
Evaluation of the Heuristic Polynomial GCD

Hsin-Chao (Phil) Liao Richard J. Fateman*

Computer Science Division, EECS Department

University of California at Berkeley

Abstract

The Heuristic Polynomial GCD procedure (GCDHEU) is

used by the Maple computer algebra system, but no other.
Because Maple has an especially efficient kernel that pro-
vides fast integer arithmetic, but a relatively slower inter-

preter for non-kernel code, the GCDHEU routine is espe-

cially effective in that it moves much of the computation
into “bignum” arithmetic and hence executes primarily in

the kernel.

We speculated that in other computer algebra systems an
implementation of GCDHEU would not be advantageous. In

particular, if all the system code is compiled to run at ‘[full

speed” in a (presumably more bulky) kernel that is entirely
written in C or compiled Lisp, then there would seem to be
no point in recasting the polynomial GCD problem into a

bignum GCD problem. Manipulating polynomials that are

vectors of coefficients would seem to be equivalent compu-
tationally to manipulating vectors of big digits.

Yet our evidence suggests that one can take advantage

of the GCDHEU in a Lisp system as well. Given a good
implementation of bignums, for most small problems and

many large ones, a substantial speedup can be obtained by

the appropriate choice of GCD algorithm, including often
enough, the GCDHEU approach. Another major winner

seem to be the subresultant polynomial remainder sequence

algorithm. Because more sophisticated sparse algorithms
are relatively slow on small problems and only occasionally
emerge as superior (on larger problems) it seems the choice
of a fast GCD algorithm is tricky.

1 Introduction and objectives

It is well known that GCD computations are very important

in computer algebra systems, especially in simplifying ratio-

nal expressions, computing partial fraction expansions, and

similar canonical transformations [5, 10]. It is also useful in
constructing reduced characteristic sets to prove geometry
theorems [2].

*This work was supported in part by NSF Grant number CCR-

9214963 and by NSF Infrastructure Grant number CDA-S72278S.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct com-

mercial advantages, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is

by permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

ISSAC’95 - 7/95 Montreal, Canada

@1995 ACM 0-89791-699-9/95/0007 $3.50

Some GCD algorithms are based on some variation of the
Euclidean algorithm extended to operate over a polynomial

ring. The most efficient known variant is the Subresultant

Polynomial Remainder Sequence (PRS) algorithm [1, 3, 5,

6].
There are algorithms based on modular homomorphisms

and their inverse mappings. Some algorithms require more
than one homomorphism in the construction of the GCD.
One example is the modular algorithm based on Chinese

remaindering (GCDCHREM) used in Maple [5]. The algo-
rithms requiring only one homomorphic mapping are usu-
ally based on the Hensel construction. Extended Zassen-

haus GCD (EZGCD) and Extended EZGCD (EEZGCD)

are of this type [8, 9]. Zippel’s Sparse Modular algorithm
(SPMOD) incorporates evaluation homomorphism in finite
fields, probabilistic sparse interpolation and univariate GCD

[10].
Rat her different in nature, the Heuristic GCD algorithm

(GCDHEU) uses evaluation homomorphism over the inte-

gers rather than finite fields [5]. It is not useful for large
problems, and a carefully designed program will identify a
failing case relatively rapidly, and move on to an alternative

algorithm.

Of all the commercially available computer algebra sys-
tems, only Maple uses GCDHEU. Maple has a small and effi-

cient kernel that highly optimizes arithmetic of integers, and
has special code for univariate polynomials. More compli-
cated computations such as multivariate polynomial GCDS)

are programmed for execution by an efficient interpreter
which is however much slower than kernel code. By mapping
polynomials into integers, GCDHEU executes primarily in
the kernel, simultaneously avoiding interpreter overhead in

this important algorithm, and still not taking up additional
kernel code space.

GCDHEU is not implemented in any other system, prob-

ably because their vendors assumed that in an environment

where all GCD procedures are compiled at full speed in C or
Lisp, there is no advantage in mapping polynomials (which
are vectors of coefficients) into bignums (which are vectors
of big digits). Rather than concentrating on implementa-
tion tricks, the tendency has been to seek algorithmic ad-
vantages (better asymptotic running times). The modular
algorithm, EZGCD and SPMOD replace bignum arithmetic
with allegedly faster modular single-word arithmetic. These
minimize coefficient growth, where such growth is usually

a problem. GCDHEU, on the other hand, requires much
larger evaluation points, thus almost inevitably forces cal-
culations to continue into the bignum regime. Since the
size of evaluation point grows with the degree of the inputs,

240



GCDHEU is becomes less effective for large polynomials.
Despite these drawbacks, our experiments suggest that

GCDHEU is useful, and the compiled/kernel versus inter-

preter environment issue is not really a dominant factor. It

can be used to good effect in a compiled Lisp environment.

Our data show that, for low-degree polynomials in up to ten

variables, GCDHEU is faster than the Subresultant PRS
method in the cases where the GCDS are non-monic and

dense. It is faster than the EZGCD and SPMOD in several
cases, especially for polynomials with five or fewer variables.

2 Review of GCD algorithms

In this section, we briefly summarize each GCD algorithm,

its advantages and disadvantages, and provide references.

Subresultant PRS: The original PRS algorithm is the

Euclidean algorithm using pseudo-division in a polynomial

ring. Its main problem is the large coefficient growth in-

duced by pseudo-division. In the multivariate case, the co-

efficients are themselves polynomials, and coefficient growth
includes an exponential growth in the degrees of the coeffi-

cients. The Primitive PRS algorithm decreases such growth

to a minimum by repeatedly removing the content of the
pseudo-remainders at each iteration of the PRS. Because
the contents are computed by GCDS, the Primitive PRS
requires many more operations than the Euclidean PRS.

The Subresultant PRS is a compromise between the Prim-
itive and Euclidean. At each iteration, the pseudo-remainder
is reduced by a factor that can be computed much more

efficiently than the content. While the coefficients in the

Subresultant PRS are sometimes not minimal, it eliminates

recursive calls to the GCD operation. Despite the optimiza-

tion in Subresultant algorithms, the coefficients (which can

be polynomials) still grow very large. An earlier “improved”
PRS described in the literature, the reduced PRS, uses a

different technique that is not as effective as the subresul-
t ant, but is hardly any cheaper, and so it is not advisable
[3, 5,6, 10].

Modular Algorithm using Chinese Remaindering:

(GCDCHREM) The idea in modular algorithms is to elimi-

nate growth in coefficient sizes by computing via evaluation
homomorphisms to reduce multivariate problems to univari-

ate ones, and to compute in finite fields to eliminate coeffi-

cient growth. More specifically, one can map the input poly-
nomials into images in several finite fields, compute their

GCDS in these fields and reconstruct the GCD of the origi-
nal inputs from these “images” using a generalized Garner’s

algorithm (or Chinese Remainder Algorithm). Multivariate
polynomial GCD problems are reduced to univariate prob-

lems by using (repeatedly) evaluation homomorphisms to
eliminate variables.

In the case of a small GCD (say 1), the answer is rapidly
uncovered, but a typical implementation of this algorithm is
prepared to compute many evaluation and modular homo-
morphisms if a non-trivial GCD must be constructed. Also,
the algorithms must detect and recover from the improba-

ble, but not impossible, cases where the finite fields are “un-
lucky” resulting in incorrect modular GCDS. These unlucky
homomorphisms are eventually discovered in the course of

the calculation, however.

The drawback of this algorithm is that the number of ho-

momorphisms needed is exponential in the number of vari-

ables [5].

Hensel Algorithms: EZGCD and EEZGCD: EZGCD
uses Hensel lifting to reduce the number of homomorphisms.

In a, nutshell, the two input polynomials are reduced to two

univariate polynomials whose GCD is then lifted back to the

multivariate domain using a generalized Newton’s iteration.

In most cases, we only need to choose one or two values for

each variable, resulting in much faster execution over the

GCDCHREM algorithm. Another advantage of the Hensel

construction is that in many cases, by choosing the right
evaluation points, the sparsity of the input polynomials is
preserved in the homomorphisms.

There are a few problems with this method. Hensel lift-

ing often has trouble in computing the leading coefficients of

non-monic G CDs correctly. Special handling in these cases

drastically hampers performance. And secondly, Hensel lift-

ing requires that the homomorphic GCD be relatively prime

to one of its cofactors. Bad evaluation points or inputs can

results in the case where a GCD has non-unit common fac-

tors with both cofactors. Wang’s EEZGCD alleviates this

problem by dividing out one common factor. Maple’s im-

plementation uses a trial-and-error strategy due to Spear

[5, 8].

Zippel’s Sparse Modular Interpolation Algorithm:
This algorithm constructs GCDS by interpolating the coef-
ficients. A “skeleton” of the GCD in the main variable is

computed by a dense interpolation using the Chinese Re-
mainder Algorithm. The correct coefficients are then com-
puted by a fast sparse (Vandermonde) interpolation. Each

of these integer coefficients is then recursively dense and

sparse interpolated into polynomials involving the second
variable and so forth. The sparse interpolation ignores the

zero coefficients from the “skeleton” produced by the dense

interpolation, and hence as originally formulated, the algo-

rithm is fast but also probabilistic. This algorithm is not

efficient for dense GCDS and could also be unlucky [10].

3 The Heuristic GCD Algorithm

Because it has been neglected to date, with the exception

of the implementation in Maple, we describe the focus of
the paper, GCDHEU, in greater detail than the other meth-
ods. Our implementation in Lisp is a direct translation from

Maple’s gcd/gcdheu procedure. The main concept is to
reduce the number of variables by assigning values to each.

The end result is a pair of fairly large integers. A guess

at the polynomial GCD is then constructed one variable at
a time using rn-adic interpolations starting from the GCD
of these two numbers. The following algorithm uses this

heuristic and, returns the GCD of two polynomials and its

cofactors or signals FAILURE.

PROCEDURE PGCDHEU (p,q)

Set us - {vars of p} n {vars of q}

Set g + GCD(integer content of p, integer content of q)
WHEN OS is empty,

RETURN {g, p/g, q/g}

Set p +- p/g; Set q G q/g

Set WI + first element of v.
Set ~+ 2.min(llp 11~,[1 q 1]~) +29

Set & 4-- max(min(p, 10000. ti/101),
2 min(ll p [Im /llc(P)lj II ~ Ilw /llc(9)l) +2,

LOOP
Set bl - length((). max( degree(p,vl), degree(q,vl ))

WHEN bl >4000

signal FAILURE

241



WHEN bl >400 and length(v,) >1

Set m +- maxueu, -{~, ]max(degree(p, u), degree(g, v))
Set bz + length(~) m

(min(degree(p,v~ ),degree(q,m)) + 1)
WHEN bz >8000

signal FAILURE
Set {~, cofactorp, cofactorq} -

PGCDHEU(subs(v, +-~, p), subs(v, ~&, q))

Set ~ 4- SP-interpolate(-f, m, &)
Set ~ i- ~/(integer-content of ~)

WHEN ~ divides both p and q

RETURN {g. V, p/~, q/T}
Set cofactorp + SP-interpolate(cofactorp, VI, f)

WHEN cofactorp divides p

Set T + p/co factorp

WHEN T divides q

RETURN {g ~, cofactorp, q/~}

Set cofactorq 4- SP-interpolate( cofactorq, m, &)

WHEN cofactorq divides q

Set ~ & q/cofactorq
WHEN ~ divides p

RETURN {g ~-y, p/-y, cofactorq}
Increment *GCD-TRIES*

WHEN *GCD-TRIES* >6

signal FAILURE

Set < i- 73794. ~ . ~&/27011
END LOOP
END PGCDHEU

PROCEDURE SP-interpolate(~, V1, ~)
Sete +--y

Set G+O

Set 2+-O
WHILE e # O DO

Set c~ - e mod &

Set G & G + c~v~

Set e+- (e– c~)/&

Seti+-i+l
END WHILE

RETURN G
END SP-interpolate

4 GCD in Computer Algebra Systems

We concentrate on three prominent computer algebra sys-

tems’ GCDS: Macsyma, Maple and Mathematical. We in-

vite comparisons to other systems (for example, Axiom,

Macaulay, Magma, Pari, Reduce, Senac, SAC-2). For our

experiments here we used as a basis for comparison, our

own Common-Lisp system “Mock-MMA”, The Subresultant

PRS and GCDHEU are implemented and used separately,
and at the time of this writing, are quite straightforward
implement ations, not including any of the special-case opti-

mization we mention here.
Macsyma (version 419.0 from Macsyma Inc.) imple-

ments the following GCD algorithms: EZGCD, Subresultant
PRS, Reduced PRS and SPMOD algorithms. The default is
SPMOD. The user can choose another algorithm by setting
a flag.

Maple’s main GCD procedure employs these three algo-
rithms: GCDHEU, GCDCHREM, and EZGCD with Spear’s
trial-and-error patch. The Maple program first uses GCD-
HEU. In the case of failure, Maple dispatches one and two-
variable cases to the modular algorithm and the rest to the

EZGCD algorithm. The recursive calls in EZGCD are to

GCD. This means GCDHEU and GCDCHREM are used
for smaller subproblems in EZGCD. In addition to this pro-
gram, Maple also supplies an implementation of the Ex-

tended Euclidean algorithm, separate from the main GCD
procedure.

Through private communications with Wolfram Research
Inc., we have learned that Mathematical implements SP-

MOD. In the unlikely cases where SPMOD fails, Mathe-

matical switches to the Subresult ant PRS algorithm.

5 More Heuristics

Our own (RJF’s) first experience with the modular GCD in
Macsyma was in implementing the algorithm as described

by W.S. Brown in a pre-print of his 1970 SIGSAM paper.
In the summer of 1970 when it was first installed, most pro-

grams using GCDS ran slower. While we were slow to realize
the cause, assuming some bug or “inefficient programming
practice” to be the culprit, it turned out that for sparse
multivariate polynomials, faster results were obtained by us-
ing the (then current ) reduced PRS. It was becoming clear

that a more devious approach to GCD computation would
be advantageous, so long as the “customer base” was not

randomly-generated dense mult ivariat e polynomials.

In fact, we looked back at some literature on ALPAK, a

precursor to ALTRAN designed by Brown and others, and
discovered a number of interesting observations. The net

result was the inclusion of heuristics which we believe made
short work of most of the G CD computations by reducing
large cases to small ones. Most of these tricks do not appear

in the literature, although the major idea — keeping ex-

pressions in factored form as much as possible — has gained

general acceptance as an important contributor to efficiency.
The current versions of Macsyma implement the follow-

ing heuristics. Maple uses (at least) the first three. We

suspect that Mathematical, too, uses some of them as well.

1!

2.

3.

4.

5.

Reduce the degrees of homogeneous input polynomi-
als. Notice that p(z) = q(zn) for n > 1, and rename

Zn to y. This heuristic obviously generalizes to the
multivariate case.

Take advantage of polynomials that have immediately
obvious trivial factors (e.g. Zn or Zmym).

If the variable z occurs in polynomial p but not in q,
then we can make z the main variable of p. Thus, the

GCD of p and q is the GCD of q and the content of p.
That is, x is eliminated from the computation.

Sort the variables according to their degrees. The
lowest degree variable should be chosen as the main
variable in the PRS computations. Maple’s EZGCD

implementation also uses other variable re-ordering
heuristics such as designating as the main variable the
variable with the “simplest” leading coefficient.

Assume p = a ~z + b (where a and b are polynomials in
other variables), and q is at least linear in x. We notice
that the GCD is either linear or constant in x. The
first step is to compute and divide out the contents ofp
and q (using z as the main variable). If the primitive

part of p divides that of q, then the GCD is linear,
hence it is the primitive part of p times the GCD of
the contents. Otherwise, the GCD of p and q is just

the GCD of the contents. This hack is structured more

242



efficiently in Macsyma. For example, the content of q

is never computed if GCD(a, b) = 1.

Using these heuristic methods and hacks can be fruitless, but
since this wasted time is generally only a small percentage

of the time otherwise taken on hard problems, this is not

something very worrisome.

We mention in passing that timing the routines in sys-
tems whose interior is concealed can be difficult. An incau-
tious experimenter may end up testing only heuristics and
not algorithms, (or even, in repeating tests for the sake of
more accurate timing, encounter a system’s caching of an-

swers!).

6 Interweaving GCDS

It is clear that each of the GCD algorithms and heuristics
or hacks has its own strengths and weaknesses. For exam-

ple, SPMOD is much faster than EZGCD and GCDCHREM
for very sparse GCDS. Given these different algorithms and
heuristics, a present-day “best algorithm” would be a dis-

patching procedure that picks the correct methods according
to its inputs. Maple automates this process to some extent.
K. Geddes estimates that in the Maple test-suite, GCDHEU
solves 90% of the inputs to GCD. However, GCDHEU is not

the fastest in all these situations. An implementation of SP-

MOD is also likely to improve Maple’s performance in sparse
cases. Thus, a decision procedure more complicated than

the one used by Maple is needed for optimal performance.

This procedure could be called by the user, or during re-
cursive calls to GCD in any of the algorithms, for example,

when computing the contents.

What are the criteria for choosing an algorithm? We
have not yet solved that problem. However, as discussed in

the previous section, some quick hacks as a preliminary to
any full algorithm seem advisable: Their failures only cost a
small percentage of the time required to execute a modular

algorithm.

Below is yet another set of heuristics that might be help-
ful in choosing the correct method. Some of these might be
common sense. But we have not actually tested them.

1. If the common GCD of more than two polynomials is

needed, avoid using PRS algorithms.

2. From empirical data, we might be able to determine

the right algorithm for univmiate cases based on the
degree.

3. It should be reasonable to assume the GCD to be
sparse. If one of the intermediate skeletons in SPMOD
is dense, then switch to another algorithm.

4. If it is known in advance that the GCD has small coeffi-

cients, then pick small evaluation points for GCDHEU.
If bignums are avoided altogether, GCDHEU can be
much faster. An older version of our GCDHEU imple-

mentation was mistakenly compiled to assume fixnum

coefficients. The program was unusually fast, and pro-
duced correct answers for our test cases. However, it
has been pointed out that wrongfully assuming small

coefficients can result in incorrect answers from GCD-
HEU [5].

7 Timing and Discussion

We have taken the seven cases from Yun’s Ph. D. thesis
[9] on EZGCD for our experiments. In all these cases, the

inputs are the polynomials F and G, and the GCD is the

polynomial D, except in case 1 where the GCD is simply 1.

In the tables below, the times shown are in millisec-

onds. The first row in each table, labeled pgcdsr, shows

the running times of our Mock-MMA Subresultant PRS pro-

gram. The second row, labeled pgcdheu shows the running

times of our GCDHEU procedure. In the third row, labeled
Maple, are the running times of the Maple GCD proce-

dure. The fourth rows, labeled Mats yma, are the running
times of Macsyma’s SPMOD GCD procedure. The fifth
row, labeled Macsyma:prs, are the running times of Mac-

syma’s Subresult ant PRS implementation. The last row,
labeled Math show the running times of Mathematica’s
PolynomialGCD operation,

The blank entries in the pgcdheu row denote cases where

our program signalled juilw-e, usually rather promptly, ex-

cept for v = 10 in case 5 where the computer ran out of

memory. The blanks in the other rows indicate the running

times were far longer than the other entries in the same
table.

We also attempted to time Macsyma’s EZGCD proce-
dure. But it seemed to run forever for cases 1, 5, 5’ and
the smallest example in case 4. Consequently, we have de-
cided against using the data produced from executing this

procedure.
Macsyma’s EZGCD was unfortunately, the only “purely

EZ” implementation known to us. Maple’s GCD procedure

employs the EZGCD method only when all its heuristics

fail. Ikom our data, fewer than half of the examples suggest

the use of EZGCD. To draw conclusions regarding EZGCD

based on these numbers cannot be totally justified, because
Maple’s EZGCD uses the heuristics recursively.

Mock-MMA is compiled in Allegro Common Lisp. The

commercial Macsyma 419.0 is compiled using Austin-Kyoto

Common Lisp (AKCL). In both cases we include garbage-
collection time when it occurs. We estimate this slightly un-

derstates the cost for the smaller problems (where GC does

not occur), slightly overstates the time of some medium-
sized problems, where GC occurs once, and is about right
for large-sized problems where multiple GCS occur, almost

all of which were required by that problem.

Getting consistent repeatable timing for Maple is also
tricky. Maple stores results from various subroutines in “re-
member tables.” In most cases, these are cleared at the oc-

casional garbage collection. Hence the remembered results
will disappear at unpredictable times. Re-invocation of a
subroutine with the same input data as a previous invoca-

tion will immediately return the remembered result if it has
not been garbage-collected. Thus in Maple, an incautious
experimenter may encounter inconsistent timing results.

It should also be noted that Maple sometimes has to

load a library procedure at its first use, and the time to
do this is credited to that procedure invocation. For exam-
ple, the procedure gcd/gcdeh is loaded into memory at its

first invocation. Rom our experiments, we have found no
significant increases in running times due to the loading of
procedures.

All programs were run on HP 9000 workstations. Specif-
ically, Macsyma was run on a HP 9000/715 workstation,
Mathematical on an HP 9000/755, Maple on an HP 9000/712.

Our own Mock-MMA procedures were timed on all three
machines. Since these HP machines executed the same bi-
nary programs, their speed ratios were close to constant.
The model 715 and model 755 were each 1.8 times faster
than the model 712. The running times in the following ta-

bles have already been adjusted to reflect this speed ratio

243



and correspond to times on the model 712.

Case 1: GCD = 1.

F=(l+z+ ~Yi)(2+z+~Yi)

i=l i=l

G = (1 +s2 + ~Y:)(–3Y1Z2 +vt – 1)

%=1

v 1 2 3 4 5
pgcdsr 6 8 15 27 48
pgcdheu 4 8 17 32 63
Maple 50 60 60 80 160
Macsyma 90 108 504 540 558

Macsyma:prs 36 36 54 72 90
Math 18 36 54 90 144

v 6 7 8 9 10
pgcdsr 95 144 221 330 464

pgcdheu 173 439 1352 4701

Maple 250 430 860 2480 10180

Macsyma 630 1062 1134 1602 1746

Macsyma:prs 90 180 612 702 774
Math 234 432 792 1386 2628

Note that for this and subsequent tables, the fastest time
is indicated in boldface. In this case we expected all modu-

lar algorithms, EZGCD, SPMOD and GCDHEU should do
well since the GCD is 1; the chance of an unlucky homo-
morphism is practically zero. They were, however, rather

slow. Pgcdheu and hence Maple should be slow as w in-

creases. Our Subresultant PRS procedure and Macsyma’s
PRS appear to have the edge.

Note when v = 10, our pgcdheu failed while Maple’s

GCDHEU succeeded. This discrepancy is due to the differ-
ence in variable orderings in the two implementations, since
this example is not symmetric in the variables.

Case 2: Linearly dense quartic inputs with quadratic

GCDS.

IJ

k(l+z+~vi)z
i=l

v

F= D.(–2+x–~yJ2

i=l

G= D.(2+z+5Yi)2

,=1

n v II 1 I 2 I 3 I 4 I 5 11, L

pgcdsr 12 43 135 296 581
pgcdheu 14 51 311 3316

Maple 60 150 600 2780 2980
Macsyma 126 756 2916 7596 19620
Macsyma:prs 18 36 108 162 684
Math 36 162 360 882 1908

v 6 7 8 9 10
pgcdsr 1054 1829 2973 4630 6977
pgcdheu

Maple 4900 7580 12950 22910 34510
Macsyma 44928
Macsyma:prs 846 1530 2736 3546 3996
Math 4086 8244 15732 33228 62766

Maple switched from GCDHEU to EZGCD starting at
V=5.

We observed that GCDHEU reached its bounds very

quickly, and did not perform very well on the cases where it
succeeded.

Due to the density in the GCD, EZGCD is faster than

SPMOD in this case. We see that the running times for
Mathematica’s SPMOD implementation is approximately

proportional to powers of 2, while EZGCD is approximately

proportional to powers of 1.5.

Macsyma’s Subresultant PRS was the fastest in this case.

Our implementation of the same algorithm was a close sec-
ond. The PRS required only two pseudo-divisions in the
main variable, regardless of the value of v.

Case 3: Sparse GCD and inputs where degrees are pro-
portional to the number of variables.

u

D=l+Z”+l +~y:+l

i=l
v

F= D.(–2 +X”+’ +~y;+l)

;=1

G= D.(2+X”+1 + + 11+1)
u“” ,
i=l

Macs~ma:prs II 18 I 18 I 36 ] 36 I 54

Math 18 36172190 144 11

Macs~ma:prs ]] 36 I 72 I 72 108 126

Math 216 342 504 792 1278 I

The sparsity should make SPMOD a good method in this

case, as observed for Mat hemat ica’s implement at ion. We

do not have a good explanation for Macsyma’s sluggishness
here.

Because the inputs are of high degrees, our implementa-

tion of GCDHEU failed starting at w = 3. Maple’s GCD-
HEU, on the other hand, finished all ten cases. It bene-
fited from substituting x +- Z“+l and yz & g~+l, resulting
in linear sparse polynomials. The sparsit y helps GCDHEU

because its performance depends heavily on values of the
GCDS at large evaluation points.

Our data concurs with Yun’s data showing that PRS is
very efficient on this case as well.

Case 3’: Same as 3, except

244



Math” - 36 I 72 126 252 450 n
II v II 6 I 7 I 8 I 9 I 10,, 1 I I 1

pgcdsr U
pgcdheu
Maple 1010 1060 1460 1580 2260
Macsvma 25272 47052 80748. , ,
Macsyma:prs

Math 828 1422 2376 3906 6282 1

In this variation, Yun’s data suggested major perfor-

mance degradations in the PRS algorithm, and minor slow-
downs in the EZGCD algorithm, compared to Case 3. Maple

switched to EZGCD starting at v = 3. Indeed, the slow-

downs are minor,
The heuristic GCD, again, suffers from high degree in-

puts. Maple was not able to use its substitution heuristic in

this case, and hence, switched to EZGCD.

This case shows that for certain kinds of large multivari-

ate problems the modular algorithms are indeed necessary.

We do not know why SPMOD slowed down in Macsyma,
given such sparse GCDS, Mathematica’s implementation of

SPMOD, on the hand, performed only second to Maple’s

EZGCD.

Case 4: Quadratic non-monic GCD. F and G have other
quadratic factors.

v

;=2

v

F= D.(–l+z2–y; +~y:)

i=z

u

v 1 2 3 4 5
pgcdsr 18 119 848 5709 26381

D~cdheu 12 29 106 684
li ‘M-ade II 50 I 100 I 280 I 2300 I 3560 I

L

Macsyma 162 1116 1332 2664 5616
Macsyma:prs 36 90 1134 2736 16452

Math 36 72 162 306 612

v 6 7 8 9 10

pgcdsr
pgcdheu

Maple 2740 3220 3980 4720 6100

Macsvma 9126 16596 27504 41904 65790,, ! ,

Macsymaprs I 73854 I 411534 \
Math 1134 2142 3762 6480 1 11286

Maple switched from GCDHEU to EZGCD starting at
‘V =5.

This is the case where EZGCD should have trouble with
the non-monic GCD. But for large cases (v > 9), EZGCD

was surprisingly the fastest. It is interesting to see Maple
speeding up from v = 5 to v = 6. Perhaps it fiddled too

long with the heuristics, but gave up faster for v >6 and

used EZGCD.

We see that GCDHEU can be useful for small values of
v.

Case 5: Completely dense non-monic quadratic inputs
with dense non-monic linear GCDS.

D=–3+(x+l)fi(yi+l)

i=l

F= D(3+(z-2)fi(y,–2))

icl

G= D(&3+(~+ 2) fi(yi+2))

iel

v 1 2 3 4 5

pgcdsr 10 190 4442 203060
pgcdheu 9 31 123 427 1527

Maple 60 310 380 1130 4380
Msmyma 576 972 4554 16776 73008
Macsymaprs 36 216 4968 165510
Math 36 126 630 4266 38178

u 6 7 8 9 10
J L

pgcdsr
pgcdheu 5853 22983 95480 411010
Maple 17530 77260 398260
Macsyma 375246
Liacsyma:prs
Math 398682

Obviously, GCDHEU outperformed the others in these
cases. Both pgcdheu’s and Maple’s running times roughly
quadruple as v increases. Our compiled version was 3 to 4

times faster than Maple’s.

Maple handled all eight (8) examples with GCDHEU. As
an experiment, we forced Maple to use EZGCD for v = 8.

On our HP workstation, Maple computed an obviously in-

correct answer (amazingly) in 760 milliseconds. Further-
more, the answer in this case was presented in such a form

that computing the difference between it and D, the GCD,
ran out of memory. However, the same experiment on an
DEC Alpha showed that GCDHEU took 103 seconds while
EZGCD took 540 seconds. Thus, the decision by Maple to

stick with GCDHEU was the correct one.
The modular algorithms were starting to outperform the

PRS at v = 2. But beyond v = 6, we ran out of patience.
Due to the dense GCD, SPMOD was expected to be slow.

Its running time seemed to be approximately proportional to

powers of 7 for Macsyma and powers of 10 for Mathemat ica.

Case 5’: Sparse non-monic quadratic inputs with linear
GCD’S.

D=–l+zfiyi
%=1

F= D.(3+zfiyt)

i=l

G= D.(–3+zfiyJ

i=l

245



‘v 1 2 3 4 5

pgcdsr 3 5 9 13 17

pgcdheu 6 14 27 47 81

Maple 50 60 100 110 200

Macsyma 90 180 684 1206 1350

Macsyma:prs 18 18 18 36 18

Math 18 18 36 54 90

u 6 7 8 9 10

pgcdsr 23 32 38 48 90

pgcdheu 165 420 1378 5194 20497

Maple 310 700 2350 7260 28010

Macsyma 1908 2502 3096 3726 4320

Macsyma:prs 18 18 36 18 36

Math 162 324 540 1098 2124

In this case, our pgcdsr was fastest for the smaller ex-

amples (v < 5), and Macsyma’s implementation was fastest
for larger examples. We speculate that Macsyma advantage

was in using a polynomial representation more efficient for

sparse polynomials.

Heuristic GCD did not seem to have much advantage
over the modular algorithms. But our GCDHEU for this

case, is about 50% to 40070 faster than Maple’s. (Maple
never switched to EZGCD.)

Case 6: Trivariate inputs with increasing degrees.

D = zjy(z – 1)

F= D (d +?J~+lZ~ +1)

G = D . (z~+l +yJz~+l _ 7)

. 3 1 2 3 4 5

pgcdsr 24 49 123 514 2441

pgcdheu 18 25 35 54 95

Maple 80 100 100 80 80

Macsyma 18 72 72 72 72

Macsyma:prs 18 18 36 18 36

Math 36 36 36 36 36

j 6 7 8 9 10

pgcdsr 10976 42480 146160

pgcdheu 170 296 528 916 1497

Maple 130 150 210 300 410

Macsyma 54 90 72 72 72

Macsyma:prs 36 36 54 54 36

Math 54 54 36 36 36

In this case, the GCD has only two terms. Thus the
sparse algorithm should be much faster than the PRS. But

Maple, Macsyma and Mathematical all took advantage of
the obvious factor d y, and trivialized this case. Thus, they

all outperformed the Mock-MMA programs. In particular, a
direct comparison between our pgcdsr and Macsyma’s PRS
program shows the advantage of this heuristic.

After finding the trivial factor, Maple solved all ten ex-
amples using GCDHEU. But it is interesting to note that
our GCDHEU, not having found the trivial factor, was still
competitive with Maple’s version for v < 4. This suggests
compilation can improve the performance of GCDHEU.

Case 7: Trivariate polynomials whose GCD has com-
mon factors with its cofactors.

P=x–y2+l

Q=x–y+3z

D= P3Q~

F=pi Qk

G = PkQ2, where j < k.

(j, k) (1,2) (1,3) (1,4)

pgcdsr 42 722 17090

pgcdheu 26 43 77

Maple 100 150 230

Macsyma 684 882 2034

Macsyma:prs 54 324 18630

Math 72 144 234

(j, k) (2,4) (3,4) (5,10)

pgcdsr 1875 363

pgcdheu 144 265

Maple 460 1030 94280

Macsyma 2214 2196 103518

Macsyma:prs 738 234

Math 612 1440 77256

This case was originally designed to test the special patch

of EZGCD where the GCD and both of its cofactors are not
relatively prime. Since Maple’s GCDHEU successfully com-

puted the GCDS in the first five examples, the only occur-
rence of this problem in Maple was when j = 5 and k = 10,
where Maple’s EZGCD performed second only to Mathe-
matica’s SPMOD,

The Heuristic GCD was fastest for small examples. And

our compiled version outperformed Maple’s interpreted ver-
sion by a factor between 3 and 4.

8 Conclusion

From the data and the discussion in the previous section, we
draw five simple conclusions. We are confident that the run-
ning times we observed, in spite of timing uncertainties, had
less than 30% error, while we noted performance differences
much greater than that.

●

●

●

Heuristic GCD is useful and should be consid-

ered for implementation in all computer alge-

bra systems. It is clear from our data that our imple-
mentation of GCDHEU was the clear winner in case

5. It was the fastest for small examples in cases 4
and 7. And it was faster than Mathematical and Mac-
syma’s SPMOD in case 1 for v < 6 and in case 5’ for
v < 5. Maple’s partially-interpreted GCDHEU also

outperformed Macsyma and Mathematica’s SPMOD
implement ations in case 5.

Good compilation is necessary. Our data suggests
that our compiled GCDHEU can be up to 4 times

faster than Maple’s interpreted version. Not count-
ing cases 3 and 6 where Maple used other heuristics,
our implementation outperformed Maple’s in 39 out of
44 examples. (This comparison should be taken cau-

tiously, since the two programs represent polynomials
differently and may be sensitive to the ordering of vari-
ables. )

Other heuristics improve performance. We see
from case 6 that the commercial programs were very
fast in removing obvious factors, thus speeding up t heir

GCD computations, resulting in much faster execution
than our procedures. We also see from case 3 that ob-
vious substitutions also improve performance dramat-
ically.

246



● The Subresultant PRS algorithm is still useful. [6]

Despite the theoretical advantages of modular algo-

rithms, the two implementations of the Subresultant
PRS algorithm in Mock-MMA and Macsyma were con-

sistently the fastest for 4 out of 9 cases, namely cases [7]

1, 2, 3 and 5’. It is known that both Maple and Math-

ematical have implement ations of this algorithm, but

they are rarely used.
[8]

● Dense representation can be advantageous for

small problems. We believe that our Subresultant
[9]

PRS program (pgcdsr) outperforms Macsyma’s ver-

sion for small cases because our dense representation,

using recursive arrays, is more suitable for the pat- [10]
tern of memory accesses best supported in modern

computer architectures. On the other hand, for large

sparse problems, the simplicity of Macsyma’s recur-

sive linked lists appears superior. This suggests that
there are benefits for dense and sparse representations

coexisting in computer algebra systems.

We are unable to propose a neat decision procedure for
choosing the opt imal G CD algorithm to use. But it is clear

that heuristics and hacks are very likely to solve very small

problems much faster than complicated algorithms. Heuris-
tics too, can employ other heuristics. As mentioned earlier,
a bug we initially encountered in our implementation of the

GCDHEU procedure, where we unreasonably assumed the
GCD had small coefficients, turned out to be a big time-
saver in those instances in which it did not signal failure.
Although it did not produce any errors for us, it could do

so. Given its speed advantage though, it may pay to “open
compile” a fixnum-specific version of GCDHEU to be used

when possible.

All code used in Mock-MMA is available from the au-
thors.

9 Acknowledgments

We thank Daniel Lichtblau of Wolfram Research Inc. for
his information on the GCD methods used in Mathemat-

ical. We also thank Keith Geddes for his encouragement and
explanations of the fine details in Maple.

References

[1]

[2]

[3]

[4]

[5]

W. S. Brown, “On Euclid’s Algorithm and the Compu-
tation of Polynomial Greatest Common Divisors,” J.

ACM, 18(4), pp. 476-504, 1971.

Shang-Ching Chou, Mechanical Geometry Theorem
Proving, D, Reidel Publishing Co., Dordrecht Holland,

1988.

G. E. Collins, “Subresultants and Reduced Polynomial
Remainder Sequences,” J. ACM, 14(1), pp. 128-142,
1967.

R. Fateman, “A Lisp-language Mathematica-to-Lisp
Translator,” ACM SIGSAM Bulletin 24, no. 2, pp. 19-
21 (April, 1990). Also reprinted “in Computer Algebra

Nededand Nieuwsbrief 6, October, 1990. Code avail-
ably by anonymous ftp.

K.O. Geddes, S.R. Czapor, and G. Labahn, Algorithms

for Computer Algebra, Kluwer Academic Publishers,
Boston 1992.

D. E. Knuth, The Art of Computer Programming,

Vol. 2: Seminumerical Algorithms (second edition),
Addison-Wesley, Reading 1981.

Guy L. Steele Jr. Common Lisp the Language (second
edition), Digital Press, 1990.

P. S. Wang, “The EEZ-GCD Algorithm,” ACM

SIGSAM Bulletin 14, pp. 50-60, 1980.

David Y. Y. Yun, The Hensel Lemma in Algebraic

Manipulation, MIT Technical Report MAC TR-138,
Project MAC, MIT 1973.

Richard Zippel, Effective Polynomial Computation,
Kluwer Academic Publishers, Boston 1993.

247


