Short Course
Robust Optimization and Machine Learning

Overview

Laurent El Ghaoui

EECS and IEOR Departments
UC Berkeley

Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012
Course topics
Course topics

Let’s try again . . .

2. Robust optimization.
3. Machine learning applications:
 - *Unsupervised learning*: data analysis, covariance estimation.
 - *Supervised learning*: Model fitting, regression, classification, sentiment analysis.
4. Applications, mostly in text analytics.
Course outline

▶ Jan. 16:
 1. Lecture 1: Optimization models.
 2. Lecture 2: Convex optimization.

▶ Jan. 18:
 2. Lecture 5: Robust optimization overview.

▶ Jan. 19:
 1. Lecture 6: Robust optimization in supervised learning.
 2. Lecture 7: Sparse optimization for text analytics.
Speaking of slopes... An optimization problem you can think about while skiing

A two-dimensional skier must slalom down a slope by going through \(n \) parallel gates of equal width. The first gate’s middle position is \((0, 0)\); the \(i \)-th gate is separated by the previous one by a distance \(\sigma_i^2 \). We assume that the skier comes from uphill situated very far away from the start of the gate, with its initial direction set at a given angle.

![Slalom problem graph](image)

Slalom problem with \(n = 5 \) obstacles. “Uphill” is on the left side. Middle path in blue.

Problem: Find the path that minimizes the total length of the path. Your answer should come in the form of an optimization problem.