.

### 20.2.7.2 Temporary Variables

**tempvar**(type)  
*Function*

Where `type` is either a string which indicates the variable type in the target language (e.g., integer, real*8, etc.), or is `false` if the variable type is unknown.

The `tempvar` command creates temporary variable names by repeatedly concatenating the values of the global variables `tempvarname` (default: `t`) and `tempvarnum` (default: `0`) and incrementing `tempvarnum` until a variable name is created which satisfies one of the following conditions:

1. It had not been generated previously, and it has not been declared by the user.
2. It had previously been generated to hold the same type of value that it must hold this time (e.g. integer, real, etc.), and the value assigned to it previously is no longer needed.

If `type` is a non-`false` argument, or if `type` is `false` and the global variable `tempvartype` has been set to a non-`false` value, then a type entry for the generated variable name is placed in GENTRAN's symbol table.

**Note:** It is the user's responsibility to set `tempvarname` and `tempvarnum` to values such that generated variable names will not clash with variables used elsewhere in the program unless those variables have been declared.

**markvar**(vname)  
*Function*

The function `markvar` "marks" variable name `vname` to indicate that it currently holds a significant value.

**unmarkvar**(vname)  
*Function*

The function `unmarkvar` "unmarks" variable name `vname` to indicate that it no longer holds a significant value.

**markedvarp**(vname)  
*Function*

The function `markedvarp` tests whether the variable name `vname` is currently marked.

**tempvarname** default: `t`  
*Option Variable*

Name used as the prefix for most temporary variable names in GENTRAN. The exception are those variable names generated by `optimize` when `gentranopt` is true. See `optimvarname`, page 482.

**tempvarnum** default: `0`  
*Option Variable*

Number appended onto `tempvarname` to create a temporary variable name. If the temporary variable name resulting from appending `tempvarnum` onto the end of `tempvarname` has already been generated and still holds a useful value, then `tempvarnum` is incremented, and temporary variable names are compressed until one is found that was not previously generated or does not still hold a significant value.
**temp vartypenodefault: false**

Option Variable

Target language variable type (e.g., integer, real, float, etc.) used as a default for automatically generated variables whose type cannot be determined otherwise. If `temp vartype` is false, then generated temporary variables whose type cannot be determined are not automatically declared.

**genstmtno default: 25000**

Option Variable

Number used when a statement number must be generated.

**Note:** It is the user’s responsibility to make sure this number will not clash with statement numbers in template files.

**genstmtincr default: 1**

Option Variable

Holds the number by which `genstmtno` is incremented each time a new statement number is generated.

### 20.2.7.3 Variable Type Declarations

**gendecs(name)**

Function

Any time the `gendecs` flag is switched off, the `gendecs` command can be called to retrieve all type declarations from GENTRAN’s symbol table for the given subprogram `name` (or the “current” subprogram if false is given as its argument).

The following function is used for type declarations.

**type(type, v1, v2, . . . , vn)**

Function

Type declarations are automatically generated each time a subprogram heading is generated. Type declarations are constructed from information stored in GENTRAN’s symbol table. You can explicitly place entries into the symbol table through calls to the special GENTRAN function `type`.

`v1, v2, . . . , vn` is one or more variables (optionally subscripted to indicate array dimensions), or variable ranges (two letters separated by “;” and enclosed in double quotes). V’s are not evaluated unless given as arguments to `eval`. `type` is a variable type in the target language. It should be a string or an atom. `type` is not evaluated unless given as an argument to `eval`.

The `type` function can also be used to declare subprogram types (i.e., subroutine or function) for FORTRAN and Ratfor code, and function types for FORTRAN, Ratfor, and C code.

Entries are placed in the symbol table for each variable or variable range declared in the call to this function. The function call itself is removed from the statement group being translated. After translation, type declarations are generated from these symbol table entries before the resulting executable statements are printed.

**Note:** All Macsyma array subscripts are translated literally. Therefore, it is the user’s responsibility to be sure that array elements with subscript 0 are not translated into FORTRAN or Ratfor carelessly.

**Note:** Since C arrays allow elements with a subscript of 0, when an array is declared to be of size n by the user, the actual generated C type declaration will be of size n+1 so that the user can translate elements with subscripts from 0, up to and including n.
20.3. THE \textsf{\TeX} INTERFACE

20.2.8 Formatting of \textsc{gentran} Output Code

\texttt{tablen} \hspace{1em} \textit{default}: \texttt{4} \hspace{1em} \textit{Option Variable}

Number of blank spaces printed for each new level of indentation. (Automatic indentation can be turned off by setting this variable to 0.)

20.2.8.1 \textsc{fortran}–Specific Formatting Commands

The following option variables affect the behavior of \textsc{gentran} in generating \textsc{fortran} code.

\texttt{fortlinelen} \hspace{1em} \textit{default}: \texttt{72} \hspace{1em} \textit{Option Variable}

Maximum number of characters printed on each line of generated \textsc{fortran} code.

\texttt{minfortlinelen} \hspace{1em} \textit{default}: \texttt{40} \hspace{1em} \textit{Option Variable}

Minimum number of characters printed on each line of generated \textsc{fortran} code.

\texttt{fortcurrind} \hspace{1em} \textit{default}: \texttt{0} \hspace{1em} \textit{Option Variable}

Number of blank spaces printed at the beginning of each line of generated \textsc{fortran} code (after column 6).

20.2.8.2 \textsc{c}–Specific Formatting Commands

\texttt{clinelen} \hspace{1em} \textit{default}: \texttt{80} \hspace{1em} \textit{Option Variable}

Maximum number of characters printed on each line of generated \textsc{c} code.

\texttt{minclinelen} \hspace{1em} \textit{default}: \texttt{40} \hspace{1em} \textit{Option Variable}

Minimum number of characters printed on each line of generated \textsc{c} code.

\texttt{ccurind} \hspace{1em} \textit{default}: \texttt{0} \hspace{1em} \textit{Option Variable}

Number of blank spaces printed at the beginning of each line of generated \textsc{c} code.

20.2.8.3 \textsc{ratfor}–Specific Formatting Commands

\texttt{ratlinelen} \hspace{1em} \textit{default}: \texttt{80} \hspace{1em} \textit{Option Variable}

Maximum number of characters printed on each line of generated \textsc{ratfor} code.

\texttt{minratlinelen} \hspace{1em} \textit{default}: \texttt{40} \hspace{1em} \textit{Option Variable}

Minimum number of characters printed on each line of generated \textsc{ratfor} code.

\texttt{ratcurrind} \hspace{1em} \textit{default}: \texttt{0} \hspace{1em} \textit{Option Variable}

Number of blank spaces printed at the beginning of each line of generated \textsc{ratfor} code.

20.3 The \textsc{\TeX} Interface

\textsc{\TeX} is a text formatter that formats mathematical equations well. You can automatically convert \textsc{macsyma} expressions to \textsc{\TeX} format for processing using the commands \texttt{\textsc{tex}} and \texttt{\textsc{write_tex_file}}. Do \texttt{\textsc{example(tex)}}; for a demonstration of the \textsc{\TeX} generation capability in \textsc{macsyma}.
Note: Arguments listed in braces, {}, are optional.
This package is based on a package written by Richard Fateman. The following commands exist:

### 20.3.1 Converting Macsyma Expressions to \TeX\X

#### 20.3.1.1 The \TeX\Xand \LaTeX\XCommands

\texttt{tex(expr1, \ldots, exprn)} \hspace{1cm} \textit{Function}

Converts the specified expressions into TeX. If \texttt{write\_tex\_file} has been called and there is an open TeX file, then \texttt{tex} writes where indicated. Otherwise, \texttt{tex} writes to the terminal.

The \texttt{tex} function knows about all the Greek lower and upper case characters as given in Appendix F of the \TeX\Xbook. For example, \texttt{tex(\text{\theta})}; outputs a \texttt{\theta}, and \texttt{tex(\text{\textcap\theta})}; outputs a \texttt{\Theta}. However, \texttt{\textgamma(n)} and \texttt{\textbeta(m,n)}, being built-in Macsyma functions, yield the upper case \TeX\X entities they normally correspond to. Use \texttt{\textuncap\gamma} and \texttt{\textuncap\beta} here to get lower case \TeX\X function names.

The command \texttt{tex(x^{(1/n)})}; outputs \texttt{$n$ root n \of{x} $}$ for \(3 < n < 9\). For other cases, you can use for example, \texttt{tex(\text{\textnthrt}(n,x))}; . (Macsyma doesn’t know anything about \texttt{\textnthrt} other than this.)

For example, \texttt{tex(’diff(f(x,y),x,1,y,1))}; outputs a “d” for the derivative. The command 
\texttt{tex(’pdiff(f(x,y),x,1,y,1))};
outputs
\texttt{$\partial$$\partial$ f \left/x, y \right/}$ for \texttt{\textnthrt{\partial x \partial y} \partial$}.

Macsyma doesn’t know anything about \texttt{’pdiff} other than this.

Use Macsyma strings to output random pieces of text. \textit{E.g.}, \texttt{tex(’\text{‘This is a random piece of text …’})};
\texttt{tex(’\text{\textmagnification=\textmagstep2’})};.

The \texttt{tex} function does no line breaking in the case of large expressions. You have to break up large expressions in the TeX file yourself.

\texttt{tex\_mult\_space} \hspace{1cm} \textit{Option Variable}

Controls how much space is used between terms in a product, such as in \texttt{tex(x*y^2*z^3)} ; .

Possible settings are:

- \texttt{none} no space is used.
- \texttt{thin} \texttt{\textfrac{}{}} is used.
- \texttt{medium} \texttt{\textfrac{}{}} is used.

More work still needs to be done on spacing.

\texttt{show\_macsyma\_source\_with\_tex\_code} \hspace{1cm} \textit{Option Variable}

If \texttt{true}, \texttt{tex} writes the Macsyma expressions it receives as arguments as comments preceding the \TeX\X translations it generates.

\textit{Example:}
\begin{verbatim}
(%c1) 'integrate(%e^(-x^2),x)=integrate(%e^(-x^2),x);
   2
   /
   [ - x    sqrt(%pi) erf(x) ]
   \]
(%d1) 1 %e   dx = ---------------
        2
   /

(%c2) tex(%);
% 'integrate(%e^(-x^2),x) = sqrt(%pi)*erf(x)/2
\end{verbatim}
$\int e^{-\left( x^2 \right)} \, dx = \sqrt{\pi} \left( \text{erf} x \right) \over (2) \quad \text{done}$

```plaintext
always_use_scientific_notation default: false
```

Option Variable

If `true`, scientific notation will be used in the display and \( \TeX \)ing of all floating point numbers. This is sometimes desirable for uniformity. E.g. the number 2300.5 prints in scientific notation as \( 2.3005e+3 \).

The \( \TeX \) command heeds \texttt{float_print_width} and \texttt{float_print_digits_after_point}.

You can also use the system variable \texttt{float_print_width}, used in \texttt{Macsyma} display, to control the the number of digits printed when \( \TeX \) is applied to floating point numbers.

\texttt{float_print_width} must be an integer. If it’s 0, the default, then no change. If it’s not 0 and the printed representation of the number is longer than \( \text{abs(float_print_width)} \), then the number, not including its sign, if any, is shortened and rounded. Otherwise, no special action is taken.

You can also use the system variable \texttt{float_print_digits_after_point} to control the number of digits printed after the decimal point when \( \TeX \) is applied to floating point numbers.

\texttt{float_print_digits_after_point} must be \texttt{false} or a non-negative integer. If it’s \texttt{false}, the default, then no change occurs. If it’s a non-negative integer, then that is the number of digits that will be printed after the decimal point.

Although the two variables \texttt{float_print_width} and \texttt{float_print_digits_after_point} are independent of one another, if you set both, you should check that the settings make sense.

You can extend the functionality of the \texttt{tex} command by using \texttt{qput} (See \texttt{qput}, section Section 13.1.2, page 366.)

You can \texttt{qput tex.name} or \texttt{tex_funname} data.

Specifically, the fact that \texttt{alpha} in \texttt{Macsyma} corresponds to \( \alpha \) in \texttt{TeX} could have been implemented via \texttt{qput(alpha, "\alpha", tex.name)}; . This affects \texttt{tex} of \texttt{alpha}, \texttt{alpha(x)}, and \texttt{alpha[x]}.

If you want to affect functions and array functions differently from other uses of the name, you can use \texttt{tex_funname} instead.

For example, \texttt{beta} could have been implemented via \texttt{qput(beta,"\\beta",tex.name)}; and \texttt{qput(beta,"\\\text{rm B}"\text{tex_funname})}; .

You can also \texttt{qput} (or \texttt{put}) \texttt{tex_op} data to provide extensions in the area of operators.

For example, the fact that \texttt{max(n,1)} in \texttt{Macsyma} corresponds to \( \max\{ n,1\}\) in \( \TeX \) could have been implemented via \texttt{qput(max, [matchfix, "\\max\\left\{ n,1\\right\}\"], \text{tex_op})}; .

All of \texttt{Macsyma}'s syntax extension indicators are supported, namely \texttt{matchfix}, \texttt{infix}, \texttt{prefix}, \texttt{postfix}, \texttt{nary}, and \texttt{nofix}.

Obviously, with respect to \( \TeX \), \texttt{matchfix} operators require two strings, \texttt{nofix} no strings, and all the others one string.

You can supersede the \( \TeX \) command’s built-in database this way. User extensions or modifications can be removed by calling \texttt{rem}.

The property for the \texttt{tex.name} or \texttt{tex_funname} indicator must be a string.

The property for the \texttt{tex_op} indicator must be a list with the appropriate data, \textit{i.e.} its first element is a syntax extension indicator, and its latter argument(s) are strings. If any binding powers are needed, they can be specified via the syntax extension functions.

See also Chapter Chapter 21, Section Section 21.2, page 494.

Type \texttt{example(tex)}; for other examples.

See \texttt{usage(tex)}; for current usage information.
While we tried to make the \TeX capability as reliable and complete (within the areas it covers) as possible, there still may be problems with the resulting \TeX source file. You may find that the file needs editing. Please inform us of any problems. If you find you need some expressions that we haven’t implemented, please contact Macsyma Technical Support.

\texttt{latex(expr1, \ldots, exprn)} \quad \textit{Function}

The same as the \texttt{tex} function except for quotients \( \frac{a}{b} \) it outputs\n
\begin{align*}
\frac{a}{b}
\end{align*}

instead of\n
\begin{align*}
\{a\over b\}\text{.}
\end{align*}

This function is still experimental.

### 20.3.1.2 Putting \TeX Output into Files

\texttt{write\_\TeX\_file({true}, {filename})} \quad \textit{Special Form}

Takes one or two arguments. If \texttt{true} is specified, the \TeX output is written to the terminal. If a filename is specified, the \TeX output is appended to the file indicated. This means that if the file exists, the output is appended to it. If the file does not exist, a new file is created with the specified name, and output is written to it. Only one \TeX file can be opened at a time. The \texttt{tex} function writes both to the terminal and to a file if, and only if, it is called with two arguments.

\texttt{close\_\TeX\_file({true})} \quad \textit{Function}

Closes the file opened by \texttt{write\_\TeX\_file}. If an argument is given, which must be \texttt{true}, this indicates that \texttt{"\end{\TeX}\} is written on a new line at the end of the \TeX file before closing the file.

A related command \texttt{tex\_into\_buffer} is now obsolete.

\texttt{tex\_into\_buffer()} \quad \textit{Function}

The command \texttt{tex\_into\_buffer} is obsolete, although it may still be available in some Lisp Machine Macsymas.

### 20.3.2 Creating \TeX on Display Output Lines

#### 20.3.2.1 Creating \TeX on Display Output Lines in Notebooks

Macsyma can substitute \TeX output for the formatted display of mathematics which normally appears on the display output lines in Macsyma notebooks.

\texttt{display\_\TeX \ default: false} \quad \textit{Option Variable}

When \texttt{true}, Macsyma displays \TeX output on the display output lines in Macsyma notebooks.

#### 20.3.2.2 Putting \TeX Output with Input and Text in Files

You can convert Macsyma input batch files to output files which include text, Macsyma input commands with c-line labels, and Macsyma display output in \TeX form with output in \TeX form. To accomplish this, follow this procedure.

- With \texttt{display\_\TeX set to false}, load in the batch file as a Macsyma notebook, using either the menu command \texttt{File | Make Notebook} or the keyboard command \texttt{make\_notebook}.
- Set \texttt{display\_\TeX: true}. If you want to re-initialize the command line numbers at 1, then set \texttt{linenum : 0}. Then delete the input and output section created by these commands.
• Re-execute the notebook with the menu command Edit | Reexecute.

• Save the notebook in a file with the filename extension .txt. This can be accomplished using the menu command File | Save As.
Part IV

Advanced Topics
Chapter 21

Grammar, Syntax and Representation

This chapter introduces you to Macsyma’s grammar, syntax and syntax extension capabilities, and to its internal representation.

The concepts are primarily mathematical. Macsyma’s grammar has been designed to reflect this emphasis by making the representation of expressions as natural as possible. All of the usual mathematical operators are predefined, and commands are expressed exclusively in functional notation. In addition, if you need more operators, the syntax is flexible enough to provide an extension capability.

To understand the use of these tools, you must first understand Macsyma grammar.

21.1 Grammar and Syntax

21.1.1 The Parser

The parser is the part of Macsyma which begins the process of handling user input. When you enter a string of characters, the parser first breaks this input into “lexemes”, the smallest meaningful units.

For example, the input

If x>0 then x else -x

becomes

If x > 0 then x else - x.

Every lexeme is either an operator, a delimiter, or an operand (see definitions below). The sequence of lexemes, together with their types, is then passed to an extended operator precedence parser and converted into internal representation, with suitably nested function calls. In this case, the result would be

"if"(">"(x,0), x, "-"(x))

Such functional notation is always legal syntax, and it will be used throughout this section, as above, to represent the meaning of various syntactic constructions.

The process of parsing involves recognizing the operators, delimiters, and operands in a sequence of lexemes and correctly identifying the arguments to the operators in order to construct the function nesting implicit in the sequence.

A specific parsing function is associated with each operator. This function prescribes how its arguments are to be selected from the input. Thus, for example, the arguments of an infix operator like > are to be found, one to the left and one to the right of the operator. The resulting internal representation is a function call of the operator on its arguments. For example, in the sentence above, > has as arguments x and 0, and the internal representation of x>0 is ">"(x, 0).
A delimiter is a reserved lexeme used by certain operators to mark their arguments. A delimiter may not be used as an operand but has no special parsing function associated with it. In the sentence above, then and else are delimiters, used by the operator if to mark its second and third arguments.

An operand is a lexeme with no special parsing properties. All lexemes, unless otherwise specified, are operands. Operands serve as the arguments to operators in function calls, which may then in turn serve as arguments to other operators. In the example above, x and 0 are operands to the function >; and "x, 0), x, and "-(x) also appear as operands to the operator if.

A legal sentence is a correct sequence of operators, delimiters if any, and operands. By "correct," we mean that due respect has been shown the type of the operator, (see Section 21.1, page 494) and that the two sole grammatical rules in the language have not been violated. These rules concern the binding power of Macsyma's operators and the parts of speech legal in each argument slot.

### 21.1.2 Binding Powers

The binding powers of operators are used to resolve ambiguities of argument association such as that in the following example. Consider `(- 233 !)`. Is this "-("!"(233)) or "!"("-("(233))? In other words, which operator gets the operand "233" and which receives the resulting function call? It is a convention that the operator with the higher binding power gets the disputed argument and the other is then applied to the result. In this case, the left binding power of "!" which is 160, is greater than the right binding power of "-", which is 100. Thus "233" is associated with "!" and the resulting function call becomes the argument for "-".

Each operator must possess a left and a right binding power to resolve such conflicts. Some of these numbers are superfluous, such as the left binding power of a prefix operator; and in such cases the binding power is arbitrarily taken to be 200.

For the relative binding powers of the mathematical operators, see Table 21.1, page 496.

### 21.1.3 Parts of Speech

The notion of part of speech should be familiar from natural language. Macsyma also has parts of speech and constraints on contexts in which parts of speech are legal. Whereas binding powers are necessary to resolve ambiguities of argument assignment, parts of speech exist solely to detect unintentional syntax errors.

Every operator possesses a part of speech constraint on each of its argument slots. Any operand filling a slot must satisfy the associated constraint, or a syntax error will result.

There are only three predefined parts of speech: expr, clause, and any. An expr is essentially a mathematical expression; a clause, a mathematical predicate or a command. Thus `'(a+b)' is an expr but not a clause; and `'(a+b>2)' is a clause but not an expr. The part of speech any is used to signify objects which may be either clauses or exprs, such as `'(f(x))'. The parts of speech required by the predefined operators are listed in the sections below describing each type of operator.

### 21.2 Mathematical Operators

The Macsyma term operator differs from the mathematical term with the same name.

- In mathematics, the term operator usually has the same meaning as the term function. The term operator is often applied to a function which is part of the definition of a number system (for example "+", "*"), or when the domain of the operator is itself viewed as a space of functions. For example, we usually say "differential operators acting on functions" instead of "differential functions operating on functions."
In Macsyma, the term "operator" refers to a function whose arguments are identified by proximity to the operator symbol (such as \(a+b\), \(\text{boolean1 or boolean2}\), \(\text{set1 union set2}\)), and not by standard functional notation (such as \(f(x)\), \("++/(a,b)\), \("((\text{boolean1, boolean2}), \text{union(set1,set2)}\)). Thus, Macsyma uses the term "operator" in a purely syntactic sense.

Examples of operators in Macsyma include "\(+\)", "\(*\)", "\(-\)", "\(!\)", and \(\text{and}\). Commands such as \(\text{integrate}\) and \(\text{union}\) are not Macsyma operators, because their arguments are specified in functional notation, as in \(\text{integrate}(f(x),x,a,b)\) and \(\text{union(set1,set2)}\).

Macsyma operators can be used in functional notation only when they are enclosed in double quotation marks. (Macsyma operators have special parsing properties which are inhibited by the quotation marks.) Spaces between the operators and their arguments are not necessary except when the parser may have difficulty distinguishing two meanings. (For example, the noncommutative multiplication operator ",, and the sequence operator "..." use the same atomic symbol as the decimal point.)

The use of the term \(\text{operator}\) in Macsyma is slightly different from the mathematical notion. An operator is a lexeme that is not a delimiter, and has special parsing properties. Many Macsyma operators are also mathematical operators, such as "\(+\)" and "\(*\)" but some entities generally regarded as mathematical operators are not Macsyma operators, such as \(\text{diff}\) and \(\text{integrate}\), while some Macsyma operators are not generally regarded as mathematical operators, such as \(\text{=}\).

Since Macsyma operators always have special parsing properties, it is not possible to use them as operands unless you first inhibit the special parsing functions associated with them. Thus, to use \(+\) as an operand, enclose it in double quotes, as in \(\text{subpart("++",a*b,0)}\);

Macsyma has six kinds of predefined operators:

- Prefix (Section 21.2.1, page 496);
- Postfix (Section 21.2.2, page 497);
- Infix (Section 21.2.3, page 498);
- Nary (Section 21.2.4, page 500);
- Nofix (Section 21.2.5, page 502); and
- Matchfix (Section 21.2.6, page 502).

There are also some special operators. The names of the kinds of operators give a clue as to their syntax. So, for example, a prefix operator is one which precedes its arguments. The rest of this section will discuss the operators and their syntax.

Spaces between the operator and the operands are not necessary except in the case of non-commutative multiplication.

**Note:** If an operator is referred to rather than used in an expression, it must be enclosed in quotation marks.

The operands can be any valid expressions whose values are the correct types of data.

**Note:** Every statement yields a value even if the value is only a trivial one.

There is no restriction on the mixing of modes of operands. Integers, rationals, floating-point numbers, and bigfloats can be freely intermixed in an expression; when conversions are necessary, the priority of conversion is in the order of the types just mentioned. If floating-point numbers or bigfloats of differing precision are combined in an operation, they are converted to floating-point or bigfloat numbers of the current precision by padding with zeroes or by dropping off low order digits and rounding.
CHAPTER 21. GRAMMAR, SYNTAX AND REPRESENTATION

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Symbol</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>+</td>
<td>nary</td>
</tr>
<tr>
<td>subtraction</td>
<td>−</td>
<td>nary</td>
</tr>
<tr>
<td>multiplication</td>
<td>*</td>
<td>nary</td>
</tr>
<tr>
<td>division</td>
<td>/</td>
<td>infix</td>
</tr>
<tr>
<td>negation</td>
<td>−</td>
<td>prefix</td>
</tr>
<tr>
<td>exponentiation</td>
<td>** or ^</td>
<td>infix</td>
</tr>
<tr>
<td>noncommutative multiplication</td>
<td>:</td>
<td>nary</td>
</tr>
<tr>
<td>noncommutativeexponentiation</td>
<td>^ :</td>
<td>infix</td>
</tr>
<tr>
<td>factorial</td>
<td>!</td>
<td>postfix</td>
</tr>
<tr>
<td>doublefactorial</td>
<td>! !</td>
<td>postfix</td>
</tr>
</tbody>
</table>

Table 21.1: Predefined Arithmetic Operators in Order of Priority from Lowest to Highest

Operators of equal binding power are performed from left to right. Parentheses can be used to change the order of evaluation. Also functional application has the highest priority. Thus \( \sin((a \times (x^y)) / (z!))^2 \) means \( \sin((a \times (x^y)) / (z!)) \times 2 \). Table 21.1 lists the operators in order of priority from lowest to highest.

This section discusses seven kinds of Macsyma operators: prefix, postfix, infix, matchfix, nary, nofix, and special operators. Do \texttt{demo(operators)}; for an executable demonstration of these capabilities.

21.2.1 Prefix Operators

A prefix operator is a function of one argument. The operator symbol appears immediately before (to the left of) its argument. Some examples are shown in Table 21.2.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>not true</td>
<td>&quot;not&quot; (true)</td>
</tr>
<tr>
<td>not</td>
<td>not not true</td>
<td>&quot;not&quot; (&quot;not&quot; (true))</td>
</tr>
<tr>
<td>−</td>
<td>−a</td>
<td>&quot;−&quot; (a)</td>
</tr>
</tbody>
</table>

Table 21.2: Examples of Prefix Operators

This resembles the usual functional notation except that the parentheses surrounding the argument are optional. Of course any expression can be embedded to arbitrary depth within another.

21.2.1.1 Predefined Prefix Operators

The predefined prefix operators are given in Table 21.3, page 497.
### 21.2. MATHEMATICAL OPERATORS

#### 21.2.1.2 Defining Your Own Prefix Operators

**prefix**(*operator* {, *rbp*, *rpos*, *pos*})

*Function*

Extends Macsyma syntax to include the prefix operator *operator*. All arguments are optional except the first. If *rbp*, the right binding power, is not specified, a default of 180 is assumed. If *rpos*, the right part of speech, is not specified, *any* is assumed. If *pos*, the part of speech of the output, is not specified, *any* is assumed.

The defaults have been provided so that those who do not wish to concern themselves with parts of speech or binding powers may simply omit those arguments of the extension functions. Thus the following are all equivalent.

```
Prefix("ddx",180,any,any) $
Prefix("ddx",180)$
Prefix("ddx") $
```

#### 21.2.2 Postfix Operators

A postfix operator is a function of one argument. The operator symbol appears immediately after (to the right of) its argument.

##### 21.2.2.1 Predefined Postfix Operators

There are two predefined postfix operators ! and !!. Examples are given in Table 21.4. They are specified in Table 21.5, page 498.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>3!</td>
<td>&quot;!(3)&quot;</td>
</tr>
<tr>
<td>!!</td>
<td>a!!</td>
<td>&quot;!!!(a)&quot;</td>
</tr>
</tbody>
</table>

*Table 21.4: Examples of Predefined Postfix Operators*

**exp !**

*Postfix Operator*

`exp !` returns the product of all integers from 1 up to its argument. Thus `5! = 1\*2\*3\*4\*5 = 120`. If `exp` is not an integer, `exp !` is returned. This expansion is controlled by the option variable `factorial_limit`. Refer to `factorial_limit` on page 52 for more information.
Operator	Left Binding Power	Left Part of Speech	Output Part of Speech
! | 160 | expr | expr
!! | 160 | expr | any

Table 21.5: Predefined Postfix Operators

```
exp !!
```

*Postfix Operator*

*exp!!* returns the double factorial of *exp* which is defined as the product of all consecutive odd (or even) integers from 1 (or 2) to the odd (or even) argument. Thus 8!! is $2^4 \cdot 6^2 \cdot 8 = 384$. If *exp* is not an integer, the result returned is `genfact(exp,exp/2,2)`; Refer to `genfact` on page 55 for more information.

### 21.2.2.2 Defining Your Own Postfix Operators

```
postfix(operator {, lbp, lpos, pos}]
```

*Function*

Extends Macsyma syntax to include the postfix operator *operator*. All arguments are optional except the first. If variable *lbp*, the left binding power, is not specified, a default of 180 is assumed. If *lpos*, the left part of speech, is not specified, *any* is assumed. If *pos*, the part of speech of the output, is not specified, *any* is assumed.

For an explanation of how missing arguments are defaulted. See `prefix`, Section 21.2.1.2, page 497.

### 21.2.3 Infix Operators

A Macsyma *infix* operator is a function of two arguments. The operator symbol appears between its two arguments.

Suppose you define an *infix* operator "@" with the command `infix("@")`. If you then submit a statement such as `a @ b @ c`, it is parsed by Macsyma as `(a @ b) @ c`, so that @ is still a function of two arguments. For example, `args(a @ b @ c)` will return `[a @ b, c].`

The Macsyma term *nary* differs from the mathematical term *nary*.

- In mathematical terminology, *infix* refers to an operator which is represented by a symbol or symbols located between each pair of consecutive arguments, whether it is a binary operator or an nary operator (*nary* in the mathematical sense of having any number of arguments).
- In Macsyma terminology, *infix* refers only to a *binary* operator which is represented by a symbol located between or among its arguments.

If you want a *nary* infix operator (in the mathematical sense of *nary*, that is, accepting any number of arguments), then you must use a Macsyma *nary* operator. See Section 13.1.3.3, page 371.

Some examples of Macsyma *infix* operators are given in Table 21.6, page 499.

### 21.2.3.1 Predefined Infix Operators

Predefined infix operators are given in Table 21.7, page 499.

```
base ^ exponent
```

*Infix Operator*

The exponentiation operator is used as shown below, where *a* is the *base* and *b* the *exponent*.

```
a^b
```
### Table 21.6: Examples of Infix Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>a^2</td>
<td>&quot;a&quot;^&quot;*&quot;(a,2)</td>
</tr>
<tr>
<td>.</td>
<td>a.b</td>
<td>&quot;.&quot;(a,b)</td>
</tr>
<tr>
<td>:=</td>
<td>f(x):=x^2</td>
<td>&quot;=&quot;(f(x),x^2)</td>
</tr>
<tr>
<td>&gt;</td>
<td>3&gt;3&gt;10</td>
<td>&quot;&gt;&quot;(3,3,10)</td>
</tr>
</tbody>
</table>

### Table 21.7: Predefined Infix Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Left Binding Power</th>
<th>Left Part of Speech</th>
<th>Right Binding Power</th>
<th>Right Part of Speech</th>
<th>Output Part of Speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>80</td>
<td>any</td>
<td>80</td>
<td>any</td>
<td>clause</td>
</tr>
<tr>
<td>/</td>
<td>120</td>
<td>expr</td>
<td>121</td>
<td>expr</td>
<td>expr</td>
</tr>
<tr>
<td>*</td>
<td>140</td>
<td>expr</td>
<td>139</td>
<td>expr</td>
<td>expr</td>
</tr>
<tr>
<td>**</td>
<td>140</td>
<td>expr</td>
<td>139</td>
<td>expr</td>
<td>expr</td>
</tr>
<tr>
<td>.</td>
<td>110</td>
<td>any</td>
<td>109</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>:</td>
<td>180</td>
<td>any</td>
<td>20</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>::</td>
<td>180</td>
<td>any</td>
<td>20</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>::=</td>
<td>180</td>
<td>any</td>
<td>20</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>&lt;:</td>
<td>80</td>
<td>expr</td>
<td>80</td>
<td>expr</td>
<td>clause</td>
</tr>
<tr>
<td>&lt;=</td>
<td>80</td>
<td>expr</td>
<td>80</td>
<td>expr</td>
<td>clause</td>
</tr>
<tr>
<td>=</td>
<td>80</td>
<td>expr</td>
<td>80</td>
<td>expr</td>
<td>clause</td>
</tr>
<tr>
<td>&gt;</td>
<td>80</td>
<td>expr</td>
<td>80</td>
<td>expr</td>
<td>clause</td>
</tr>
<tr>
<td>&gt;=</td>
<td>80</td>
<td>expr</td>
<td>80</td>
<td>expr</td>
<td>clause</td>
</tr>
<tr>
<td><code>^</code></td>
<td>135</td>
<td>any</td>
<td>134</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>
base ** exponent

Infix Operator

The exponentiation operator, equivalent to \(^\). Macsyma "prefers" \(^\) only in that \(\text{op}(A**B)\); returns \(^\).

\[ a^{**}b \]

exp1 . exp2

Infix Operator

A period (.) is used for noncommutative product. It must be preceded and followed by a space when any ambiguity can arise with respect to floating-point numbers. A number of option variables control the simplification of the noncommutative dot product. Refer to the dot operator on page 267 for more information.

base ^^ exponent

Infix Operator

The exponentiation operator for the dot operator is "^^". Thus, for a matrix \(a\), \(a . a = a^{**}2\) and, if it exists, \(a^{**}-1\) is the inverse of \(a\).

21.2.3.2 Defining Your Own Infix Operators

\texttt{infix} (\texttt{operator} \{, \texttt{lbp}, \texttt{rbp}, \texttt{lpos}, \texttt{rpos}, \texttt{pos}\})

Function

Extends Macsyma syntax to include the infix operator \texttt{operator}.

All arguments are optional except the first. If \texttt{lbp}, the left binding power is not specified, a default of 180 is assumed. If \texttt{rbp}, the right binding power is not specified, a default of 180 is assumed. If \texttt{lpos}, the left part of speech, is not specified, \texttt{any} is assumed. If \texttt{rpos}, the right part of speech, is not specified, \texttt{any} is assumed. If \texttt{pos}, the part of speech of the output, is not specified, \texttt{any} is assumed. For an explanation of how missing arguments are defaulted, See \texttt{prefix}, Section 21.2.1.2, page 497.

21.2.4 Nary Operators

A Macsyma \texttt{nary} operator is a function which accepts any number of arguments. Exaples are given in Table 21.8, page 501. The operator symbol appears between each two consecutive arguments, as in \(a b c\) (where you have defined "" to be a \texttt{nary} operator with the command \texttt{nary(quot)}).

Macsyma has three related concepts which use the terms \texttt{nary} and \texttt{infix}.

- A Macsyma \texttt{nary} operator accepts any number of arguments, and the operator symbol appears between each pair of consecutive arguments. A Macsyma \texttt{nary} operator need not have the \texttt{nary} property, that is, it need not be fully associative (in the mathematical sense).

- A Macsyma \texttt{infix} operator (see Section 21.2.3.2, page 500) is a binary operator (a function of precisely two arguments), and the operator symbol appears between the two arguments.

- A Macsyma function or operator can have the \texttt{nary} property. (See Section 13.1.3.3, page 371.) This property implements the mathematical concept of associativity. (That is, parentheses among arguments do not matter).

- For an operator "", the \texttt{nary} property enables Macsyma to simplify the forms \((a b) c\) and \(a (b c)\) both into the same expression \(a b c\).

- For a function \(f\), the \texttt{nary} property enables Macsyma to simplify the expressions \(f(a,f(b,c))\) and \(f(f(a,b),c)\) both into the same expression \(f(a,b,c)\).

Predefined \texttt{nary} operators in Macsyma are in Table 21.9, page 501.

\textbf{Note:} If you want a completely associative nary operator "", you must first define a \texttt{nary} operator with the command \texttt{nary("")} and then assign to it the \texttt{nary} property with the command \texttt{declare(""\text{,nary});}
### 21.2.4.1 Predefined Nary Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Binding Power</th>
<th>Argument Part of Speech</th>
<th>Output Part of Speech</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>*</code></td>
<td>120</td>
<td><code>expr</code></td>
<td><code>expr</code></td>
</tr>
<tr>
<td><code>+</code></td>
<td>100</td>
<td><code>expr</code></td>
<td><code>expr</code></td>
</tr>
<tr>
<td><code>,</code></td>
<td>10</td>
<td><code>any</code></td>
<td><code>any</code></td>
</tr>
<tr>
<td><code>-</code></td>
<td>100</td>
<td><code>expr</code></td>
<td><code>expr</code></td>
</tr>
<tr>
<td><code>and</code></td>
<td>60</td>
<td><code>clause</code></td>
<td><code>clause</code></td>
</tr>
<tr>
<td><code>or</code></td>
<td>50</td>
<td><code>clause</code></td>
<td><code>clause</code></td>
</tr>
</tbody>
</table>

Table 21.9: Predefined nary operators

The addition operator is used as shown below, for the sum of `a`, `b` and `c`.

```
a+b+c
```

The multiplication operator is used as shown below, for the product of `a`, `b` and `c`.

```
a*b*c
```

**Infix Operator**

The division operator is used as shown below and returns the quotient of the numerator and denominator.

```
a/b
```

### 21.2.4.2 Defining Your Own Nary Operators

A `nary` function is defined as follows:

```
nary(operator {, bp, argpos, pos})
```

Extends the Macsyma syntax to include the `nary` operator `operator`. That is, `operator` accepts any number of arguments, and the operator symbol appears between each consecutive pair of arguments. A Macsyma `nary` operator does not necessarily have the `nary` property; that is, it is not necessarily fully associative in the mathematical sense. In order to make a Macsyma `nary` operator fully associative, you must assign to it the `nary` property (see Section 13.1.3.3, page 371.)

All arguments are optional except the first. If `bp`, the binding power is not specified, a default of 180 is assumed. If `argpos`, the argument part of speech, is not specified, any is assumed. If `pos`, the part of speech, is not specified, any is assumed. For an explanation of how missing arguments are defaulted, see `prefix`, Section 21.2.1.2, page 497.
21.2.5 Nofix Operators

Nofix operators are used to denote functions of no arguments. The mere presence of such an operator in a sentence will cause the corresponding function to be evaluated. Macsyma does not have any nofix operators of its own, but you can easily define them, as shown in the following example:

Example

```
(c1) nofix(show_me_info)$
(c2) show_me_info:=[functions, values]$
(c3) f(x):=2*x$
(c4) x:3
(c5) show_me_info;
```

[[show_me_info, f(x)], [x]]

Care should be taken in using these operators, since they tend to look much like variables. Semantically, they are very different.

21.2.5.1 Defining Your Own Nofix Operators

```
nofix(operator {, pos})
```

Function

Extends Macsyma syntax to include the nofix operator `operator`. If `pos`, the part of speech, is not specified, it defaults to `any`. See prefix, Section 21.2.1.2, page 497 for an explanation of how missing arguments are defaulted.

21.2.6 Matchfix Operators

Matchfix operators are used to denote functions of any number of arguments which are passed to the function as a list. The arguments occur between the main operator and its “matching” delimiter. Examples are given in Table 21.10, page 502. Predefined Matchfix operators are described in Table 21.11, page 502.

```
Operator Match Example Meaning
[] [a, b, c, d] “{"(a, b, c, d)
((a:2, b:a, c:3, d:c) “{"(“(a, 2), “(b, a), “(c, 3), “(d, c))
```

Table 21.10: Examples of Matchfix Operators

```
Operator Match Argument Part of Speech
[] any any
(any any
```

Table 21.11: Predefined Matchfix Operators
21.2.6.2 Defining Your Own Matchfix Operators

matchfix(operator, match {, argpos, pos})

Function

Extends Macsyma syntax to include the matchfix operator operator and its match, match. All arguments are optional except the first two. If argpos, the argument part of speech, is not specified, any is assumed. If pos, the part of speech, is not specified, any is assumed. See prefix, Section 21.2.1.2, page 497 for an explanation of how missing arguments are defaulted.

21.2.7 Special Operators

Nary operators are useful for functions whose arguments are in one way or another homogeneous. For other functions of many arguments, special forms are used. Macsyma does not provide you with a tool for defining your own special operators.

The conditional statement is a familiar example of a special operator.

More examples of special operators are described in Table 21.12.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>if</td>
<td>if a&gt;2 then a-1 else a</td>
<td>&quot;if&quot;(&quot;&gt;&quot;) (a, 2), &quot;-&quot; (a, 1), a</td>
</tr>
<tr>
<td>do</td>
<td>thru 10 do ss~2</td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>for i from 2 thru 5 do</td>
<td>print (a[i])</td>
</tr>
<tr>
<td></td>
<td>thru 5 unless a&gt;1000 do a:a!</td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>for i from 2 step 3 thru 10</td>
<td>unless a&gt;10 do print(a)</td>
</tr>
</tbody>
</table>

Table 21.12: Examples of Special Operators

In the first example, the operator if denotes a function of three arguments. The first is found immediately after the if. The others are introduced arguments signaled by the occurrence of the delimiters associated with if, namely then and else. Delimiters are not in themselves operators but are used by operators to mark introduced arguments. Using a delimiter out of the context of the operators for which it was defined results in a syntax error.

Another example is the iteration statement. Here the delimiters precede their defining operator. In this example each of the indicated segments contributes an argument to do. It happens that any of these arguments can be omitted, or if given, they can be given in any order. Thus, the three examples following are all legal, though not necessarily equivalent, sentences. Table 21.13 lists delimiters for do and if operators.

When arguments are omitted, as in the above examples of do, or as the else argument of the if operator, the corresponding "holes" are filled with predetermined default values. These are listed in the dictionary below. Also, the do statement has some additional flexibility. The step argument can be replaced by a next expression which denotes what the iteration variable is to be set to on each pass through the loop, rather than the value by which it is to be incremented; and there are permitted arbitrarily many while or unless clauses as termination conditions. Some examples with answers follow:

Examples
(c1) thru 3 do print (a);
a
a
a
(d1)
done
(c2) for i step 2 thru 3 do print (i);
1
Table 21.13: Delimiters

<table>
<thead>
<tr>
<th>Operator</th>
<th>Delimiter</th>
<th>LBP</th>
<th>RBP</th>
<th>RPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>do</td>
<td>for</td>
<td>5</td>
<td>200</td>
<td>any</td>
</tr>
<tr>
<td>do</td>
<td>from</td>
<td>5</td>
<td>95</td>
<td>any</td>
</tr>
<tr>
<td>do</td>
<td>in</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>next</td>
<td>5</td>
<td>45</td>
<td>any</td>
</tr>
<tr>
<td>do</td>
<td>step</td>
<td>5</td>
<td>95</td>
<td>expr</td>
</tr>
<tr>
<td>do</td>
<td>thru</td>
<td>5</td>
<td>95</td>
<td>expr</td>
</tr>
<tr>
<td>do</td>
<td>unless</td>
<td>5</td>
<td>45</td>
<td>clause</td>
</tr>
<tr>
<td>do</td>
<td>while</td>
<td>5</td>
<td>45</td>
<td>clause</td>
</tr>
<tr>
<td>if</td>
<td>else</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>if</td>
<td>then</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Table 21.14: Predefined Special Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Match</th>
<th>LBP</th>
<th>LPOS</th>
<th>RBP</th>
<th>RPOS</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>)</td>
<td>200</td>
<td>any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[</td>
<td>]</td>
<td>200</td>
<td>any</td>
<td>any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td></td>
<td>5</td>
<td>25</td>
<td>any</td>
<td>clause</td>
<td>any</td>
</tr>
</tbody>
</table>

21.2.8 Logical Operators

Macsyma has three predefined logical operators: **and**, **or** and **not**. These are discussed in Section Section 15.1, page 401. Macsyma also has three predefined bitwise logical functions: **logand**, **logor**, and **logxor** defined in Section Section 3.9.1, page 73.

21.2.9 Syntax Extension

While Macsyma's syntax should be adequate for most ordinary applications, you can define new operators or eliminate predefined ones. The extension mechanism is described below. Here are examples of defining new prefix and infix operators.

**Examples**

(c1) prefix("ddx");
(d1) ddx
(c2) ddx y;
(d2) ddx y
(c3) infix("<-");
(d3) <-
(c4) a<-ddx y;
An appreciation of these concepts and rules should be all that is necessary to use the syntax extension capabilities successfully. The only form of syntax extension available is the definition of new operators. For each of the types of operator, except special, there is a corresponding creation function that gives the corresponding parsing properties to the lexeme specified. Thus prefix("ddx") makes "ddx" a prefix operator just like − or not. Of course, certain extension functions require additional information such as the matching delimiter for a matchfix operator. In addition, binding powers and parts of speech must be specified for all operators defined. This is done by passing additional arguments to the extension functions. If you do not specify these additional parameters, Macsyma assigns default values. The six extension functions with binding powers and parts of speech defaults are summarized below.

To remove the syntax properties of an operator, use the functions remove or kill. Specifically, remove("ddx", op); or kill("ddx"); return "ddx" to operand status, but in the second case all of the other properties of "ddx" are also removed.

Here is an example of syntax extension to permit the use of set notation.

Example

```
(c1) matchfix("{","}")$
(c2) infix("|")$
(c3) x|x>0
(d3) x | x > 0
(c4) x|x<2;
(d4) x | x < 2
(c5) infix(".u.")$
(c6) infix(".i.")$
```

Now assuming the functions ".u." and ".i." have been appropriately defined as union and intersection, the following interaction can occur.

```
(c7) d3.u.d4;
(d7) universe
(c8) d3.i.d4;
(d8) x|x>0 and x<2
(c9) {1,2,3}$
(c10) {3,4,5}$
(c11) d9.u.d9.i.d10;
(d11) {3}
```

Line (c11) was parsed as ((d9.u.d9).i.d10) whereas the usual convention would call for the alternate parsing (d9.u.(d9.i.d10)), which would have resulted in {1,2,3} as value. The problem here is that the default binding powers for ".u." and ".i." are identical, so the parser associates them in left to right order. To obtain the usual parsing, the syntax definitions in lines (c5) and (c6) must give ".i." a higher left binding power than ".u."'s right binding power as in the following.

```
(c12) infix(".u.",100,100)$
(c13) infix(".i.",120,120)$
(c14) d9.u.d9.i.d10;
(d14) {1,2,3}
(c15) remove(".u.",operator)$
(c16) d9.u.d10;
(d16) done
```

21.3 Internal Representation of Macsyma Expressions

For the purposes of this discussion, the internal representation of an expression can best be described in terms of function calls. In this model, all Macsyma expressions are represented as appropriately nested
function calls. All actions are the result of function evaluations. 
After Macsyma reads an expression, it translates that expression into a Lisp internal form. This translation process involves lexically scanning and parsing the expression. The Lisp internal form is the form in which the internal programs deal with expressions. 
Initially, the translated expression is in what is called general form, but certain functions convert this form to other forms. The possible forms are listed below.

- General form (see Section 21.3.1, page 506).
- CRE form (see Section 21.3.2, page 506).
- Extended CRE form (see Section 21.3.3, page 507).
- Poisson series form (see Section 21.3.4, page 507).

### 21.3.1 General Form

General form represents nonatomic expressions as Lisp lists whose first element is the main operator of the expression and whose remaining elements are the operands also represented in this form. Thus, after simplification, and ignoring the flags placed on operators, \(2 \times x + \frac{3}{4}\) is represented essentially as \((\text{plus (rat 3 4)} \text{ (times 2 x)})\). \(f(x) - \log(x)\) is represented as \((\text{plus (f x)} \text{ (times -1 (log x))})\). Any valid expression can be represented in this form.

### 21.3.2 Canonical Rational Expressions (CRE) Form

Canonical Rational Expressions (CRE) form is a representation that is particularly suited for expanded polynomials and rational functions, and for partially factored polynomials and rational functions where `ratfac (default: false)` is set to `true`. Refer to `ratfac` on page 98 for more information. In general, CREs represent rational expressions. Rational expressions are ratios of polynomials, where the numerator and denominator have no common factors, and the denominator is positive. If an expression is in CRE form or if it contains any subexpressions in CRE form, the symbol `/R/` follows the line label. Many commands operate only on expressions that are in the general form. If a command is called on an expression in CRE or extended CRE form, it converts that expression into the general form first.

In CRE form, polynomials are represented recursively by a list consisting of the main variable followed by a series of pairs of expressions, one for each term of the polynomial. The first member of each pair is the exponent of the main variable in that term and the second member is the coefficient of that term, which could be a number or a polynomial in another variable in turn represented in this form. Thus, the principal part of CRE form of \(3x^2 - 1\) is \((x 2 3 0 -1)\) and that of \(2x^2y^2x - 3\) is \((y 1 (x 1 2) 0 (x 1 1 0 -3))\) assuming \(y\) is the main variable, and is \((x 1 (y 1 2 0 1) 0 -3)\) assuming \(x\) is the main variable. The internal form is therefore an ordered pair of polynomials preceded by the variable ordering list.

"Mainness" is usually determined by reverse alphabetical order. An ordering of variables, from most to least main, is assumed for each expression. In the case of sums like \(x - y\), the display is \(x - y\), unless the option `negsumdispflag (default: true)` is set to `false`. See Section 12.1.3, page 354.

The “variables” of a CRE expression need not be atomic. In fact, any subexpression whose main operator is not `+`, `−`, `*`, `/` or “with integer power is considered a “variable” of the expression in which it occurs, if that expression is in CRE form. For example, CRE variables of the expression \(x \sin(x + 1) + 2 \sqrt{x} + 1\) are \(x, \sqrt{x}\), and \(\sin(x + 1)\). If you do not specify an ordering of variables by using the function `ratvars`, Macsyma chooses an alphabetic one. Refer to `ratvars` on page 97 for more information. The function `rat` truncates multi-word integer exponents \(n\) to fixmams.
21.3.3 Extended CRE Form

Extended CRE form is used for the representation of Taylor series. The notion of a rational expression is extended so that the exponents of the variables can be positive or negative rational numbers rather than just positive integers, and the coefficients can be rational expressions as described above in Section 21.3.2 rather than just polynomials. These are represented internally by a recursive polynomial form that is similar to and is a generalization of CRE form, but carries additional information, such as the degree of truncation. The symbol \( T \) follows the line label of expressions in the extended CRE form.

Partially factored form is defined as follows: When the option variable \texttt{ratfac (default: false)} is \texttt{true}, expressions are brought into partially factored form. Numerator and denominator are relatively prime products of recursively constructed primitive polynomial kernels. Kernels at the same level within numerator and denominator may not be relatively prime. In the future, kernels may be further specified to be square-free.

21.3.4 Poisson Series Form

Poisson series form is a specialized representation of trigonometric series expressions in the form of \( p \cdot \text{trig}(q) \) where \( p \) is usually a polynomial with rational or floating-point coefficients, \( \text{trig} \) is either \( \sin \) or \( \cos \), and \( q \) is a linear combination of no more than six variables. See also Section Section 6.4.1, page 176. The symbol \( P \) follows the line label of Poisson series expressions.
Bibliography


BIBLIOGRAPHY


BIBLIOGRAPHY


**Obtaining Publications**

1 Available for a charge from: Macsyma Inc.

2 Available for a charge from:

   MIT Laboratory for Computer Science
   Publications
   545 Technology Square
   Cambridge, MA 02139

3 Available for a charge from:

   National Technical Information Service (NTIS)
   Operations Division,
   Springfield, VA 22151.

   (Include ad number given in bibliography with order.)

4 Available from:

   The Association for Computing Machinery (ACM)
   1133 Avenue of the Americas
   New York, NY 10036
Index

! (factorial), 55
! (postfix operator), 493
!! (generalized factorial), 55
!! (postfix operator), 493
/ > (infix operator), 217
< (infix operator), 400
<= (infix operator), 400
< / (infix operator), 217
<: (infix operator), 250
> (infix operator), 399
>= (infix operator), 400
^ ' 223
^ * (postfix operators), 223
^ ' ' 223
^ * (postfix operators), 223
^ ' (postfix operators), 223
~ (infix operator), 276, 307
, 312
\ (infix operator), 496
** (infix operator), 494
+ (infix operator), 496
.

commutative operator in vect package, 276
/ (infix operator), 275, 495
.. (infix operator), 250
/ (infix operator), 497
/*...*/


acscd (function)
  trigonometric functions (degrees), 40
acsch (function), 40
action
  predefined physical quantity in dimen package, 85
activate (function), 380
activecontexts (system variable), 380
activity
  predefined physical quantity in dimen package, 85
adaptive numerical integration, 168
addcol (function), 219
adding to a list
  example, 424
adding to a list (end)
  example, 424
additive (property), 368
addrow (function), 219
adefint (function), 180
adim (option variable), 306
adjoint (function), 227
adjoint matrix, 227
aform (option variable), 306
agd (function), 43
ai (function), 50
airy (function), 49
Airy function, 49
Airy functions
  ai, 51
  bi, 51
  dai, 51
  dbi, 51
alaguerre_1 (function), 47
alegendre_p (function), 47
alegendre_q (function), 47
alg_type (option variable), 305
algebra
  polynomial, 88
algebraic (option variable), 87
algebraic integers, 87–88
  example, 88
algebraiccp (function), 87, 392
algebras
  Clifford, 305
  Dirac, 306
  Grassmann, 305
  Lie enveloping, 305
  operator, 210
  Pauli, 306
  symmetric, 305
  symplectic, 305
types

lie_envelop, 305
universal, 305
algebraic (evflag), 372
algepsilon (option variable), 129
algexact (option variable), 129
algfac (function), 95
algorithms
  diagonal metric, 298
  Euclidean, 89
  Gram–Schmidt, 230, 231
  Hacijan, 264
  Jenkins, 126
  Jenkins–Traub, 126
  Kuki, 54
  Marquardt, 80
  modular resultant, 91
  Newton–Puiseaux, 133
  Prelle–Singer, 185
  reduced PRS, 91, 101
  Risch, 159
  Schmidt, 185
  subresultant PRS, 91, 101
algsys (function), 128
ALGSYS cannot solve - system too complicated, 128
alias (special form), 353
aliases (system variable), 353
allbut (keyword form), 323
allroots (function), 126
allsym (option variable), 281
%alpha Fine structure constant (physical constant), 82
alphabetic (property), 371
alternate gravity theories, 305
always_use_scientific_notation (option variable), 23, 484
and, 73
and (infix operator), 400
angle
  predefined physical quantity in dimen package, 85
angular_acceleration
  predefined physical quantity in dimen package, 85
angular_momentum
  predefined physical quantity in dimen package, 85
angular_velocity
  predefined physical quantity in dimen package, 85
antid (function), 160
antidiff (function), 160
antisymmetric (property), 368
any, 490
apothem, 68
regular polygon, 68
apothem\_regular\_polygon (function), 68
append (function), 424
appendfile (special form), 469
appending to a list
example, 424
apply (special form), 342
apply1 (special form), 388
apply2 (special form), 388
apply\_cycles (function), 53
apply\_nouns (function), 323
apply\_permutation (function), 53
applyb1 (special form), 388
applyb2 (special form), 388
approximate methods for ODEs, 192
apropos (special form), 9
area, 67
circle, 68
cube, 69
ellipse, 68
equilateral triangle, 68
parallelepiped, 70
predefined physical quantity in dimen package, 85
pyramid3, 69
pyramid4, 69
regular polygon, 69
right cone, 69
right cylinder, 69
sphere, 70, 72
spherical polygon, 71
spherical triangle, 71
square, 68
trapezoid, 69
triangle, 68
area\_circle (function), 68
area\_cube (function), 69
area\_ellipse (function), 68
area\_equilateral\_triangle (function), 68
area\_pyramid3 (function), 69
area\_pyramid4 (function), 69
area\_rectangular\_cylinder (function), 70
area\_regular\_polygon (function), 69
area\_right\_cone (function), 69
area\_right\_cylinder (function), 69
area\_sphere (function), 70
area\_spherical\_polygon (function), 71
area\_spherical\_triangle (function), 71
area\_square (function), 68
area\_trapezoid (function), 69
area\_triangle (function), 68
args (function), 323
Argument to first was atomic: exp, 327
Arguments to MAP are not of the same length., 344
Arguments to MAP not uniform - cannot map, 344
arithmetic\_term (function), 73
arithsum (function), 73
array (special form), 418
array information
example, 362
arrayapply (function), 423
arrayinfo (special form), 362
arraymake (function), 421
arrayp (function), 394
arrays, 47
arrays (system variable), 421
arraysetapply (function), 423
asec (function), 40
asecd (function)
trigonometric functions (degrees), 40
asinh (function), 40
ask\_csign (function), 376
askexp (option variable), 376
askinteger (function), 376
asksign (function), 376
assign array values
example, 421
assign property, 437
assoc (function), 325
associated
Laguerre polynomials, 47
Legendre polynomials, 47
association lists
example, 325
assume
example, 375
assume (special form), 373
assume\_pos (option variable), 374
assume\_pos\_pred (option variable), 374
assumescalar (option variable), 262
assumescalarp (function), 242
*/
end comment delimiter, 8
asymbol (option variable), 306
asympt (function), 157
asympt (package), 157
asympsimp (function), 158
asymptaylor (option variable), 158
asymptotic analysis, 157
apply Taylor series first as asymTaylor, 158
asymptotic equality, 157
asymptotic simplification asympSimp, 158
at least same order as omega, 158
big-O, 158
convert exponentials baseconvert, 158
lesser order as lomega, 158
little-o, 158
maximum order of Taylor series taylormax, 158
same order function theta, 157
asymptotic simplification
example, 158
at (function), 334
atan (function), 40
atan2 (function), 42
atan2d (function)
  trigonometric functions (degrees), 40
atan (function)
  trigonometric functions (degrees), 40
atanh (function), 40
atensor (package), 286, 305
atom (function), 394
atomgrad (property), 371
atomic_mass (function), 84
atrigswitch (evflag), 372
atrigswitch (option variable), 42
atrigswitch (evflag), 372
atrigswitch (option variable), 42
atvalue
  example, 334
atvalue (function), 334
atvalue (property), 371
augcoefficientmatrix (function), 222
augmented coefficient matrix
  example, 222
autoload user functions, 438
average_periodic_ode (function), 192
avg_optimize (option variable), 193
avg_ode (package), 192
avg_progress (option variable), 193
b_backsub (function), 240
b_backsubf (function), 240
b_multiv (function), 240
b_multivf (function), 240
b_reduce (function), 240
b_reducef (function), 240
back-substitution, 240
backsub (option variable), 119
backtrace (option variable), 449
backward difference
  example, 114
backward difference scheme, 200
band2fulla (function), 240
banded matrices, 239, 240
bandmat (package), 239
base of natural logarithms, 27
baseconvert (option variable), 158
bashindices (function), 114
basic mathematical functions, 31–34
batch (function), 465
batch_make_notebook (option variable), 466
batchload (function), 466
batcon (function), 466
batcount (system variable), 467
bc2 (function), 191
bd0
  Brans-Dicke scalar field equation symbol, 305
bd2
  Brans-Dicke covariant tensor symbol, 305
bdvace (function), 305
beep (function), 13
bern (function), 60
Bernoulli density, 61
Bernoulli distribution, 61
Bernoulli number, 60
Bernoulli polynomial, 59
bernpoly (function), 59
bessel (function), 49
Bessel equation, 187, 188
Bessel function of the first kind, 49
Bessel function of the second kind, 50
Bessel functions, 48, 148, 174
bessel_i (function), 49
bessel_j (function), 49
bessel_k (function), 50
bessel_y (function), 50
beta
  probability functions (continuous), 63
beta (function), 56
beta(2), %catalan26
beta_binomial
  probability functions (discrete), 61
beta_binomial_density (function), 61
beta_binomial_distrib (function), 61
beta_density (function), 63
beta_distrib (function), 63
bezout (function), 91
Bezout’s identity, 89
bfeigenvalues_by_schur (function), 232
bffrac (function), 56
bffrac (package), 56
bfhbeta (function), 58
bfloat (evfun), 372
bfloat (function), 23
bfloatp (function), 22, 391
bfprecision (option variable), 22
bfprint_precision (option variable), 23
bp (function), 58
bforsat (option variable), 96
bftrunc (option variable), 351
b(eta) (function), 57
bi (function), 50
big-O function
O, 157
bigfloats, 412
bignums, 412
binding powers, 490
bindtest (property), 372
binomial
- probability functions (discrete), 61
binomial (function), 55
binomial coefficient, 55
binomial surds, 39
binomial_density (function), 61
binomial_distrib (function), 61
binomial_modulus (option variable), 55
bipolar
- predefined coordinate system for ct_coordsys, 297
- predefined coordinate system for vect_coordsys, 278
bipolar coordinates, 278
bipolar cylindrical coordinates, 278
bipolar_cylindrical
- predefined coordinate system for ct_coordsys, 297
- predefined coordinate system for vect_coordsys, 278
bisect (package), 134
bisection_dep_toler (option variable), 135
bisection_error (option variable), 135
bisection_indep_toler (option variable), 134
bisection_iter_limit (option variable), 135
Blasius equation, 207
blinalgl (package), 244
block (special form), 402
block matrix, 241, 242
blockmat (function), 242
blocks, 402
boltzmanns_constant
- predefined physical quantity in dimen package, 85
Boolean expressions, 29
booleans (function), 252
boolsimp (function), 29
bothcoef (function), 326
bottomup (keyword), 346
boundary conditions for ODEs, 191
box (function), 324
boxchar (option variable), 324
brachistome problem
example, 202
Brans–Dicke covariant tensor symbol bd2, 305
Brans–Dicke gravitational theory, 305
Brans–Dicke scalar field equation symbol bd0, 305
break (function), 446
break_prompt (option variable), 446
breaking
example, 446
breakup (option variable), 130
Brent’s method, 203, 204
bromberg (function), 168
bromberg (special form), 168
buildq (special form), 439
burn (function), 60
but_ upon_return (infix operator), 405
byparts (function), 160
%c
- constant of integration for ode, 188
%c (symbol), 188
%c speed of light in vaccum (physical constant), 82
c (option variable), 480
c-line input or command line, 5
%c1 First radiation constant (physical constant), 82
%c2 Second radiation constant (physical constant), 82
cabs (function), 24
calculus of differential forms, 306–307
canform (function), 282
canonical rational expression, 95
canonlt (option variable), 20
canten (function), 282
capacitance
- predefined physical quantity in dimen package, 85
cardinal_string (function), 415
carg (function), 24
cartan (package), 306
cartesian coordinates, 147, 278
cartesian2d
- predefined coordinate system for ct_coordsys, 297
- predefined coordinate system for vect_coordsys, 278
cartesian2D coordinates, 278
cartesian3d
predefined coordinate system for \texttt{ct\_coordsys},
297
predefined coordinate system for \texttt{vect\_coordsys},
278
cartesian3D coordinates, 278
\texttt{cartesian4d}
predefined coordinate system for \texttt{ct\_coordsys},
297
case (macro), 401
\%catalan (symbol)
Catalan's constant, 26
\texttt{catch} (special form), 404
\texttt{catch and throw}
example, 404
\texttt{catch\_divergent} (option variable), 445
\texttt{catch\_mathematical\_error} (option variable), 445
\texttt{catch\_taylor\_essential\_singularity} (option variable),
445
\texttt{catch\_taylor\_unfamiliar\_singularity} (option variable),
445
catching errors
example, 445
Cauchy
probability functions (continuous), 63
\texttt{cauchy} (function), 243
Cauchy matrix, 243
\texttt{cauchy\_density} (function), 63
\texttt{cauchy\_distrib} (function), 63
\texttt{cauchysum} (evflag), 372
cauchysum (option variable), 112
\texttt{cbffac} (function), 56
ocurind (option variable), 483
\texttt{cdisplay} (function), 304
\texttt{cdi11} (function), 300
\texttt{ceiling} (function), 33
\texttt{centosr} (package), 500
entral difference scheme, 200
\texttt{cf} (special form), 26
\texttt{cfactor} (function), 125
\texttt{cfdisrep} (function), 26
\texttt{cfexpand} (function), 26
cflength (option variable), 26
cframe\_flag (option variable), 301
\texttt{cgamma} (function), 54
\texttt{cgamma2} (function), 54
\texttt{cgeodesic} (function), 300
change of variable in integration
example, 163, 164
\texttt{change\_screen\_configuration} (function), 456
\texttt{change\_sum\_limits} (function), 113
\texttt{changenname} (function), 284
\texttt{changevar} (function), 163
changevar\_multiple\_solutions (option variable), 164
changing command line labels
example, 6
\texttt{char} (function), 127
characteristic polynomial
example, 225
characteristic polynomial of a matrix, 225
characteristic polynomial of a matrix (by trace),
226
\texttt{charge}
predefined physical quantity in \texttt{dimen} package, 85
\texttt{charpoly} (function), 225
Chebyshev polynomials, 47
\texttt{chebyshev\_t} (function), 47
\texttt{chebyshev\_u} (function), 47
\texttt{check} (function), 264
checking limits on an integral
example, 386
Chi-square
probability functions (continuous), 63
$\chi^2$
probability functions (continuous), 63
\texttt{chi\_square\_density} (function), 63
\texttt{chi\_square\_distrib} (function), 64
Cholesky decomposition, 233
\texttt{cholesky\_decomp} (function), 233
\texttt{cholesky\_decomp\_symb} (function), 233
\texttt{choose\_variable\_values} (function), 453
choosing coordinate system
example, 304
\texttt{christof} (function), 296
Christoffel symbols
first kind, 288
mixed, 296
array \texttt{mcs}, 296
second kind, 288
Christoffel symbols
example, 288
circle, 68
area, 68
circumference, 68
\texttt{circulant} (function), 243
Circulant matrix, 243
generator, 243
circumference
circle, 68
eclipse, 68
\texttt{circumference\_circle} (function), 68
\texttt{circumference\_ellipse} (function), 68
clause, 490
\texttt{clearscreen} (function), 4
Clifford algebra, 305, 306
dinlen (option variable), 483
close_tex_file (function), 485
closedform (function), 115
closedform (option variable), 186
closefile (special form), 469
cmetric (function), 298
coeff (function), 325
coeffmatrix (function), 221
cograd (function), 300
col (function), 222
collapse (function), 112, 431
collectterms (function), 109
cols (function), 273
column vector
equivalent, 218
columnvector (function), 230
colvectorp (function), 224
combination (function), 55
combinatorial functions, 53-60
combine (function), 104
comment delimiters
   /* (end comment), 8
   */ (begin comment), 8
   /* ... */, 8
common subexpressions, 110
equivalent, 110
commutative (property), 368
companion (function), 270
companion matrix, 255, 256, 270
compile (function), 433
compilation, 435
   file, 435
   function, 435
   macros, 439
      debugging, 441
      defining, 439
      expanding, 441
      packages, 437
      autoload, 438
      declare description, 437
      define variable, 437
compile (special form), 435
compile_file (function), 435
compile_rule (special form), 387
compile_rules_in_tr_files (option variable), 387
compiled function, 167, 170
complement (function), 20
complete elliptic integral, 166
complete elliptic integral, 165
complex (property), 366
complex Bessel function of positive fractional order, 49
complex error function, 49
complex Gamma function, 54
complex numbers
equivalent, 24
complex_integrate (option variable), 165
complexity (function), 330
component tensor manipulation, 295-305
components (function), 279
components (option variable), 279
concat (function), 415
conduction
   predefined physical quantity in dimen package, 85
cone, 69, 70
confocal ellipsoidal coordinates, 278
confocal elliptic coordinates, 278
confocalellipsoidal
   predefined coordinate system for ct_coordsys, 297
   predefined coordinate system for vect_coordsys, 278
confocalelliptic
   predefined coordinate system for ct_coordsys, 297
   predefined coordinate system for vect_coordsys, 278
conformal nonmetricity tensors, 296
conformally flat metric
tensor example, 288
conical
   predefined coordinate system for ct_coordsys, 297
   predefined coordinate system for vect_coordsys, 278
conjugate (function), 24
conmetderiv (function), 288
cons (function), 424
cons_size (function), 329
conservation laws, 206
constant (property), 371
constantfun (property), 371
constanp (function), 392
constants of integration for odes
   %c, %k1, %k2, 188
constop (function), 213
constraintable (option variable), 118
%constraints (option variable), 118
content (function), 89
context
equivalent, 380
context (option variable), 379
contexts (system variable), 379
continued fractions
equivalent, 26
continuous_moment (function), 67
INDEX

contortion array kt, 302
contortion (function), 302
contour integration, 161
contract (function), 282
contraction, 307
— (infix operator), 307
contraction of a vector on a form, 307
contractions (system variable), 281
contragrad (function), 300
contravariant curvature tensor uring, 300
contravariant curvature tensor uriem, 299
contravariant indices, 279
contravariant metric symbol ug, 296
contravariant metric tensor, 298
convert_obsolete_save_file (function), 470
convert_odes_to_first_order_system (function), 197
convert_to_de (function), 149
converting metric components
example, 294
convolution integral equation, 173
convolution of matrices, 260
coord (function), 282
coord (option variable), 282
coordinate systems understood by Macsyma
  bipolar, 278
  bipolar cylindrical, 278
  cartesian, 278
  cartesian2D, 278
  cartesian3D, 278
  confocal ellipsoidal, 278
  confocal elliptic, 278
  cylindrical, 278
  elliptic, 278
  elliptic cylindrical, 278
  oblate spheroidal, 278
  parabolic, 278
  parabolic cylindrical, 278
  paraboloidal, 278
  polar, 278
  polar cylindrical, 278
  prolate spheroidal, 278
  spherical, 278
  toroidal, 278
copylist (function), 219
copymatrice (function), 269
copymatrix (function), 219
cos (function), 40
cos integral, 51
cos_int (function), 51
cosd (function)
  trigonometric functions (degrees), 40
cosfft (function), 182
cosh (function), 40
cosh integral, 51
cosh_int (function), 51
cot (function), 40
cotd (function)
  trigonometric functions (degrees), 40
coth (function), 40
count_ops (function), 329
countops (function), 272
covariant connection coefficient symbol lcs, 296
covariant curvature tensor ein, 300
covariant curvature tensor lein, 300
covariant curvature tensor liem, 299
covariant curvature tensor ric, 299
covariant curvature tensor weyl, 300
covariant derivative, 287
covariant divergence, 300
covariant indices, 279
covariant metric symbol lg, 296
covdiff (function), 287
covector, 303
covers (function), 43
covered sine, 43
CRE form, 88, 90, 95-98, 100, 101, 109, 227, 261,
  315, 326, 330, 332, 395, 501, 502
CRE form with polynomials
example, 96
creating a matrix
example, 218
criterion utility function in kach package, 264
cross multiplication of sums
example, 104
cross product, 276
~
cross product, 276
csc (function), 40
cscd (function)
  trigonometric functions (degrees), 40
csch (function), 40
csetup (function), 298
csign (function), 376
csignum (function), 31
cr_coords, 298
cr_coords (option variable), 298
cr_coordsys (function), 297
cr_coordsys (function), 303
ctayswitch (option variable), 303

**ct_coordsys**
- bipolar (predefined coordinate systems), 297
- bipolarcylindrical (predefined coordinate systems), 297
- cartesian2d (predefined coordinate systems), 297
- cartesian3d (predefined coordinate systems), 297
- cartesiantd (predefined coordinate systems), 297
- confocallellipsoidal (predefined coordinate systems), 297
- confocalelliptic (predefined coordinate systems), 297
- conical (predefined coordinate systems), 297
- elliptical (predefined coordinate systems), 297
- elliptic (predefined coordinate systems), 297
- ellipticcylindrical (predefined coordinate systems), 297
- oblatespheroidal (predefined coordinate systems), 297
- oblatespheroidalsqrt (predefined coordinate systems), 297
- parabolic (predefined coordinate systems), 297
- paraboliccylindrical (predefined coordinate systems), 297
- paraboloidal (predefined coordinate systems), 297
- polar (predefined coordinate systems), 297
- polarcylindrical (predefined coordinate systems), 297
- prolatespheroidal (predefined coordinate systems), 297
- prolatespheroidalsqrt (predefined coordinate systems), 297
- schwarzschild (predefined coordinate systems), 297
- spherical (predefined coordinate systems), 297
- spherical3d (predefined coordinate systems), 297
- toroidal (predefined coordinate systems), 297

**ctensor** initialization, 298

c'tensor (package), 208, 279, 293–298, 301–303, 516, 560

c'transform (function), 304

cube, 69, 70
- area, 69
- volume, 70

curl (prefix operator), 276

curl operator, 276

curl operator, 276

current
- predefined physical quantity in **dimen** package, 85

current_density

**curvature**
- Einstein, 300
- extrinsic, 72
- Gaussian, 72
- intrinsic, 72
- Ricci, 299
- Riemann, 299
- Riemannian, 289, 299
- scalar, 300
- Weyl, 300

curvilinear coordinates
- express components, 277
- scale factors, 276

**curvsurf** (function), 72

cylinder, 69, 70

cylindrical coordinates, 278

d’Alembertian operator, 293, 301

d-line result of computation, 5

dai (function), 50

dbi (function), 51

define_macsyma_menu_command (function), 456

deactivate (function), 380

debugger, 445
- abort, 447
- break prompt, 446
- debugmode, 448
- exit, 447
- finding a symbol, 449
- first evaluation, 445
- setting break points, 446
- setting Macsyma options, 446
- timing, 451
- toplevel, 446
- tracing
  - options, 447
  - untrace, 448
  - tracing functions, 447
- debugging, 443–452
  - example, 446, 449
- debugging functions, 443
  - example, 449
- debugging programs, 443
  - example, 449
- debugmode (option variable), 448

**decibel** (function), 35

**declare** (special form), 359, 410

**declare_description** (special form), 437

declaring a description
example, 438
declaring information and features 
example, 380
decreasing (property), 367
deSym (function), 280
defcon (function), 281
define (special form), 337
define_macsyma_menu_mode (function), 456
define_variable (special form), 437
defining coefficients in Taylor series 
example, 156
definite integration
defint, 161
ldefint, 161
tdefint, 161
and discontinuous slope, 161
and point discontinuity, 161
using Taylor series, 161
defint (function), 161
defmatch (special form), 386
defrule (special form), 387
defTaylor (property), 371
defTaylor (special form), 156
del (symbol), 145
delete (function), 329, 410
deleting one expression from another 
example, 329
deleten (function), 304
deleting information 
example, 410
delfile (special form), 464
delint (function), 172
delta (function), 32
deltasimp (function), 32
demo (special form), 12, 466
demoivre (evflag), 372
demoivre (function), 46
demoivre (option variable), 46
denest_sqrt (function), 39
denest_sqrt (function), 39
denest_sqrt (function), 39
denest_square_roots, 39
denom (function), 97
denominator, 97
dense polynomials, 88
density
predefined physical quantity in dimen pack-
age, 85
dependencies (system variable), 147
dependency (property), 371
Dependent equations eliminated., 120
depends (function), 146
derat (function), 271
derivabbrev (option variable), 145
derivative
covariant, 287
exterior, 287, 307
Lie, 287, 307
ordinary, 145, 286
partial, 150
derivative degree
example, 327
derivative indices, 279
Derivative of Riemann Zeta function, 57
derivdegree (function), 327
derivlist (keyword form), 316, 411
derivsubst (option variable), 331
describe (special form), 11
descriptive statistics of a matrix, 76, 77
det_by_ldu (function), 236
det_by_lduf (function), 236
determinant, 148, 149, 227
determinant (function), 224
determinant of a matrix, 224, 237, 261, 262
determinant of a matrix by LDU, 236
determinant of a sparse matrix, 262
determinant of covariant metric gdet, 298
determinant of fiber metric fgdet, 298
determinant of frame field matrix fdet, 298
determinant_by_ldu (function), 237
detout, 314
detout (option variable), 261
dfloat (evfun), 372
dfloat (function), 22
dfloat_epsilon (system variable), 414
dfloat_minus_epsilon (system variable), 414
dfloatep (function), 22, 391
diag_matrix (function), 220
diagmatrix (function), 220
diagmetric (option variable), 298
diagonal frame, 302
diagonal matrix, 220
diff
ev property, 315
diff (function), 145, 286
diff_canonize (option variable), 211
differ (package), 127
difference (function), 257
difference_pde (function), 199
difference_table (function), 257
differenceeq (function), 127
differential calculus, 143–158
differential forms, 306
contraction, 307
exterior derivative, 307
exterior product, 307
initialize, 306
Lie derivative of a form, 307
Lie derivative of a vector, 307
differentiation
  functional dependencies, 146
  example, 145
  gradients of a function, 147
  gradients of a function (symbolic), 148
  Jacobian, 148
  main function diff, 145
  partial differentiation package, 149
  Wronskian, 149
differentiation of Bessel functions
  example, 148
differentiation with dependencies
  example, 146
differentiation with gradients
  example, 147
differerverbose (option variable), 127
diffop (function), 212
diffsol (function), 185
dilogarithm function, 52
  reflection, 52
dim (option variable), 298
dimen (package), 84, 85
dimen package
  acceleration (predefined physical quantity), 85
  action (predefined physical quantity), 85
  activity (predefined physical quantity), 85
  angle (predefined physical quantity), 85
  angular_acceleration (predefined physical quantity), 85
  angular_momentum (predefined physical quantity), 85
  angular_velocity (predefined physical quantity), 85
  area (predefined physical quantity), 85
  boltzmanns_constant (predefined physical quantity), 85
  capacitance (predefined physical quantity), 85
  charge (predefined physical quantity), 85
  conductance (predefined physical quantity), 85
  current (predefined physical quantity), 85
  current_density (predefined physical quantity), 85
  density (predefined physical quantity), 85
  distance (predefined physical quantity), 85
  dose (predefined physical quantity), 85
  electric_field (predefined physical quantity), 85
  electric_permittivity (predefined physical quantity), 85
  electric_permittivity_of_a_vacuum (predefined physical quantity), 85
  energy (predefined physical quantity), 85
  enthalpy (predefined physical quantity), 85
  entropy (predefined physical quantity), 85
  exposure (predefined physical quantity), 85
  film_coefficient (predefined physical quantity), 85
  flow (predefined physical quantity), 85
  force (predefined physical quantity), 85
  frequency (predefined physical quantity), 85
  gravity_constant (predefined physical quantity), 85
  heat (predefined physical quantity), 85
  heat_capacity (predefined physical quantity), 85
  heat_transfer_coefficient (predefined physical quantity), 85
  inductance (predefined physical quantity), 85
  internal_energy (predefined physical quantity), 85
  kinematic_viscosity (predefined physical quantity), 85
  length (predefined physical quantity), 85
  magnetic_field_strength (predefined physical quantity), 85
  magnetic_flux (predefined physical quantity), 85
  magnetic_flux_density (predefined physical quantity), 85
  magnetic_induction (predefined physical quantity), 85
  magnetic_permittivity (predefined physical quantity), 85
  mass (predefined physical quantity), 85
  momentum (predefined physical quantity), 85
  permeability (predefined physical quantity), 85
  permittivity (predefined physical quantity), 85
  plancks_constant (predefined physical quantity), 85
  poisons_ratio (predefined physical quantity), 85
  power (predefined physical quantity), 85
  pressure (predefined physical quantity), 85
  resistance (predefined physical quantity), 85
  shear_modulus (predefined physical quantity), 85
  specific_entropy (predefined physical quantity), 85
  specific_heat (predefined physical quantity), 85
INDEX

speed_of_light (predefined physical quantity), 85
stefan_boltzmann_constant (predefined physical quantity), 85
strain (predefined physical quantity), 85
stress (predefined physical quantity), 85
surface_tension (predefined physical quantity), 85
temperature (predefined physical quantity), 85
thermal_conductivity (predefined physical quantity), 85
thermal_diffusivity (predefined physical quantity), 85
thermal_expansion_coefficient (predefined physical quantity), 85
time (predefined physical quantity), 85
voltage (predefined physical quantity), 85
volumes (predefined physical quantity), 85
work (predefined physical quantity), 85
younsg_modulus (predefined physical quantity), 85
dimen_list_of_equations (option variable), 85
dimension (function), 85
dimf (option variable), 298

Dirac algebra, 306
direct convolution of matrices, 260
discontinuous slope
integration of, 161
discrete_moment (function), 63
discriminant of a polynomial, 91
disjointp (function), 20
disolate (function), 107
disp (function), 347
dispcon (function), 282
dispsform (option variable), 352
dispform (function), 323
dispfun (special form), 351
display (special form), 347
display line labels
  C-LINE, 5
  D-LINE, 5
  E-LINE, 5
  M-LINE, 5, 260
display of indicial tensors
example, 293
display2d (option variable), 350
display_case (option variable), 350
display_format_internal (option variable), 352
display_tex (option variable), 485
displaying equations
example, 347
displaying expressions to a given depth (reveal)
example, 348
disprule (special form), 351
dispsym (function), 280
dispterm (function), 348
distance
  predefined physical quantity in dimen package, 85
distrib (function), 105
div (prefix operator), 276
div operator, 276
divergence operator, 276
divide (function), 88
divsum (function), 59
do (special form), 405
doallmxops (option variable), 261
domain (option variable), 376
domain information
  example, 374
domxexpt (option variable), 262
domxmxops (option variable), 262
domxntimes (option variable), 93
dontfactor (option variable), 93
doscmxops (option variable), 262
doscmxplus (option variable), 262
dose
  predefined physical quantity in dimen package, 85
dot operator, 262
dot0nescsimp (option variable), 263
dot0simp (option variable), 263
dot1simp (option variable), 263
dotassoc (option variable), 263
dotconstrules (option variable), 263
dotdistrib (option variable), 263
dotexptsimp (option variable), 263
dotident (option variable), 263
dotscrules (evflag), 372
dotscrules (option variable), 263
dpart (function), 324
dscalar (function), 301
dummy_var_counter (option variable), 118
dummyvarprefix (option variable), 118
dupe (function), 272
%e (symbol)
  base of natural logarithms, 27
%e_to_numlog (option variable), 35
%e_elementary_charge (physical constant), 82
E-LINE intermediate result line, 5
echelon (function), 225
echelon form of a matrix
example, 225
edit (function), 462
eigen (package), 229
eigenmethod (option variable), 272
eigens_by_jacobi (function), 232
eigens_by_schur (function), 232
eigenvalues (function), 230
eigenvalues_by_jacobi_nmax (option variable), 232
eigenvalues_by_schur (function), 231
eigenvalues_by_schur_flag (option variable), 232
eigenvectors, 229
eigenvectors (function), 230
eigenvectors_by_schur (function), 232

eighth (function), 328
eigenvectors_by_schur (function), 232

einstein (function), 300
Einstein curvature tensor, 300
ei (function), 201
electric_field
    predefined physical quantity in dimen package, 85
electric_permittivity
    predefined physical quantity in dimen package, 85
electric_permittivity_of_a_vacuum
    predefined physical quantity in dimen package, 85
dlength (option variable), 121
eliminate (function), 132
ellipse, 68
    area, 68
circumference, 68
ellipsoidal
    predefined coordinate system for ct_coordsys, 297
elli (function), 166
elli1 (function), 166
eLLiptic
    predefined coordinate system for ct_coordsys, 297
    predefined coordinate system for vect_coordsys, 278
elliptic coordinates, 278
elliptic_cylindrical_coordinates, 278
eLLiptic_integral, 166
eelliptic_PDEs, 208
elli (function), 166
elli1 (function), 166
eLLiptic_f (function), 166
eLLiptic_kc (function), 166

elliptic_cylindrical
    predefined coordinate system for ct_coordsys, 297
    predefined coordinate system for vect_coordsys, 278
eLLiptek (function), 166
eLLiptek1 (function), 166
eLLematrix (function), 220
%emode (option variable), 34
%emode (evflag), 372
enable_more_processing (option variable), 456
end (symbol), 322
endcons (function), 424
energy
    predefined physical quantity in dimen package, 85
entering a matrix
    example, 218
entering a tensor
    example, 295
entermatrice (function), 268
entermatrix (function), 217
enter_tensor (function), 295
enthalpy
    predefined physical quantity in dimen package, 85
entropy
    predefined physical quantity in dimen package, 85
%enumer (option variable), 27
%enumer (evflag), 314, 372
%epsilon_0 vacuum permittivity (physical constant), 82
equal (function), 394
equalp (function), 180
equationp (function), 392
equations, 28
    example, 28
equations_of_geodesic_motion, 300
equilateral_triangle, 68
    area, 68
erf (function), 61
erfflag (option variable), 159
erratch (special form), 444
errintseq (option variable), 160
error
    round-off, 77
error (function), 443
error_function, 61, 159
    inverse, 61
error_handling
    error, 443
catching errors, 444
INDEX

error message, 443
special error conditions, 445
divergent, 445
mathematical error, 445
Taylor series essential singularity, 445
Taylor series unfamiliar singularity, 445
error handling and debugging, 443–452
error or warning messages
function-name fell off end., 322
ALGSYS cannot solve - system too complicated, 128
Argument to first was atomic: exp, 327
Arguments to MAP are not of the same length, 344
Arguments to MAP not uniform - cannot map, 344
Dependent equations eliminated., 120
Got a null equation list, continuing - SOLVE, 131
Got a null variable list, continuing - SOLVE, 131
Improper index to list or matrix: 2, 118
Incompatible structure, 219
Inconsistent Equations, 130
MAP is doing an APPLY., 344
MAP is truncating., 344
namestack overflow, 334
Not an array -ARRAYINFO: 'arrayname', 362
Not an nth power - NTHROOT, 95
RAT replaced floatum by ratnum = approximate value, 96
Reordering is not allowed., 355
Singular, 130
SOLVE is using arc-trig functions to get a solution. Some solutions may be lost., 131
Warning: Float to bigfloat conversion of 1.2, 23
error_list (system variable), 443
error_size (option variable), 444
error_string (system variable), 443
error_syms (option variable), 444
errorfun (option variable), 443
errmsg (function), 443
errormsg (option variable), 444
Euclidean algorithm, 89
euler (function), 60
Euler number, 60
Euler polynomial, 59
Euler–Lagrange equations, 201, 206
example, 202
Euler–Lagrange symbol array inv1, 305
Euler–Lagrange tensor, 305
Euler–Mascheroni constant, 27
eulerpoly (function), 59
ev (special form), 314
eval (function), 317, 479
eval (keyword), 315
eval_string (function), 317, 416
eval_when (special form), 433
even (property), 366
evenfun (property), 367
evenp (function), 392
evflag, 22, 27, 34, 35, 37, 38, 40, 42, 43, 46, 87, 88, 93, 96, 101, 107, 112, 113, 131, 261, 263, 276, 319, 389, 410
%emode, 372
%enumerator, 314
isolate_wrt_times, 372
return_nummod, 372
use_groebner, 372
algebraic, 372
atrigswitch, 372
atrigswitch, 372
caucalysum, 372
demoivre, 372
dotscrules, 372
exponentialize, 372
expisolate, 372
factorflags, 372
float, 372
genfloat, 372
halfangles, 372
infeval, 372
keepfloat, 372
letrat, 372
listarith, 372
logabs, 372
logarc, 372
logexpand, 372
logneginf, 372
lognumeral, 372
m1pbranch, 372
programmode, 372
radexpand, 372
ratalgdenom, 372
ratfac, 372
ratmx, 372
ratsimpexpons, 372
simpsum, 372
simp, 372
sumexpand, 372
trigexpand, 372
evflag
%enumerator, 521
evflag (property), 372
evenfun
\texttt{bfloat}, 372
\texttt{dfloat}, 372
\texttt{factor}, 372
\texttt{fullratsimp}, 372
\texttt{logcontract}, 372
\texttt{polarform}, 372
\texttt{radcan}, 372
\texttt{ratexpand}, 372
\texttt{ratsimp}, 372
\texttt{rectform}, 372
\texttt{rootscontract}, 372
\texttt{sfloat}, 372
\texttt{trigreduce}, 372
\texttt{evfun} (property), 371
\texttt{evundiff} (function), 289
example
\texttt{assume}, 375
\texttt{linsolve}, 119
adding to a list, 424
adding to a list (end), 424
algebraic integers, 88
appending to a list, 424
array information, 362
assign array values, 421
association lists, 325
asymptotic simplification, 158
augmented coefficient matrix, 222
autoloading, 438
backward difference, 114
brachistone problem, 202
breaking, 446
catch and throw, 404
catching errors, 445
changing command line labels, 6
choosing coordinate system, 304
Christoffel symbols, 288
column vector, 218
common subexpressions, 110
complex numbers, 24
context, 380
continued fractions, 26
converting metric components, 294
CRE form with polynomials, 96
cross multiplication of sums, 104
debugging, 446, 449
debugging functions, 449
debugging programs, 449
declaring a description, 438
declaring information and features, 380
decomposition of functions (finding roots), 132
deleting one expression from another, 329
deleting information, 410
derivative degree, 327
differentiation, 145
differentiation of Bessel functions, 148
differentiation with dependencies, 146
differentiation with gradients, 147
display of indicial tensors, 293
displaying equations, 347
displaying expressions to a given depth (reveal), 348
domain information, 374
entering a tensor, 295
equations, 28
Euler–Lagrange equations, 202
evaluation (local), 316
expanding \texttt{sum}, 113
expanding expressions, 100
expanding rational expressions, 100
expansion of trig functions, 44
factoring, 90, 91
factoring (complex) polynomials, 125
factoring over Gaussian integers, 94
factoring sums, 94
factoring with \texttt{sqfr}, 94
features, 361
finding symbols, 445
floating point number types, 22
Fourier series, 180
functions with special forms, 340
functions with variable number of arguments, 339
functions with \texttt{lambda} notation, 339
gcd of coefficients of a polynomial, 89
geometric functions, 68
gradients of a function, 147
Groebner, 139
harmonic series, 58
Hessian, 403
Horner’s rule, 110
infix and prefix, 500
integration
change of variable, 163, 164
delta function, 32, 172
generalized hypergeometric functions, 174
Laplace transform, 173
Romberg, 167
integration by Risch algorithm, 159
integration generating \texttt{log} forms, 162
integration
residues, 161
isolating a term, 107
itensor properties, 280
iteration, 499
Kronecker delta, 286
\texttt{lambda} notation, 339
Laplace transforms, 162
linear programming, 264
list manipulation, 424–426
lists, 423
macroexpansion, 441
macros, 440
manipulating information, 380
mapping, 344–346
mapping (fullmap), 345
mapping (fullmap), 345
mapping (map), 344
mapping (scanmap), 345, 346
matrix (creating), 218
matrix (entering), 218
matrix characteristic polynomial, 225
matrix echelon form, 225
matrix manipulation, 426
matrix multiplication (dot operator), 263
matrix rank, 225
matrix upper triangular form, 225
multiplication of sums or products by a factor, 105
multivariate Taylor series, 153
Newton's method, 136, 407
nofix operator, 497
noun forms, 323
number of real roots of a polynomial, 120
numerical evaluation of trig functions, 42
numerical factors, 327
numerical terms of sums, 327
de, 188, 196
operator algebra, 214, 215
optimizing expressions, 430, 431
optimizing expressions with functions, 436
ordering variables in expressions, 355
ordinary differential equations, 188, 196
Pade approximation, 157
partial differentiation, 150
partial fraction expansion, 104
partitioning expressions, 328
parts of expressions, 321, 322, 326
passing values, 421
pattern matching, 386, 390, 392–394
pattern matching (matchdeclare), 385
pattern matching (tellsimp), 385
pattern matching (condition), 385
pause prompt, 13
permutations, 53
Poisson series, 177
polynomial discriminant, 91
polynomial division, 89
powerseries, 155
prefix and infix, 500
programming, 401
block structure, 402, 403
catch and throw, 404
if-then-else, 402
iteration, 407, 408
iteration control variables, 406
local protection, 405
property information, 364
quoted variable assignment, 342
rational coefficients, 326
CRE form, 326
rational expansion, 320
rational expression differentiation, 98
rational variable weighting scheme, 97
real quadratic fields, 59
real roots of polynomials, 126
factoring, 126
removing a function, 338
resultant, 91
reversion of Taylor series, 154
Riemannian curvature, 289, 290
roots of functions
solve, 131
roots of polynomials
algsys, 129
allroots, 131
roots of polynomials (elimination), 132
simplification
delta function, 32
sequential comparative, 103
simplification of Airy functions, 51
simplification of factorials, 56, 57
simplification of hypergeometric functions, 48
simplification of rational expressions, 102
simplification of tensor indices, 290
simplification of trig functions, 41, 44
simplification of trig functions (tellsimp), 46
simplification of trig functions (trigsimp), 45
simplification of log, 37
simplification of product, 115
simplification of sqrt, 38, 39
simplification of sum, 112
solving a linear system of equations, 119
sorting expressions, 355
special function (complex gamma), 54
special function (exponential integrals), 51
specifying derivatives at a point, 183
square root, 34
string length, 329
substitution, 331–334
substitution (atvalue), 334
substitution (lratsubst), 333
INDEX

substitution (ratsubst), 333, 334
substitution (sublis), 332
substitution (subspart), 332
substitution (subst), 331
syntax properties, 500
taking limits, 144
Taylor series, 152
defining coefficients, 156
Taylor series in CRE form, 98
Taylor series information, 156
Taylor-Laurant series, 155
tensor contractions, 281
tensor indices, 283, 285
testing for a string, 394
time and date, 452
truncating Taylor series, 352
using %, 8
variables in an expression, 325
version, 457
example (special form), 13
exit (function), 5
exit (symbol), 447
exp (function), 34
%Hartree Energy (physical constant), 82
exp_even_in (function), 180
exp_int (function), 51
exp_odd_in (function), 180
expand (function), 99
expand (keyword form), 316
expandall (expansion flag for vectorsimp, 277
expandcross (expansion flag for vectorsimp, 277
expandcrosscross (expansion flag for vectorsimp, 277
expandcrossplus (expansion flag for vectorsimp, 277
expandcurl (expansion flag for vectorsimp, 277
expandcurlcurl (expansion flag for vectorsimp, 277
expandcurlplus (expansion flag for vectorsimp, 277
expandediv (expansion flag for vectorsimp, 277
expandedivplus (expansion flag for vectorsimp, 277
expandedivprod (expansion flag for vectorsimp, 277
expandedot (expansion flag for vectorsimp, 277
expandedotplus (expansion flag for vectorsimp, 277
expandgrad (expansion flag for vectorsimp, 277
expandgradplus (expansion flag for vectorsimp, 277
expandgradprod (expansion flag for vectorsimp, 277
expanding expressions
example, 100
expanding rational expressions
example, 100
expandlaplacian (expansion flag for vectorsimp, 277
expandlaplacianplus (expansion flag for vectorsimp, 277
expandlaplacianprod (expansion flag for vectorsimp, 277
expandwrt (function), 109
expandwrt_denom (option variable), 109
expandwrt_factored (function), 109
expandwrt_nonrational (option variable), 109
expansion of trig functions
example, 44
explicit Euler method, 200
expon (option variable), 100
exponential
probability functions (continuous), 64
exponential function, 34
exponential functions, 34–37
Exponential integral, 51
exponential of a matrix, 246, 262
exponential_density (function), 64
exponential_distrib (function), 64
exponentialize (evflag), 372
exponentialize (function), 46
exponentialize (option variable), 46, 410
expop (option variable), 100
exposure
predefined physical quantity in dimen package, 85
expr, 490
express components in current coordinate system, 277
expressions with delta functions
example, 32
exprswell (option variable), 273
expt (function), 351
exptdispflag (option variable), 352
exptisolate (evflag), 372
exptisolate (option variable), 107
exptsub (option variable), 331
expunge_physical_constants (function), 82
exec (function), 43
exsecant, 43
ext_diff (function), 307
extdiff (function), 287
extended CRE form, 502
extended Euclidean algorithm, 89
exterior derivative, 287, 307
exterior product, 307
extgcd (function), 89
extrinsic curvature, 72
ezgcd (function), 89

F
probability functions (continuous), 64
f(args) := body (keyword form), 316
f,density (function), 64
f,distrib (function), 64
facepd (package), 108
faceexpand (option variable), 93
facsum (function), 108
facsum_combine (option variable), 108
fact_reflect (function), 54
factcomb (function), 56
factor (evfun), 372
factor (function), 91, 92
factor_number (function), 92
factor_use_rat (option variable), 93
facsum (function), 109
facsum (evflag), 372
factor (option variable), 93
factorform (function), 121
factorial
!, 55
bifac, 56
factorial, 55
beta function, 56
bigfloat, 56
bigfloat complex gamma function, 56
binomial coefficient, 55
combination, 55
combining, 56
generalized factorial !, 55
permutation, 55
simplification, 56–57
Stirling’s formula, 56
transforming to, 56
transforming to gamma function, 57
two factorials differ by integer, 57
factorial (function), 55
factorial function
reflection, 54
factorial_limit (option variable), 55
factoring, 91–95
factor, 91
minimum polynomial, 92
example, 90, 91
factoring out a term, 94
Gaussian integers, 94
into square free factors, 94
numbers, 92
polynomial with integer coefficients, 95
polynomials over an algebraic number, 95
polynomials over Gaussian integers, 94
sums, 94
Syms over Gaussian integers, 95
factoring (complex) polynomials
example, 125
factoring over Gaussian integers
example, 94
factoring sums
example, 94
factoring with sqf
example, 94
factorout (function), 94
factorsum (function), 94
facts (function), 379
false (symbol), 28
fancy_display (option variable), 353
fancy_font_name (option variable), 354
fancy_font_size (option variable), 354
fancy_width (option variable), 354
fancy_writefile (option variable), 354
fast cosine transform, 182
fast Fourier transform (FFT), 181
fast sine transform, 182
fasttimes (function), 88
fdet
determinant of frame field matrix, 298
fdet (function), 298
ff, pde (package), 199, 208
feature (property), 372
featurep (function), 361
features
example, 361
features (system variable), 365
ff (function), 190
FFT, 181
fft (function), 181
fgdet
determinant of fiber metric, 298
fh
utility function in kach package, 264
fib (function), 60
fiber metric symbol lg, 298
Fibonacci number, 60
%phi, 60
fibtophi (function), 60
fit (function), 328
file_search (function), 462
file_search (option variable), 460
file_types (option variable), 461
filename_length (special form), 463
filename extensions, 461
filename_merge (function), 464
filenames, 459
findarray (function), 423
film._coefficient
  predefined physical quantity in dimen package, 85
find._symbol (function), 449
findde (function), 304
  finding a symbol, 449
findde (function), 304
  finding common subexpressions, 110
finding roots (decomposition of functions)
  example, 132
finding stationary points, 201
finding symbols
  example, 445
finite difference approximations, 199
finite element method, 208
first (function), 327
  first order ordinary differential equations, 183
fix (function), 33
fixnums, 412
flat metric
  tensor example, 288
flat space metric, 293
flipflag (option variable), 284
float (evflag), 372
float (function), 22
  float (option variable), 22
  float2bf (option variable), 23
  float_minus_epsilon (system variable), 414
  float_plus_epsilon (system variable), 414
  float_print_digits_after_point (option variable), 23
  float_print_width (option variable), 23
  floating point number types
    example, 22
  floating point roots of polynomials
    allroots, 126
floatnump, 22
floatp (function), 22, 391
floats, 412
floor (function), 33
flow
  predefined physical quantity in dimen package, 85
flush (function), 290
flushderiv (function), 290
flushd (function), 290
flushnd (function), 290
for (special form), 405
force
  predefined physical quantity in dimen package, 85
forget (special form), 374
formal definition of a function, 337
formatting numbers, 23
fortcurrid (option variable), 483
fortindent (option variable), 473
fortlinelen (option variable), 482
fortran (option variable), 480
fortran (special form), 473
fortran_float_precision (option variable), 473
fortran_linel (option variable), 473
fortspaces (option variable), 474
forward difference scheme, 200
fourier (function), 178
fourier (package), 32, 177, 178
Fourier analysis, 177–182
  Fourier coefficients, 179
  Fourier cosine integral coefficients, 179
  Fourier integral coefficients, 178
  Fourier integral transform, 178
  Fourier series from coefficients, 179
  Fourier sine integral coefficients, 179, 180
  integral coefficients, 180
Fourier series
  example, 180
Fourier transforms
  FFT, 181
fourier_coeffs (function), 179
fourier_cos_coeffs (function), 179
fourier_cosint_coeffs (function), 179
fourier_dpint (system variable), 182
fourier_expand (function), 179
fourier_int_coeffs (function), 178
fourier_scalep (system variable), 182
fourier_sin_coeffs (function), 180
fourier_sinint_coeffs (function), 179
fourth (function), 328
fq
  utility function in kach package, 264
fr
  frame field matrix, 298
  frame field matrix fr, 298
  frame fields, 298
frame_bracket (function), 302
freeof (function), 392
frequency
  predefined physical quantity in dimen package, 85
frei
  inverse frame field matrix, 298
Frobenius series, 189
Frobenius series method for solving ODEs, 190
from, 407
from (special form), 407
full2banda (function), 239
INDEX

full2banda (function), 239
full_logcon (option variable), 37
fullmap (function), 345
fullmapl (function), 345
fullratsimp (evfun), 372
fullratsimp (function), 102
fullratsubst (function), 334
funcsolve (function), 115, 118
function, 337
  formal definition, 337
function-name fell off end., 322
functions, 409
  λ notation, 339
  arrays, 339
  basic mathematical, 31–34
  combinatorial and number theoretic, 53–60
  defining, 337
  exponentials and logarithms, 34–37
  geometry, 67–73
  infinite apply, 343
  lambda notation, 339
  making a function without calling it, 344
  mapping, 344
    fullmap, 345
    fullmap list, 345
    map, 344
    mapatom, 344
    maplist, 345
    outermap, 345
    scanmap, 345
  mathematical, 337
  miscellaneous, 73–74
  probability and statistical, 60–67
  removing, 338
  special, 46–52
  subscripted, 339
  trigonometric, 40–42
  user-defined, 337
  using functions as arguments, 341
  variable number of arguments, 339
  with arguments unevaluated, 341
functions (system variable), 338
functions for numerical analysis, 256–257
Functions for Ordering, 354
functions of a matrix variable (Jordan form), 247–248
functions of a matrix variable (normal form), 247
functions that act on lists, 253–255
functions that apply to matrices elementwise, 248–249
functions that give information about matrices, 252–253
functions with lambda notation
example, 339
functions with special forms
example, 340
functions with variable number of arguments
example, 339
fundef (special form), 351
funmake (function), 344
funp (function), 180
fx
  utility function in kach package, 264
G, %catalan 26
%G gravitational constant (physical constant), 82
go (function), 49
g1 (function), 49
gamma
  probability functions (continuous), 64
  %gamma
    Euler–Mascheroni constant (symbol), 27
gamma (function), 54
gamma function
  complex, 54
    1 argument, 54
    2 arguments, 54
  incomplete, 54
  log, 54
  reflection, 54
gamma_density (function), 64
gamma_distrib (function), 64
gamma_reflect (function), 54
gammalim (option variable), 54
gauss (function), 61
Gaussian curvature, 72
Gaussian elimination, 227, 240, 241
gcd (function), 89
gcd (option variable), 101
gcd of coefficients of a polynomial
  example, 89
gcddivide (function), 89
gcdn (function), 270
gcfactor (function), 94
gd (function), 43
gdet
  determinant of covariant metric, 298
Gegenbauer polynomials, 47
gegenbauer_c (function), 47
gencirculant (function), 243
gendecs (function), 482
gendecs (option variable), 481
gendiff (function), 148
general tensor algebras, 305–306
generalized factorial
  !!, 55
generalized hypergeometric function integration
example, 174
generalized inverse, 227, 228
generalized symmetries, 207
**genf** (function), 127
**genfact** (function), 55
**genfloat** (evflag), 372
**genfloat** (option variable), 479
**genhankel** (function), 244
**genindex** (option variable), 113
geninv (package), 227
genlogical (option variable), 479
**genmatrix** (function), 218
gennum (option variable), 479
genstatincr (option variable), 482
genstatno (option variable), 482
gensumnum (option variable), 113
**gentoeplitz** (function), 245
**gentran** (special form), 476
**gentran** (special form), 480
**gentran** (special form), 480
**gentranin** (special form), 478
gentranlang (option variable), 476
gentranopt (option variable), 479
gentranout (special form), 476
gentranpop (special form), 477
gentranpush (special form), 477
gentranshut (special form), 477
**genvandermonde** (function), 246
**genvector** (function), 218
**geod**
geodesic equations of motion, 300
geodesic equations of motion array **geod**, 300
geodesic motion, 300
equations, 300
geometric
probability functions (discrete), 62
geometric functions
example, 68
**geometric_density** (function), 62
**geometric_distr** (function), 62
**geometric_term** (function), 73
geometry functions, 67-73
**geosum** (function), 73
**get** (function), 364
**get_var_domain** (function), 374
**get_var_domain** (function), 374
**getchar** (function), 415
**getchar** (function), 415
**getl** (function), 264
**getprop** (function), 360, 361
**gfactor** (function), 94
**gfactor** (function), 95
globalsolve (option variable), 119
**gmatrice** (function), 269
**gn** (function), 49
go (special form), 403
Got a null equation list, continuing - SOLVE, 131
Got a null variable list, continuing - SOLVE, 131
**grad** (prefix operator), 276
**gradef** (special form), 147
**grade** (system variable), 148
**gradient** operator, 276
**gradients of a function**
example, 147
**gramschmidt** (function), 230
Grassmann algebra, 305
gravitational theory, 305
**gravity theories**, 305
**gravity_constant**
predefined physical quantity in **dimen** package, 85
greatest common divisor, 89
**syntactic**, 89
**grind** (function), 348
**grind** (option variable), 348
**grob_lc** (function), 138
**grob_ldeg** (function), 138
**grob_l** (function), 138
**grob_reduct** (function), 137
**grob_s_poly** (function), 137
**grob_tot_reduct** (function), 137
**grob_tot_reduct** (option variable), 138
**grob_trace** (option variable), 138
**Grobner**
example, 139
**grobner** (function), 136
grobner (package), 136
Grobner bases, 136
grobner_coef_divide (option variable), 138
grobner_functions (system variable), 138
grobner_genvar_index (option variable), 138
grobner_genvar_prefix (option variable), 138
grobner_tot_order (option variable), 138
**grobner_uni** (function), 137
**grow_space** (special form), 472
Gudermannian function, 43
**Gumbel**
probability functions (continuous), 64
**gumbel_density** (function), 64
**gumbel_distr** (function), 64
%h Planck’s constant (physical constant), 82
hach (function), 264
Hacijan’s algorithm, 264
hadamard (function), 243
Hadamard matrix, 243
halfangles (evflag), 372
halfangles (function), 43
halfangles (option variable), 43
ham (function), 203
hankel (function), 244
Hankel functions, 174
Hankel matrix, 243, 244
generator, 244
Hankel matrix inverse, 244
harm (function), 190
harmonic (function), 58
harmonic series, 58, 190
defined, 58
harmonic_term (function), 73
hav (function), 43
haversine, 43
%hbar \%h/(2*%PI) (physical constant), 82
hdivfree (option variable), 233
heat
predefined physical quantity in dimen package, 85
heat equation, 150
heat_capacity
predefined physical quantity in dimen package, 85
heat_transfer_coefficient
predefined physical quantity in dimen package, 85
height
pyramid3, 69
pyramid4, 69
height_pyramid3 (function), 69
height_pyramid4 (function), 69
help (function), 9
Hermite polynomials, 47
hermite_h (function), 47
hermitian (function), 270
hermitianmatrix (option variable), 231
hessenberg (function), 233
Hessenberg form of a matrix, 233
Hessian
example, 403
hesstrans (option variable), 233
heuristic_precision_limit (option variable), 365
hgfred (function), 48
hilbert (function), 244
Hilbert matrix, 244
hipow (function), 327
homogeneous polynomials, 89
horner (function), 109
Horner’s rule
defined, 110
Hurwitz Zeta function, 58
Hurwitz Zeta function (bfloat), 58
hyperbolic PDEs, 208
hypergeometric
equation, 186, 189
function, 48
probability functions (discrete), 62
series, 186
terms, 116, 117
hypergeometric_density (function), 62
hypergeometric_distrib (function), 62
hyperrationalcontract (function), 117
hyperrationals, 117
hyperratsimp (function), 117

%i square root of -1 (symbol), 27
%iargs (option variable), 41
ibase (option variable), 412
ic1 (function), 191
ic2 (function), 191
ic_convert (function), 294
ic2bix (function), 269
ic2list (function), 269
ichr1 (function), 288
ichr2 (function), 288
icounter (option variable), 284
icurvature (function), 289
id_contract (function), 137
id_intersect (function), 137
id_member (function), 137
id_reduce (function), 137
id_tot_reduce (function), 137
idemgonent (property), 370
ident (function), 220
identity (function), 270
identity matrix, 220, 251
idiff (function), 287
idummy (function), 284
idummyx (option variable), 285
ieqn (function), 209
ieqn keywords
abedel, 210
collocate, 210
firstkindseries, 210
fffrnk1st, 209
fffrnk2nd, 209
fredseries, 210
ltan, 209
neumann, 210
tailor, 210
vlfrnk, 209
ieqn_fredholm_constants (option variable), 210
ieqn_fredholm_eigenvalue (option variable), 210
ieqn_volterra_taylor_order (option variable), 210
ieqnprint (option variable), 210
if (special form), 399
if (function), 178
igeodesic_coords (function), 290
ilt (function), 173
imaginary (property), 366
imagpart (function), 25
imetric (function), 279
implicit Euler method, 200
Improper index to list or matrix: 2, 118
improve_lu_solve (function), 237
in (special form), 405
inchar (option variable), 6
Incompatible structure, 219
incomplete elliptic integral, 166
incomplete elliptic integral, 165
incomplete gamma function, 54
Inconsistent Equations, 130
increasing (property), 367
ind (symbol), 144
indefprod (function), 116
indefsum (function), 116
indexed_tensor (function), 289
indexed_tensors (option variable), 289
indices
contravariant, 279
covariant, 279
derivative, 279
indices (function), 285
indicial tensor analysis, 278–295
indicial to component conversion, 294
inductance
predefined physical quantity in dimen package, 85
ineq_linsolve (function), 29
ineq_reverse (function), 28
ineqsimp (function), 28
inequalities, 28
reversing, 28
simplification, 28
solving systems, 29
inf
∞ real positive infinity (symbol), 27
inf (symbol), 27, 409
infapply (function), 343
infeval (eval), 372
infeval (function), 317
infeval (keyword), 315
infinity
∞ complex infinity (symbol), 27
infinity (symbol), 27
infix, 495
infix (function), 495
infix and prefix
example, 500
infix operators, 494
/> , 217
<, 400
<=, 400
< /, 217
<:, 250
>, 399
>=, 400
~, 276, 307
*, 496
**, 494
+, 496
., 275, 495
... 250
/, 497
:, 417
::, 418
::: , 439
::=, 337
=, 400
#, 400
—, 307
and, 400
but_upon_return, 405
or, 400
inflag (option variable), 323
infloat (option variable), 79
infolists (system variable), 359
init_atensor (function), 305
init_cartan (function), 306
init_ctensor (function), 296
init_itensor (function), 295
init_physical_constants (function), 82
initial conditions for ODEs, 191
initial conditions to ODEs, 191
initialize itensor, 295
initialize_macsyma (function), 4
innerproduct (function), 230
inpart (function), 322
inrt (function), 34
intanalysis (option variable), 162
intanalysis_warn (option variable), 162
integconstnum (option variable), 211
integconstprefix (option variable), 211
integer (property), 366
integer_print_width (option variable), 21
**integerp** (function), 391
integrals, 412
integers, algebraic, 87
**integop** (function), 212
integral calculus, 158–172
integral equation
  first kind, 209
  second kind, 209
integral equations, 173, 208–210
integrals with delta functions
  example, 32, 172
integrate
  intervals, 161
  intervals with point or slope discontinuities, 161
  pole analysis, 162
  residues, 161
  using limits, 161
  using Taylor series, 161
warning, 162
**integrate** (function), 158, 161
integration
  **byparts**, 160
  **integrate**, 158, 161
  **risch**, 159
  antidifferentiation
    **antidiff**, 160
    **antid**, 160
  by parts, 160
  change of variable, 163
  definite, 161
  delta function, 172
  derivative of unspecified function, 160
  elliptic integrals, 165
    complete, incomplete and Jacobean, 165
  exponential integrals, 166
  Fourier integrals, 177–182
  indefinite, 158
  Laplace transforms, 172–175
  numerical, 166–172
  products of trig and exponentials **intsce**, 160
  Risch Algorithm, 159
  trigonometric-exponential expressions, 159
integration by Risch algorithm
  example, 159
Integration dependencies, 146
integration generating **log** forms
  example, 162
inteqn (package), 208
interactive programs, 452–456
  choosing variables, 453
  menus, 452
  one of, 454
page pause, 455
pause, 454
query, 454
read, 454
readonly, 454
select one of, 453
Symbolics Lisp Machine, 456
using tabs for display, 454
**internal_energy**
  predefined physical quantity in **dimen** package, 85
**interpol_default_num** (option variable), 82
**interpol_method** (option variable), 82
**intersect** (function), 20
**intersect_line_hyperplane** (function), 71
intersection
  line and plane, 71
**intersection** (function), 20
**interval_integrate** (function), 161
intfaclim (option variable), 94
**inttopois** (function), 175
**inttoprod** (function), 116
**inttosum** (function), 114
intrinsic curvature, 72
**intsce** (function), 160
**inv1**
  Euler–Lagrange symbol array, 305
**inv_erf** (function), 61
**inv_fourier** (function), 178
**invariant1** (function), 305
inverse error function, 61
inverse fiber metric symbol **ufg**, 298
inverse frame field matrix **fri**, 298
inverse Gudermannian function, 43
inverse of a matrix, 236
inverse of a matrix by LDU, 236
**invert** (function), 226
**invert_by_cholesky** (function), 233
**invert_by_ldu** (function), 236
**invert_by_lduf** (function), 236
**invert_by_lu** (function), 237
**invert_by_lu_symb** (function), 237
**invert_hankel** (function), 244
**invert_hankelf** (function), 244
**invert_hankelr** (function), 244
**invert_permutation** (function), 53
**invert_psymhankel** (function), 244
**invert_psymhankelf** (function), 244
**invert_symtoeplitz** (function), 246
**invert_symtoeplitzsf** (function), 246
**invert_toeplitz** (function), 245
**invert_toeplitzsf** (function), 245
**invert_using_minors** (function), 227
invertc (function), 227
inverting a Cholesky matrix, 233
inverting a complex matrix, 227
inverting a Hankel (square persymmetric) matrix, 244
inverting a Hankel matrix, 244
inverting a Hilbert matrix, 244
inverting a matrix, 80, 226–228, 236, 246
inverting a matrix by LDU, 236
inverting a matrix by LU numeric, 237
inverting a matrix by LU symbolic, 237
inverting a matrix using minors, 227
inverting a real Hankel matrix, 244
inverting a symmetric Toeplitz matrix, 246
inverting a Toeplitz matrix, 245
invhilbert (function), 244
involution (property), 370
irrational (property), 366
is (special form), 374
is a Boolean booleanp, 252
is an empty matrix or empty list, 252
ishow (function), 292
isolate (function), 106
isolate_wrt_times (evflag), 372
isolate_wrt_times (option variable), 107
isolating a term example, 107
isqrt (function), 34
itenform (function), 284
itensor (package), 208, 278, 279, 284, 286, 289, 291–295, 301, 530, 560
itensor properties example, 280
iterate utility function in kach package, 264
iteration example, 499
jacobi (function), 59
Jacobi polynomials, 47
jacobi_am (function), 165
jacobi_aml (function), 165
jacobi_cn (function), 165
jacobi_dn (function), 165
jacobi_p (function), 47
jacobi_sn (function), 165
Jacobian, 148
jacobian (function), 148
Jacobian elliptic functions, 165
Jacobian matrix, 148
Jenkins algorithm, 126
Jenkins–Traub algorithm, 126
Jordan normal form, 234
jordan_form (function), 235
jordan_form (package), 234
jordan_matrix_expt (function), 235
jordan_option_mat_output (option variable), 235
jordan_option_ucharpoly (option variable), 235
jordan_simple_roots (option variable), 235
jordan_simtran (function), 235
%k Boltzmann’s constant (physical constant), 82
%k1 constant of integration for ode, 188
%k1 (symbol), 188
%k2 constant of integration for ode, 188
%k2 (symbol), 188
k_delta (function), 32
kach (package), 264
kach package utility accelerate, 264
criterion, 264
fh, 264
fq, 264
fx, 264
iterate, 264
log2, 264
z, 264
kdelta (function), 285
keep_block_matrix (option variable), 241
keepfloat (evflag), 372
keepfloat (option variable), 101
keyword forms, 411
keyword forms for argn, 323
form1, . . . , formn, 440
var1, . . . , varn, 316
var1, . . . , varn, 411
ev, 316
m, n, 316
keywords, 411
keywords for ev, 315, 316, 411
limit, 144
scanmap, 346
kill (special form), 471
kill keywords all, 471
clabels, 471
dlables, 471
eclables, 471
features, 471
labels, 471
ratweights, 471
tellrats, 471
INDEX

killcontext (function), 380
kind (function), 379
kinematic viscosity
  predefined physical quantity in dimen package, 85
kinvariant
  Kretschmann invariant symbol, 300
known_eigvals (option variable), 231
known_eigvecs (option variable), 231
Kretschmann invariant, 300
Kretschmann invariant symbol kinvariant, 300
kron_delta (function), 32
Kronecker delta
  k_delta (semantic), 32
  kdelta generalized delta function, 285
  kron_delta, 32
  and tensor derivatives, 282
  example, 286
krylov (function), 245
Krylov matrix, 245
kt
  contortion array, 302
Kuki algorithm, 54

%l_planck Planck length (physical constant), 82
labels (special form), 6
labels (system variable), 6
Lagrange multipliers, 201
Laguerre polynomials, 47
laguerre_1 (function), 47
lambda (special form), 339
lambda notation
  example, 339
  notation, 339
Laplace
  probability functions (continuous), 65
laplace (function), 172
Laplace transforms, 172–175, 185, 246
  example, 162, 173
laplace_call (option variable), 162
laplace_density (function), 64
laplace_distrib (function), 65
Laplacian, 147
laplacian (prefix operator), 276
laplacian operator, 276
lassociative (property), 368
last (function), 328
lasttime (system variable), 451
Laurent series, 151, 157
lcm (function), 90
les
  covariant connection coefficient symbol, 296
ldefint (function), 161
ldisp (function), 347
ldisplay (special form), 348
LDU decomposition of a matrix, 235, 236
ldu_decomp (function), 235
ldu_decompf (function), 236
leadingcoeff (system variable), 121
least common multiple, 90
least squares methods
  lsq_linsolve, 228
  matsolve_by_svd, 80, 239
least_negative_dfloat (system variable), 414
least_negative_float (system variable), 413
least_positive_dfloat (system variable), 414
least_positive_float (system variable), 413
leftjust (option variable), 348
Legendre equation, 187
Legendre polynomials, 47
legendre_p (function), 47
legendre_q (function), 47
Leibnitz rule, 148
lein
  covariant curvature tensor, 300
leinstein (function), 300
length
  predefined physical quantity in dimen package, 85
length (function), 329
let (special form), 389, 390
let_rule_packages (system variable), 390
lettrat (evflag), 372
lettrat (option variable), 389
letrules (special form), 390
letsimp (special form), 390
Levi–Civita tensor density, 286
Levi_Civita (function), 286
lexemes, 489
lg
  fiber metric symbol, 298
lg
  covariant metric symbol, 296
lhospitallim (option variable), 144
lhs (function), 327
li2_reflect (function), 52
ll[n] (function), 52
Lie
  bracket, 205, 302
derivative, 287, 307
symmetries, 204
Lie enveloping algebra, 305
lie_diff (function), 307
liediff (function), 287
limit, 143
limit (function), 143
limit of an expression as \( x \to value \), 143
linsubst (option variable), 144
linchange (function), 117
linchangevar (function), 117
lindlc (option variable), 192
lindlc (option variable), 192
lindna (option variable), 192
lindst (package), 192
lindstedt (function), 192
Lindstedt's method, 192
lindstedt_delete lc (option variable), 192
line segment perpendicular, 72
line segment perpendicular to two lines, 71
linear (property), 369
linear programming, 264
example, 264
linear_match (function), 389
linechar (option variable), 6
linedisp (option variable), 350
linel (option variable), 350
linenum (option variable), 350
linsolve
example, 119
linsolve (function), 119
linsolve_params (option variable), 120
linsolvewarn (option variable), 120
Lisp Machine, 456
change_screen_configuration, 456
define_macsyma_menu_command, 456
define_macsyma_menu_mode, 456
enable_more_processing, 456
use_tabs_for_display, 454
who, 457
list
copying, 219
list manipulation
example, 424–426
list2companion (function), 255
list2horner (function), 255
list2poly (function), 255
listarith (evflag), 372
listarith (option variable), 261
listarray (function), 421
listconstvars (option variable), 325
listdummyvars (option variable), 325
listedgvals (option variable), 231
listedigvects (option variable), 231
listofvars (function), 325
listp (function), 395
listratvars (function), 95
lists
example, 423
literal (function), 475
little-O function
o, 157
lnxchar (option variable), 219
lo (function), 158
load (function), 465
load_patches (function), 457
loadfile (special form), 470
loadprint (option variable), 470
local (special form), 380
local evaluation
example, 316
log (function), 35
log-normal
probability functions (continuous), 65
log-gamma function, 54
log10 (function), 35
log2
utility function in kach package, 264
logabs (evflag), 372
logabs (option variable), 162
logand (function), 73
logarc (evflag), 372
logarc (function), 42
logarc (option variable), 42
logarithm base, 27
logarithmic
probability functions (discrete), 62
logarithmic functions, 34–37
logarithmic_density (function), 62
logarithmic_distrib (function), 62
logb (function), 35
loggamma2 (function), 54
logconcoefficient (option variable), 36
logcontract (evfun), 372
logcontract (function), 35
logexpand (evflag), 372
logexpand (option variable), 35
logical
and, 73
or, 73
xor, 73
logical and, 257
logical or, 258
logical pathnames, 460
logistic
probability functions (continuous), 65
logistic_density (function), 65
logistic_distrib (function), 65
lognegint (evflag), 372
lognegint (option variable), 35
lognormal_density (function), 65
lognormal_distrib (function), 65
lognumerator (evflag), 372
lognumerator (option variable), 35
logor (function), 73
logout (function), 5
logsimp (option variable), 35
logxor (function), 73
lomega (function), 158
lopow (function), 327
Lorentz gauge, 290
lorentz_gauge (function), 290
lowerlimit_constant_counter (option variable), 118
lowerlimitprefix (option variable), 118
lp_by_simplex (function), 264
lpart (function), 321
lratsubst (function), 333
liem
  covariant curvature tensor, 299
liemman (function), 299
lrsetq (function), 479
lsetq (function), 479
lsq1 (function), 77
lsq_dchi2 (option variable), 79
lsq_dchi2_tol (option variable), 80
lsq_deviations (option variable), 79
lsq_error (option variable), 79
lsq_info (option variable), 79
lsq_iteration_counter (option variable), 80
lsq_iteration_max (option variable), 80
lsq_lambda_factor (option variable), 80
lsq_lambda_init (option variable), 80
lsq_linear (function), 78
lsq_linsolve (function), 80, 228
lsq_nonlinear (function), 78
lsq_parameqs (option variable), 80
lsq_paramvals (option variable), 79
lsq_refloat (option variable), 79
LU decomposition (symbolic), 236
lu_backsub (function), 237
lu_backsub_symb (function), 236
lu_compose_condition (option variable), 237
lu_condition (system variable), 238
lu_condition_norm (option variable), 238
lu_decomp (function), 236
lu_decomp_symb (function), 236
lu_full_pivoting (option variable), 237
lu_matrices (function), 237
lu_pivot (option variable), 236

M-LINE (Matlab C-LINE), 260
M-LINE Matlab line, 5
M.I.T., 1
m1pbranch (evflag), 372
m1pbranch (option variable), 40
macrolinear algebra
formal definition, 439
macroexpand (function), 441
macroexpand1 (function), 441
macroexpansion
  example, 441
macropattern (option variable), 441
macros
  example, 440
macros (system variable), 440
Macsyma database, 357–381
declaire, 359
remove, 359
atomic variables
  properties, 358
context, 378
  activate, 380
  facts, 379
  kind, 379
  local, 380
  newcontext, 379
  subcontext, 379
getting features, 361
getting properties, 361
manipulating
  assume, 373
manipulating information, 373–377
askcsign, 376
askexp, 376
askinteger, 376
asksign, 376
assume_pos_pred, 374
assume_pos, 374
domain, 376
forget, 374
get_domain_definition, 374
gtrace, 374
is, 374
maybe, 374
sign, 375
zeroequiv, 377
complex sign, 376
mathematical properties, 365
  additive, 368
  antisymmetric, 368
  commutative, 368
  complex, 366
  constant, 371
  constant function, 371
decreasing, 367
dependency, 371
eval flag, 372
even, 366
even function, 367
evfag, 372
gradient, 371
idempotent, 370
imaginary, 366
increasing, 367
integer, 366
irrational, 366
left associative, 368
linear, 369
multilinear, 369
multiplicative, 369
nary, 370
noninteger, 366
nonscalar, 370
odd, 366
odd function, 367
outative, 369
positive function, 367
rational, 366
real, 366
right associative, 368
scalar, 370
skew dot multiplicative, 370
symmetric, 368
Taylor series, 371
threadable, 367
non mathematical properties
alphabetic, 371
bound, 372
evfag, 372
evfun, 371
feature, 372
main variable, 372
noun, 371
operator, 373
predefined properties, 359
properties, 362
atomic variables, 358
predefined, 359
proviso, 377
user defined properties, 364
Macsyma Inc., 1
Macsyma information
status, 458
loading patches, 457
sleeping, 457
status, 457
version, 457
Macsyma version, 457
macsyma_greeting (function), 4
magnetic_field_strength
predefined physical quantity in dimen package, 85
magnetic_flux
predefined physical quantity in dimen package, 85
magnetic_flux_density
predefined physical quantity in dimen package, 85
magnetic_induction
predefined physical quantity in dimen package, 85
magnetic_permittivity
predefined physical quantity in dimen package, 85
mainvar (property), 372
makebox (function), 293
makefact (function), 56
makegamma (function), 57
makelist (special form), 425
makeprod (function), 116
manipulating information
contexts, 378
activate, 380
activecontextxs, 380
contexts, 379
context, 379
deactivate, 380
facts, 379
killcontext, 380
kind, 379
local, 380
newcontext, 379
subcontext, 379
texts, 379
example, 380
example, 380
provisos, 377
printing, 378
manipulating sums and products, 112–118
map (function), 344
MAP is doing an APPLY., 344
MAP is truncating., 344
mapatom (function), 344
maperror (option variable), 344
maplist (function), 345
mapmatrice (function), 269
mapping
texts, 379
example, 344–346
mapping with fullmap
texts, 379
example, 345
mapping with fullmapl
texts, 379
example, 345
mapping with map
texts, 379
example, 344
mapping with `scanmap` example, 345, 346

markedvarp (function), 481

markvar (function), 481

mass
  predefined physical quantity in `dimen` package, 85

matchdeclare (function), 384

matchfix, 498

matchfix (function), 498

matchfix operators, 497

[<a1, ..., a1n; a21, ..., a2n; ...; am1, ..., amn>], 250

matconvolve (package), 260

`matconvolve_direct` (function), 260

`matconvolve_fit` (function), 260

matexp (package), 246

matfuncs (package), 273

mathematical operators, 490

mathematical properties of atoms, 365

MathTips, 10

Matlab

Creating Matrices, 251
  identity, 251
  ones, 220
  Vandermonde, 251
  zero, 251

size of a matrix, 251

Matlab, 249–260

Matlab function

`mat_absorderless`, 255

`mat_all`, 257

`mat_any`, 258

`mat_atan2`, 249

`mat_block_pack`, 241

`mat_break`, 258

`mat_compan`, 256

`mat_computer`, 258

`mat_corrcoef`, 77

`mat_cosm`, 248

`mat_cov`, 77

`mat_cumsum`, 254

`mat_diag`, 221

`mat_eig`, 253

`mat_error`, 258

`mat_eval`, 259

`mat_expm`, 248

`mat_eye`, 251

`mat_fliplr`, 223

`mat_flipud`, 223

`mat_for`, 257

`mat_funn`, 248

mat_bose, 259

mat_isempty, 252

mat_isieee, 259

mat_length, 253

mat_linspace, 256

mat_log10, 248

mat_logm, 248

mat_logspace, 257

mat_lower, 252

mat_max, 254

mat_mean, 76

mat_median, 77

mat_nargin, 258

mat_nargout, 258

mat ncols, 252

mat_norm, 270

mat_nrows, 252

mat_ones, 220

mat_orderlessp, 254

mat_polyvalm, 256

mat_poly, 256

mat_prodt, 254

mat_qr, 253

mat_quad8, 257

mat_quot, 249

mat_raise, 252

mat_rank, 253

mat_rem, 249

mat_rot90, 223

mat_seqchub, 257

mat_sinm, 248

mat_size, 253

mat_sort, 254

mat_sqrtm, 248

mat_std, 77

mat_sum, 254

mat_svd, 253

mat_tanm, 248

mat_tril, 222

mat_triu, 222

mat_unblock_pack, 241

mat_unblocker, 242

mat_vander, 246, 251

mat_var, 76

mat_who, 259

mat_zeros, 251

Matlab style programming, 257–258

Matlab to Macsyma translator, 259–260

Matlab utility functions, 258–259

`matlinsolve` (function), 228

matrice
  characteristic polynomial, 272
eigenvalues, 272
Hessenberg, 271

**matrice** (function), 267
matrice (package), 267
matrice_functions (system variable), 267
matrice_variables (system variable), 267

**matrice_info** (function), 269

**matricep** (function), 269
matrices (system variable), 267

**matrix**
accessing columns, 222
accessing rows, 222
accessing submatrices, 222, 273
accessing submatrices by columns, 273
accessing submatrices by rows, 273
adjoint, 227
appending, 219
atan2, 249
back-substitution, 240, 241
back-substitution (LU), 236, 237
back-substitution (symbolic), 236
banded, 239, 240
symmetric, 239–241
block, 241, 242
Cauchy, 243
characteristic polynomial, 225, 226
Cholesky, 233
Cholesky form, 233
Cholesky inverse, 233
Circulant, 243
generator, 243
companion, 255, 256, 270
conjugate counter transpose of, 223
conjugate transpose of, 223
convert expression or list, 252
convert to expression or list, 252
convolution by FFT, 260
convolution by generating functions, 260
copying, 219
counter transpose of, 223
creating, 217, 218
decomposition, 236–238
determinant, 236
descriptive multivariate statistics, 76
descriptive statistics, 76, 77
determinant, 224, 227, 237, 261, 262
determinant by LDU, 236
diagonal, 220
direct convolution, 260
echelon form, 225
eigenvalues, 229–232, 253
eigenvectors, 229–231
Jacobi algorithm, 232
Schur algorithm, 232
exponentiation, 246, 262
function, 247
Gaussian elimination, 227, 240, 241
generalized inverse, 227, 228
greatest common divisor of elements, 270
Hadamard, 243
Hankel, 243, 244
generator, 244
Hankel (real) inverse, 244
Hermitian, 270
Hessenberg form, 233
Hilbert, 244
Hilbert inverse, 244
identity, 220, 251, 270
inverse, 226–228, 236, 244, 246
inverse (LDU), 236
inverse Hankel, 244
inverse Hankel (square persymmetric), 244
inverse Hilbert, 244
inverse of a complex, 227
inverse of a symmetric Toeplitz, 246
inverse of a Toeplitz, 245
invert using minors, 227
Jacobian, 148
Jordan form, 234
Krylov, 245
LDU, 236
LDU decomposition, 235, 236
LDU inverse, 236
LU decomposition, 236, 237
LU decomposition (symbolic), 236
LU inverse
numeric, 237
symbolic, 237
map over elements, 248
minor, 222
Moore–Penrose inverse, 228
multiplication, 240
norm, 270
normal form, 234
normal forms, 232
null space, 225
packing, 241
Pascal, 245
permanent, 225
permutation, 270
persymmetric Hankel, 243
polynomial, 247
QR decomposition, 238, 253
quotient, 249
rank, 225
remainder, 249
rotation, 223, 273, 274
Schur form, 238
setting an element, 219
similarity transformation, 231
Singular Value Decomposition, 80, 239
singular value decomposition, 238, 239
SVD, 253
symbolic decomposition, 238
Toeplitz, 245
trace, 224
transpose, 223, 270
transpose of, 223
triangular form, 225
unblock, 241, 242
univariate descriptive statistics, 76
unpacking, 241, 242
Vandermonde, 246, 251
with zeros, 220
Wronskian, 149
matrix (function), 218
matrix decompositions, 253
matrix equations
improve solving by LU, 237
solving by LU
numeric, 237
symbolic, 237
solving by SVD, 80, 239
solving Cholesky, 233
solving linear, 228
solving Toeplitz, 246
solving triangular, 236
matrix manipulation
example, 426
matrix multiplication (dot operator)
example, 263
matrix operators
\( M[\text{list.of.rows, list.of.columns}], 250 \)
\( M[\ldots \text{list.of.columns}] \) or \( M[\text{list.of.rows,..}], 251 \)
\( M[,..], 251 \)
matrix rank
example, 225
\%m_e Electron mass (physical constant), 82
\%m_n Neutron mass (physical constant), 82
\%m_p Proton mass (physical constant), 82
\%m_planck Planck mass (physical constant), 82
mat_absorderlessp
Matlab function, 255
mat_absorderlessp (function), 255
mat_all
Matlab function, 257
mat_all (function), 257
mat_any
Matlab function, 258
mat_any (function), 258
mat_atan2
Matlab function, 249
mat_atan2 (function), 249
mat_block_pack
Matlab function, 241
mat_block_pack (function), 241
mat_break
Matlab function, 258
mat_break (function), 258
mat_companion
Matlab function, 256
mat_companion (function), 256
mat_computer
Matlab function, 258
mat_computer (function), 258
mat_corrcoef
Matlab function, 77
mat_corrcoef (function), 77
mat_cosm
Matlab function, 248
mat_cosm (function), 248
mat_cov
Matlab function, 77
mat_cov (function), 77
mat_cumprod (function), 254
mat_cumsus
Matlab function, 254
mat_cumsus (function), 254
mat_diag
Matlab function, 221
mat_diag (function), 221
mat_diff (function), 257
mat_eig
Matlab function, 253
mat_eig (function), 253
mat_error
Matlab function, 258
mat_error (function), 258
mat_eval
Matlab function, 259
mat_eval (function), 259
mat_exist (function), 258
mat_expm
Matlab function, 248
mat_expm (function), 248
mat_eye
Matlab function, 251
mat_eye (function), 251
mat_feval (function), 258
mat_fliplr
Matlab function, 223
mat_fliplr (function), 223
mat_flipud
Matlab function, 223
mat_flipud (function), 223
mat_for
    Matlab function, 257
mat_for (special form), 257
mat_funm
    Matlab function, 248
mat_funm (function), 247, 248
mat_ident (function), 251
mat_ieeef
    Matlab function, 259
mat_ieeef (function), 259
mat_isempty
    Matlab function, 252
mat_isempty (function), 252
mat_isieee
    Matlab function, 259
mat_isieee (function), 259
mat_kron (function), 222
mat_length
    Matlab function, 253
mat_length (function), 253
mat_linspace
    Matlab function, 256
mat_linspace (function), 256
mat_log10
    Matlab function, 248
mat_log10 (function), 248
mat_logm
    Matlab function, 248
mat_logm (function), 248
mat_logspace
    Matlab function, 257
mat_logspace (function), 257
mat_lower
    Matlab function, 252
mat_lower (function), 252
mat_max
    Matlab function, 254
mat_max (function), 254
mat_mean
    Matlab function, 76
mat_mean (function), 76
mat_median
    Matlab function, 77
mat_median (function), 77
mat_min (function), 254
mat_nargin
    Matlab function, 258
mat_nargin (system variable), 258
mat_nargout
    Matlab function, 258
mat_nargout (system variable), 258
mat_size
  Matlab function, 253
mat_size (function), 253
mat_sort
  Matlab function, 254
mat_sort (function), 254
mat_sqrtm
  Matlab function, 248
mat_sqrtm (function), 248
mat_std
  Matlab function, 77
mat_std (function), 77
mat_sum
  Matlab function, 254
mat_sum (function), 254
mat_svd
  Matlab function, 253
mat_svd (function), 253
mat_tann
  Matlab function, 248
mat_tann (function), 248
mat_tril
  Matlab function, 222
mat_tril (function), 222
mat_triu
  Matlab function, 222
mat_triu (function), 222
mat_unblock_pack
  Matlab function, 241
mat_unblock_pack (function), 241
mat_unblocker
  Matlab function, 242
mat_unblocker (function), 242
mat_vander
  Matlab function, 246, 251
mat_vander (function), 246, 251
mat_var
  Matlab function, 76
mat_var (function), 76
mat_who
  Matlab function, 259
mat_who (function), 259
mat_zeros
  Matlab function, 251
mat_zeros (function), 251
matconvolve (package), 260
matrix_element_add (option variable), 261
matrix_element_mult (option variable), 261
matrix_element_transpose (option variable), 261
matrix_elements_assumed_scalar (option variable), 242
matrix_exp (function), 246
matrix_exp_exact (option variable), 247
matrix_exp_status (system variable), 247
matrix_fun (function), 247
matrix_list2poly (function), 256
matrix_poly (function), 247
matrix_trace (function), 224
matrixlikep (function), 252
matrixmap (function), 248
matrixp (function), 224, 393
matsolve (function), 228
matsolve_by_cholesky (function), 233
matsolve_by_lu (function), 237
matsolve_by_lu_sym (function), 237
matsolve_by_svd (function), 80, 239
matutuple (function), 117
max (function), 34
maxapplydepth (option variable), 388
maxapplyheight (option variable), 388
maxexpprintlen (option variable), 480
maxnegex (option variable), 99
maxpex (option variable), 99
maxpsifracdenom (option variable), 52
maxpsifracnum (option variable), 52
maxpsine (option variable), 52
maxpsipos (option variable), 52
maxtayorder (option variable), 152
Maxwell
  probability functions (continuous), 65
maxwell_density (function), 65
maxwell_distrib (function), 65
maybe (function), 374
mcharpoly (function), 272
mcharpoly_var (system variable), 272
mcs
  mixed Christoffel symbol array, 296
  mixed connection coefficient symbol, 296
mdiagonal (function), 270
mdivisor (function), 271
mdivmod (function), 271
meigenvvalues (function), 272
member (function), 424
method of averaging, 192
method of strained coordinates, 192
metricconvert (option variable), 294
mhesenberg (function), 271
min (function), 34
min_bracket (function), 203
min_dfunction (function), 204
min_function (function), 203
minsearch_ (option variable), 204
minsearch_ (option variable), 204
mincline (option variable), 483
minf
  \( -\infty \) real minus infinity (symbol), 27
minf (symbol), 27
minfactorial (function), 57
minfortlinelen (option variable), 483
minfunc (package), 203
minhermpivot (option variable), 234
minor (function), 222
minratlinelen (option variable), 483
minus (keyword), 144
miscellaneous functions, 73–74
mixed Christoffel symbols, 296
mixed connection coefficient symbol mcs, 296
mod (function), 90
mod_torsion (function), 302
mode_check_errorp (option variable), 435
mode_check_warp (option variable), 435
mode_checkxp (option variable), 435
mode_declare (special form), 429
mode_identity (special form), 430
modff (function), 182
Modified Bessel function of the first kind, 49
Modified Bessel function of the second kind, 50
modified torsion array st, 302
modifier keys, 3
modulus (option variable), 90
modulus_warn (option variable), 90
molecular_mass (function), 84
moment
predefined physical quantity in dimen package, 85
momentum
predefined physical quantity in dimen package, 85
Moore–Penrose pseudo inverse, 227, 228
moore_penrose_inverse (function), 228
morewait (option variable), 455
most_negative_dfloat (system variable), 414
most_negative_fixnum (system variable), 413
most_negative_float (system variable), 413
most_positive_dfloat (system variable), 414
most_positive_fixnum (system variable), 413
most_positive_float (system variable), 413
nraltsimp (option variable), 234
mtranspose (function), 270
%mu_0 vacuum permeability (physical constant), 82
multilinear (property), 369
multiple_scale_constant_name (option variable), 195
multiple_scale_dontsolve (option variable), 194
multiple_scale_expansion_independencies (option variable), 195
multiple_scale_expansion_orders (option variable), 195
multiple_scale_ode_solver (option variable), 194
multiple_scale_programmode (option variable), 194
multiple_scale_secular_predicate_name (option variable), 194
multiple_scale_simplifier (option variable), 195
multiple_scale_taylor_expand (option variable), 194
multiple_scale_time_scales (option variable), 195
multiple_scales (function), 193
multiplicative (property), 369
multiplicities (system variable), 126
multiplication of sums or products by a factor example, 105
multivariate polynomials, 88
multivariate Taylor series example, 153
multivariate_statistics (function), 76
multithru (function), 105
mverbose (option variable), 234
myat (function), 117
myoptions (system variable), 472
%N_a Avagadro’s Number mol⁻¹ (physical constant), 82
namestack overflow, 334
nary, 497
nary (function), 497
nary (property), 370
nary operators, 495
ncexcept (function), 351
ncharpoly (function), 226
nchrpl (package), 226
ndiff (package), 149
ndigits (function), 22
neg_a_part (function), 333
neg_a_subst (function), 333
negative_binomial
probability functions (discrete), 62
negative_binomial_density (function), 62
negative_binomial_distrib (function), 62
negdistrib (option variable), 106
negsundisflag (option variable), 352
new_mat_subscr_mode (option variable), 220
newcontext (function), 379
newdet (function), 224
newdiff (option variable), 149
newton (function), 135
newton (package), 135
Newton’s method
example, 136, 407
Newton–Cotes quadrature, 168
Newton–Puiseaux algorithm, 133
newton_eval_jacobian (option variable), 136
newton_iteration_counter (option variable), 135
newton_optimize (option variable), 136
newton_tol (option variable), 135
INDEX

next, 407
nextlayerfactor (option variable), 108
niceindices (function), 114
niceindicespref (option variable), 114
ninth (function), 328

nm
  nonmetricity, 303
Noether conservation laws, 206
noeval (keyword), 315
nofix, 497
nofix (function), 497
nofix operator
  example, 497
nofix operators, 497
nolabels (option variable), 467
non-orthogonal coordinates, 208
non_zero_and_freeof (function), 393
nondiagonalizable (system variable), 230
nondimensionalize (function), 85
noninteger (property), 366
nonmetricity array nm, 303
nonscalar (property), 370
nonscalar (function), 393
normal
  probability functions (continuous), 65
normal forms of matrices, 232, 234
normal_density (function), 65
normal_distrib (function), 65
not (prefix operator), 400
Not an array -ARRAYINFO: ’arrayname’, 362
Not an nth power - NTHROOT, 95
noun (property), 371
noun forms
  example, 323
noundisp (option variable), 350
nounify (function), 323
nouns (keyword), 316
nroots (function), 120
nterms (function), 329
ntermst (function), 304
nthroot (function), 95
null space of a matrix, 225
nullspace (function), 225
num (function), 97
numaugend (function), 327

number
  %catalan, 26
  %e, 27
  %gamma, 27
  %i, 27
  %phi, 27
  %pi, 27
  Bernoulli, 60
  Euler, 60
  Fibonacci, 60
  inf, 27
  infinity, 27
  minf, 27
number of real roots of a polynomial
  example, 120
number theoretic functions, 53-60
numberp (function), 391
numeigs (option variable), 272
numer, 314
numerator, 97
numerical evaluation of trig functions
  example, 42
numerical factors
  example, 327
numerical integrate
  infinite limits, 171
numerical integration, 166-172
  Gaussian quadrature, 170
  Newton-Cotes, 168, 257
  Romberg, 166
  Romberg (bigfloat version), 168
  Simpson’s rule, 171
  trapezoidal rule, 171
numerical terms of sums
  example, 327
numeral (function), 365
numfactor (function), 327
nummod (function), 34
numpartitions (array function), 59
numpartitions (function), 59
numterms (option variable), 190
numsum (function), 114, 116
numsum1 (package), 115
nzeta (function), 49
nzetai (function), 50
nzetar (function), 50

O
  Big-O function, 157
  O (function), 158
obase (option variable), 413
oblate spheroidal coordinates, 278
oblatespheroidal
  predefined coordinate system for ct._coordsys, 297
  predefined coordinate system for vect._coordsys, 278
oblatespheroidalsqrt
  predefined coordinate system for ct._coordsys, 297
 predefined coordinate system for vect_coordsys, 278
odd (property), 366
oddfunc (property), 367
oddp (function), 392
ode, 182–200
applying initial conditions, 191
arbitrary order, 191
first order, 191
second order, 191
Approximate solutions
method of averaging, 192
multiple scales, 193
Taylor series, 195
approximate symbolic solutions, 192
change of variable, 191, 192
describing, 188, 196
first order, 183
Frobenius Series Method, 190
functional methods, 182
main command ode, 184
numerical solutions, 196–200
Adaptive Runge–Kutta, 197
finite difference, 199
plotting, 199
Runge–Kutta, 196
stiff equations, 198
other commands for exact solutions ode2, 187
second order, 183
second order linear equations odelin2, 189
ode (function), 184
ode keywords
all, 186
any, 186
diffso1, 186
nonlin, 186
nonlin1, 186
ode2, 186
odef, 186
odeline2, 186
odeseries, 187
riccati, 187
solfac, 187
solvehyper, 187
whittaker, 187
ode2 (function), 187
ode_licence (function), 191
ode_licence (function), 191
ode indeptran (function), 192
ode_numso1 (function), 197
odef (function), 189
odeline2 (function), 189
odelinesys (function), 183
odematsys (function), 183
odeseries (function), 190
odeseries (package), 189
odestiff (function), 198
odetutor (option variable), 184
off (system variable), 28
OMEGA, 298
omega (function), 158
on (system variable), 28
on-line help, 9–13
apropos, 9
demo, 12
describe, 11
example, 13
help, 9
primer, 9
usage, 11
executable demos, 12
executable examples, 12
Function Templates, 13
Hypertext Topic descriptions, 10
Math Topics Menu, 10
MathTips, 10
Templates, 13
one_of (function), 454
op (function), 213, 321
opalg (package), 210
opcount (system variable), 272
operator
div, 276
curl, 276
divergence, 276
gradient, 276
Laplacian, 276
operator (property), 373
operator algebra, 210–216
example, 214, 215
operatorp (function), 213, 214, 393
operators, 410
operators in Macsyma, 490
oppropeties (system variable), 365
opscalar (property), 214
opscalarfun (property), 214
opscalar (function), 214
oppsubst (function), 331
oppsubst (option variable), 331
optimization and control, 200–204
analytic optimization, 201
calculus of variations, 201
numerical, 203
transfer functions, 200
optimization package, 201
optimize (function), 110, 430
optimizing expressions
  example, 430, 431
optimizing expressions with functions
  example, 436
optmprefix (option variable), 110, 431
optimvname (option variable), 480
optimvar (option variable), 110, 431
option variables, 410
optionset (option variable), 446
optimiz (package), 201
optvar (package), 201
or, 73
or (infix operator), 400
ordergreat (special form), 355
ordergreatp (function), 355
ordering variables in expressions
  example, 355
orderless (special form), 355
orderlessp (function), 355
ordinal_string (function), 415
ordinary differential equations, 182–200
  applying boundary conditions, 191
  second order, 191
  applying initial conditions
    arbitrary order, 191
    first order, 191
    second order, 191
Approximate solutions
  Lindstedt’s Method, 192
  method of averaging, 192
  multiple scales, 193
  Taylor series, 195
approximate symbolic solutions, 192
change of variable, 191, 192
example, 188, 196
first integrals of first order equations ode1
  189
first order, 183
Frobenius Series Method, 189
Frobenius Series Method odeseries, 190
linear systems, 182
main command ode, 184
numerical solutions, 196–200
  Adaptive Runge–Kutta, 197
  finite difference, 199
  plotting, 199
  Runge–Kutta, 196
  stiff equations, 198
other commands for exact solutions ode2, 187
second order, 183
second order linear equations odelin2, 189
orthogonal curvilinear coordinates
  bipolar, 278
bipolar cylindrical, 278
cartesian, 278
cartesian2D, 278
cartesian3D, 278
confocal ellipsoidal, 278
confocal elliptic, 278
cylindrical, 278
elliptic, 278
elliptic cylindrical, 278
oblate spheroidal, 278
parabolic, 278
parabolic cylindrical, 278
paraboloidal, 278
pol, 278
polar, 278
polar cylindrical, 278
prolate spheroidal, 278
spherical, 278
toroidal, 278
outative (property), 369
outchar (option variable), 6
outermap (function), 345
outofpois (function), 175

/P/, 502
  Poisson series, 175, 502
P-symbol, 186
packagefile (option variable), 438
pade (function), 156
Pade approximation
  example, 157
pagepause (function), 455
parabolic
  predefined coordinate system for ct_coordsys,
    297
  predefined coordinate system for vect_coordsys,
    278
parabolic coordinates, 278
parabolic cylindrical coordinates, 278
parabolic PDEs, 208
paraboliccylindrical
  predefined coordinate system for ct_coordsys,
    297
  predefined coordinate system for vect_coordsys,
    278
paraboloidal
  predefined coordinate system for ct_coordsys,
    297
  predefined coordinate system for vect_coordsys,
    278
paraboloidal coordinates, 278
parallelepiped
  area, 70
  volume, 70
Pareto
probability functions (continuous), 65
\texttt{pareto\_density} (function), 65
\texttt{pareto\_distrib} (function), 66
\texttt{parsewindow} (option variable), 444
\texttt{part} (function), 320
part selection, 320
  application of noun forms, 323
  arguments, 323
  association list, 325
  box display, 324
  end, 322
external representation, 323
internal representation (\texttt{inpart}), 322
internal representation \texttt{inflag}), 323
labeled selection, 321
mathematical expressions, 325
  \texttt{pickapart}, 326
  coefficient of variable, 326
  coefficients, 325
  complexity, 330
  constants, 325
  deleting parts, 329
  derivative degree, 327
  dummy variables, 325
  eighth, 328
  fifth, 328
  first, 327
  fourth, 328
  highest exponent, 327
  last, 328
  left hand side, 327
  lowest exponent, 327
  ninth, 328
  number of Macsyma cells, 329
  number of operations, 329
  number of terms, 329
  numerical factor, 327
  numerical term in sum, 327
  rational coefficients, 326
  removing parts, 329
  rest, 328
  right hand side, 327
  second, 328
  seventh, 328
  sixth, 328
  size, 329
  tenth, 328
  third, 328
  variables, 325
noun form, 323
operator, 321
part, 320
partitioning, 328
piece, 321
removing box display, 325
string expressions
  size, 329
  verb form, 324
when a part does not exist (\texttt{partswitch}), 322
\texttt{partfrac} (function), 104
partial derivatives, 149, 150
partial differential equations, 204–208
Lie symmetries, 204
numerical solutions, 208
  finite difference, 199
  symbolic solutions, 204
tensor package, 208
partial differentiation
  example, 150
partial differentiation and \texttt{tex}, 484
partial fraction expansion
  example, 104
\texttt{partition} (function), 328
partitioning expressions
  example, 328
parts of an expression, 320
parts of expressions
  example, 321, 322, 326
parts of speech, 490
\texttt{partswitch} (option variable), 322
\texttt{pascal} (function), 245
Pascal matrix, 245
passing values
  example, 421
pattern matching
  example, 392, 393
pattern matching (\texttt{condition})
  example, 385
pattern matching (\texttt{matchdeclare})
  example, 385
pattern matching (\texttt{tellsimp})
  example, 385
Pauli algebra, 306
\texttt{pause} (function), 454
pause prompt
  example, 13
\texttt{pause\_prompt} (option variable), 13
\texttt{pdelie} (package), 204, 205
\texttt{pderivop} (function), 150
\texttt{pdiff}
  indicator for \texttt{tex}, 484
Pell’s equation, 59
\texttt{periodic\_table} (function), 84
\texttt{perm\_mat} (function), 270
\texttt{permanent} (function), 225
permeability
predefined physical quantity in \texttt{dimen} package, 85
permittivity
  predefined physical quantity in \texttt{dimen} package, 85
\texttt{permult} (function), 53
\texttt{permutation} (function), 55
permutation tensor density, 286
\texttt{permutation\_decomp} (function), 53
\texttt{permutation\_undecomp} (function), 53
permutations
  example, 53
\texttt{permutations} (function), 53
\texttt{permutations\_lex} (function), 53
\texttt{perp\_line\_line} (function), 71
\texttt{perp\_point\_line} (function), 72
perpendicular line segment, 71, 72
persymmetric matrix, 243
\texttt{pfaffian} (function), 266
\texttt{pfefomat} (option variable), 350
phase-variable form, 201
phase\_variable\_matrices (system variable), 201
\%phi
  \((1 + \sqrt{3})/2\) (symbol), 27
\%Phi\_0 Magnetic Flux quantum (physical constant), 82
phycn (package), 82, 83
physical constants
  \%E\_b Hartree Energy, 82
  \%G gravitational constant, 82
  \%N\_a Avagadro's Number mol\(^{-1}\), 82
  \%Phi\_0 Magnetic Flux quantum, 82
  \%R\_inf Rydberg constant, 82
  \%T\_p Planck time, 82
  \%\%a\_0 Bohr radius, 82
  \%\%c speed of light in vacuum , 82
  \%\%e elementary charge, 82
  \%alpha Fine structure constant, 82
  \%c1 First radiation constant, 82
  \%c2 Second radiation constant, 82
  \%epsilon\_0 vacuum permittivity, 82
  \%hbar \%h/(2\%PI), 82
  \%h Planck's constant, 82
  \%k Boltzmann's constant, 82
  \%lplanck Planck length, 82
  \%m\_e Electron mass, 82
  \%m\_n Neutron mass, 82
  \%m\_planck Planck mass, 82
  \%m\_p Proton mass, 82
  \%mu\_0 vacuum permeability, 82
  \%sigma Stefan-Boltzmann constant, 82
  \%pi transcendental number 3.14159... (symbol), 27
\%piargs (option variable), 40
\texttt{pickapart} (function), 326
piece (system variable), 321
\texttt{pinv} (function), 228
\texttt{pinv\_rank} (system variable), 228
\texttt{pinv\_tol} (option variable), 228
\texttt{pl\_auto\_flag} (system variable), 207
\texttt{pl\_check} (function), 205
\texttt{pl\_contab} (function), 205
\texttt{pl\_con} (function), 206
\texttt{pl\_dv} (system variable), 206
\texttt{pl\_euler} (function), 206
\texttt{pl\_eor} (system variable), 207
\texttt{pl\_eq} (system variable), 206
\texttt{pl\_euler} (function), 206
\texttt{pl\_ev} (system variable), 207
\texttt{pl\_iv} (system variable), 206
\texttt{pl\_la} (system variable), 206
\texttt{pl\_liebracket} (function), 205
\texttt{pl\_par} (system variable), 206
\texttt{pl\_sksol} (system variable), 207
\texttt{pl\_solve} (function), 206
\texttt{pl\_symmetry} (function), 205
\texttt{pl\_tdiv} (function), 206
\texttt{pl\_verbose} (system variable), 207
\texttt{pl\_vl} (system variable), 206
\texttt{pl\_zout\_flag} (system variable), 207
\texttt{plancks\_constant}
  predefined physical quantity in \texttt{dimen} package, 85
plasma dispersion function, 49
\texttt{playback} (special form), 349
\texttt{playback} keywords
  all, 349
getime, 349
grind, 349
input, 349
nostring, 349
output, 349
slow, 349
time, 349
totaltime, 349
\texttt{plot\_ode} (function), 199
plotting numerical solutions of odes, 199
plus (keyword), 144
\texttt{pmatric}e (function), 270
\texttt{pochhammer} (function), 48
Pochhammer symbol, 48
Poincare--Lighthill--Kuo method, 192
point discontinuity
  integration of, 161
pointexpand (option variable), 190
poisdiff (function), 176
poisexpt (function), 176
poisint (function), 176
poislim (option variable), 176
poismap (function), 176
poisplus (function), 176
poissimp (function), 175
Poisson
probability functions (discrete), 62
Poisson series, 175–177
/P/ notation, 502
example, 177
Poisson series form, 502
poisson_density (function), 62
poisson_distrib (function), 62
poissons_ratio
predefined physical quantity in dimen pack-
age, 85
poissubst (function), 176
poistimes (function), 175
poistrim (function), 175
poisvars (option variable), 176

polar
predefined coordinate system for ct._coordsys,
297
predefined coordinate system for vect._coordsys,
278
polar coordinates, 147, 278
polar cylindrical coordinates, 278

polarcylindrical
predefined coordinate system for ct._coordsys,
297
predefined coordinate system for vect._coordsys,
278

polarform (evfun), 372
polarform (special form), 25
polarformlist (function), 25
pole analysis, 162
poisolve (package), 120
poly2companion (function), 255
poly2list (function), 255
poly2mat (function), 256
poly_discriminant (function), 91
poly_interpolate (function), 80
poly_interpolate2 (function), 81
poly_relations (function), 137
poly_revert (function), 47
polydecomp (function), 132
polyfactor (option variable), 126
polygamma function, 52
polygamma function (bfloat), 58
Polygamma functions, 52
polygamms, 58
polygon, 71
polylogarithm function, 52
polynomial
algebra, 305
Bernoulli, 59
Euler, 59
s, 137
polynomial algebra, 88–91
polynomial discriminant
example, 91
polynomial division
example, 89
polynomialp (function), 88
polynomials
Bezout, 89
Bezout matrix, 91
Chebyshev, 47
content, 89
discriminant, 91
dividing, 88
extended Euclidian algorithm, 89
ezgcd, 89
fast multiplication, 88
gcd, 89
Gegenbauer, 47
Hermite, 47
Jacobi, 47
Laguerre, 47
lcm, 90
Legendre, 47
modulus, 90
multiplication, 88
powers, 91
quotient, 89
resultant, 90
testing for, 88
polynomials as lists of coefficients, 255–256

polysign (function), 31
polysolve (function), 120
pop (macro), 426
population_standard_deviation (function), 76
population_variance (function), 75
postfun (property), 367
postfix, 494
postfix (function), 494
postfix operators, 493
^*, 223
^^*, 223
^**, 223
^*, 223
potential_zero_location (option variable), 277
power
   predefined physical quantity in dimen package, 85
powendisp (option variable), 352
powers (function), 91
powerseries
   example, 155
powerseries (function), 155
powerset (function), 20
pred (keyword), 315, 411
prederror (option variable), 444
predicate
   exp_even_in, 180
   exp_odd_in, 180
   funp, 180
   algebraic, 87, 392
   algebraic in rational function package (algebraicp), 87
   algebraic relative to rational function package (algebraicp), 392
array, 394
assume scalar, 242
atom, 394
big floating point, 391
big floating point number, 22
big floating point number (bfloatp), 22, 391
column vector, 224
column vector, 224
constant, 392
constant number or function (constantp), 392
CRE form, 395
dfloat floating point number (dfloatp), 391
disjointp (disjoint), 20
double floating point, 391
double floating point number, 22
double floating point number (dfloatp), 22
equal (equalp), 180
equalp, 180
equation, 392
even, 392
even number (evenp), 392
expression free of specified variables (freeof), 392
feature, 361
feature (featurep), 361
floating point, 391
floating point number, 22
floating point number (floatp), 22, 391
integer, 391
integer (integerp), 391
is a array (arrayp), 394
is a boolean, 252
is a list (listp), 395
is a matrice, 269
is a matrice (matricep), 269
is a matrix, 224
is a matrix (matrixp), 224
is a matrix, list or scalar, 252
is a matrix, list or scalar (matrixlikep), 252
is a scalar (assumescalarp), 242
is a square matrix, 224
is a square matrix (square_matrixp), 224, 393
is a string (stringp), 394
is a substring (substringp), 394
is a sunscripted variable (subvarp), 395
is a symbol (symbolp), 395
is a Taylor series (taylorp), 394
is an atom (atom), 394
is an empty matrix or empty list, 252
is an equation (equationp), 392
is an operator (operatorp), 393
is in CRE form (ratp), 395
is like a column vector (colvectorp), 224
is like a row vector (rowvectorp), 224
is like a vector (vectorp), 224
is matrix, list or variable declared as such (nonscalar), 393
is number, constant, or variable declared as such (scalar), 393
like a vector, 224
list, 395
marked variable (GENTRAN), 481
marked variable (GENTRAN) (markedvarp), 481
non zero and free of (non_zero_and_freeof), 393
nonscalar, 393
nonzero and free of, 393
number, 391
number (numberp), 391
odd number (oddp), 392
oddn, 392
operator, 213, 393
operator (operatorp), 213
operator in a list (operatorp), 214
opscalar, 214
opscalar (opscalarp), 214
polynomial, 88
polynomial (polynomialp), 88
prime, 391
prime number (primep), 391
rational number, 392
rational number (ratinump), 392
row vector, 224
scalar, 393
set (setp), 20
set (setp), 20
single floating point, 391
single floating point number, 22
single floating point number (floatp), 22, 391
square matrix, 393
string, 394, 415
string (stringp), 415
string equality (string_equal), 394
subscripted variable, 395
subset (subsetp), 20
subst (subsetp), 20
substring, 394, 415
substring (substringp), 415
symbol, 395
Taylor series, 394
test for equality (equal), 394
zero, 392
zero-equivalent number (zeropp), 392
predicates
element, 394
preferred_greeting_style (option variable), 455
preferred_menu_style (option variable), 455
prefix, 493
prefix (function), 493
prefix and infix
element, 500
prefix operators, 492
curl, 276
div, 276
grad, 276
laplacian, 276
not, 400
Prelle–Singer algorithm, 185
pressure
predefined physical quantity in dimen package, 85
prettyjordan (function), 235
prevfib (option variable), 60
prime (function), 59
prime_pi (function), 59
primep (function), 391
primer (function), 9
print (function), 349
print_provises (option variable), 378
printfile (special form), 464
printpois (function), 175
printprops (special form), 364
probability functions, 60–67
probability functions (continuous)
\( \chi^2 \), 63
beta, 63
Cauchy, 63
Chi-square, 63
exponential, 64
F, 64
gamma, 64
Gumbel, 64
Laplace, 65
log-normal, 65
logistic, 65
Maxwell, 65
normal, 65
Pareto, 65
Rayleigh, 66
standard normal, 66
Student’s t, 66
uniform, 66
Weibull, 66
probability functions (discrete)
beta_binomial, 61
binomial, 61
gamma, 62
hypergeometric, 62
logarithmic, 62
negative_binomial, 62
Poisson, 62
probefile (function), 464
prod_constant_counter (option variable), 118
prodconc (function), 116
prodconstprefix (option variable), 118
prodcontract (function), 116
prodflip (function), 116
prodfudge (function), 116
prodgunch (function), 116
prodhack (option variable), 115
prodfy (function), 117
product
exterior, 307
product (special form), 115
products of roots, 38
prog1 (macro), 403
program blocks, 402
programming
example, 401
programming block structure
example, 402, 403
programming if-then-else
example, 404
programming with iteration
example, 406–408
programming with local protection
example, 405
INDEX 557

programmode (evflag), 372
programmode (option variable), 131
prolate spheroidal coordinates, 278

prolatespheroidal
predefined coordinate system for ct_coordsys, 297
predefined coordinate system for vect_coordsys, 278

prolatespheroidalsqrt
predefined coordinate system for ct_coordsys, 297
predefined coordinate system for vect_coordsys, 278

properties (function), 362
property, 411
property information
example, 364
props (system variable), 361
propvars (function), 362
provisos (system variable), 377
PRS, 101
PRS (Polynomial Remainder Sequence), 91
psexpand (option variable), 98
psin (option variable), 52
%pure (option variable), 86
push (macro), 426
put (function), 364
pyramid, 67, 69, 70
volume, 70
pyramid, equilateral triangle base, 69
pyramid, equilateral triangular base, 70
pyramid, square base, 69, 70
pyramid3, 69
area, 69
height, 69
volume, 70
pyramid4, 69
area, 69
height, 69
volume, 70

qput (special form), 364
qr_decomp (function), 238
qr_decomp_symb (function), 238
quad_epsilon (option variable), 170
quad_ichk (option variable), 170, 171
quad_inf (function), 171
quad_nmax (option variable), 171
quad_npts (option variable), 170
quad_sub_a_stack_size (option variable), 171
quad_sub_adapt (function), 170
quad_sub_nonadapt (function), 171
quadratic_match (function), 389
quadratr (function), 170

Quadratr (package), 170
quadrature
- Gaussian, 170
- Newton–Cotes, 168
quanc8 (special form), 168
quanc8_aberr (option variable), 168
quanc8_errest (option variable), 169
quanc8_flag (option variable), 169
quanc8_rellerr (option variable), 169
query (function), 454
quit (function), 5
quit_really_quits (option variable), 5
qunit (function), 59
quote-quote, 312
quoted variable assignment
example, 342
quotient (function), 89

/R/, 95
- CRE form, 501
- rational expressions, 501
%rl, 128, 129
%R_inf Rydberg constant (physical constant), 82
radcan (evfun), 372
radcan (function), 37
radexpand (evflag), 372
radexpand (option variable), 38
radical_member (function), 137
radius
- regular polygon, 68
radius_regular_polygon (function), 68
radsubstflag (option variable), 333
random (function), 60
random numbers
random, 60
- universal random number generator, 61
random_array (function), 61
random_array_init (function), 61
rank (function), 225
rank of a matrix, 225
rassociative (property), 368
rat (function), 95
RAT replaced flonum by ratnum = approximate value, 96
rat_interpolate (function), 81
ratalgdenom (evflag), 372
ratalgdenom (option variable), 88
ratchristof (option variable), 297
ratcoef (function), 326
ratcurrind (option variable), 483
ratdenom (function), 97
ratdenomdiv (option variable), 101
ratdiff (function), 97
ratdisrep (function), 96
INDEX

rateinstein (option variable), 300
ratepsilon (option variable), 96
\texttt{ratexpand} (evfun), 372
\texttt{ratexpand} (function), 100
\texttt{ratexpant} (option variable), 100
\texttt{ratfac} (evflag), 372
\texttt{ratfac} (option variable), 96
\texttt{ratfor} (option variable), 480
\texttt{ratio} (function), 273
\texttt{rational} (function), 74
rational (property), 366
rational coefficients
example, 326
rational coefficients (CRE form)
example, 326
rational expansion
example, 320
rational expression differentiation
example, 98
rational expressions
/R/, 501
collapsing, 112
collecting terms, 109
combining all terms and rational numbers, 104
combining all terms over a common denominator, 103
combining all terms with same denominator, 104
converting Taylor series to CRE, 98
distribute sums over products, 105
inverse, 106
expanding, 99
expanding a denominator, 109
expanding nonrational expressions, 109
expanding with CRE form, 100
expanding with respect to a variable, 109
factoring a sum, 108
over all factors, 109
finding common subexpressions, 110
Horner’s rule, 109
isolating a variable, 106
isolating multiple variables, 107
multiplication by a factor, 105
numerical evaluation
collapsing, 112
finding common subexpressions, 110
Horner’s rule, 109
optimizing, 110
optimizing, 110
partial fraction expansion, 104
sequential comparative simplification, 103
simplification, 101
simplification with general forms, 102
simplification with specific variables, 101
Taylor series, 98
rational functions, 95–99, 157
covering to CRE form, 95
denominator, 97
denominator of a rational expression, 97
differentiation, 97
forming rational variables, 95
general representation, 96
general representation of every subexpression, 96
numerator, 97
numerator of a rational expression, 97
selecting rational variables, 95
weights
assign, 97
truncate, 97
rational variable weighting scheme
example, 97
\texttt{ratlinelen} (option variable), 483
\texttt{ratmx} (evflag), 372
\texttt{ratmx} (option variable), 261
\texttt{ratnum\_to\_expt\_expand} (option variable), 319
\texttt{ratnumer} (function), 97
\texttt{ratnum} (function), 392
\texttt{ratp} (function), 395
\texttt{ratprint} (option variable), 96
\texttt{ratriemann} (option variable), 299
\texttt{ratsimp} (evfun), 372
\texttt{ratsimp} (function), 101
\texttt{ratsimpexpcons} (evflag), 372
\texttt{ratsimpexpcons} (option variable), 101
\texttt{lratsubst}
example, 333
\texttt{ratsubst}
example, 333, 334
\texttt{ratsubst} (function), 333
\texttt{ratvars} (function), 95
\texttt{ratvars} (option variable), 95
\texttt{ratweight} (function), 97
\texttt{ratweights} (option variable), 97
\texttt{ratwefr} (option variable), 300
\texttt{ratwtrp} (option variable), 97
Rayleigh
probability functions (continuous), 66
\texttt{rayleigh\_density} (function), 66
\texttt{rayleigh\_distrib} (function), 66
\texttt{read} (function), 454
\texttt{read\_numerical\_data} (function), 468
\texttt{read\_numerical\_data\_as\_array} (function), 468
\texttt{read\_numerical\_data\_as\_matrix} (function), 468
\texttt{readonly} (function), 454
real (property), 366, 411
real quadratic fields
  example, 59
real roots of polynomials
  example, 126
real roots of polynomials (factoring)
  example, 126
realonly (option variable), 129
realpart (function), 25
reallroots (function), 126
rearray (function), 423
rectangular parallelepiped, 70
rectform (evfun), 372
rectform (function), 25
rectformlist (function), 25
rec (package), 127
rediff (function), 289
refcheck (option variable), 445
reflection rules
  gamma function, 54
dilogarithm function, 52
factorial function, 54
zeta function, 57
refloat (option variable), 79
regular polygon, 68, 69
  apothem, 68
  area, 69
  radius, 68
rehash_array (function), 420
relaxed_roots (option variable), 126
rem (function), 364
remainder (function), 89
remarray (special form), 423
rembox (function), 325
remcomps (function), 279
remoon (function), 282
remcoord (function), 282
remfun (function), 180
remfunction (special form), 338
remlet (special form), 390
remmatrice (function), 269
remove (special form), 359
removing a function
  example, 338
rempart (function), 323, 329
rerule (function), 387
remsym (function), 280
remvalue (special form), 417
rename (function), 283
renamelfile (special form), 464
renamematrice (function), 269
Reordering is not allowed., 355
reset (special form), 472
residue (function), 161
residues
  example, 161
resimplify (function), 320
resistance
  predefined physical quantity in \texttt{dimen} package, 85
rest (function), 328
resultant
  example, 91
resultant (function), 90
resultant (option variable), 91
return (function), 403
return_nummod (evflag), 372
return_nummod (option variable), 44
reveal (function), 348
reverse (function), 425
reversion of Taylor series
  example, 154
rhs (function), 327
ric
covariant curvature tensor, 299
ricci (function), 299
Ricci curvature tensor, 299
Ricci tensor, 300
riemann (function), 299
Riemann curvature, 299
Riemann curvature tensor, 299
Riemann P-symbol, 186
Riemann Zeta function, 57
  \texttt{bfloat}, 57
  derivative, 57
Riemannian curvature
  example, 289, 290
right cone
  area, 69
  volume, 70
right cylinder
  area, 69
  volume, 70
rinvariant (function), 300
risc (function), 159
Risch algorithm, 159
rmxchar (option variable), 220
rncombine (function), 104
%rnum (option variable), 129
%rnum_list (system variable), 129
romberg (function), 167
romberg (special form), 166
Romberg’s method for integration
  example, 167
rombergb (option variable), 168
rombergit (option variable), 167
rombergmin (option variable), 168
rombertol (option variable), 167
**root_by_bisection** (function), 134
roots (function), 125
roots of functions with **solve**
exmaple, 131
roots of polynomials (elimination)
exmaple, 132
roots of polynomials (exact), 120
  **nroots**, 120
  **polysolve**, 120
  Sturm sequence, 120
roots of polynomials (floating point)
  allroots, 126
  realroots, 126
  roots, 125
  real or complex roots, 125, 126
  real roots, 126
roots of polynomials with **algsys**
exmaple, 129
roots of polynomials with allroots
exmaple, 131
roots of products, 38
roots_tol (option variable), 126
rootscon_simplifier (option variable), 38
rootsconmode (option variable), 39
**rootscontract** (evfun), 372
**rootscontract** (function), 38
rootsepsilon (option variable), 126
rotation matrix, 273, 274
**rotmat2** (function), 273
**rotmat3** (function), 273
**rotmatx** (function), 274
**rotmaty** (function), 274
**rotmatz** (function), 274
round (function), 33
round-off error, 77
row (function), 222
rows (function), 273
**rowvectorp** (function), 224
**rsetq** (function), 479
rules (system variable), 388
**runge_1** (function), 197
**runge_kutta** (function), 196, 197
**runge_n** (function), 197
s-polynomial, 137
sample statistics, 75, 76
**sample_mean** (function), 75
**sample_median** (function), 75
**sample_standard_deviation** (function), 75
**sample_variance** (function), 75
save (special form), 469
save keywords
  all, 469
clabels, 470
dlabels, 470
elabels, 470
features, 470
tellrats, 470
savedef (option variable), 433
savefactors (option variable), 93
sawtooth function, 34
**sb_backsub** (function), 241
**sb_backsubf** (function), 241
**sb_multv** (function), 240
**sb_multvf** (function), 240
**sb_reduce** (function), 240, 241
**sband2fulla** (function), 240
**sbessel_j** (function), 47
scalar (property), 370
scalar curvature, 300
scalar curvature symbol **tracer**, 299, 300
scalar potential of a gradient, 277
**scalar_potential** (function), 277
**scalarmatrixp** (option variable), 262
**scalarmp** (function), 393
scanmap, 345
**scanmap** (function), 345
Schmidt algorithm, 185
Schur form of a matrix, 238
**schur_form** (function), 238
**schur_form** (option variable), 238
**schur qr iterates** (option variable), 232
**schur_total iterates** (option variable), 232
**schwarzschild**
  predefined coordinate system for **ct_coordsys**, 297
**scsimp** (function), 103
**sccurvature** (function), 300
sec (function), 40
seed (function)
  trigonometric functions (degrees), 40
sech (function), 40
second (function), 328
second order ordinary differential equations, 183
secular terms, 194
**select_one_of** (function), 453
selecting parts, 320
sequential comparative simplification
  example, 103
set (package), 19
**set_element** (function), 219, 425
**set_font** (function), 350
setcheck (option variable), 449
setcheckbreak (option variable), 449
**setdifference** (function), 20
setelm x (function), 219
setflags (function), 298
setify (function), 20
setp (function), 20
setup_autoload (special form), 438
setval (option variable), 449
seventh (function), 328
sfloat (evfun), 372
sfloat (function), 23
sfloatp (function), 22, 391
shankel_h1 (function), 47
shankel_h2 (function), 47
sharmonic_y (function), 47
shear_modulus
  predefined physical quantity in dimen package, 85
show_%all (option variable), 264
show_macsyma_source_with_tex_code (option variable), 484
show_space (function), 472
showtime (option variable), 451
%sigma Stefan-Boltzmann constant (physical constant), 82
sign (function), 375
signum (function), 31
similarity method, 150, 207
similarity transforms, 229
similaritytransform (function), 231
similiarity transformation of a matrix, 231
simp (evflag), 372
simp (option variable), 319
simple_vector_p (option variable), 276, 393
simplification, 319-335
  return_nummod, 44
  boolean expressions, 29
  exponentials, logarithms and radicals, 34, 35, 37-39
  general rational form, 74
  general simplifier, 319
  inequalities, 28
  logarithmic functions, 42
  logical expressions, 29
  polynomials and rational functions, 99-112
  resimplify, 320
  reversing inequalities, 28
  sum expansion, 113
  trigonometric functions, 40-44, 46
  unknown, 320
simplification of Airy functions
  example, 51
simplification of factorials
  example, 56, 57
simplification of hypergeometric functions
  example, 48
simplification of log
  example, 37
simplification of product
  example, 115
simplification of rational expressions
  example, 102
simplification of sqrt
  example, 38, 39
simplification of sum
  example, 112
simplification of tensor indices
  example, 290
simplification of trig functions
  example, 41, 44
simplification of trig functions (tellsimpafter)
  example, 46
simplification of trig functions (trigsimp)
  example, 45
simplify (function), 39
simplifying factorials
  example, 390
simpson (function), 171
simpsum (evflag), 372
simpsum (option variable), 112
sin (function), 40
sin_int (function), 51
sind (function)
  trigonometric functions (degrees), 40
sine integral, 51
sinfft (function), 182
single quotation mark, 312
Singular, 130
singular value decomposition, 80, 238, 239
singularity analysis, 186
sinh (function), 40
sinh integral, 51
sinh_int (function), 51
sixth (function), 328
size_of_flag (option variable), 251
size_ofp (function), 251
skew_dot_mult (property), 370
sleep (function), 457
sneumann_n (function), 47
solve (function), 129, 130
SOLVE is using arc-trig functions to get a
  solution. Some solutions may be lost., 131
solve:triangle, 67
solve_inconsistent_error (option variable), 131
solve_1xy (function), 236
solve_toeplitz (function), 246
solve_toeplitzf (function), 246
solve_triangle (function), 67
solvedecomposes (option variable), 131
solveexplicit (option variable), 131
solvefactors (option variable), 131
solvefullwarn (option variable), 131
solver (function), 139
solver (package), 139, 141
solver_assumptions (option variable), 140
solver_backsubst (option variable), 140
solver_find_all_linear_vars (option variable), 140
solver_immed_assign (option variable), 139
solver_incons_params (option variable), 140
solver_linear (option variable), 140
solver_repeat_linear (option variable), 140
solver_repeat_immed (option variable), 139
solver_transforms (option variable), 140
solver_verbose (option variable), 139
solveradcan (option variable), 131
solvevetrigwarn (option variable), 131
solving a linear system of equations
example, 119
solving equations, 119–141
approximate symbolic solutions, 132–134
bisection, 134–135
exact roots of polynomials, 120
exact solutions of equations, 128–132
factoring polynomials (factor), 125
factoring polynomials (polysolve), 121
floating point roots
real and complex univariate polynomials (roots), 125
floating point roots of polynomials, 125–127
floating point solutions of equations, 134–136
Gröbner Bases, 136–139
linear, 119–120
linear systems, 119
Newton’s method, 135–136
number of real roots, 120
parametric equations, 139–141
polynomials (polysolve), 120
recurrence equations, 127–128
roots of polynomials, 120–127
Sturm sequence, 120
solving linear inequalities, 29
solving matrix equations
by LU
numeric, 237
symbolic, 237
Cholesky, 233
improvement of LU, 237
linear, 228
SVD, 80, 239
toeplitz, 246
triangular, 236
sort (function), 355
sorting expressions
example, 355
sparse (option variable), 262
spdeiz, 208
specfun (package), 46
specfun2 (package), 48
special form, 410
special function (complex gamma)
example, 54
special function (exponential integrals)
example, 51
special functions, 46–52
Airy, 49
Airy function of the first kind, 50
Airy function of the second kind, 50, 51
associated Laguerre polynomials, 47
associated Legendre polynomials, 47
Bessel function of the first kind, 49
Bessel function of the second kind, 50
Chébychev polynomials, 47
Complex Bessel function of positive fractional order, 49
complex error function, 49
cos integral, 51
cosh integral, 51
dilogarithm, 52
Exponential integral, 51
Gegenbauer polynomials, 47
Hermite polynomials, 47
Jacobi polynomials, 47
Laguerre polynomials, 47
Legendre polynomials, 47
Modified Bessel function of the first kind, 49
Modified Bessel function of the second kind, 50
plasma dispersion function, 49
Pochhammer symbol, 48
polygamma, 52
polylogarithm, 52
sine integral, 51
sinh integral, 51
spherical Bessel, 47
spherical Hankel, 47
spherical harmonics, 47
spherical Neuman, 47
special symbol, 409
specific_entropy
 predefined physical quantity in dimen package, 85
specific_heat
predescribed physical quantity in **dimen** package, 85
specifying derivatives at a point
  example, 183
**specint** (function), 174
**speed_of_light**
  predescribed physical quantity in **dimen** package, 85
**sphere**, 70
  area, 70, 72
  volume, 70, 72
**sphere_surface** (function), 72
**sphere_volume** (function), 72
**spherical**
  predescribed coordinate system for **ct_coordsys**, 297
  predescribed coordinate system for **vect_coordsys**, 278
**spherical_Bessel_function**, 47
**spherical_coordinates**, 278
**spherical_Hankel_functions**, 47
**spherical_harmonics**, 47
**spherical_polygon**, 71
  area, 71
**spherical_triangle**, 71
  area, 71
**spherical4d**
  predescribed coordinate system for **ct_coordsys**, 297
**spice** (keyword form), 440
**spline_coeff** (function), 81
**spline_interpolate** (function), 81
**sqfr** (function), 94
**sqrt** (function), 34
**sqrtdenest** (function), 39
**sqrtdispflag** (option variable), 352
**square**, 68
  area, 68
**square_root**
  example, 34
**square_roots**
  integer
    **isqrt**, 34
  integer nth root
    **inrt**, 34
  principal
    **sqrt**, 34
**square_roots, denesting**, 39
**square_matrixxp** (function), 224, 393
**sstaus** (function), 458
**st**
  modified torsion array, 302

**standard_normal**
  probability functions (continuous), 66
**standard_normal_density** (function), 66
**standard_normal_distrib** (function), 66
**standardize_signs** (function), 320
**step** (function), 201
**standisp** (option variable), 350
**state-space_equations**, 200
**statistical_functions**, 60–67
**statistics**, 60
  matrix univariate descriptive, 76
  multivariate descriptive, 76
  population standard deviation, 76
  population variance, 75
  sample mean, 75
  sample median, 75
  sample standard deviation, 75
  sample variance, 75
**status** (function), 457
**stefan_boltzmann_constant**
  predescribed physical quantity in **dimen** package, 85
**step** (special form), 405
**step_function**, 172
**stiff_differential_equations**, 198
**stiff_eps** (option variable), 199
**stiff_kount** (option variable), 199
**stiff_maxstep** (option variable), 199
**stiff_nmax** (option variable), 199
**stirling** (function), 56
**stopex** (package), 109
**strain**
  predescribed physical quantity in **dimen** package, 85
**stress**
  predescribed physical quantity in **dimen** package, 85
**string** (function), 348, 415
**string_length**
  example, 329
**string_capitalize** (function), 416
**string_downcase** (function), 416
**string_equal** (function), 394, 416
**string_left_trim** (function), 416
**string_length** (function), 329
**string_right_trim** (function), 416
**string_trim** (function), 416
**string_upcase** (function), 416
**stringout** (special form), 467
**stringp** (function), 394, 415
**strings**, 414–416
  capitalize, 416
  concatenating, 415
downcase, 416
equality, 416
evaluating, 416
getting a character, 415
getting an cardinal, 415
getting an octal code, 415
getting an ordinal, 415
identifying, 415
identifying a substring, 415
length, 329
making, 415
substring, 415
trim, 416
trim left, 416
trim right, 416
upcase, 416
structure constants, 205
Student’s t
  probability functions (continuous), 66
students_t_density (function), 66
students_t_distrib (function), 66
Sturm sequences, 120
sublis
  example, 332
sublis (function), 332
sublis_apply_lambda (option variable), 333
sublist (function), 425
submat (function), 273
submatrix, 222, 273
submatrix (function), 222
subpowerset (function), 20
subset (function), 20
subsetp (function), 20
subst
  example, 331
subst (function), 330
substinpart (function), 332
substitute, 330
substitution, 330–335
  example, 331–334
  functional values at points, 334
  list of rational, 333
  multiple parallel, 332
  negation, 333
  operator, 331
  parts, 331, 332
  rational, 333
  recursive, 334
  subst, 330
subpart
  example, 332
subpart (function), 331
substring (function), 415
substringp (function), 394, 415
subvarp (function), 395
sum
  ev property, 315
sum (special form), 112
sumbyparts (function), 117
sumconstprefix (option variable), 118
sumcontract (function), 113
sumexpand (evflag), 372
sumexpand (function), 113
sumexpand (option variable), 113
sumform (option variable), 186
sumhack (option variable), 113
sumify (function), 118
summation manipulation, 113
summation_constant_counter (option variable), 118
sums and products
  product, 115
sum, 112
backward difference, 114, 117
backward quotient, 117
changing indices, 114
changing limits, 113
changing multiplicands, 116
changing summnd, 114
closed form, 115
common factors, 116
contracting limits, 113
contraction of hypergeometric terms, 117
contraction of multiplicands
  disimilar ranges, 116
  similar ranges, 116
general summation including hypergeometric terms, 116
grouping items, 117
grouping terms pairwise, 117
hypergeometric terms, 117
indefinite multiplication, 116
indefinite summation, 114
interchange of double summation, 117
making a product, 116
making nice indices, 114
manipulation of factorial expressions in products, 116
reciprocal of products and multiplicands, 116
recovering a matrix from a product, 117
replacing variables with values, 117
reverse direction, 117
solving equations for functions, 115
solving first order inhomogeneous difference equations, 118
substitute nondestructively, 117
sum a difference, 116
sum by parts, 117
term ratio, 116
transforming products into sums, 118
transforming sums into products, 118
ungrouping items, 117
sumsplitfact (option variable), 56
sumst (function), 117
sumswap (function), 117
supcontext (function), 379
surface area, 69, 70, 72
surface_tension
  predefined physical quantity in dimen package, 85
suspending execution
sleep, 457
SVD, 80, 238, 239, 253
svd (function), 238
svd_numerical (function), 239
symbol, 409
Symbolics Lisp Machine, 456
  interactive programs, 456
Symbolics, Inc., 1
symbolp (function), 395
symmdifference (function), 20
symmetric (property), 368
symmetric algebra, 305
symmetries (option variable), 280
symplectic algebra, 305
syntactic greatest common divisor, 89
syntactic_gcd (function), 89
syntax extension, 500
syntax properties
  example, 500
system variables, 411
systems of PDEs, 208
/T/
  CRE form, 502
  Taylor series, 502
  truncated Taylor series, 151
%T_p Planck time (physical constant), 82
table_hunt (function), 81
table_locate (function), 81
table_lookup (function), 81
table_lookup2 (function), 82
tablen (option variable), 482
taking limits
  example, 144
tan (function), 40
tand (function)
  trigonometric functions (degrees), 40	anh (function), 40
taylor (function), 98, 151, 153, 155
  Taylor series, 195
  /T/ notation, 502
  example, 152
  Taylor series in CRE form
  example, 98
  Taylor series information
  example, 156
  Taylor-Laurant series
  example, 155
taylor_logexpand (option variable), 152
taylor_ode (function), 196
taylor_order_coefficients (option variable), 152
taylor_revert (function), 154
taylor_simplifier (option variable), 152
taylor_solve (function), 133
taylor_truncate_polynomials (option variable), 152
taylor_zero_warn (option variable), 152	aylororderdepth (option variable), 151
taylorinfo (function), 156
taylormax (option variable), 158
taylorp (function), 394	aysolve (package), 132
taytorat (function), 98
tellrat (function), 87
tellsimp (special form), 384
tellsimpafter (special form), 384
temperature
  predefined physical quantity in dimen package, 85
tempvar (function), 481
tempvarname (option variable), 481
tempvarnum (option variable), 481
tempvartyp (option variable), 481	ensor
  algebras, 305
    apply fundamental simplification rules, 305
    Clifford, 305
    Grassmann, 305
    initialize, 305
    Lie enveloping, 305
    symmetric, 305
    universal, 305
cartesian coordinates, 304
  Christoffel symbol of the first kind, 288
  Christoffel symbol of the second kind, 288
  common coordinate systems, 297
  components, 279
  contraction, 281
    display, 282
    remove, 282
  contravariant gradient of a scalar, 300
  contravariant metric tensor, 298
  convert indicial to component form, 294
coordinate symbols, 282
  alternate canonical form, 282
canonical form, 282
change name, 284
contracting, 282
indicial simplification, 284
removing, 282
renaming, 283
covariant derivative, 287
covariant divergence, 300
covariant gradient of a scalar, 300
create an indexed object, 295
d'Alembertian of a scalar, 301
display d'Alembertian operator, 293
display of component tensors, 304
display symmetry, 280
dummy index counter, 284
Einstein curvature, 300
Euler-Lagrange, 305
exterior derivative, 287
godesic motion, 300
indices
dummy, 285
free, 285
  generalized Kronecker delta, 285
initialize ctensor, 296
initialize itensor properties, 295
initialize general tensor algebra, 305
Levi-Civita, 286
Lie derivative, 287
Lorentz gauge, 290
metric, 279
mixed Christoffel symbols, 296
permutation tensor density, 286
remove symmetry, 280
Ricci, 300
Ricci curvature, 299
Riemann curvature, 299
Riemannian curvature, 289, 299
Scalar curvature, 300
setting expressions to zero with one derivative index, 290
setup centensor package, 298
show indexed objects, 292
simplification of covariant and contravariant derivatives, 288
spherical coordinates, 304
  symmetry, 280
  Taylor series capability, 303
theories of gravity, 305
transformation functions, 304
Weyl curvature, 300
tensor (package), 372
tensor analysis, 275-307
tensor contractions
dexample, 281
tenor coordinate systems, 297
tenor coordinates
  bipolar, 278
  bipolar cylindrical, 278
cartesian, 278, 304
cartesian2D, 278
cartesian3D, 278
confocal ellipsoidal, 278
confocal elliptic, 278
cylindrical, 278
eccentric, 278
elliptic, 278
elliptic cylindrical, 278
oblate spheroidal, 278
parabolic, 278
parabolic cylindrical, 278
paraboloidal, 278
polar, 278
polar cylindrical, 278
prolate spheroidal, 278
spherical, 278, 304
toroidal, 278
tensor indices
dexample, 283, 285
tenth (function), 328
termratio (function), 116
testing for a string
dexample, 394
tex (function), 483
tex_mult_space (option variable), 484
thermal_conductivity
  predefined physical quantity in dimen package, 85
thermal.diffusivity
  predefined physical quantity in dimen package, 85
thermal_expansion_coefficient
  predefined physical quantity in dimen package, 85
theta (function), 157
third (function), 328
threadable (property), 367
throw (function), 404
thru (special form), 405
time (special form), 451
time and date
dexample, 452
timedate (function), 451
timedate_format (option variable), 451
timer (function), 451
timer.devalue (option variable), 451
timer_info (function), 451
  timing, 451
  showtime, 451
  time, 451
  time and date, 451
  timer, 451
  timer information, 451
  untimer, 451
tidle (function), 161
tlimit (function), 145
tlimswitch (option variable), 144
toeplitz (function), 245
  Toeplitz matrix, 245
toplevel (symbol), 446
toroidal
  predefined coordinate system for ct_coordsys, 297
  predefined coordinate system for vect_coordsys, 278
toroidal coordinates, 278
torsion array tr, 303
torsion tensors, 296
totaldisrep (function), 96
totient (function), 59
tr
tonversion array, 303
tr_array_as_ref (option variable), 433
tr_bound_function_applyp (option variable), 433
tr_file_tty_messagesp (option variable), 433
tr_float_can_branch_complex (option variable), 434
tr_function_call_default (option variable), 434
tr_num (option variable), 434
tr_optimize_max_loop (option variable), 434
tr_output_file_default (option variable), 434
tr_semincplie (option variable), 434
tr_true_name_of_file_being_translated (system variable), 434
tr_version (system variable), 434
tr_warn_bad_function_calls (option variable), 434
tr_warn_fexpr (option variable), 434
tr_warn_meval (option variable), 434
tr_warn_mode (option variable), 434
tr_warn_undeclared (option variable), 435
tr_warn_undefined_variable (option variable), 435
tr_warnings_get (function), 435
tr_windy (option variable), 435
trace
  functions, 447
  options, 447
  untracing, 448
trace (special form), 447
  trace (system variable), 447
trace (system variable), 447
break, 447
errorcatch, 447
info, 447
lisp_print, 447
no_print, 447
trace of a matrix, 224
trace_options (function), 447
trace
  scalar curvature symbol, 299, 300
  tran_mat (package), 182
  transcompile (option variable), 432
  transfer function matrix, 200
transfer_matrix (function), 200
  transfer_phase_vars (option variable), 201
  transforms
    Laplace, 174
  translate (option variable), 432
  translate (special form), 432
translate_file (function), 432
  translated function, 167, 170
translation
  collapse, 431
  file, 432
  from Macsyma into Lisp, 432
  function, 432
  get warnings, 435
  macros, 439
    debugging, 441
    defining, 439
    expanding, 441
  Macsyma functions to Lisp forms, 433
  optimization, 429
  optimize, 430
  packages, 437
    autoload, 438
    declare description, 437
    define variable, 437
    type declarations, 429
  translation and compilation, 429-442
    collapsing subexpressions, 431
    declaring values, 430
    mode declarations, 429
    optimize, 430
  translation options
    mode_check_errp, 435
    mode_checkWarnings, 435
    mode_checkp, 435
    tr_array_as_ref, 433
    tr_bound_function_applyp, 433
    tr_file_tty_messagesp (translate_file), 433
    tr_float_can_branch_complex, 434
    tr_function_call_default, 434
    tr_num, 434
tr_optimize_max_loop, 434
tr_output_file_default, 434
tr_semicompile, 434
tr_warn_bad_function_calls, 434
tr_warn_meval, 434
tr_warn_mode, 434
tr_warn_undefined_variable, 435
tr_windy, 435
transmute (function), 268
transpose (function), 223
transrun (option variable), 433
trapezoid, 69
area, 69
trapezoidal integration rule, 171
traprule (function), 171
triangle, 68, 71
area, 68
triangular form of a matrix, 225
triangularize (function), 225
trigexpand (evflag), 372
trigexpand (function), 43
trigexpand (option variable), 43
trigexpandplus (option variable), 43
trigexpandtimes (option variable), 43
triginverses (option variable), 44
trigonometric functions, 40–42
trigonometric functions (degrees)
    acosd, 40
    acotd, 40
    acscd, 40
    asind, 40
    atan2d, 40
    atand, 40
    cosd, 40
    cotd, 40
    csd, 40
    sec, 40
    tand, 40
trigreduce (evfun), 372
trigreduce (function), 44
trigsign (option variable), 42
trigsimp (function), 45
true (symbol), 27
trunc (function), 351
truncated Taylor series, 152
truncating Taylor series
example, 352
trylist (option variable), 185
ttyoff (option variable), 6
tyme
predefined physical quantity in dimen package, 85
type (function), 482
uchem (package), 84
ufg
    inverse fiber metric symbol, 298
ug
    contravariant metric symbol, 296
und (symbol), 144
undiff (function), 289
undistsrib (function), 106
uniform
    probability functions (continuous), 66
uniform_density (function), 66
uniform_distrib (function), 66
union (function), 20
unit_convert (function), 84
unit_ramp (function), 32
unit_step (function), 32
uniteigenveectors (function), 231
units (package), 82
unitvector (function), 230
univariate_statistics (function), 76
universal algebra, 305
unknown (function), 320
unless (special form), 405
unmarkvar (function), 481
unorder (function), 355
unprod (function), 117
unsum (function), 114, 117
untellrat (function), 87
untimer (function), 451
untrace (special form), 448
untuple (function), 117
unwind_protect (special form), 404
upper triangular form of a matrix
example, 225
uric
    contravariant curvature tensor, 300
uricci (function), 300
uriem
    contravariant curvature tensor, 299
uriemann (function), 299
usage (function), 11
use_grobner (evflag), 372
use_grobner (option variable), 129
use_matrix_lu (system variable), 227
use_minors (option variable), 227
use_operators (option variable), 211
use_tabs_for_display (option variable), 454
use_units (function), 84
userdivide (option variable), 271
user autoload function, 373
user defined functions, 337–346
user_homedir_pathname (function), 464
using %
  example, 8
values (system variable), 411, 417
vandermonde (function), 246
Vandermonde matrix, 246, 251
var : expression (keyword form), 316
var = expression (keyword form), 316
var1 (function), 128
var2 (function), 128
variables in an expression
  example, 325
vec2list (function), 252
vect (package), 208, 275, 278, 393
vect_coords (system variable), 277
vec2coor (function), 276
vec2dim (system variable), 277
vec2express (function), 277
vec2coords
  bipolar (predefined coordinate systems), 278
  bipolar cylindrical (predefined coordinate systems), 278
  cartesian2d (predefined coordinate systems), 278
  cartesian3d (predefined coordinate systems), 278
  confocal ellipsoidal (predefined coordinate systems), 278
  confocal elliptic (predefined coordinate systems), 278
  conical (predefined coordinate systems), 278
  elliptic (predefined coordinate systems), 278
  elliptic cylindrical (predefined coordinate systems), 278
  oblate spheroidal (predefined coordinate systems), 278
  oblate spheroidal sqrt (predefined coordinate systems), 278
  parabolic (predefined coordinate systems), 278
  parabolic cylindrical (predefined coordinate systems), 278
  paraboloidal (predefined coordinate systems), 278
  polar (predefined coordinate systems), 278
  polar cylindrical (predefined coordinate systems), 278
  prolate spheroidal (predefined coordinate systems), 278
  prolate spheroidal sqrt (predefined coordinate systems), 278
  spherical (predefined coordinate systems), 278
  toroidal (predefined coordinate systems), 278
vector
  ~, 276
div operator, 276
cross product, 276
curl operator, 276
express components, 277
gradient operator, 276
Laplacian operator, 276
scalar potential of a gradient, 277
simplification, 276
vector potential of a curl, 277
vector analysis, 275–278
vector potential of a curl, 277
vector potential (function), 277
vector (function), 224
vectorsimp (function), 276
velocity
  predefined physical quantity in dimen package, 85
verbify (function), 324
verbose (option variable), 155
verbose1 (option variable), 190
vers (function), 43
versed sine, 43
version
  example, 457
  Macsyma, 457
version (function), 457
version (option variable), 456
viscosity
  predefined physical quantity in dimen package, 85
vol_cube (function), 70
vol_pyramid (function), 70
vol_pyramid3 (function), 70
vol_pyramid4 (function), 70
vol_rectangular (function), 70
**INDEX**

**vol_right_cone** (function), 70
**vol_right_cylinder** (function), 70
**vol_sphere** (function), 70

voltage
  - predefined physical quantity in *dimen* package, 85

volume, 67, 70, 72
  - cube, 70
  - parallelepiped, 70
  - predefined physical quantity in *dimen* package, 85
  - pyramid, 70
  - pyramid3, 70
  - pyramid4, 70
  - right cone, 70
  - right cylinder, 70
  - sphere, 70, 72

vorticity
  - predefined physical quantity in *dimen* package, 85

warning, 152

warning messages
  - *linsolve* has dependent equations (*linsolve*), 120
  - *optimwarn* and function *optimize*, 110
  - *save* produces large or empty files (*save*), 469
  - *solve* and arc-trig functions (*solve*), 131
  - *solve* and no equations or no variables (*solve*), 131
  - bfloat conversion (*bfloat*), 23
  - bound variable used as a function (*translate_file*), 433
  - change of variable with multiple solutions (*changevar*), 164
  - conversion of floating point to rational (*ratprint*), 96
  - describe mode errors (*translate_file*), 435
  - from *asymptaylor* – possibly baffling (*taylor*), 158
  - get *translate* warnings (*translate_file*), 435
  - Matlab translator (*translate_matlab_file*), 259
  - non-prime modulus, 90
  - non-prime modulus (rational functions), 90
  - optimization (*optimize*), 431
  - possible poles in interval of integration (*integration*), 162
  - produce verbose comments (*translate_file*), 435
  - send message to terminal (*translate_file*), 435
  - send to terminal or file (*translate_file*), 433

**signal error for mode declares** (*translate_file*), 435
  - Taylor series of zero equivalent expression (**taylor**), 152
  - translation of function calls (**translate_file**), 434
  - translation of function calls with improper declarations (**translate_file**), 434
  - translation of mismatched modes (**translate_file**), 434
  - translation of undeclared variables (**translate**), 430
  - translation of unknown special forms (**translate_file**), 434
  - translation of **meval** (**translate_file**), 434
  - translator warnings (**translate_file**), 432
  - undefined global variable (**translate_file**), 435

**Warning**: Float to bigfloat conversion of 1.2, 23

weak field metric, 283

wedge product, 307

Weibull
  - probability functions (continuous), 66
  - *weibull_density* (function), 66
  - *weibull_distrib* (function), 67
  - *werf* (function), 61
  - weyl
    - covariant curvature tensor, 300
  - weyl (function), 300
  - Weyl curvature, 300
  - Weyl curvature tensor, 300
  - while (special form), 405
  - Whittaker equation, 186
  - who (function), 457

work
  - predefined physical quantity in *dimen* package, 85

**write** _tex_file_ (special form), 485
**writefile** (special form), 469
**writefile_on** (system variable), 469
**wronskian** (function), 149
**Wronskian matrix**, 149

xor, 73

**xthru** (function), 103

**younsgs_modulus**
  - predefined physical quantity in *dimen* package, 85

z
  - utility function in **kach** package, 264

zero-recognition problem, 152

zerobern (option variable), 60
zeroequiv (function), 377
zeromatrix (function), 220
zerop (function), 392
zerotest (option variable), 234
zeta (function), 57
Zeta function
   bfloat, 57
   Hurwitz, 58
zeta function
   reflection, 57
   Riemann, 57
zeta%pi (option variable), 57
zeta_reflect (function), 57
zetaderiv (function), 57