Midterm: Solutions

1. (10 points) Conjugates of some functions. Express the conjugate of the following functions in closed form. Make sure to define precisely the domain of the conjugate functions, and their values.

 (a) \(f(x) = a^T x + b, \) with \(a \in \mathbb{R}^n, b \in \mathbb{R}. \)

 (b) The function with domain \(\{ x : \|x\|_2 \leq 1 \} \), and values on that domain given by \(f(x) = a^T x + b, \) with \(a \in \mathbb{R}^n, b \in \mathbb{R}. \)

 (c) \(f(x) = -\|x\|_2. \) (Note that \(f \) is not convex!)

 (d) \(f(x) = \frac{1}{p}(x_1^p + \ldots + x_p^p), \) with \(p > 1, x \in \mathbb{R}_+^p. \) (It will be convenient to use \(q = p/(p-1). \))

 (e) \(f(x) = \log(1 + e^{c^T x}), \) with \(c \in \mathbb{R}^n, \|c\|_2 = 1, \) given.

Solution:

 (a) \(f(x) = a^T x + b, \) with \(a \in \mathbb{R}^n, b \in \mathbb{R}: \) we have

 \[
 f^*(y) = \max_x y^T x - (a^T x + b) = \begin{cases}
 -b & \text{if } y = a, \\
 +\infty & \text{otherwise.}
 \end{cases}
 \]

 (b) The function with domain \(\{ x : \|x\|_2 \leq 1 \} \), and values on that domain given by \(f(x) = a^T x + b, \) with \(a \in \mathbb{R}^n, b \in \mathbb{R}: \) we have

 \[
 f^*(y) = -b + \max_x y^T x - a^T x : \|x\|_2 \leq 1 \\
 = \|y - a\|_2 - b.
 \]

 (c) \(f(x) = -\|x\|_2: \) in this case,

 \[
 f^*(y) = \max_x y^T x + \|x\|_2 = +\infty,
 \]

 irrespective of the vector \(y. \) The domain of \(f^* \) is empty.

 (d) \(f(x) = \frac{1}{p}(x_1^p + \ldots + x_p^p), \) with \(p > 1, x \in \mathbb{R}_+^p: \) the function is convex, and differentiable in its domain. Taking derivatives of

 \[
 y_i x_i - \frac{1}{p} x_i^p
 \]
leads to $y_i = x_i^{p-1}$. This requires $y_i \geq 0$, otherwise $f^*(y) = +\infty$. In such a case, we proceed and obtain the optimal point $x_i^* = y_i^{1/(p-1)}$, $i = 1, \ldots, p$, and

$$f^*(y) = \max_x \sum_{i=1}^n \left(y_i x_i - \frac{1}{p} x_i^p \right)$$

$$= \sum_{i=1}^n \left(y_i x_i^* - \frac{1}{p} (x_i^*)^p \right)$$

$$= \frac{1}{\beta} \sum_{i=1}^n y_i^q,$$

with $1/p + 1/q = 1$.

(e) $f(x) = \log(1 + e^{c^T x})$, with $c \in \mathbb{R}^n$, $\|c\|_2 = 1$, given: any $x \in \mathbb{R}^n$ can be written as $x = \alpha c + r$, with $\alpha \in \mathbb{R}$, and $r \in \mathbb{R}^n$, with $c^T r = 0$. Using α, r as new variables, we have

$$f^*(y) = \max_x y^T x - \log(1 + e^{c^T x})$$

$$= \max_\alpha \alpha y^T c - \log(1 + e^\alpha) + \max_{r : c^T r = 0} y^T r.$$

The second term is finite (and in fact, zero) if and only y, c are parallel, which, due to the fact that $c \neq 0$, is the same as $y = \beta c$ for some $\beta \in \mathbb{R}$. We obtain in that case

$$f^*(y) = \max_\alpha \alpha \beta - \log(1 + e^\alpha).$$

Taking derivates leads to

$$e^\alpha = \frac{\beta}{1-\beta},$$

which requires $\beta \in [0, 1]$. If that is not the case, the dual function is $+\infty$. Otherwise, we have

$$f^*(y) = \beta \log \beta + (1 - \beta) \log(1 - \beta).$$

To conclude we have

$$f^*(y) = \begin{cases}
\beta \log \beta + (1 - \beta) \log(1 - \beta) & \text{if } y = \beta c \text{ for some } \beta \in [0, 1] \\
+\infty & \text{otherwise.}
\end{cases}$$
2. (10 points) Convexity of a function via Hessian.
Consider the function $f : \mathbb{R}^n_{++} \rightarrow \mathbb{R}$, with values

$$f(x) = \sum_{i=1}^{n} \frac{1}{x_i} - \frac{1}{\sum_{i=1}^{n} x_i}.$$

Show that the function is convex, using the following steps.

(a) Show that the Hessian at $x \in \mathbb{R}^n_{++}$ satisfies

$$\frac{s(x)^3}{2} \nabla^2 f(x) = D(x) - \mathbf{1}\mathbf{1}^T,$$

where $s(x) = \mathbf{1}^T x$, with $\mathbf{1}$ the vector of ones, and $D(x)$ a diagonal matrix, which you will determine.

(b) Use Schur complements (twice) to show that the function f is convex.

Solution:

(a) Using the chain rule, we easily obtain

$$\frac{1}{2} \nabla^2 f(x) = \text{diag}\left(\frac{1}{x_1^3}, \ldots, \frac{1}{x_n^3}\right) - \frac{1}{(x_1 + \ldots + x_n)^3} \mathbf{1}\mathbf{1}^T,$$

from which derives the desired expression, with

$$s(x) = x_1 + \ldots + x_n = \mathbf{1}^T x, \quad D(x) = \text{diag}(d(x)),$$

where

$$d_i(x) = \frac{s(x)^3}{x_i^3}, \quad i = 1, \ldots, n.$$

(b) We have to show that $D(x) - \mathbf{1}\mathbf{1}^T$ is positive semidefinite. Using Schur complements, this condition is the same as

$$\begin{pmatrix} D(x) & \mathbf{1} \\ \mathbf{1}^T & 1 \end{pmatrix} \succeq 0.$$

Using Schur complements again, and exploiting the fact that $D(x) \succ 0$ on $\text{dom } f$, we obtain the equivalent condition

$$1 \geq \mathbf{1}^T D(x)^{-1} \mathbf{1} = \sum_{i=1}^{n} \frac{1}{d_i(x)} = \frac{\sum_{i=1}^{n} x_i^3}{(\sum_{i=1}^{n} x_i)^3},$$

which is trivially true whenever $x \in \mathbb{R}^n_{++}$.

3
3. (10 points) Some duals. In the following questions, make sure to prove strong duality when needed.

(a) For a given \(a \in \mathbb{R}^n \), find the dual of the problem

\[
p^* = \min_x a^T x + \lambda \|x\|_2,
\]

and find a closed-form expression for \(p^* \). Hint: express the problem in min-max form, and apply Sion’s theorem.

(b) For a given \(a \in \mathbb{R}^n \), and \(\lambda \geq 0 \), consider the problem:

\[
p^* = \min_x \|x - a\|_2 + \lambda \|x\|_1.
\]

Find the dual.

(c) Show that, for the problem above, when \(\lambda > 1 \), \(x = 0 \) is optimal for the primal problem. Hint: observe that the dual constraints on the dual variable \(u \) are of the form \(\|u\|_2 \leq 1 \), \(\|u\|_{\infty} \leq \lambda \), and argue that for \(\lambda > 1 \) the second constraint is inactive, then show that \(p^* = \|a\|_2 \).

Solution:

(a) We have

\[
p^* = \min_x a^T x + \lambda \|x\|_2 = \min_x \max_{u : \|u\|_2 \leq 1} (a - u)^T x
\]

Sion’s theorem applies since the variable \(u \) is constrained to a compact set. We obtain

\[
p^* = \max_{u : \|u\|_2 \leq 1} \min_x (a - u)^T x
\]

The inner problem’s value is 0 when \(a = u \), and \(-\infty\) otherwise. We obtain the dual form

\[
p^* = \max_u 0 : u = a, \|u\|_2 \leq \lambda.
\]

This means that

\[
p^* = \begin{cases} 0 & \text{if } \|a\|_2 \leq \lambda, \\ -\infty & \text{otherwise}. \end{cases}
\]

(b) We have

\[
p^* = \min_x \|x - a\|_2 + \lambda \|x\|_1
\]

\[
= \min_x \max_{u,v} u^T (a - x) + v^T x : \|u\|_2 \leq 1, \|v\|_{\infty} \leq \lambda.
\]

Applying Sion’s theorem, we obtain

\[
p^* = \max_{u,v} \min_x u^T (a - x) + v^T x : \|u\|_2 \leq 1, \|v\|_{\infty} \leq \lambda
\]

\[
= \max_{u,v} u^T a : \|u\|_2 \leq 1, \|v\|_{\infty} \leq \lambda
\]

\[
= \max_u u^T a : \|u\|_2 \leq 1, \|u\|_{\infty} \leq \lambda.
\]
(c) We observe that if \(\lambda > 1 \), then no matter what the optimal \(u \) is, we have

\[
\|u\|_\infty \leq \|u\|_2 \leq 1 < \lambda.
\]

Hence the second constraint is not active at optimum in that case, and we can remove it:

\[
p^* = \max_u u^T a : \|u\|_2 \leq 1 = \|a\|_2.
\]

This means that \(x = 0 \) is optimal, as it achieves the optimal value \(p^* \).