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Figure 1. Synthesizing photoreal conversational avatars. Given the audio from a dyadic conversation, we generate realistic conversa-
tional motion for the face, body, and hands. The motion can then be rendered as a photorealistic video. Please see results video.

Abstract

We present a framework for generating full-bodied pho-
torealistic avatars that gesture according to the conversa-
tional dynamics of a dyadic interaction. Given speech au-
dio, we output multiple possibilities of gestural motion for
an individual, including face, body, and hands. The key be-
hind our method is in combining the benefits of sample di-
versity from vector quantization with the high-frequency de-
tails obtained through diffusion to generate more dynamic,
expressive motion. We visualize the generated motion using
highly photorealistic avatars that can express crucial nu-
ances in gestures (e.g. sneers and smirks). To facilitate this
line of research, we introduce a first-of-its-kind multi-view
conversational dataset that allows for photorealistic recon-
struction. Experiments show our model generates appropri-
ate and diverse gestures, outperforming both diffusion- and
VQ-only methods. Furthermore, our perceptual evaluation
highlights the importance of photorealism (vs. meshes) in
accurately assessing subtle motion details in conversational
gestures. Code and dataset available on project page.

1. Introduction
Consider talking to your friend in a telepresent world,

where they appear as the generic golden mannequin shown

in Figure 1 (middle). Despite the mannequin’s ability to
act out rhythmic strokes of arm motion that seemingly fol-
low your friend’s voice, the interaction will inevitably feel
robotic and uncanny. This uncanniness stems from the limi-
tations imposed by non-textured meshes which mask subtle
nuances like eye gaze or smirking. Photorealistic details can
effectively convey these nuances, allowing us to express di-
verse moods during conversation. For example, a sentence
spoken while avoiding eye contact differs significantly from
one expressed with sustained gaze. As humans, we are es-
pecially perceptive to these micro-expressions and move-
ments, which we use to formulate a higher-order under-
standing of our conversational partner’s intentions, comfort,
or understanding [10]. Developing conversational avatars
with the level of photorealism that can capture these sub-
tleties is therefore essential for virtual agents to meaning-
fully interact with humans.

Our ability to perceive these fine-grain motion patterns
breaks down as we represent the motion in more abstracted
forms. Chaminade et al. [8] demonstrates that humans have
a more difficult time distinguishing real vs. fake key-framed
motions (such as walking) in skeletons than in textured
meshes, and even more-so in point-based representations
than in skeletons. In faces, McDonnell et al. [26] shows
that large facial motion anomalies are considerably less dis-
cernible on Toon (i.e. plain colored, comic-like) characters,

https://youtu.be/Y0GMaMtUynQ
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than on characters with human textures applied. Although
abstract representations cannot precisely represent the level
of detail needed for humans to interpret subtle conversa-
tional cues, the majority of prior works in gesture gener-
ation [2, 22, 23, 40] still assess their methods using mesh-
based or skeletal representations. In this paper we advocate
the importance of developing photorealistic conversational
avatars which not only allow us to express subtle motion
patterns, but also allow us to more accurately evaluate the
realism of the synthesized motion.

To this end, we present a method for generating pho-
torealistic avatars, conditioned on the speech audio of a
dyadic conversation. Our approach synthesizes diverse
high-frequency gestures (e.g. pointing and smirking) and
expressive facial movements that are well-synchronized
with speech. For the body and hands, we leverage advan-
tages of both an autoregressive VQ-based method and a dif-
fusion model. Our VQ transformer takes conversational
audio as input and outputs a sequence of guide poses at
a reduced frame rate, allowing us to sample diverse poses
(e.g. pointing) while avoiding drift. We then pass both the
audio and guide poses into the diffusion model, which in-
fills intricate motion details (e.g. finger wag) at a higher
fps. For the face, we use an audio conditioned diffusion
model. The predicted face, body, and hand motion are then
rendered with a photorealistic avatar. We demonstrate the
added guide pose conditioning on the diffusion model al-
lows us to generate more diverse and plausible conversa-
tional gestures compared to prior works. In a perceptual
study, we further illustrate that evaluators can better distin-
guish differences between two approaches when motion is
visualized with photorealistic avatars than with meshes.

To support our approach in modeling the intricacies of
human conversation, we introduce a rich dataset of dyadic
interactions captured in a multi-view system. This system
allows for highly accurate body/face tracking and photore-
alistic 3D reconstructions of both participants simultane-
ously. The non-scripted, long-form conversations cover a
wide range of topics and emotions. In contrast to prior full-
body datasets that support skeletal [22, 23] or Toon-like vi-
sualizations [24], we reconstruct photorealistic renders of
each individual in the dataset. Our data also captures the
dynamics of inter-personal conversations rather than indi-
vidual monologues [13, 24, 40]. We will release the dataset
and renderer, and hope these will encourage the investiga-
tion of gesture generation in a photorealistic manner.

To the best of our knowledge, we are the first to in-
vestigate the generation of photorealistic face, body, and
hand motion for interpersonal conversational gestures. Our
VQ- and diffusion-based method synthesizes more realistic
and diverse motion compared to prior works. Furthermore,
we pose an important question on the validity of evaluat-
ing conversational motion using non-textured meshes, as
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Figure 2. Importance of photorealism Top: Mesh annotations
from prior work [40]. Bottom: Our photorealistic renderings. For
the mesh, differences in laughing (top left) vs. speaking (top right)
are difficult to perceive. In contrast, photorealism allows us to
capture subtle details such as the smirk (bottom left) vs. grimace
(bottom right), which completely changes the perception of her
current mood despite similar coarse body poses.

humans may overlook or be less critical of inaccuracies in
these representations. Finally, to support this investigation,
we introduce a novel dataset of long-form conversations that
enable renderings of photorealistic conversational avatars.
Code, dataset, and renderers will all be publicly available.

2. Related Work

Interpersonal conversational dynamics. Traditionally,
animating conversational avatars have involved construct-
ing rule-based guides from lab captured motion data [6, 7,
14, 18]. These methods are often limited in variety of ges-
tures and rely on simplifying assumptions that do not hold
on in-the-wild data. As a result, there has been greater focus
on using learning-based methods to predict coarse aspects
of a conversation such as turn-taking [1, 22] or a single fa-
cial expression to summarize a conversation [19,31]. While
these methods focus on higher-level dynamics, our method
focuses on the lower-level complexities of interactions by
modeling the full range of facial expressions and body-hand
motion. In contrast, Tanke et al. [33] predicts the full body
pose, but focuses on a different task of motion forecasting,
where the goal is to generate plausible future body poses for
a triad given their past body motion.

More recently, there have been works on modeling cross-
person interaction dynamics by predicting the listener’s
fine-grain 2D [12] or 3D gestural motion from the speaker’s
motion and audio [21, 28], text [29], or stylized emotion
[45]. However, all these methods generate only the head
pose and facial expression of the listener alone. On the other
extreme, Lee et al. [23] models only the finger motion of the
speaker in a dyadic conversation. In contrast, our method is
the first to consider the full range of 3D face, body, and hand
motion for interpersonal conversation while using a single
model to handle both speaking and listening motion.
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Figure 3. Method Overview Our method takes as input conver-
sational audio and generates corresponding face codes and body-
hand poses. The output motion is then fed into our trained avatar
renderer, which generates a photorealistic video. For details on the
face/pose models, please see Figure 4.

Gestural motion generation. Prior works on diffusion
have explored audio to dance [36], text to motion [34], or
even audio to gestures [2, 3, 41, 44]. In [2, 3], body motion
of a speaker is synthesized using a diffusion model con-
ditioned on audio or text respectively. Meanwhile, Yu et
al. [41] focuses only on the face by using a diffusion-based
method with contrastive learning to produce lip sync that
is both accurate and can be disentangled from lip-irrelevant
facial motion. While these methods model only the body
or the face, our approach generates the full face, body, and
hands of the conversational agent simultaneously.

SHOW [40] addresses this issue by training separate
VQ’s to produce face, body, and hand motion given a
speaker’s audio. While our approach similarly focuses on
generating the full range of face, body, and hand motion
for a conversational agent, our approach significantly differs
in that we visualize on photorealistic avatars as opposed to
mesh-based renderings. As depicted in Figure 2, their mesh
can represent large arm movements that follow a rhythm,
but struggles to capture crucial distinctions between a laugh
and opening one’s mouth to speak (top). In contrast, we are
the first to employ photoreal avatars that can express subtle
nuances such as a grimace vs. a smirk (bottom). We demon-
strate in our analysis (Sec. 5.2) that photorealism greatly
affects the evaluation paradigm for conversational agents.

We further differentiate from these prior works [2, 3, 40,
41] in that we model interpersonal communication dynam-
ics of a dyadic conversation as opposed to a single speaker
in a monadic setting. As a result, our method must model
both listener and speaker motion, and generate motion that
not only looks realistic with respect to the audio, but also
reacts realistically to the other individual in conversation.

Conversational datasets. There is a growing number of
large scale datasets for conversational motion [23, 24, 27,
40]. Pose parameters for the face, body and hands of a
monologue speaker are released at large scale in [24, 40].
Similarly [23, 28] provide only the body and hand recon-
structions. However, all these datasets release only enough

information to reconstruct coarse human meshes or tex-
tured avatars through blendshapes that lack photorealism
and high-frequency details [24].

Given the popularity of the task of audio-driven lip sync-
ing, there are many datasets with open-sourced pipelines
for generating facial motion [9,20,32,35,39,41,43], though
these approaches are limited to either 2D video or 3D mesh-
based animation. Complementing such work with a focus
on the face, Ginosar et al. [13] provides a way to render out
the body and hands of a monologue speaker. To the best of
our knowledge, we are the first to provide a dataset with full
simultaneous reconstructions of the face, body, and hands,
and to consider this in a dyadic conversational setting.

3. Photoreal full body motion synthesis

Given raw audio from a conversation between two peo-
ple, we introduce a model that generates corresponding
photorealistic face, body, and hand motion for one of the
agents in the dyad. We represent the face as latent ex-
pression codes from the recorded multi-view data follow-
ing [25], and the body pose as joint angles in a kinematic
skeleton. As shown in Fig. 3, our system consists of two
generative models that produce sequences of expression
codes and body poses given audio from the dyadic con-
versation as input. Expression codes and body pose se-
quences can then be rendered frame-by-frame using our
trained neural avatar renderer [5] which produces the full
textured avatar with the face, body, and hands from a given
camera view.1

Note that the body and face follow highly different dy-
namics. First, the face is strongly correlated with the input
audio, particularly in terms of lip motion, while the body
has a weaker correlation with speech. This leads to greater
diversity in plausible body gestures for a given speech in-
put. Second, since we represent face and body in two differ-
ent spaces (learned expression codes vs. joint angles), each
of them follow different temporal dynamics. We therefore
model the face and body with two separate motion models.
This allows the face model to spend its capacity on generat-
ing speech-consistent facial details, and the body model to
focus on generating diverse yet plausible body motion.

The face motion model is a diffusion model conditioned
on input audio and lip vertices produced by a pre-trained
lip regressor (Fig. 4a). For the body motion model, we
found that a purely diffusion-based model conditioned only
on audio produces less diverse motion that appears tempo-
rally uncanny. However, the quality improves when we con-
dition on diverse guide poses. We therefore split the body
motion model into two parts: First, an autoregressive audio-
conditioned transformer predicts coarse guide poses at 1fps

1Face expression codes, tracked joint angles, and the pre-trained full-
body renderer are released as part of the dataset.
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Figure 4. Motion generation (a) Given conversational audio A, we generate facial motion F using a diffusion network conditioned on
both audio and the output of a lip regression network L, which predicts synced lip geometry from speech audio. (b) For the body-hand
poses, we first autoregressively generate guide poses P at a low fps using a VQ-Transformer. (c) The pose diffusion model then uses these
guide poses and audio to produce a high-frequency motion sequence J.

(Fig. 4b), which are then consumed by the diffusion model
to in-fill fine grain and high-frequency motion (Fig. 4c). We
describe the model components in detail below.

Notation. We denote the audio of the agent as aself and
the audio of the conversation partner as aother . For both
audio streams, we extract Wav2Vec [4] features such that
the audio input is A = (aself ,aother ) ∈ R2×da×T , with da
denoting the feature dimension of Wav2Vec features.

We denote a sequence of T face expression codes as F =
(f1, . . . , fT ), where each ft ∈ R256 represents a face ex-
pression for frame t. A body motion sequence of T frames
is represented by J = (j1, . . . , jT ), where jt ∈ Rdj×3 is
a vector containing three rotation angles for each of the dj
body joints that define a pose at frame t. We follow the for-
ward kinematic representation [5], where the body and hand
pose of a given person can be constructed from the relative
rotations of each joint with respect to its parent joint.

3.1. Face Motion Diffusion Model

To generate facial motion from audio input, we con-
struct an audio-conditioned diffusion model. We follow the
DDPM [15] definition of diffusion. The forward noising
process is defined as:

q(F(τ)|F(τ−1)) ∼ N
(√

ατF
(τ−1), (1− ατ )I

)
, (1)

where F(0) approximates the clean (noise-free) sequence of
face expression codes F, τ ∈ [1, . . . , Ṫ ] denotes the for-
ward diffusion step, and ατ ∈ (0, 1) follows a monotoni-
cally decreasing noise schedule such that as τ approaches
Ṫ , we can sample F(Ṫ ) ∼ N (0, I).

To reverse the noising process, we follow [15, 30] and
define a model to denoise F(0) from the noisy F(τ). The
next step F(τ−1) of the reverse process can then be obtained
by applying the forward process to the predicted F(0). We

predict F(0) with a neural network F :

F(0) ≈ F(F(τ); τ,A,L), (2)

where A are the input audio features and L = (l1, . . . , lT )
is the output of a pre-trained audio-to-lip regressor fol-
lowing [9], but limited to lip vertices instead of full face
meshes. We train the lip-regressor on 30h of in-house 3D
mesh data. Each lt ∈ Rdl×3 is a predicted set of dl lip
vertices at frame t given audio A. Tab. 2 shows, condition-
ing on both the lip regressor output and audio significantly
improves lip sync quality over conditioning on audio alone.

The diffusion model is trained with the simplified ELBO
objective [15],

Lsimple = Eτ,F

[
F−F(F(τ); τ,A,L)

]
. (3)

We train our model for classifier-free guidance [16] by
randomly replacing either conditioning with A = ∅ and
L = ∅ during training with low probabilities. To incorpo-
rate the audio and lip vertex information, we use a cross
attention layer. Timestep information is incorporated with a
feature-wise linear modulation (FiLM) layer, see Fig. 4a.

3.2. Body Motion Model

To generate body motion, we extend the conditional dif-
fusion model by introducing guide poses sampled at 1fps as
additional conditioning. This allows us to model more ex-
pressive motion. Similar to the face model that did not gen-
erate accurate lip motion when conditioned on audio alone,
we found that the body model generates less plausible mo-
tion with limited diversity when conditioned on audio only.

More formally, to generate a full body motion sequence
at 30fps, we train the body diffusion model with guide
poses P = {jk·30|1 ≤ k ≤ T/30} taken at 1fps. These
guide poses are obtained by subsampling the original 30 fps
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Figure 5. Diversity of guide pose rollouts Given the input audio for the conversation (predicted person’s audio in gold), the transformer P
generates diverse samples of guide pose sequences with variations in listening reactions (top), speech gestures (middle), and interjections
(bottom). Sampling from a rich codebook of learned poses, P can produce “extreme” poses e.g. pointing, itching, clapping, etc. with high
diversity across different samples. These diverse poses are then used to condition the body diffusion model J .

ground truth body pose sequence J. The body motion dif-
fusion model J is then the same network as the face mo-
tion diffusion model F , but is conditioned on the subsam-
pled guide poses, i.e. J(0) ≈ J (J(τ); τ,A,P). The guide
poses are incorporated using an additional cross attention
layer (see Fig. 4c). At inference time, however, ground truth
guide poses are not available and need to be generated.

Guide pose generation. To generate guide-poses at infer-
ence time, we train an autoregressive transformer to output
coarse keyframes at 1fps that adhere to the conversational
dynamics. As autoregressive transformers typically operate
on discrete tokens [11, 28, 40], we first quantize the 1 fps
guide pose sequence using a residual VQ-VAE [38]. Resid-
ual VQ-VAEs are similar to vanilla VQ-VAEs [37], but they
recursively quantize the residuals of the previous quantiza-
tion step instead of stopping after a single quantization step.
This leads to higher reconstruction quality [38, 42].

Let Z = (z1, . . . , zK) be the resulting quantized em-
bedding of the K-length guide pose sequence P, where
zk ∈ {1, . . . , C}N , C is codebook size, and N is the
number of residual quantization steps. We flatten this
K ×N -dimensional quantized embedding Z to obtain Ẑ =
(ẑ1, . . . , ẑK·N ). We predict Ẑ with an audio-conditioned
transformer P , which outputs a categorical distribution over
the next token given prior predictions and audio,

p(ẑk|ẑ1:k−1,A) = P(ẑ1:k−1;A). (4)

We train the transformer using a simple cross entropy loss
on the task of next-token prediction with teacher forcing:

LP = −
∑

k∈{1,...,K·N}

log Pr [P(z1:k−1,A) = zk] . (5)

At test time, we use nucleus sampling [17] to predict the se-
quence of motion tokens. We can easily control the level of
variability seen across samples by increasing or decreasing
the cumulative probability.

The guide-pose transformer is illustrated in Fig. 4b. For
further architecture details on the residual VQ-VAE and the
transformer architecture refer to Appendix B.

3.3. Photorealistic Avatar Rendering

Given both the generated facial expression sequence F
and the generated body pose sequence J, the full photore-
alistic avatar can be rendered as illustrated in Fig. 3. Fol-
lowing [5], we use a learning-based method to build our
drivable avatars. The model takes as input one frame of fa-
cial expression ft, one frame of body pose jt, and a view
direction. It then outputs a registered geometry and view-
dependent texture, which is used to synthesize images via
rasterization. The model is a conditional variational auto-
encoder (cVAE) consisting of an encoder and decoder, both
parameterized as convolutional neural networks. The cVAE
is trained end-to-end in a supervised manner to reconstruct
images of a subject captured in a multi-view capture setup.
We train a personalized avatar renderer for each subject in
our dataset. For details, please refer to [5].

4. Photorealistic conversational dataset

While there are a plethora of datasets on dyadic inter-
actions [23, 28], all such datasets are only limited to upper
body or facial motion. Most related is Joo et al. [22], which
introduces a small-scale dataset of triadic interactions as a
subset of the Panoptic Studio dataset. The data includes 3D
skeletal reconstructions of face, body and hands as well as
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Figure 6. Results Our method produces gestural motion that is synchronous with the conversational audio. During periods where the
person is listening (top), our model correctly produces still motion, seemingly as if the avatar is paying attention. In contrast, during
periods of talking (bottom), the model produces diverse gestures that move synchronously with the audio.

audio and multi-view raw video footage. The limited (≈ 3
hours) and specific data (only focused on haggling), makes
it difficult to learn diverse motion distributions.

Inspired by this work, we introduce a medium-scale
dataset capturing dyadic conversations between pairs of in-
dividuals totaling to 8 hours of video data from 4 partic-
ipants, each engaging in 2 hours of paired conversational
data. To ensure diversity of expressions and gestures, we
prompt the actors with a diversity of situations such as sell-
ing, interviews, difficult scenarios, and everyday discourse.

Most notably, to the best of our knowledge, we are the
first to provide a dataset accompanied with fully photore-
alistic renderings of the conversational agents. Rather than
generating and evaluating motion via 3D meshes, our multi-
view dataset allows us to reconstruct the full face, body, and
hands in a photorealistic manner. Visualizing via these ren-
derings allow us to be more perceptive to fine-grain details
in motion that are often missed when rendered via coarse
3D meshes. Our evaluations confirm the importance of eval-
uating gestural motion using photo-real avatars.

To create the photorealistic renderings, we captured both
individuals simultaneously in multi-view capture domes.
One person stood in a full-body dome while the other sat in
a head-only dome. During the conversations, both viewed
screens of the other person in real-time. We can then recon-
struct high fidelity renderings of the face only for one indi-
vidual [25], and the face, body, and hands for the other [5].
To train our method, we use the ground truth from the full-
body capture to supervise our method. We will publicly
release audio, video, precomputed joint angles, face expres-
sion codes, and trained personalized avatar renderers.

5. Experiments

We evaluate the ability of our model to effectively gener-
ate realistic conversational motion. We quantitatively mea-
sure the realism and diversity of our results against tracked
ground truth data (F,J). We also perform a perceptual eval-

uation to corroborate the quantitative results and to measure
appropriateness of our generated gestures in the given con-
versational setting. Our results demonstrate evaluators are
more perceptive to subtle gestures when rendered on photo-
realistic avatars than on 3D meshes.

5.1. Experimental Setup

Evaluation Metrics. Following a combination of prior
works [2, 3, 28], we use a composition of metrics to mea-
sure the realism and diversity of generated motion.
• FDg: “geometric” realism measured by distribution dis-

tance between generated and ground truth static poses.
We directly calculated the Frechet distance (FD) in the
expression Rdf and pose space Rdj×3.

• FDk: “kinetic” motion realism. Similar to above but
distributions calculated on the velocities of motion se-
quences δP. Computed in expression RT×df and pose
space RT×dj×3.

• Divg: “geometric” pose diversity. We randomly sample
30 expression, pose pairs within a motion sequence and
compute average L2 distances between pairs to measure
diversity of static expressions/poses in the set.

• Divk: Temporal variance across a sequence of expres-
sions/poses. Measures amount of motion in a sequence.

• Divsample : Diversity across different samples. We group
samples generated by the same audio and calculate vari-
ance across the samples.
Together, these metrics measure both the realism and di-

versity of the generated gestures in conversation.

Baselines and ablations. We compare to the following:
• Random: Random motion sequences from the train set.
• KNN: A segment-search method commonly used for syn-

thesis. Given input audio, we find its nearest neighbor
from the training set and use its corresponding motion
segment as the prediction. We use audio features from
Wav2Vec [4] to encode the audio.



FDg ↓ FDk ↓ Divg ↑ Divk ↑ Divsample ↑

GT 3.09 2.50

Random 9.371.4 1.440.04 3.100.09 2.490.4 3.970.8

KNN 8.441.6 0.620.09 2.130.05 1.210.3 1.960.3

SHOW [40] 4.970.7 2.600.10 2.100.09 0.770.1 2.820.2

LDA [2] 5.080.2 1.040.07 2.450.06 1.880.3 2.680.4

Ours Uncond 8.451.3 1.530.08 2.740.07 2.060.4 2.940.3

Ours w/o P 5.080.4 1.130.09 2.470.06 1.670.3 2.060.4

Ours w/o A 3.940.1 0.980.10 2.690.08 2.160.4 2.710.3

Ours 2.940.2 0.960.07 2.980.07 2.360.4 3.580.5

Table 1. Baselines and ablations vs. ground truth poses (GT).
↓ indicates lower is better. We average across all subjects in the
dataset. We sample 5 sequences for Divsample and average across
all samples for each metric. Standard deviation as subscript (µσ).

.

Horizontal L2 Error ↓ Vertical L2 Error↓ Mesh L2 ↓

SHOW [40] 2.76 2.15 2.25

Ours w/o L 2.62 2.43 2.24

Ours 2.29 1.89 1.76

Table 2. Lip reconstructions The vertical (horizontal) distance
is the distance between top and bottom (left and right) keypoints
along the y (x) axis. The errors shown are L2 differences between
ground truth and generated distances. Mesh L2 is the error in gen-
erated vs. GT mesh vertices on the lip region. Errors in mm2.

• SHOW [40]: VQ-VAE based method that uses a trans-
former to autoregressively output motion conditioned on
the audio of a speaker. They have separate models for
face, body, and hands. Given [40] is trained on mono-
logues, we retrain their model for our domain.

• LDA [2]: Audio to motion diffusion model trained in a
monologue setting. We re-train to adapt to our domain.

• Ours Uncond: (ablation) unconditional motion genera-
tion without audio or guide pose conditioning.

• Ours w/o P: (ablation) audio conditioned motion diffu-
sion without guide pose conditioning. Similar to LDA [2].

• Ours w/o A: (ablation) guide pose conditioned motion
diffusion model but without audio conditioning. Similar
to diffusion infilling approaches.

5.2. Results

Through quantitative evaluations, we show that our pro-
posed method outputs realistic motion more diverse than
competing baselines. In our Mechanical Turk A/B evalua-
tions, we demonstrate our method generates compelling and
plausible gestures, consistently outperforming our strongest
baseline. Additionally, the A/B tests highlight that photore-
alism effectively captures subtle nuances in gestures that are
challenging to discern from 3D meshes. Yet these details
significantly effect the evaluation of conversational motion.
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Figure 7. Motion correlation with audio Given audio (top), we
plot the L2 distance of each pose to the mean neutral pose across
400 frames. Ours (rendered avatars, orange line) closely matches
the peaks corresponding to large motion also seen in ground truth
(e.g. a flick of the hand preempting the “ugh”). LDA [2] (pink)
misses these peaky motions. Also note how our method generates
highly expressive facial motion matching the speech.

Quantitative Results. Table 1 shows that compared to
prior works, our method achieves the lowest FD scores
while generating motion with highest diversity. While Ran-
dom has good diversity that matches that of GT, the ran-
dom segments do not appropriately match the correspond-
ing conversational dynamics, resulting in higher FDg . A
slight improvement to Random is KNN, conventionally
used for motion synthesis. While KNN performs better
in terms of realism, matching the “kinetic” distribution of
the ground truth sequences better than Ours, the diversity
across and within samples is significantly lower, also indi-
cated by the higher “geometric” FD. In Fig. 5, we demon-
strate the diversity of guide poses our method generates.
Sampling via the VQ-based transformer P allows us to pro-
duce significantly different styles of poses conditioned on
the same audio input. The diffusion model then learns to
produce dynamic motion (Fig. 6), where the motion faith-
fully follows the conversational audio.

Our method outperforms both a VQ-only approach
SHOW [40] and a diffusion-only approach LDA [2],
achieving better realism and diversity across samples.
Within sequences, our method generates more motion, re-
sulting in a higher Divk. Fig. 7 highlights this, demonstrat-
ing LDA [2] produces dampened motion with less variation.
In contrast, our method synthesizes variations in motion that
closely match ground-truth.

Our ablations justify our design decisions. Applying our
method without any conditioning (Ours Uncond) performs
notably worse, with a realism and variance similar to that
of Random. This suggests that while the motion gener-
ated does not match the given conversation sequence, it is
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Figure 8. Perceptual evaluation on Ours vs. ground truth or
Ours vs. our strongest baseline LDA [2]. We compare using mesh
vs. photorealistic visualizations. Ours outperforms LDA [2] in
both mesh and photoreal settings (top). Further, we note people
are able to distinguish GT more often in the photoreal setting than
with meshes (bottom). The results suggest that evaluating with
photorealistic avatars leads to more accurate evaluations.

similar to real motion in the dataset. Audio only condi-
tioning (Ours w/o P) improves over unconditional gener-
ation and performs similarly to LDA [2], an audio to mo-
tion diffusion-based method. The lower diversity in both
the static poses and across a temporal sequence results in
higher FD scores. When adding only the guide pose con-
ditioning (Ours w/o A), both the diversities and FD scores
improve significantly. This suggests that the coarse-to-fine
paradigm, introduced through the predicted guide poses,
helps to add diversity to the diffusion results. It also sug-
gests that the coarse guide poses produced by the trans-
former P follow a trajectory that faithfully matches the dy-
namics of the conversational audio. The FD scores and di-
versities further improve when adding both the audio and
guide pose conditioning in the body motion model J .

Furthermore, we analyze the accuracy of our method in
generating lip motion. In Table 2, we calculate the ver-
tical and horizontal distances between two pairs of key-
points representing the top/bottom and left/right corners of
the mouth, respectively. The vertical distance measures er-
rors in mouth opening while the horizontal distance mea-
sures mouth expressions, e.g. a smile shifts the positions
of the left/right mouth corner and increases the horizon-
tal distance. We compare these distances against ground
truth and compute the L2 error. Our approach (Ours in
Table 2) substantially outperforms an ablation without the
pretrained lip regressor (Ours w/o L in Table 2) and the
baseline SHOW [40]. Qualitatively, the pretraining of the
lip regressor not only improves lip syncing, but also pre-
vents the mouth from randomly opening and closing while
not talking. This results in better overall lip reconstructions,
with lower errors on the face mesh vertices (Mesh L2).

Perceptual Evaluation. Given the challenge of quantify-
ing the coherence of gestures in conversation, we primarily
evaluate this aspect through a perceptual evaluation. We
conducted two variations of A/B tests on Amazon Mechan-
ical Turk. In the first, evaluators viewed motion rendered
on a generic non-textured mesh. In the second, they viewed
videos of the motion on photorealistic avatars.

In both cases, evaluators watched a series of video pairs.
In each pair, one video was from our model and the other
was from either our strongest baseline LDA [2] or ground
truth. Evaluators were then asked to identify the motion that
looked more plausible given the conversational audio. They
were also asked to indicate how confident they were in their
answer by selecting “slightly prefer” vs. “strongly prefer”.

As shown in Fig. 8, ours significantly outperforms
against our strongest baseline LDA [40], with about 70%
of evaluators preferring our method in both the mesh and
photoreal settings. Interestingly, evaluators shifted from
slightly to strongly preferring ours when visualized in a pho-
torealistic manner (top row). This trend continues when
we compare our method against ground truth (bottom row).
While ours performs competitively against ground truth in a
mesh-based rendering, it lags in the photoreal domain with
43% of evaluators strongly preferring ground truth over
ours. Since meshes often obscure subtle motion details, it is
difficult to accurately evaluate the nuances in gestures lead-
ing to evaluators being more forgiving of “incorrect” mo-
tions. Our results suggest that photorealism is essential to
accurately evaluating conversational motion.

6. Conclusion

In this work, we explored generating conversational ges-
tures conditioned on audio for fully embodied photorealis-
tic avatars. To this end, we combine the benefits of vector
quantization with diffusion to generate more expressive and
diverse motion. We train on a novel multi-view, long-form
conversational dataset that allows for photorealistic recon-
structions. Our method produces diverse face, body, and
hand motion that accurately matches the conversational dy-
namics. The results also underscore the significance of pho-
torealism in evaluating fine-grain conversational motion.

Limitations and ethical considerations. While our model
produces realistic motion, it operates on short-range audio.
It thus fails to generate gestures requiring long-range lan-
guage understanding (e.g. counting), which we leave for fu-
ture work. Further, our work is limited to photorealistic gen-
eration of four subjects in our dataset. This limitation ad-
dresses ethical concerns since only consenting participants
can be rendered, as opposed to arbitrary non-consenting hu-
mans. In releasing a dataset with full participant consent,
we hope to provide researchers the opportunity to explore
photorealistic motion synthesis in an ethical setting.
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Appendix

A. Results Video
The supplementary video shows sequences of various

individuals in different conversational settings from our
dataset. Below, we denote the time stamp range associated
with the discussion - (@mm:ss-mm:ss).

The results show that our model successfully models
plausible, motion that is synchronous with the ongoing
conversational dynamics. For instance, it correctly gen-
erates facial expressions and body language of someone
feeling disgruntled e.g. dismissive hand wave and turning
away (@02:58-03:11). The generated gestures are well-
timed with the conversation e.g. raised finger with “I think”
(@02:30-@02:50). Additionally, our approach can pro-
duce multiple plausible motion trajectories based on a sin-
gle conversational audio input, each with distinct variations
(@03:15-@03:55).

Compared against baselines and prior works, our method
generates more “peaky” motion such as wrist flicks while
listing (@04:16), and finger pointing (@04:50), which are
both missed by a diffusion-based method LDA [Alexander-
son et al. 2023]. In comparison to a VQ-based method
SHOW [Yi et al. 2023], ours produces more dynamic mo-
tion with increased arm movement (@04:52), and seamless
transitions between poses when switching from asking a
question, to listening, to responding (@05:12-05:30). In
contrast, SHOW moves to the audio but hovers around the
same pose throughout. In comparison to both Random and
KNN, gestures by our approach match the audio far better.

Notably, without any retraining, our method generalizes
to conversational audio not seen in the dataset, such as a ran-
dom movie clip audio (@05:44-@06:03). This is possibly
due to the identity-agnostic training of Wav2Vec. We can
also extend our method to the application of video editing,
where we can reanimate a target person with a different mo-
tion trajectory by swapping guide poses (@06:10-06:27).

B. Method
B.1. Pose representation

While we use a standard SO(3) representation for the
joint angles, we note that not all joints are parameterized
with 3 degrees of freedom ( e.g. arm twist is only repre-
sented with roll, head bend with yaw, etc. ). In total, we
have 104 rotation angles across all of the joints.

B.2. Residual VQ-VAE

The residual VQ-VAE allows us to capture finer-grain
details by employing a cascade of codebooks to capture pro-
gressively finer approximations. We use residual length of
4. In practice, this means we need a sequence of 4 VQ to-
kens to represent a single pose. To generate poses during

test time for the diffusion model, we autoregressively out-
put 4 × K tokens one at a time, where K is the length of
the downsampled sequence. For the both the encoder and
decoder, we use a series of 1D convolutions of kernel size
2. The total receptive field for both the encoder and decoder
is 8. We use a codebook size of 1024, and embedding size
of 64. We train for 300k steps.

B.3. Guide pose Transformer

We adapt the diffusion model’s architecture for the guide
pose network. The transformer architecture is composed of
masked self-attention layers that focuses only on previous
timesteps to enable autoregressive prediction. The audio
is then incorporated using non-causal cross attention lay-
ers. This means the network doesn’t see past motion, but
sees the full context of audio. We then remove the dif-
fusion timestep τ conditioning, and instead feed in an au-
dio embedding (averaged over the whole time series) to the
FiLM layers. While not necessary, this slightly helps the
transformer to generate more plausible poses on the very
first time-step. We use 2 masked self-attention layers and
6 cross-attention layers, all with 8 heads. We train for
≈ 100k iterations depending on the individual.

B.4. Implementation details

We use a max sequence length of 600 frames at 30 fps
(20 second videos). During training, we randomly sample
a sequence between 240 frames and 600 frames. We then
train on padded sequences of random lengths for all of our
networks. This allows us to generate sequences of arbitrary
length during test time. We train each network for each
subject in the data separately. All networks are trained on a
single A100. Approximate train times: face diffusion model
(8 hr), VQ + coarse pose predictor (5 hr), pose diffusion
model (8 hr).

C. Results
C.1. Perceptual evaluation

For each Ours vs. GT (mesh), vs. GT (photoreal),
vs. LDA (mesh), vs. LDA (photoreal), we generate 50 A-B
tests. For each test, we ask 3 different evaluators, totalling
to 600 evaluators. Each A-B test contained 14 questions.
Prior to the actual test, we provide a headphone check to
make sure the evaluators are listening to audio. However,
we do not ask additional questions that check to see if they
are actually listening to the speech. The landing page de-
scribes the task and walks evaluators through 2 examples.
To ensure the evaluators are not randomly clicking, we in-
clude 3 questions with an obvious mismatch (one speaker
laughing while the listener is neutral) twice. If the evaluator
selects a different response for these duplicated questions,
we do not allow them to submit.



C.2. Ablation with VQ-only method

In the main paper, the VQ-only baseline is represented
with prior work SHOW [Alexanderson et al. 2023], which
is very similar to our guide pose network. For complete-
ness, we also train a VQ-only baseline using our network
architecture. We see very similar results to SHOW and sim-
ilar limitations. Quantitatively, FDg = 5.00, FDk = 2.80,
Divg = 2.20, Divk = 1.89. Note the higher FD and lower
diversity compared to our complete method. We notice that
after many timesteps, drift often happens which causes the
method to either get stuck in a local minima (no motion).
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