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Introduction

Over the past decade there has been an explosion in terms of the massive amounts of high-
dimensional data in almost all fields of science and engineering. This situation presents a challenge
as well as an opportunity to many areas such as web data analysis, search, biomedical imaging,
bioinformatics, (social) network analysis, image, video and multimedia processing and many others.
In such applications, researches today routinely deal with data that lie in thousands or even billions
of dimensions, with a number of samples sometimes of the same order of magnitude.

Often, in order to be able to even make sense of data in such high dimensionality and scale, one has
to leverage on the fact that such data often have low intrinsic dimensionality. One reasonable (but
not the only) approach that is well justified in many practical situations is to assume that the data
all lie near some low-dimensional subspace. In mathematical terms, this amounts to saying that if
all the data points are stacked as column vectors of a matrix M, the matrix should (approximately)
have low rank. Specifically, a common model is to assume that

M = Lo+ Ny (1)

where Ly is of low rank and Ny is a small perturbation matrix (i.e. the noise). A classical approach
to the problem is to seek the best (in an f5-sense) rank-k estimate of Ly by solving the optimization
problem

min M= L, © rk(L) <k (2)

This approach, known as Principal Component Analysis (PCA) [14, [I5], has been studied for almost
a century and is used extensively for data analysis and dimensionality reduction in many areas. It
is easy to show that this problem can be efficiently solved using the singular value decomposition
(SVD) of the data matrix M. It also enjoys a number of optimality properties when the noise Ny
is small and i.i.d. Gaussian. However, PCA in general may fail spectacularly when the assumption
on the noise matrix is not satisfied: Even a single grossly corrupted entry in M could render the
estimated L arbitrarily far from the true Ly. Unfortunately, these kinds of gross errors are very
common in many applications, arising for example from corrupted data, sensor failures or corrupted
samples in repetitive measurement tasks in biology applications.

We would therefore like a method that is able to extract the principal components (the low rank
structure) of measurement data even in the presence of such gross but sparse corruptions. The
recently proposed Robust PCA framework [11] is a very promising candidate for this task. Ro-
bust PCA combines the two popular heuristics of nuclear norm minimization (used to encourage
low-rankness) and ¢;-norm minimization (used to encourage sparsity) and casts the problem of sep-
arating a low-rank “data” component from a sparse “noise” component into a convex optimization
problem. The surprising fact is that one can show that, under certain reasonable conditions, the
recovered solution is exact.

The objective of this project is threefold: First, we survey the recent results on Robust PCA
and related extensions and use the theory of convex optimization to develop an understanding
of how the main theoretical results are proven. Second, we discuss some efficient algorithms for
Robust PCA that allow the application of the framework to large-scale problems. Finally, we apply
the Robust PCA framework to a number of different problems in order to illustrate its potential
practical relevance.
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Chapter 1

Theory

1.1 Introduction

Given an observed matrix M € R™*"2 that is formed as a superposition of a low-rank matrix Lg
and a sparse matrix Sy,
M = Ly + Sy

Robust Principal Component Analysis [11] is the problem of recovering the low-rank and sparse
components. Under suitable assumptions on the rank and incoherence of Lg, and the distribution
of the support of Sy, the components can be recovered exactly with high probability, by solving
the Principal Component Pursuit (PCP) problem given by

minimize || L]l + A||S])1 (L.1)

subject to L+S=M '
Principal component pursuit minimizes a linear combination of the nuclear norm of a matrix L and
the /1 norm of M — L. Minimizing the ¢; norm is known to favor sparsity, while minimizing the
nuclear norm ||L||x = >, ¢,z 0 is known to favor low-rank matrices (intuitively, favors sparsity of
the vector of singular values).

The low-rank component Sy is viewed as a noise matrix, that can represent measurement noise,
failure in some sensors that will result in completely corrupting a fraction of the observed entries,
or missing data (which translates to having a fraction of the entries equal to zero). In this setting,
one would like to be able to recover the original data Ly, without making assumptions on the
magnitude ||So|lo of the sparse component, where [|S| = max;;|S;;|. PCP achieves recovery
with high probability in this setting, under alternate assumptions on the structure of Ly and
sparsity pattern of Sy.

One cannot expect to recover the components exactly in the most general case. Assume for example
that Lo is such that (Lg)i; = 52-15}, and Sy = —Lg. Both matrices are sparse and low-rank, and
clearly one cannot expect to recover the components in this case, since the observed matrix is M = 0.

Therefore assumptions need to be made on the incoherence of Ly and the support of Sp.
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1.1.1 Incoherence of the low rank component L,

The Incoherence conditions describe how much the singular vectors of a given matrix are aligned
with the vectors of the canonical basis.

Let the (slim) SVD of Ly be given by

s
Ly =USV* =)o} (1.2)
=1

where U € R™*" and V € R™*" are the matrices of left and right singular vectors respectivley,

U=ui,...,ur], V=[v1,...,v;]. Then the incoherence conditions are given by
* KT * 2 ur
U*e;||2 < = Ve |l < =—
max U < 2, a6 < 2 13)
and
. r
UV oo < /- (1.4)

ning

Note that the condition ||U*e;||3 < £ translates to S (ug)? < . Also note that the orthogonal
projection Py on Span(uq,...,u,) is given by

*
Uy

T
UU* = [ui,...,up] | :Zuku};
* k=1

Uy

and the condition is equivalent to || Pye;||3 < I since |U*e;l|3 = e (UU*)e; = e Pye; = (e;— Pye;+

Pye;)*Pye; = || Pyei|3 (Pye; and e; — Pye; are orthogonal). Or simply ||Pye;||3 = e;UU*UU*e; =
e;UU*e; = ||U*¢;||3 since U*U = I,.

These conditions require the singular vectors to be “spread” enough with respect to the canon-
ical basis. Intuitively, if the singular vectors of the low-rank matrix Lo are aligned with a few
canonical basis vectors, then Ly will be sparse and hard to distinguish from the sparse corruption
matrix Sy.

1.1.2 Support of the sparse component S,

The cardinality of the support of Sy is denoted m. Guaranteeing exact recovery requires m to be
small enough, in a sense that will be defined in the next section. Proving exact recovery will rely on a
probabilistic argument which assumes the sparse matrix Sy is drawn from a uniform distribution on
the set of matrices with support of a fixed cardinality m, i.e. {S € R™*"2 | card(supp(S)) = m}.
Here card denotes the cardinality, and supp denotes the set of non zero elements, or support.
The proof of the main result will use a different sampling model, and prove equivalence with the
uniform model.
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1.2 Main Result

Theorem 1. Suppose Lo € R™ ™ satisfies incoherence conditions and and that the
support of So is uniformly distributed among all sets of cardinality m. Then 3¢ such that with high
probability over the choice of support of Sy (at least 1 —cn™1°), Principal Component Pursuit with
A =1/y/n is exact, i.e. L =Ly and S = Sy provided that

Pr n 2
rank(Lg) < — and m < pgn
(Lo) < 1 (log )2 < ps (1.5)
Above, p,. and pg are positive numerical constants. Note in particular that no assumptions are
made on the magnitudes of the nonzero entries of Sp.

The first condition in the theorem bounds the rank of Lg, but also how spread the singular vectors
have to be, since we need to have Vi (from the incoherence condition)

w rank(Lo) . _Pr

U eill5 < = (logn)2

The second condition bounds the size m of the support of Sy.

1.3 Proof of the main result

The main arguments of the proof are the following;:

First, change the model of the sparse matrix Sy from the uniform sampling model, to the Bernoulli
sampling model with fixed signs, then to the Bernoulli sampling model with random signs. To show
equivalence of the results under the different sampling models, use an elimination theorem.

Then using the random sign Bernoulli sampling model, it is shown that a dual certificate can be
constructed with high probability, proving that (Lo, Sp) is the unique optimizer, by constructing
a subgradient that shows that any non-zero perturbation H will result in a strict increase in the
objective value || Lo + H ||« + A||So — H||1.

1.3.1 Preliminaries
e The subgradient of of the ¢; norm at Sy supported on 2 is of the form sgn(Sy) + F where
PoF =0 and ||F|lec < 1.

e The subgradient of the nuclear norm (for details see Section [1.3.9) at Ly = UXV™ where
UV e R"™ and ¥ € R™", is of the form UV* + W, where

UW =0
WV =0 (1.6)
Wi <1

where [|[WW]| denotes the operator norm of matrix W, i.e. ||W| = max ||[Wulls = omax(W).

l[ull2=1

Conditions (|1.6)) are equivalent to

May 10, 2012 7
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Prwv =0
Wi <1

where T is the linear space of matrices defined by

T={UX*+YV* X,Y € R™"} (1.8)

Indeed, we have
PrW =0 W Tt
SVMeT, Tr(W*M) =0
SVX)Y e RV, Tr(WH(UX*+YV*))=0
S VXY e R Tr(U'W)*'X*)+Tr(WV)'Y)=0
SUW=WV*=0

Note that the projection on the orthogonal of T is given by
P M=({I-UU"YM(I-VVY) (1.9)
Proof. Note that UU™ is the orthogonal projection on the subspace spanned by the columns of U,
and similarly for VV*. Let Py = UU*, Py =1 — UU*, and similarly for V.
Let My = (I —UU*)M(I —VV*)= Py1LMP,.. We have
PTJ_M:M1<:>(M—M1 ETaHdMlJ_M—Ml)
and we have M — My, = UU*M + MVV* —UU*MVV* = U{U*M) + (MV —UU*MV)V* € T,
and
Tr(M{(M — M) =Tr((I -=VV YM*(I -=UU*)(UU*M + MVV* -UU*MVV™))

=Tr(Py . M*Py. (PuM + (M —UU*M)Py))

=Tr(Py . M*"Py.PyM)+Tr(M —UU*M)Py Py,. M*Py1)

=0
using the fact that Py Py = Py Pyy1 = 0 (projecting consecutively on a subspace and its orthogonal

yields 0, or simply expanding, (I — UU*)UU* = UU* — UU*UU* = UU* — UL, U* = 0). This
completes the proof. ]

Note that since Pr. is an orthogonal projection, we have

[Pra M| < [ M]] (1.10)

and for any dyad e;e}, we have

|Preeiei||z =Tr (I = UU)ees(I = VV*)I = VV*)ejei (I — UU*)Y)
=Tr (e;(I = UU*)* (I —UU")ese;(I = VV*)(I = VV*)*e;)
=Tr(ef(I —UU*)*(I - UU*)e;) Tr (eI = VV*)(I = VV*)*e;)
= (I =UU)e 31T = VV*)esll3

May 10, 2012 8



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

and since UU™* is an orthogonal projection, we have

1T = UU)eal3 = eal3 — |UU* el
>1—pur/n

where the last inequality results form the incoherence condition (1.4), [U*e;]|3 < £°. There-
fore
1Preeiej|lE > (1 — pr/n)® (1.11)

Equivalently, using the fact that || Pp. eie;H% + HPTeie}‘H%J = HeiejH% =1, we have

2
PTeie"f 2 <1- 1_ﬂ
JIF

n
_ 2ur (ﬂ)Q
o on n
L
n
Thus
2ur

| Preief||7 < (1.12)

1.3.2 Elimination Theorem

The following elimination theorem states the intuitive fact that if PCP exactly recovers the com-
ponents of M = L + S, then it also exactly recovers the components of M = L + S’ where S’ is a
trimmed version of S (supp(S’) C supp(S) and S and S’ coincide on supp(S’)).

Theorem 2. Suppose the solution to the PCP problem with input data My = Lo + So s
unique and exact, and consider M} = Lo + S{, where S, is a trimmed version of Sy. Then the
solution to with input My is exact as well.

Proof. Let Sy = Pq,So and let (L, S) be the solution to (1.1) with input Lo + S}. Then since
(Lo, S) is a feasible point for (|1.1)), it provides un upper bound on the optimal value

L1 + AlIS 1 < [l Lol + AllSg 14

then decomposing Sy into the orthogonal components Sy = Pq,So + PQ& So =S+ PQ& So, we have
1S0llr = [1S0lly = [[Pog Solly, thus we have

LI« + AllS1l1 + Al Pag Soll1 < | Loll + AllSoll

and using the triangle inequality

L1« + AllS + Py Solli < [[Loll« + AllSollx

we observe that (f/, S+ P, : So) is feasible for the problem with input M = Ly + Sy, for which the
optimal value is precisely || Lo||« + A||So||1. Therefore by uniqueness of the solution, we have

~

— L
;§+PQ(J)_SO =Sy

May 10, 2012 9



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

the second equality is equivalent to S =5, — P, L So = Pa,So = S. This completes the proof. [

1.3.3 Derandomization

Derandomization is used to show equivalence between the problem where the signs of the entries
of Sy are random, and the problem where the entries of Sy have fixed signs.

In the setting of Theorem [I} the non-zero entries of the sparse component Sy are fixed, but the
proof will use a stronger assumption: the signs of the non-zero entries are independent Bernoulli
variables. The following theorem shows equivalence of the two settings. We remark that we take
ps = ;3 in the robust PCA setting.

Theorem 3. Suppose Lg satisfies conditions of Theorem[1], and that the support of Sy is sampled
from a Bernoulli model with parameter 2ps, and the signs of So are i.i.d. Bernoulli £1 with
parameter %, and independent from the support. Then:

If the PCP solution is exact with high probability, then it is exact with at least the same probability
for the model in which signs of Sy are fived and the support is sampled from a Bernoulli distribution
with parameter ps.

Proof. Consider the fixed values model, and let Sy = PS for some matrix .S, and the support €2
is sampled from a Bernoulli distribution. Thus the components of Sy are independent and

Sij  W.p. ps
(S0)ij = {0
w.p. 1 —ps

the idea of the proof is to craft a new model, and show that it is equivalent (in terms of probability
distribution) to the above model.

Let E be a random sign matrix, with i.i.d. entries

1 W.p. Ps
Ei; =<0 w.p. 1 —2p;
-1 w.p. ps

and A(F) an elimination matrix, function of F, defined as

A= 0 if E;;S;; <0 (E;; and Si; have different signs)
" 1 otherwise

the entries of A are functions of independent variables, and are therefore independent.

Now consider the following variable
Sy=Aol|S|oE

May 10, 2012 10



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

where o is the component wise product. Then Sy and S{ have the same distribution. Indeed, it
suffices by independence to check that they have the same marginals:

P((S(,))U == S”) = P(AU =1 and Eij = sgn(SZ-j))
(EijSij Z 0 and Eij = Sgn(Sij))

P(Eij = sgnSij)

= pS

and
P(So = Sij) = ps

Finally, since, by assumption, PCP recovers |S| o E with high probability, then by the elimination
theorem, it also recovers A o |S| o E with at least the same probability. The result follows since .S},
and Sy have the same distribution. ]

We remark that the uniform sampling and the iid Bernoulli sampling model are indeed equivalent
and the justification is given in Section [1.3.§]

1.3.4 Dual certificate

The following lemma gives a simple sufficient condition for the pair (Lg, Sp) to be the unique opti-
mal solution to PCP.

Lemma 1. Assume that ||PoPr| < 1. Then (Lo, So) is the unique solution to PCP if I(W, F)

such that
UV*+W = A(sgn(Sp) + F)

Prww =0
W]l < 1 (1.13)
PoF =0
[Flloo <1

Proof. We first prove that the condition ||PoPr|| < 1 is equivalent to Q NT = {0}.

First, if Q NT # {0}, then let My € QNT, My # 0. We have ||PoPrMy| = ||[Mo||, thus
Po PrM
| PaPr]| = max Pl > 1.

Conversely, if ||PoPr|| > 1, then 3Mjy # 0 such that || My|| < ||PqPrMpyl||. But since Py and Pr
are orthogonal projections, we have | M| < ||PaPr| < ||PrMpl|| < ||Mpl|, where inequalities must
hold with equality. In particular, we have || PrMy|| = || Myl|, which implies PrMy = M (to prove
this, decompose || M| into the orthogonal components || Myl|? = ||Mo — PrMy||* + || PrMy||?, thus
||PTMO|| = ||MQH = ”MO — PTMOH =0= My = PTM()), then Similarly, ”PQMOH = ||MQH7 which
implies PoMy = M. Therefore My € QN T. This proves the equivalence ||PoPr|| <1< QNT =

{0}

To prove that (Lo, Sp) is the unique optimizer, we show that for any feasible perturbation (Lo +
H,Sy — H) where H # 0 strictly increases the objective. Let

May 10, 2012 11



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

e UV* + W, be an arbitrary subgradient of the nuclear norm at Lo, where [|[Wp]| < 1 and
Privyg =0

e sgn(Sy)+ Fp be an arbitrary subgradient of the ¢1-norm at Sy, where || Fp||loo < 1 and PoFy =0

Then we can lower bound the value of the objective

Lo + H|lx + AllSo — Hl[1 = [[Loll« + AllSollx + (UV™ + Wo, H) — Msgn(So) + Fo, H)

Now we pick a particular pair (Wy, Fy) such that

o (Wo,H) = ||PriH]|s, for example Wy = Pp.W where W is a normed matrix such that
(W, ProH) = ||[ProH||. (by duality of |[.|| and .[|.)

o (Fy,H) = —||PqLH||1, for example Fy = —sgn(Pq1 H)
then we have

1Lo + Hll« + AllSo — Hllx = [[Loll« + AllSolly + [| Pre Hll« + [ Por Hl[1 + {UV™ — Asgn(So), H)

we can bound the inner product using the definition of W and F,

{UV™ — Asgn(Sy), H)| = |(A\F — W, H)| since UV* + W = A(sgn(Sp) + F)
< (W, H)| + M\(F, H)| by the triangular inequality
< B([ProH|l« + Al Por HlJ1)

where = max(||W||, || F|loc) < 1, and the last inequality follows from the fact that
|1ProHlw = (Pro H, W/ W) = (H, W/[[WI])
[1PorH[y = (Por H, F/|[Flloo) = (H, F/|[Flloo)

Thus

1Lo + Hl[« + Al[So — Hllx = [[Loll« — AllSollx = (1 = 8) (I[Pre Hl|x + Al Por H|1)
>0
since ||PpiH||« = ||PorH||1 =0 only if Pri H = PoiH =0, i.e. H € QNT, and, by assumption,

QNT =0and H # 0. Therefore the objective strictly increases with a non-zero perturbation. This
completes the proof. O

The proof of the main theorem will use a slightly different result, given by the following Lemma:

Lemma 2. Assume that |PoPr|| < 1/2. Then (Lo, So) is the unique solution to PCP if I(W, F)
such that

UV* + W = X(sign(Sp) + F + PaD)
Prww =0

W) <172

PoF =0

|Fllo < 1/2

|PaDr < 1/4

(1.14)

May 10, 2012 12



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

Proof. Using 8 = max(|W||,||[F||s) < 5 in the previous proof, we have for a non-zero perturba-
tion H

| Lo + H||« + Al|So — H|[1 — || Lol|« — Al|So]|1 > % (|1ProH||« + M| PorH|1) — MPaD, H)
> 2 (1Pps Hll + M| Pos H|) — 2| PoH |
the last term can be further bounded
[1PoH||F < [|PoPrH||F + [|PoProH|
< SIH e+ 1Pl using || PoPr]| < 5 and |[Po| < 1

1 1
< SIPaH|lp + 5|1 Pos Hllp + | Pro Hlr

therefore
|PoH||p < |PorH|F + 2 ProH||p

and we conclude by lower bounding the increase in the objective

1 A
-+ HlL+ Ao = Hll = oll. = MiSoll > 5 (1= VP H. + 51 Pos 1
>0

since ||PpiH||« = ||PqrH||1 =0 only if Pt H = PriH =0, 1.e. H € QNT, and, by assumption,
QNT = {0} (||[PoPr|| < § <1). This completes the proof. O

Bounding || PoPr||

Under suitable conditions on the size of the support {2y of the sparse component, a bound can be
derived on ||PoPr| [10].

Theorem 4. Suppose g is sampled from the Bernoulli model with parameter pg. Then with high
probability,
|Pr — pg ' PrPo,Pr| < e

provided that pg > COG_Q‘”I% where p s the incoherence parameter and Cy is a numerical con-
stant.

As a consequence, ||PqoPr|| can be bounded, and if || is not too large, then the desired bound
|| PoPr|| < 1/2 holds.

1.3.5 Probabilistic Guarantee via Dual Certification

We now present the proof that, under the assumptions of Robust PCA, then with high probability,
we can find a dual certificate (W, F, D) that satisfies the conditions (1.14]) of Lemma [2| This will
achieve the proof of the probabilistic guarantee of recovery of (Lg, Sp).

May 10, 2012 13



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

In order to construct a dual certificate (W, F, D), we define W = W, 4 WS where WL and WS
are constructed to satisfy the following properties. First, Po(W*) = Asign(Sp). Then it also need
to satisfies the following. With p = 5

w2

Lemma 3. Let Sy ~ Bern(p) iid for each entry with Q as its support set. Set jo = 2logn. With
the assumptions in the main theorem of RPCA, W satisfies the following with high probability.

L 1
LW < 5
2. ||[Po(UV* + Wh)||p < %
3. ||Por(UV* + Wh)||oo <
Lemma 4. Let Sy ~ Bern(p) iid for each entry with Q as its support set. With the assumptions
in the main theorem of RPCA, W* satisfies the following with high probability.
S 1
LWl < g
2. ||Por (W9)|loo < 7
With these two lemmas, we are ready to show that they help to justify the probabilistic guarantee.
We note that
v +w = whkyws+uve

Uv* + wt , WL+ wsS++uv*
= A |:PQ ()\) + sign(So) + Pqt ( 3 )]

Thus we take

Uv* + wt
A
w o= wkyw?d
WL+ WS +UvH
PQ( X )

D =

F =

From Lemma and Lemma , we can check that (W, F, D) satisfies the conditions of Lemma ,
thus establishing the probabilistic guarantee.

The following section will discuss in depth how to construct W% and W* that satisfy conditions of
Lemma and Lemma .
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1.3.6 Proof of the Lemma about golfing scheme and dual certificate

Golfing scheme:
The golfing scheme involves creating a W’ according to the following method.
1. Fix jo > 1, define Q; ~ Bern(q) iid with 1 < j < jo and p = (1—¢)’°. Define the complement
of support of ) by Q = UlSijOQJC.
2. Define a sequence of matrix which finally ends at W
(a) Yo=0
(b) Yj =Yj1+ ;Po, Pr(UV* = Yj_q) for 1 < j < jo
(c) Wh = Pr.(Yj,)
We first list a number of facts that will be used in the proof of Lemma .

Fact 1 ([I1]). If we fir Z € T, Qo ~ Bern(po), and py > Coe 2178 then with high probability,
we will have,

1Z = p5 " PrPag(Z) o < €l Z]s

Fact 2 ([I1]). If we fix Z, Qo ~ Bern(po), and py > CO%’ then with high probability, we will
have,

nlogn

I = pg " Pog)Z|l < Cy 12l

Po

Fact 3 ([11]). If Qo ~ Bern(po),po > 006_2%, then with high probability, we will have,

|Pr — pg* PrPo, Pr < e
Fact 4 ([I1]). If Q ~ Bern(p) and 1—p > Coe_z‘"l%, then with high probability || PoPr||* < p+e

Now we present the proof of Lemma

Proof. We define another sequence of matrix Z; = UV* — Pp(Y;). There are some properties
about Z; which allows us to establish the proof. We survey them here and provides the proof of
them.

i) Note that
1
Z; = <PT _ qPTPQjPT> Zj1. (1.15)

The reason is as follows.
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1
Z;=UV*—Pr (Yj_l + *PQ].PT(UV* — Yj_l)) by construction of Y;
q

1
=UV* - Pr(Y;—1) — &PTPQ].PT(UV* —Y;_1) by of linearity of Pr

=Zj_1—q ' (PrPq,(UV* — Pp(Yj_1))) since Pp(UV*) = UV*
= Pp(Zj—1) — ¢ (PrPo,PrZ;—1) since Zj_1 €T
= (Pp—q 'PrPo,Pr)Z;j— by linearity

i) If ¢ > 00672&;%”, then with high probability,

1Zjlloo < €UV oo (1.16)

The reason is as follows. By Fact , we have,

1Zj—1 — ¢ ' PrPo, Zj—1||»
1Zjllo

€llZj-1llo

€l Zj-1llocby (L.15)

<
<

Inductively, we get the desired. iii) If ¢ > Coe_Q&Sgn, then

1Zjllp < €V (1.17)

The reason is as follows. By Fact , we have,

Zi_
H(PT ~ ¢~ PrPo,Pr) <“> <e
1Zj-1llr /1l
|(Pr —q *PrPo,Pr)Z;_1||r < €|l Zj-1|F by rearranging terms
1ZillF < €llZj1llr by (L.15)

Inductively, we get the desired result.

After establishing these properties, we are ready to prove that golfing scheme yields W that
satisfies the desired properties.
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1) Proof of condition (1):
W = 11Pra (Vo)
Jo 1
< —|[PriPo,Zi |
=11

Jo

Jj=1

by definition

since Y; =Y;_1 + qilPQj (Zj-1)

1 .
= Z "PTL<6PQij_1 — Zj—l)H sice Zj eT

Jo
1 .
<M H(;Pszjzj—l — Zj—)| since ||[Pr.(M)]| < || M|
j=1

/ [nlogn 70
< Coy/ p > 1Zi 1l by Fact(2)
j=1

Jj=1

. [nlogn <X | .
<O [ UV e by (1)

»Inl 1
<, o (()Jgn T UV |0 by bound on geometric series

rInl 1
<c nognl_ ur
q € n

1 1
<(Ce< -
sCe<y

2) Proof of condition (2) : First, we expand,
| Po(UV* + W) p

by RPCA assumptions

1
for some constant C'

= [[Pa(UV™ + ProYjo)||r

Then, because Po(Yj,) = Pa(3_; Po;Zj-1) = 0 and Po(Pr(Yj,) + Pp.(Yj,)) = 0, we have,

| Po(UV* +WH)|| g

Continuing,
1Po(UV* + WH)||F = |Pa(Zjo)llr
< HZjoHF
< oV
1 A
<Jr—<Z
SVrs <

3) Proof of condition (3) :
1P UV + W) oo = [ Pos (Zjy + Yi) oo
< HZjoHoo + HYJOHOO

<|1ZjsllF + 11¥55 lloo
A
< g + ”Y]OHOO

= [PaUV" = PrYj)|r

by definition

because of summing over larger set
by (L.17)

by the choice of A and €

by definition
by triangle inequality and summing over larger set

by the properties of Frobenius and infinite norms

similar argument as in Proof of condition (2)

May 10, 2012

17



1.3. PROOF OF THE MAIN RESULT CHAPTER 1. THEORY

Moreover, we have
Yiollse a7 I[P, Zj-1llo by triangle inequality

J
<q! Z 1Z; 1]l by summing over a larger set
J

_ T
<qt)y dY = by (L16)
J

<

oo >

if € is sufficiently small

O

1.3.7 Proof of the Lemma about least square construction and dual certifi-
cate

Construction of W*:
WS = )\PTL((PQ — PQPTPQ)_lsign(SO))

Now we present the proof of Lemma .

Proof. We consider the sign of Sy to be distrbuted as follows

1 wp#k
sign(So)ij; =40  wpl—p
-1 wp#4

1) Proof of condition (1) :

I) We note the we can separate W¥nto two parts and then bound them separately.

WS = APpi(sign(So)) + APp. (D (PaPrPa)*(sign(S0)))

k>1
IT) Then, we have
[Py (sign(So))|| < All sign(So)| by
= \/1%||sign(50)\| by the choice of A
<4\/p with high probability

where the last inequality uses the fact that for the entry-wise distribution of sign(Sp) , we can have
lsign(So)|| < 4,/np holds with high probability.
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ITI) Now, for the other part, APTL(Zkzl(PQPTPQ)k(Sign(SO))), we bound it by first expressing
it in the form of < X, sign(Sp)) and then claim that with high probability, this term is bounded
above as desired. Let R = ZkZ]_(PQPTPQ)k , then we have,

[P (R(sign(So)))ll [ R(sign(So))]|

4 sup <y, R(sign(So)r))
z,yeN

<
<

where the last inequality uses the fact that there exists a % — net of the Eucledean ball and it has
at most 6" elements. Continuing, we have

| P (R(sign(50)))| < 4$S;16pN<y, R(sign(So)z))

=4 sup (yz*, R(sign(So)))
z,yeN

=4 sup (R(yx™), sign(So)) (1.18)
z,yeN

and that we denote X (z,y) = (R(yz*), sign(Sp)) afterwards.

Note that, by Hoeffding’s inequality, we have,

2
Pr(X(z,y)| >t]Q) < 2exp(—5mr—rrs)
2| R(zy*)lI3
This gives,
Pr(|[Pr. (R(sign(S0)))|| > 4t | ©) < Pr(||R(sign(S))[| > 4t | ©2)
< Pr(sup [X(z,y)| >t [ Q) by (L.18)
x7y
2 2
< 2N*exp (—) since ||yz*||r <1
2| RII%

Now, we proceed to bound the probability without the condition on §2.
First, note that the event of || PoPr| < o = p + ¢, implies that ||R|| < (1:272)2. Thus, uncondition-

ally, we have

. —12
Pr(|R(sign(So))|| > 4t) < 2[N[*exp (2(,)2> + Pr(||[PoPr| > o)

2

1—0o

—42
< 2:6"exp | ——— | + Pr(|PaPr|| > o)
2(:%2)°
Thus, where we finally put ¢ = 1
_2
Pr(M|R(sign(So))|| > 4t) < 2-6°"exp (20/;22> + Pr(||PoPr|| > o)
1—0?
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With A = \/% ,we have this probability— 0 as n — co. Thus with high probability ||| < %

2) Proof of condition (2) :

The idea is that we first express P (W*) in the form of < X, sign(Sp) >and we can derive upper
bound on it if highly probably event of {||PoPr|| < o} for some small o = p + € holds .

I) First,

Por(W5) =Por [ AUI = Pr) | Y _(PoPrPo)" | sign(So) | since Pru =1 — Prp (1.19)
k>0

= —\Pq. Pr(Pq — PoPrPq) 'sign(Sy) by summing over terms and canceling

(1.20)

For (i,7) € QY. we have

Wi, = (eie;, W) by property of trace
= (ei€}, —A\Pq. Pr(Po — PoPrPo) ' sign(S)) by
= —eiej, Pr(Po — PqPrPqo) 'sign(Sp)) by rearranging terms
= —)\(eie}‘, PrPq(Pq — PQPTPQ)_1 sign(.Sp)) by the property of the inverse
= —Xei€j, Pr Z(PQPTPQ)k sign(So)) by infinite sum representation
k>0

Noting that Py, Pr are self-adjoint, thus, we have

e;Woe; = M—(Po— PoPrPq) 'PoPr(ee]),sign(Sy)) (1.21)

where we now denote X (i,7) = —(Pq — PQPTPQ)_IPQPT(eie;f)

IT)We now consider, where we put ¢t = %,

Pr(||Por(W¥)|leo > tA | Q) < Z Pr(lefWoe;| > tA|Q) by union bound
(i,5)eQ¢
< n?Pr(lefWoe;| > tA|Q) for some (i,j) by taking the maximum

= n’ Pr(|(X (i, j), sign(So))| > t[2) by

2t
< 2n?exp <_4”X()||> by Hoeffding’s inequality
%L I)IIF

IIT) We then proceed to bound the || X (7, 7)||. On the event of {||PoPr| < o}, we have

||PQPT(6¢6;)HF < ||PoPr|| - ||PT(eie;)||F by property of spectral norm

2
< GW by (1.12) and the bound on ||PoPr||
n
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Moreover, we have

I(Po = PoPrPo) ™| <> |(PaPrPo)*| by triangle inequality
k>0
1

<
~—1—-0

by the bound on || PoPr||

Finally, we have

218
X(i,7 < 202 n
IXGalr < 20t
Combining, we have
—t2n(1 — 0)?
Pr(||PQJ_WS|| >tA) < 2n2 exp (M) + Pr(||PoPr| > o)

. o n
S elf,ur<,or@

O

1.3.8 Proof of the equivalence of the Bernoulli sampling and uniform sampling
model

To complete the story about the equivalence of sampling model, we present theorem.
Theorem 5. Let E be the event that the recovery of (Lo, Sy) is exact through the RPCA. Then,
Ve > 0,

e With p = 75 + ¢, F holds with high probability when the sparse matrix S; ; ~ Bern(p) iid
—F holds with high probability when the sparse matrix S ~ Uniform(m).

e With p = % — ¢, E holds with high probability when the sparse matrix S ~ Uniform(m)

n2

= F holds with high probability when the sparse matrix S; ; ~ Bern(p) iid

Proof. Let us use the notation of subscrpt to denote the underlying sampling process, e.g. ,Pg(,(E)
and Py () (E) be the probability of success recovery using Bernoulli sampling and uniform sampling
respectively. We then upper and lower bound the difference of Pg(,)(E) — Py(m)(E) and show that
the difference goes to zero as the dimension of the matrix n — oc.
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Ppp)(E) = ) _ Ppp)(|Q] =1)Ppp)(E | [ =)

1':20

= ZPB (19| = i) Py ;) (E)

< Z Pp (|92 = 1) + ZPU (i) (E) Pp(p) (192 = 9)
;01 n2

< ) Ppp(Q=1+ Z Py @) (E)Ppy) (19 = )
-

< Pp,) (192 =) + ZPU (E)Pp(p (12| =1)

I
=)

A i=m

< Py (12 <m) + Pym)(E)

This gives, Pp(,)(E) — Pym)(E) < Ppy(|Q] <m). With p = 75 +¢, by law of large number, when
n — 00 we get, Pp(,) (B) < Py(my(E) .

On the other hand,
Py (E) 2> Pp(p)(|Q = i) Pp(p)(E | 1] = 0)
i=0

> Py(ny(E) Y Pp(y)(1Q] =)
=0

= Py (B)(1 — Py (2] > m))
> Pym)(E) — Pp(p) (|2 > m)

This gives, Pg(y)(E) — Pym) = —Pp(p) (12| > m). With p = 75 — ¢, by law of large number, when
n — oo we get, Pp,(F) > PU(m)(E) . O

1.3.9 Proof of the form of sub-differential of nuclear norm

To complete the story on the structure of subdifferential of nuclear norm, we present the following
justifications.

Definition 1. For matrix norms || - || which satisfy ||[UAV|| = ||A|| VU,V being orthonormal, then
they are called orthogonally invariant norm.

Definition 2. For orthogonally invariant norm || - || which is defined by its singular values ||A|| =
¢(d) where & are the singular values of A, we call the function ¢ as a symmetric gauge function if
it is a norm and it satisfies ¢(7) = ¢(e10i,, ..., €,04,) for any permulation of (i1, ...,i,) of (1,...,n)
and ¢; = £1.
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Fact 5. For orthogonally invariant norm || -|| with symmetric gauge function ¢, the sub-differential
s given by

oA = {Udiag(d)V | A=UxVT dec d¢(d),U € R,V € R"}
Theorem 6. Let A= UMWV’ Then
Al = (UOVOT L w < L,u®WTw = o0,wv® =0}

Proof. We take the symmetric gauge function as || - || and then apply the Fact and will obtain
the desired result. O

1.4 Related Problems and Extensions

In this section we discuss a number of problems and extensions related to the Robust PCA frame-
work. We will be much briefer in our discussion than for the classic case and mainly provide an
overview of where the field going and what the most important developments are.

1.4.1 Exact Matrix completion

Robust PCA is an extension of the exact matrix completion problem that was introduced in [10], in
which one seeks to recover a low-rank matrix Lg from a small fraction of its entries. More precisely,
assume one is given {(Lo)qj, (i,7) € Q} where Q is a subset of [n] x [n]. The observed matrix in
this case is

M = PqlLyg

where Pq denotes the sampling operator, i.e. the orthogonal projection on the subspace of matrices
supported on 2. One seeks to solve the problem

minimize rank(L)

) (1.22)
subject to PoL = PolLg

A popular heuristic is to minimize the nuclear norm of L, || L||. = ||o(L)||1 which encourages sparsity
of the vector of singular components of L, and can thus be interpreted as an approximation of the
rank operator, similarly to the ¢1-norm that can be considered an approximation of the £y count
operator. The approximate problem then reads

minimize ||L]]«

) (1.23)
subject to PoL = PqLg

Incoherence

In order to guarantee recovery with high probability, an incoherence condition is introduced. This
condition is similar to the one that appears in the Robust PCA framework, though slightly different.
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First consider an orthogonal matrix U = [uy, ..., u,], and define its coherence of p(U) with respect
to the canonical (euclidean) basis to be

.
n n
u(U) = - max HPUQH% = ;mlax [%uiz] (1.24)

The coherence p(U) is a measure of spread of the vectors uy,...,u, with respect to the canon-
ical basis. One seeks matrices with low coherence, since intuitively those matrices will have low
probability to be in the null space of the sampling operator Pg.

Main result

Theorem 6. Let the (slim) SVD of the original matriz Lo be given by Lo = ULV, and assume
that the following conditions hold:

o max{p(U), u(V)} < po

o (2 Ukva)ij </ slmy (true for pn = poy/r)

o m > cmax {13, \/Hop1, pon/*} nrBlogn
Then recovery is exact with high probability (at least 1 — %)

The authors of [10] also give a list of models that can be used to generate incoherent matrices. Let
the SVD of Ly be given by Ly = Y oxugvi. Then Ly is incoherent with high probability if it is
sampled from:

e The incoherent basis model: U and V satisfy the size property

[Ulloe < Vup/n |[Vi]ee <V pp/n

for some numerical constant up. Observe that under these conditions, one can bound the
coherence max(u(U), u(V)) < pp, and it can be shown that the second condition of Theorem 6]

holds for 1 = O(y/logn).

e The random orthogonal model: if , then {uy,...,u,} and {vi,...,v,} are assumed to be
selected at random.

Relation to Robust PCA

Robust PCA can be thought of as an extension of the matrix completion problem, where instead
of being given a known subset of the entries {(Lo):j, (¢, j) € 2} with the rest of the entries missing,
we have exact information about an unknown subset of the entries and the rest of the entries is
corrupted. In this sense, Robust PCA is a harder problem than matrix completion.

Note that the matrix Ly can be recovered by Principal Component Pursuit, solving a different
problem:
minimize  ||L|« + A||S]1

: (1.25)
subject to Po(L+95)=M
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where now the observed matrix M is assumed to be given by

M = PQ(LO + SO) = PQ(L()) + S[/)

Here the original data matrix Lg is assumed to be corrupted with the noise matrix Sy in addition to
being under-sampled. The exact matrix completion problem however, assumes that the observed
data is perfect Sy = 0. Under the assumptions of Theorem [I} recovery is exact with high probability,
in particular for Sy = 0 (support of the sparse matrix has cardinality 0).

1.4.2 Stable Principal Component Pursuit

One issue with Robust PCA that limits its practical applicability is the assumption that, while
part of the data may be arbitrarily corrupted, the rest of the data is exact. In most applications,
however, there will also be some small but non-sparse noise component present, caused for example
by basic measurement inaccuracies, quantization or compression effects and so on. In [36] the
authors therefore study the problem of recovering a low-rank matrix (the principal components)
from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors.
It proves that the solution to a convex program (a relaxation of classic Robust PCA) gives an
estimate of the low-rank matrix that is simultaneously stable to small entry- wise noise and robust
to gross sparse errors. The result shows that the proposed convex program recovers the low-rank
matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound
proportional to the noise level.

Main result

The paper [36] consider a matrix M € R"*"2 of the from M = Lo + Sy + Zp, where Ly is (non-
sparse) low rank, Sy is sparse (modeling gross errors) and Zj is “small” (modeling a small noisy
perturbation). The assumption on Zj is simply that || Zp||r < ¢ for some small known §. Hence at
least for the theory part of the paper the authors do not assume anything about the distribution
of the noise other than it is bounded (however they will gloss over this in their algorithm).

The convex program to be solved is a slight modification of the standard Robust PCA problem and
given by

min || L[ 4+ Al[S])1
LS (1.26)
st. |[M—L-S|z<6

where A = 1/,/n;. Under a standard incoherence assumption on Lo (which essentially means
that Lo should not be sparse) and a uniformity assumption on the sparsity pattern of Sy (which
means that the support of Sy should not be too concentrated) the main result states that, with
high probability in the support of S, for any Zy with || Zo||r < &, the solution (L, S) to
satisfies

1L = Lol[& + IS = SollF < Cninad®

where C' is a numerical constant. The above claim essentially states that the recovered low-rank
matrix L is stable with respect to non-sparse but small noise acting on all entries of the matrix.
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In order to experimentally verify the predicted performance to their formulation, the authors pro-
vide a comparison with an oracle. This oracle is assumed to provide information about the support
of Sy and the row and column spaces of Ly, which allows the computation of the MMSE estimator
which otherwise would be computationally intractable (strictly speaking it of course is not really
the MMSE, since it uses additional information from the oracle). Simulation results that show
that the RMS error of the solution obtained through in the non-breakdown regime (that is,
for the support of Sy sufficiently small) is only about twice as large as that of the oracle-based
MMSE. This suggests that the proposed algorithm works quite well in practice. But since efficient
algorithms that are practical also for large-scale problems have been proposed only recently, there
does not seem to have been much work on applications yet.

Relations to existing work

The result of the paper can be seen from two different view points. On the one hand, it can be
interpreted from the point of view of classic PCA. In this case, the result states that classic PCA,
which can in fact be shown to be statistically optimal w.r.t. i.i.d Gaussian perturbations, can also
be made robust with respect to sparse gross corruptions. On the other hand, the result can be
interpreted from the point of view of Robust PCA. In this case, it essentially states that the classic
Robust PCA solution can itself be made robust with respect to some small but non-sparse noise
acting on all entries of the matrix.

Conceptually, the work presented in the paper is similar to the development of results for “imper-
fect” scenarios in compressive sensing where the measurements are noisy and the signal is not exact
sparse. In this body of literature, {;-norm minimization techniques are adapted to recover a vector
zg € R™ from contaminated observations y = Axg + z, where A € R™*" with m <« n and z is the
noise term.

Algorithm

For the case of a noise matrix Zy whose entries are i.i.d. A(0,02), the paper suggests to use an
Accelerated Proximal Gradient (APG) algorithm (see section for details) for solving (L.26)).
Note that for § = 0 the problem reduces to the standard Robust PCA problem with an equality con-
straint on the matrices. For this case the APG algorithm proposed in [23] solves an approximation
of the form

1
in || L AllS —||M—-L—-S
i |+ NS+ 5| I

For the Stable PCP problem where § > 0 the authors advocate using the same algorithm with fixed
but carefully chosen parameter p (similar to [9]). In particular, they point outﬂ that for Zg € R™*"
with (Zg)ij ~ N(0,02) i.i.d. it holds that n='/2||Zp|l, — v/20 almost surely as n — oco. They
then choose the parameter p such that if M = Zy, i.e. if Ly = Sg = 0, the minimizer of the above
problem is likely to be L =8 =0. The claim is that this is the case for W= +v2no.

It is worth noting that the assumption of a Gaussian noise matrix Zj is reasonable but not always
satisfied. If it is not, then it is not clear if using the APG algorithm to solve the associated

this based on the strong Bai Yin Theorem [3], which implies that for an n xn real matrix with entries &;; ~ A/(0,1)
the it holds that limsup,,_, . || Zol|,/v/n = 2 almost surely
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approximate problem is a good idea and different algorithms may be needed. The problem
can be expressed as an SDP and can therefore in principle be solved using general purpose interior
point solvers. However, the same scalability issues as in the standard Robust PCA problem will
limit prohibit to use these methods for high-dimensional data. The paper [I] focuses on efficient

first-order algorithms for solving (1.26]).

Conclusion

The Stable PCP problem is one of potentially very high practical relevance. While it is reasonable
to assume that in many applications the low-rank component Ly will only be corrupted by a
comparatively small number of gross errors (caused by rare and isolated events), the assumption
of perfect measurements for the rest of the data outside the support of Sy that is made in classic
Robust PCA will generally not hold for example due to sensor noise. This paper asserts that if the
non-sparse noise component Zj is sparse, then with high probability the recovered components are
“close” to the actual ones.

For simplicity, the paper [36] models the non-sparse noise simply as an additive perturbation that
is bounded in the Frobenius norm. In cases where one has additional information available about
this noise, for example its distribution or some bounds on the absolute value of each entry, it might
be possible to derive better bounds on the resulting errors. One possible extension could therefore
be to look at exploiting structure in the noise.

One thing the paper claims is that “at a cost not so much higher than the classical PCA, [the]
result is expected to have significant impact on many practical problems”. As mentioned above, one
can indeed expect that the result has a significant impact on many practical problems. However,
the claim concerning the computational complexity is very optimistic. The fastest solver for the
special case § = 0 (classic Robust PCA) currently seems to be a alternating directions augmented
Lagrangian method (see Chapter [2). This method requires an SVD at each iteration, and for
problems involving large-scale data the number of iterations can be very large. The standard PCP
algorithm on the other hand is based on a single SVD, hence it can be computed much faster.

1.4.3 Robust Alignment by Sparse and Low-rank Decomposition

The convex optimization framework for low-rank matrix recovery has been employed successfully as
seen in the previous discussion of the Robust PCA problem. However, in many cases in practice the
data can be viewed as low-rank only after some transformation is applied. The associated recovery
problem has been dubbed Robust Alignment by Sparse and Low-rank Decomposition (RASL) and
was investigated in [28]. The formulation of this problem is the following:

min L]l + AIS| st Mor=L+S$ (1.27)
b 7T

Here L € R™*™ ig the low-rank matrix, S € R™*™ is a sparse corruption matrix and M € R™*"
contains the measurements, which are the result of the transformation 7! applied to the ma-
trix (L 4+ S). The authors in [28] assume that the transformation is invertible. Define M o T as:
Mot =[Myor | Myory | ... | M,o7, |, which are the measurements M = [ My | My | ... | M, ]
subject to the set of transformations 7 =[ 71 | 72 | ... | 7 | € G", where G is a group of certain
type of invertible transformations, which could be affine transform, rotation transform, etc.
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The main difficulty in solving is the nonlinearity of the equality constraint M o7 = L + S.
When the change induced by 7 is small, one can approximate this constraint by linearizing about
the current estimate of the transformation 7. Suppose now that G is some p-parameter group and
identify 7 = [ 71 | 72 | ... | 7n | € RP*™ with the parameterizations of all of the transformations.
For A1 = [ Ar | Amy | ... | A7, ], write Mo (1 + A7) =& M o7+ > | JiATie;, where
J; = BQ(Mi 0 ()|¢=r; is the Jacobian of the i-th measurement with respect to the parameters 7;
and {e;} denotes the standard basis for R™. This leads to a convex optimization problem involving
the variables L, S, A7:

n
in ||L|, + \||S 4. M JAte;el =L+ S 1.28
L{g}gTH [« +AlIS] s OT+; iATee; + (1.28)

Using a successive approximation of the changes At leads to Algorithm

Algorithm 1: RASL (Robust Alignment by Sparse and Low-rank Decomposition

Input: M =[M; | Mz | ... | M,], initial transformation 7,79, ...,7, in a certain
parametric group G, weight A > 0.

while not converged do
Step 1: compute Jacobian matrices w.r.t. transformation:

0
Ji a*C(Mz‘ ° Q)l¢=r

Step 2 (inner loop): solve the linearized convex optimization:
n
(L*, 8%, A7*) «— argmin || Ll + A|S|1 st. MoT+ ) JiAree] =L+ 5
»HaT i=1
Step 3: update the transformation: 7 < 7+ A7*

Output: L*, S* 7*

The authors in [28] have shown that the RASL algorithm can in fact be viewed as a Gauss-Newton
method for minimizing the composition of a nonsmooth covex function with a smooth, nonlinear
mapping. The convergence behavior of such algorithms was extensively studied in the late 1970’s
and early 1980’s [18]. Although the authors claim that the result of [I8] implies that RASL
converges quadratically in the neighborhood of any strongly unique local minimum, a complete
convergence analysis for RASL has yet to be developed.

Another remark is that the inner loop (Step 2) in the RASL algorithm is another convex opti-
mization problem, this problem can be solved by Augmented Lagrange Multiplier (ALM) algo-
rithm [23, 1I]. We do not derive this algorithm here, but its derivation is similar to that of the
ALM algorithm for Robust PCA that we will discuss in the Algorithms chapter of this report.
Similarly, although the algorithm for Step 2 always converges to the optimal solution in numerical
experiments, a rigorous proof of convergence so far has not been given. As in every iteration in
RASL, a standard PCP problem needs to be solved in the inner loop, the computational complexity
of RASL will be higher than that of standard Robust PCA. The authors observed that in their
experiments only a few iterations, typically less than 20, were required for the algorithm to converge
due to the outer algorithm’s quadratic convergence property.
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RASL can be used for example for long-standing batch image alignment problem: given many
images of an object or objects of interest, the task is to align them to a fixed canonical template.
The images may be subject to different illumination variation, partial occlusion, as well as poor or
even no alignment. Figure [I.I] shows an example of how RASL performs on an image alignment

problem:

(c) Low-rank component L (d) Sparse component S

Figure 1.1: Aligning face images.
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1.4.4 Robust Matrix Decomposition With Sparse Corruptions
Introduction

In the problem of solving Robust PCA, exact recovery via convex optimization of the ¢; and nuclear
norm heuristic is possible with high probability if the sparse noise is evenly spread out. However,
in some applications, the sparse noise may not be evenly spread out and we are satisfied as long
as the recovered matrix is sufficiently close with the original matrix. Therefore, the authors [16]
analyze the Robust PCA problem in a deterministic setting without assuming a particular sparsity
pattern of the noise. They give sufficient conditions on the level of sparsity that is required for a
tolerable recovery of the sparse and low-rank pairs.

Main ideas and contributions

Similar to the prior study of Robust PCA, the authors of [16] study a minimization of a weighted
combination of /1 and nuclear norm . However, they also introduce some tolerance on the pertur-
bation in the constraints. In particular, given the observed matrix M (a perturbed observation of
the original (Lg, Sp) pairs), they analyze the following two optimization problems:

min  [|L[[« + A[[S]l
(L.S)
st. |L+S—M|p<e (1.29)

IL+S — Ml < e
and the regularized version

i L, + \||S LIL+S—M 1.30
{?}5“) L]l + AlLST + 5411 L+ I3 (1.30)

The authors provide sufficient conditions on the pair (Lo, Sp) that allow accurate recovery in the
sense that ||Lo — L||so, |[So — S]|ec is small. Moreover, they show that if the observed matrix M
is perturbed from Lo 4+ Sy by a small amount (i.e. ¢€), the optimizer (L, ) will still be e-close to
the original (Lg, Sp) pair. As in Robust PCA, the key ideas of the analysis of the performance
guarantee is based on the properties of the constructed dual certificate.

Discussion and applications

The work [16] parallels the work of [I1] but gives a weaker guarantee in a deterministic setting.
We believe that the performance guarantee in this [16] and related work is also useful in many
applications. For example, in computer vision, the noise is normally clustered at some portion
of the image and it is not natural to assume the noise to be uniformly distributed. Moreover, in
many real world applications, we are often satisfied with approximate recovery. For example, in
many analyses of large data sets (say for example consumer ranking in Netflix), we are interested
in the general idea of the pattern but not necessarily the fine details. At this point it is still unclear
whether the sufficient conditions provided for the perturbed problem are also necessary.
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1.4.5 Structured Sparsity

In [2], the authors present an overview of techniques that extend the idea of ¢; regularization,
to induce structured sparsity. The idea is to use structured-sparsity-inducing norms to encourage
some sparsity patterns over others, given some a priori information on the expected or desired
sparsity pattern of the solution. For instance, in feature selection problems, one may have groups
of features that are highly correlated, and would like features that belong to the same group to
be either all in the support, or all outside of the support. Another example is shadow elimination
from images, where one expects shadows to be connected and to have spacial structure.

Structured-sparsity-inducing norms

Consider in particular the regularized learning problem

min f(w) = min fZL O 4 w2y + AQ(w) (1.31)

weRP wGRP7l

where / is a differentiable loss function, (l‘(i), y(i)) is the training data, w is the regression vector, and
Q) is a norm. We are interested in norms that not only induce sparsity, but also have a structure in
their support, for example by having groups of variables that are selected or ignored simultaneously.
A natural idea is to partition the variables into such groups, which leads to sparsity with disjoint
groups of variables

Disjoint groups of variables an group Lasso Assume the feature set is partitioned into a
collection G. Then the structure sparsity norm 2 is defined as

w) = uwglly

geg

where ¢ € (1,00], i.e. |.|lq is any norm (usually [.||2 or ||.||sc). In the context of least square
regression, this regularization is known as the group Lasso. As expected, experimental results
reported in [2] show that variables in the same group are either all set to zero (all outside the
support), or all selected (all in the support).

Overlapping groups of variables Using overlapping groups (when elements of G are not neces-
sarily disjoint) allows for more flexibility and more complex structures. For example, in image pro-
cessing (shadow removal, background extraction) where pixels are arranged on a grid, using groups
formed by one pixel and his neighbors yields good results in background extraction [12].

Proximal method Proximal methods take advantage of the form as a sum of two convex
terms, a smooth term and a term for which computing the proximal gradient is cheap. Proximal
methods are iterative procedure, where at each iteration, the function f is linearized around the
current estimate w, and update the estimate by the unique solution of the optimization prob-
lem

wy = arg min f(0) + (w —0)T V() + A\Qw) + gHw — 0|3

weRP
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where the parameter L is an upper bound on the Lipschitz constant of V f. This can be rewritten

as 9

A

—Q
+0w)

weRP

o1 .1 .
w4 = arg min o Hw - <w - LVf(w))
which is an instance of the proximal operator

1

Proxyq : u +— argmin— |lu — v||3 + AQ(v)
vERP 2

and it turns out that the proximal operator can be computed exactly for many structured-sparsity-

inducing norms. Note in particular that when €2 is the ¢; norm, the proximal operator is the soft

thresholding operator.
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1.5 Robust PCA with known rank: a block coordinate descent
approach

1.5.1 Motivation

In some applications we may have some prior information about the low rank component of an
observed matrix. For example, in computer vision, if we were to extract the background from
different frames of a video, then it is natural to consider each video frame as a long vector (by
stacking its columns). The background that we are recovering is then a single vector, which means
that the associated component in the matrix collecting the frames is of rank 1. Therefore, it is a
very natural question to ask whether we can utilize this additional rank information to derive faster
or more scalable algorithms while retaining the performance guarantees of Robust PCA.

1.5.2 Equivalent formulation of Robust PCA with rank information

We first show the intuitive fact that within the robust PCA framework, the same probability
guarantee will still hold when additional information on the problem is incorporated as constraints
to the optimization problem. Then we derive a block-coordinate descent algorithm for the case
when rank information is known.

Proposition 7. Let M = Lo+Sy , rank(Lg) < r and (Lo, So) satisfy the Robust PCA assumptions.
Then with high probability, the following problems are equivalent:

Ji :minL75 HL||*+/\HSH1 (1.32)
s.t. M=L+S

Jo =ming g | L|l« + A||S|h (1.33)
s.t. M=L+S
and T(L,S) holds

where T(L,S) are conditions on (L, S) that (Lo, So) also satisfies.

Proof. We use subscript to denote the optimizer for J; and Js respectively. With high probability,
(L1,S1) = (Lo, Sp). Now, over the event of (L1,S1) = (Lo, So), (L1,571) is also a feasible solution
for . Since J; < Jy always, now (Li,S7) achieve the bound for . Note that it should
also be unique because otherwise it would contradict with the recovery of . O

Now we apply Proposition to the case when the rank information is known and derive a block
coordinate descent algorithm.
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Consider the problem

J3 =mi L« + M| S
s=min D+ IS
s.t. M =L+S, rank(L) <r
= min ||L||«++ A|M — L|
»23Pisqi i
r . .
5.t L=> mwpia], pipj =01, ] ¢j =67, pi >0
i=1

r r
= min Zui + A|M — ZMiPi%’THl
i=1 =1

Hi,Pi,q5
s.t. pipj =0, ¢ q¢; =6, >0
r '
= min > |wl+AIM =Y pipia] | (1.34)
HiPi,qq i1 izl
s.t. pipj =0, ¢l q; =05, i >0

Here L=>"._, pipiql is the SVD of L, hence the condition of orthonormality piij = (5? ) qiqu = (5{ .
Note that this formulation allows us to optimize over u;, p; and g; sequentially. By Proposition
we know that the formulation of (1.34)) can recover the original pair (Lg, Sp) with high probabil-
ity.

1.5.3 Simplification using /; heuristic
Introduction

Recall that the nuclear norm is used in the PCP scheme as a heuristic to recover a low rank
component corrupted by gross random noise. The nuclear norm is used because it penalizes high
rank matrices and encourages sparsity of the vector of singular values. Now, we consider the case
when we have additional information about the rank of the low-rank matrix L. Assume the rank of
the matrix is known. Since information about the rank of the matrix is available, one can replace
the nuclear norm heuristic by writing L in the form L = Z;Zl qu;*-r. This guarantees rank(L) < 7.
Note that p;’s and ¢;’s do not necessarily give the directions of the singular vectors of L, since they
are not assumed to be orthogonal. This results in the following heuristic

,
Ef = min M — p-qT .
{pj}{qj}71§j§r|| ; i [ ( )

Performance guarantee for the ¢; heuristic

For this new heuristic, we provide some performance guarantee for the case when the noise is
bounded. One is a result for deterministic case and the other is for the random case. They are as
follows.
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Proposition 8. Let M = S+ Y1 pigl and 2||S|[i < |-, pia’ 1. Then, the estimate L
recovered from (1.35)) satisfies

1> pigl — Ll
15— pial I

Proof. Suppose not, then

.
1> pial +8 - Llh

1Sl >
=1
T
s

> > gl =Ll =[S
=1
T

> GHZPin‘THl_HSHl
i=1

which contradicts the assumption that
2 T
T
ISl >l > pidl h
i=1

O]

Proposition 9. Let M = >""_ pigl +S, where S; j ~ Uniform(—zs,xs), (pi)j ~ Uniform(—xp, ),
(gi); ~ Uniform(—x4,x4), where all random variables are independent. With |S| = k such that
lim,, o0 %2, then we have,

n—00 15— pigf |1

r gl — L
b (nz,_lml . ) o

¢ I paf ~Ll

Proof. Let E be the error event tha S

> €. If error occurs,

'
1Y pial +S—Ll

krs >

i=1
T

> 1> pigf — LI~ [SIh
=1
T

> el > pial |l — ks
i=1

T
> € Z(Z(pi)l1(%)lg)2_ks

l1lo =1
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, 2
( (pi)h(Qi)lg)
i=1
, 2
( (pz)h (%) >
Il1=1 \i=1

2 n r 2
= Pr % <2k6$s> > % Z <Z(pi)l1(qi)l1>

li=1 \i=1

Thus,

IN
o
<

MOF@OVGT as E(3 i 1(pz)z1(qz)zl) ) = §apxy, by the law of large numbers, 3771 (377 (pi)u, (ai)i,)?) —

Za2x2. Thus, since (2’””5) — 0. This gives Pr(E) — 0 as n — oo. O

However, we know that the /1 heuristic cannot work well in the case of unbounded noise. This can
be seen from the following example. Say, for n = 100,

1 10° 0 ... 0
1 0 0 ... 0
Lo=|.|[t 1 ... 1], So = :
1 0 0 0
then by the ¢; heuristic, we would get
10° 10 0
R 1 . 0 1 1
Lo=| . |[1 107 ... 1077], So=].
1 01 ... 1

which deviates grossly from the original pair. However, Robust PCA can achieve exact recovery
even in this case because it penalize the nuclear norm of L.

1.5.4 A block coordinate descent algorithm

For simplicity we restrict our discussion to = 1 in (1.35). Let M = (M; ;) € R™*™. The problem
is then

i M —pq" subject to =1
peng{;ngH pq [[1  subj 1Plloo

One can use a block coordinate descent algorithm, similar to power iteration, by iteratively fixing
one vector and optimizing on the other.

q-step

For a fixed p € R", the problem is

qrélﬂggZIIM giplh = mellM —gplh
= -1
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where M; € R™ is the j-th column of M. Each subproblem is an ¢;-norm projection (projection of
M onto span(p))
mtin |z — tpll1

This is a weighted median problem miny ||z — tp||; < min; Y

iesupp(p) 1Pl |57 ~ t"

Median problem

The median problem is
n
. _
min z; |zi — t|
i—

and an optimizer is ¢ = zj,) where z; is the i-th element in the ordered sequence, k is the maximum
index such that k <n —kie. [§] <k < [5]. This can be solved by simply sorting the elements
of z, which can be done in O(nlogn).

Note that computing the median can be done in O(n) if the elements are not sorted entirely:
using the quick-select algorithm, a modified version of the quicksort algorithm. At each step,
assume we have a list of k£ elements. We choose a random pivot, and in one pass compute the
elements that are less than, respectively greater than, the pivot. From the length of each list,
we know where to look for the median next. If the sizes of the sublists are sufficiently balanced,
this will result in O(n) algorithm. In the exactly balanced case, the complexity is proportional
ton+ g5+ 5+ + log’én = nl_(lﬁ)llgoggn < 2n. In the case the size of each sublist is no less
than « times the size of the parent list, the complexity is also linear, since it is proportional to
n+an+a’n+---+al%/amy < ﬁn Although the worst-case complexity is O(n?), the algorithm
is linear in practice. Assuming a uniform distribution of the permutation that will result in the
sorted list, the expected complexity is O(n).

Weighted median problem

The solution to the weighted median problem is slightly different
n
min Z; ajlzi —t
1=

where o; > 0. An optimizer is ¢ = z where k is the maximum index such that Zle a; <
> i1 @i This is shown by using the property of sub-differential of ||.||; and by noting that
0 € O3 i, ajlz — t|) for t = zp. Finding this optimal ¢ can also be achieved by sorting.

If we denote this subproblem by
wmed(M,p) = argmtin |M — ptT||;
= argmtinz HM] — tijl

J
=argmin) . |pi

J i€supp(p)

(2
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where M; is the j-th column of M, then the g-step is simply given by
q <+ wmed(M, p)

and the complexity of the g-step is O(mnlogn). The wmed algorithm is summarized in Algo-
rithm [?].

Algorithm 2: ¢ = wmed (M, p)

Input: Data matrix M, vector p

for j e {1,...,m} do
1. Define vectors z and a: Vi € supp(p), o; = |p;| and z; = ]\zfj.
2. Sort zs.t. 2, <z, <-o- <z, ’
3. Find the maximum k s.t. Zle i <D Q4
4. Set 45 = Ziy,

Output: vector g

p-step

For a fixed ¢ € R™, the problem is given by

n
i > 1M - piglly
=1

where M; is the i-th row of M. We can denote this problem by

p cwmed(MT, q)

where cwmed (M7, ¢) is the solution of the constrained weighted median problem

n
| Iﬁlin 12 1M = pigl = |m‘i<nl IM; — piglly subject to max[p;| = 1
Plloc= i i=1 Pil>

We can start by solving n constrained weighted median problems min,, <1 [[M; — piqll1. This is
solved by computing the solution to the unconstrained weighted median

(2

pi=argmin Y g
jesupp(q)

then projecting p; on [—1,1].

After solving the n subproblems, there are 2 cases. Either one of the p;’s satisfies |p;| = 1, in which
case the ||p|loc = 1 constraint is satisfied and the problem is solved, or all the p;’s are such that
|pi| < 1. In this case, we choose which p; to project on [—1, 1] by solving the problem

minimize; . — ||M; — pig|l1 + || M; — €q||1
subject to i€ {1,...,n} (1.36)
ee{-1,1}
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this problem finds (,€) that minimize the increase of the objective value that is due to setting
pi = €. Then if (ip,€) is a minimizer, we set p;, = €p. This additional projection step is O(nm)
since there are 2n feasible points to evaluate in problem . The cwmed algorithm can be
summarized by Algorithm

Algorithm 3: p = cwmed (M7, q)

Input: Data matrix M, vector ¢

forie{l,...,n} do
1. Define vectors z and o Vj € supp(q), aj = |g;| and z; = J‘g?'j.
2. Sort zs.t. zj, < zjp, <o <z,
3. Find the maximum & s.t. 30, o, < 37,0 oy
4. Set p; = zj,
5. Project p; on [—1,1]

if ||p|l < 1 then
1. Let (g, €0) = argmin;  —||M; — piqll1 + || Mi — eql)1
2. Set Pig = €0

Output: vector p

Algorithm for the constrained problem

The Constrained rank one ¢; heuristic is given in Algorithm

Algorithm 4: Constrained rank one ¢; heuristic

while not converged do
q < wmed (M, p)

D cwmed(MT, q)

The complexity of each iteration is O(nmlog(nm)) if the weighted median is computed by sorting
the vectors, or O(nm) if the quick select algorithm is used instead. It is important to point out
that while the ¢; heuristic enjoys recovery guarantees, we have no guarantee that this iterative
algorithm will converge to an optimizer of the problem. However, we observe that this heuristic
performs well in practice when the low rank component L is rank one. We also observe that solving
an unconstrained version of the problem, where vectors p and ¢ are normalized at each iteration,
works better in practice. An example simulation is shown in Figure [I.2] where a simulation was
run using randomly generated rank-one 10 x 10 matrices, corrupted with random noise matrices
with increasing support. For each support size, 20 simulations are run. The plots show the average
results.
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Figure 1.2: Performance of the constrained ¢; PCA heuristic (green) Vs. the projected ¢; PCA
heuristic (blue), for increasing size of the support of the corruption matrix S. The projected method
performs considerably better (higher exact recovery rate, lower average ¢; error, support size of the
recovered S closer to the original support).

The unconstrained version is detailed next.

Algorithm for the unconstrained projected problem

Another approach is to apply block coordinate decent to the unconstrained problem

et 1M =

but project the vectors at each iteration. This results in Algorithm

The complexity of each iteration is O(nmlog(nm)) if the weighted median is computed by sorting
the vectors, or O(nm) if the quick select algorithm is used instead.
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Algorithm 5: Projected rank one ¢; heuristic

while not converged do
q + wmed(M, p)

q < a/llallos
p + wmed(M7T, q)

q < p/|plloo

convergence in the rank one case

Note on convergence when there is no noise. Assume A is rank one (no observation noise), and let
A = ouwvT where 0 > 0, u and v are unit vectors.

Then the p-step is given by

p; = arg Hll,i,n llouiv — piql|1
1

n
= arg Hll)i_n E lou;v; — pig;l
T

=1
n
. oU; U5
= argmin Y _[g;| [—2 — p;
r= qj

= ouiﬁm

where v; = %, ) is the k-th element in the ordered sequence of v. Note that the sign of u; does
not affect the solution, even though it may seem to affect the order of the sequence: if u; < 0,
simply write the optimization problem as min,, |ou;v — p;q|[1 = miny, ||o(—u;)v — (—pi)gq|/1 where
now —u; > 0 and the variable is —p;. The solution in the positive case yields —p; = a(—ui)ﬁ[k},
which is the same as p; = U]

Therefore we have that after the first iteration,
D = U

since Uf) does not depend on ¢ (the order of the sequence only depends on ¢), thus we immediately
recover the direction of the left singular vector w. Similarly, g recovers the direction of the right
singular vector v, and the algorithm converges after one iteration. This is observed in practice
(however since the stopping needs to detect that the vectors are not changing, this requires two
iterations in practice).

1.5.5 Sensitivity of the Robust PCA solution to A

Note that in the Robust PCA framework, the parameter A is specifically chosen to be A = ﬁ, and
when A is too large or too small, it would significantly affect the recovery. However, in the case
where rank information is given, the effect of A may be different. One may ask whether recovery
can be be guaranteed with very small values of A. In particular, we specialize to the rank 1 case,
and it turns out that it cannot be done, as demonstrated in the following.
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Recall that if we directly apply Robust PCA we will get

min [L[x + AllS]l = min L]« + AlLSTl
M:L+S,rank(L)§l S:M—qu7L:qu

: T .

= min + M| M —
ooy in o Ipalle+ AIM = gl

— : T T

= min |pg’ |« + MM —pg" |1
p.a:lpll2=1

= min |qll2+ XM —pq" |
p,q:[|pll2=1

= min min|q|l2 + \|M — pg® |1

pillplla=1 4

Now, for every fixed p, consider the subproblem of directly applying Robust PCA with A < %,

min [|qflz + AllM — pg’ [l = mi ulq+ ATr(VH(M ~pq"))

n max
9 Jlull2<L[IVileo<a

= max min uTq + )\TT(VT(M — qu))
lull2<1,[V]joo<1 @

= max (VT M)
lull2<T IV lloo<1,u=AVTp
= max NTr(VT M)

VTS [V o<
= max ATr(VIM)

IVTpll2<n, |Vl co<1

Now note that, since ||p[l2 < 1, we have |[VTpll2 < />0, os(VTV) = /Tr(VTV) < /n2|V] .
Thus, the optimal value is

min  ||pg” ||+ + MM — pg¥|i = min  max XTr(VIM)
p.¢:llpll2=1 pllpll2=1 [Vllso<1

=\ min [[M];
p:lpll2=1

=AM

And it is achieved by pg? = 0 matrix, which deviates from what we expect to recover.

1.5.6 Recovery performance
Comparison between Robust PCA and ¢; PCA heuristics

We perform a numerical comparison of the performance of Robust PCA and the ¢; heuristic based
on the weighted median iteration method. We test recovery of corrupted rank one matrices. Note
that in using the power iteration method for Robust PCA, we would not update p if the value of
that iteration is 0 because this will make the algorithm to converge to the wrong value (as observed
from simulation, this happens quite frequently so this conditioning is needed).
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Note that in the rank one case, the formulation (1.34)) of Robust PCA becomes
Js =min||L||« + Al|S
s =i + Al

st. M =L+S, rank(L) =1
—min ] + MM — pg” (1.37)
14,P,q

st [pllz =1, llgllz =1, p >0

Therefore the rank one Robust PCA problem can be solved using a modified weighted median
problem.

In the simulation, we randomly generated the entries of p and ¢ as N(0,1) iid. We randomly
generate sparse matrix with a uniformly distributed sparse support. Each sparse entry is randomly
distributed N(0,1). We then plot the graph of different degree of sparsity and the corresponding
effectiveness of the optimization heuristic in extracting the original pg”. We run the experiment
20 times and show the average. A recovery is considered to be correct if the relative error of the
low rank matrix and the recovered low rank matrix is less than 1072, We remark that we only use
20 number of iteration in the power iteration method where one iteration means updating all the
entries of p and q once (i.e. outer iteration). The results is shown in Figure

RPCA with known rank RPCA with known rank RPCA with known rank
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Figure 1.3: Comparison of rank one Robust PCA and the ¢; PCA heuristic in solving rank-one
matrix recovery. Both algorithms have similar performance, but ¢; PCA shows slightly better
recovery rate, and its estimated corruption matrix has size of support closer to reality for large
supports.

If we do not use the rank information in the Robust PCA formulation, the exact recovery perfor-
mance degrades compared to £; PCA. This is shown in Figure [I.4
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Figure 1.4: Comparison of pure Robust PCA (no rank information) and ¢; PCA for solving rank
one recovery, for increasing sizes of the corruption matrix. ¢; PCA shows higher exact recovery
rates, and lower average error. Observe that the rank of the estimated matrix is increasing in the
case of RPCA, but is constant (by construction) in the case of ¢; PCA.

1.5.7 (¢, PCA heuristics for higher ranks

One can generalize the £1 PCA block coordinate descent algorithms to cases where L is of known
rank r > 1, in two different ways depending on what we want to achieve, and on the performance
requirements.

Analysis /1 PCA

In the analysis view of PCA, one seeks to sequentially find directions that best explain the data.
In the ¢5 case, at each step, we look for a direction p that maximizes the variance along p, i.e.
Max||p|,=1 pT MMTp = Max||p|,=1 |M7Tp||3. Equivalently, we look for p that minimizes the distances
of the data points M; to span(p) (M; is the i-th column of M). Indeed, assuming ||p[2 = 1, the
projection of data point M; on p is given by (MI'p)p, and the distance of M; to span(p) is simply
| M;—(MI'p)p||3 = || M;]|3—(MFp)?. Thus minimizing the sum of the squared distances is equivalent
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to

min — 3 (MTp)? = max M|}
Ipll2=1 Z ' Ipll2=1 ?

For a general norm ||.||, minimizing the distance to span(p) can be written

min [|M7 — pg"|
¢ |lpll«=1

where p is normalized in the dual sense, and ¢;p is the projection of M; on p.

The analysis view of /1 PCA leads to a sequential formulation where at each step, a one-dimensional
projection of the data is computed

min  [[M® — pegf s
Qs ||Pk oo =1

then the data matrix is updated (the covariance matrix is deflated)
MED = M®) — pgf

One way to solve this problem is to use block coordinate descent separately for each pair (py,qx)
(i.e. one block coordinate descent for each step k).

Synthesis /; PCA

In the synthesis view of PCA, one seeks to find, simultaneously, a small set of directions (of size r),
or dictionary elements, such that each data point M; admits a decomposition on that set with low
error. This leads to the batch problem

i,
min [|M = praf |k
IP&]lco=1,q% 1

that can be solved using block coordinate descent for all vectors pg, g Note that in the case of /5
PCA, both views are equivalent and lead to the same solution (py is the left singular vector corre-
sponding to the k-th largest singular value oy, and gx/sigmay, is the corresponding right singular
vector). However in the general case, these formulations are not equivalent. The synthesis view
has slower convergence, since the optimization is done simultaneously on all vectors. The analysis
view has faster convergence, but performs poorly compared to the analysis view if the criterion is
the reconstruction error || M — >} _; prqi ||1. This is illustrated in the following section.
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Numerical results

We first test the performance of the synthesis ¢ PCA, for recovering rank-2 10 x 10 matrices. The
results show that we do have a good performance when the noise is sparse enough.
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Correctness (1 means correct)
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Figure 1.5: Performance of synthesis ¢ PCA in recovering a rank 2 matrix using (batch) block
coordinate descent.

We next compare the performance of the synthesis ¢; PCA (green), analysis ¢/; PCA (blue), and
Robust PCA with no rank information (red). We generate random rank-r 10 x 10 matrices, and add
random uniformly distributed noise. In a first simulation (Figure , we fix the rank to be r = 2,
and vary the size of the support of the corruption matrix S. In a second simulation (Figure [1.7)),
we fix the size of the support to be 20, and vary the rank of L. The results show that

e Synthesis /1 PCA performs better than analysis £; PCA, as expected: it achieves higher exact

recovery rate, although has comparable average error. However, convergence is much slower.
Synthesis ¢ PCA becomes impractical for large matrices (size of the order of thousand by
thousand), but analysis ¢1 PCA still converges fast and yields relatively good recovery rates.

The exact recovery rates of RPCA and ¢; PCA are comparable, although RPCA achieves
lower average error (and slightly better exact recovery, for example, when the rank is 3).
The ¢1 PCA heuristics have an advantage in terms of rank and support of the estimated
components: for higher ranks, the rank(L) is closer to the original rank(L), and the size of
the support |supp(S)| is closer to the original |[supp(S)| (see bottom sub-figures in Figure
original noise support size is [supp(5)| = 8.)

The ¢; PCA heuristics therefore offer some advantages: they allow us to incorporate rank
information (we do not see an easy way to add rank information to the RPCA formulation
when the rank is strictly greater than one), and offer more robustness when the rank is high.
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Chapter 2

Algorithms

2.1 Overview

This section discusses some of the algorithms that have recently been proposed in the literature to
solve the Robust PCA problem

p* =min [[L], + A[lS]
L.s (2.1)
st. M=L+S8

There are various methods that can be used to solve (2.1). A straightforward way described in
section is to use general purpose interior point solvers [30, 32] to solve an SDP formulation
of the dual of , an approach that works well for low-dimensional data M but unfortunately
does not scale well. Another approach is to use iterative thresholding techniques as described in
section which result in a very simple algorithm that can be applied also to high-dimensional
data. Unfortunately the convergence of this algorithm is extremely slow. More sophisticated
approaches include an accelerated proximal gradient algorithm (section and a gradient ascent
algorithm applied to the dual problem of (section . The current state of the art seems
to be a adaptation of the Augmented Lagrangian Method to the non-smooth problem , an
approach that is discussed in section [2.2.5

2.2 Main algorithms for Robust PCA

2.2.1 Interior Point Methods

As will be shown in the following section, the dual problem of can be cast as a Semidefinite
Programming (SDP) problem for which a number of efficient polynomial-time interior-point solvers
have been developed. In principle, one can then just apply these general purpose off-the-shelf
solvers to the dual SDP. This approach will work well for small and medium sized problems, but
unfortunately it does not scale with the size of the data matrix M. The following section first
develops the dual of the Robust PCA problem, section then discusses the limitations of using
interior point methods on the resulting SDP.
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Formulation of the Dual problem of Robust PCA as an SDP

Let us use the equality constraint to eliminate the variable L from (2.1). Using the facts that
| X ], = maxy),<1 TrYZX and || X|, = max||z|| <1 Tr ZTX the problem can be written as

P = msin max TeY? (M~ S)+2Tr ZTS
st [V, <1 (2.2)
2]l <1
The dual function is
9(Y, Z) = min TeYTM + Tr(\Z - Y)TS
Y™ i AZ=Y (2.3)
- otherwise
We obtain the dual problem
p* > d* = max T Y M
Y,Z

V]l <1
1Z]le <1

which after eliminating the variable Z and using homogeneity of the norm becomes
d* =max Tr vTM

st [V, <1 (2.5)
Vo <A

Noting that |V, <1 <= I —YT(I)7'Y = 0 and using a Schur Complement lemma, the dual
problem can be transformed into the following SDP standard form:

d" = max T MY
I vyt
.t. -
st [Y I]—O (2.6)
TrALY <X, i=1,...m, j=1...n
TrALY > =X, i=1...,m, j=1,...,n
Here A;; € R™*" is such that A;;(k,l) = 6;105. Note that both primal and dual problem are
(trivially) strictly feasible. In fact, the primal is unconstrained and an obvious strictly feasible dual

variable is Y = 0. Hence strong duality holds (p* = d*) and both primal and dual problem are
attained.

Recovering the primal solution
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To recover the primal solution we can distinguish the two cases A < 1 and A > 1. For the latter one,
first note that ||V, < [[Y]l, for all Y. To show this first recall that ¢ := [[Y||; = max,,=1 [ Yz,

This means that c||z]|3 — z7YTYz > 0,Vz or, equivalently, ¢ — Y7Y > 0. Using a Schur
Complement this can be written as

It is easy to see that this implies that

S
Yi; ¢

B

for all 7, j, which is equivalent to |Yj;| < ¢, Vi, . This shows that [[Y||,, < [|Y]|5.

Hence we observe that if A > 1 the constraint ||Y||, < A will be inactive, that is |Yj;| < A, Vi, 3.
Therefore, for A > 1, removing this constraint from does not change the problem. We have
d* = max)y,<1 Tr YTM = ||M]||,, and this lower bound is achieved by the primal (feasible) solution
L =M and S=0.

If A <1, then we can look at the dual of the dual (2.5). One way to form a Lagrangian of this dual
problem is to introduce Lagrange multipliers S_ > 0 and S} > 0 for the constraints Y;; < A and
—Y;; < A, respectively:
L(Y,S84,5-)=—TrYTM —TrST(Y — A1) - Tr ST(-Y — A1)
=Tr(Sy —S_ — M)'Y + ATr(S, +5)"1

Here 1 denotes the n x n matrix whose entries are all ones. We have

d*= max —TrM'Y
Y |l2<1
[V [loo <A
= max min L£(Y,S5;,5_)
IY][2<1 S+>0
S_>0

= min max L(Y,5,5-)
5420 [|Y]l2<1
S_>0

= min g(S4+,5-
dnin, 9(S+,5-)
5.>0

where

g(Sy,5-) = e Tr(S, —S_ — M)TY + \Tr(S. +S_)T1
2>

=S — S — M|, +2Tr(S. +5)T1
A dual problem of the dual (2.5)) is then simply

: . . T
g mmin ISy = S- = M.+ ATe(S, +5)"1 (2.7)

We have d* = ming, >0,5_>0 g(5+,5-). Note that at the optimum, the variables S, and S_ satisfy
min(S4;,S-i;) = 0 Vi, j. Indeed, suppose there existed (i, ) such that min(Sy;;, S—;;) = a > 0,
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then g(S+—aeie?, S_ —aeie?) =g(S4,5-)—2Xa < g(S4+,S-), and (S4,S_) is not optimal. Letting
S =5 — S5_, the problem is equivalent to the primal

p" = min 1M = S, + A1,

Therefore it is possible to recover the optimizer S* from the dual problem: Indeed, we have that
S* = 87 — 5" where S_ and S, are respectively the Lagrange multipliers associated with the
constraints Y;; < A and —Yj;; < A

Using Interior Point Methods to Solve the Dual

Problem is an SDP and can therefore in principle be solved using off-the-shelf solver packages
such as sedum [30] and sdpt3 [32]. These solvers are based on interior point methods which
offer superior convergence rates [7] but unfortunately do not scale well at all with the size of the
matrix M. Figure shows the average running time over 10 instances of the dual problem for
the solvers sedumi and sdpt3 for randomly generated data of very low dimensions. There is a

1200 ‘ Average nfnning time

sedumi via cvx
sdpt3 via cvx

1000 - q

800 q

600 - q

average computation time [s]

4001 4

200 q

. . -
10 15 20 25 30 35 40 45 50
Matrix dimension (square matrices)

Figure 2.1: Average running time of interior point methods for the dual problem

surprisingly big difference in terms of the running times: sdpt3 is consistently faster than sedumi,
with the spread growing significantly with the problem size. For the largest dimension sdpt3
on average is 8 times faster than sedumi for this particular problem type. To be able to give a
realistic assessment of why this is the case would however require detailed knowledge of the solver
implementation.

Regardless of which solver is used, it is obvious that, with an average running time of the faster
of the two solvers of more than 2 minutes even on toy-sized problems involving matrices with only
2500 entries, interior point solvers are unsuitable for most problems of interest. The reason for this
extremely bad scaling behavior with the matrix dimension is that the computation of the Newton
step direction relies on second-order information of the (barrier-augmented) objective function, the
computation of which is too expensive infeasible when the number of variables is very high. For
applications that involve large-scale data matrices (with mn in the millions or even billions), using
interior point methods therefore is essentially impossible. In order to overcome this scalability issue,
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a variety of first-order methods exploiting the particular structure of the Robust PCA problem have
been proposed. Some of these methods will be described in the following.

2.2.2 Iterative Thresholding Method

Among the first techniques used to solve (2.1) for high-dimensional data was an adaptation [33]|I|
of an iterative thresholding method originally proposed for the matrix completion problem in [§].
For this method the authors consider a relaxation of the original problem ([2.1)) of the form

. 1 2 1 2
win L], + MISly + 51 EIF + 5151 (2.8)

st. M=L+S8

where 7 > 1 is a scalar parameter. Generalizing the result from [§] (which considers the matrix
completion problem, i.e. S = 0), the authors of [33] argue that for large values of 7 the solution
of will be very close to that of . One can now employ iterative thresholding techniques to
solve . Although the resulting algorithm has little relevance in practice because of its extremely
slow convergence speed, we will see in the following sections that its main ideas are the basis for
a number of other similar algorithms. Therefore we briefly review the iterative thresholding algo-
rithm here.

The Lagrangian of the problem ([2.8]) is given by
1 9 1 9 1
£(L,8,Y) = ||, + NSl + o I1ZIE + - 1S3+ (¥, M — L - 5) (29)

The idea of the iterative thresholding algorithm is, as the name suggests, to update the variables
L,S and Y iteratively. More specifically, the Lagrangian £(L,S,Y") is minimized w.r.t L and S for
some fixed dual variable Y, and the violation of the constraint is then used to update Y using the
gradient step YT =Y +¢(M — L — S), where 0 < t < 1 is the step size.

Note that for fixed Y we have

(L,S) : = argmin £(L,S,Y)
L,S

. 19 1.5 1
= L AllS —I||L —||IS —(Y,M —-L-S5
argmin L], + XSl + 5o I1LIE + 5 181 + ) 210

. 1 2 1 2
= L AllS —I||L-Y —|S-Y
argmin |11, + M| + 5 I1L = Y1+ 518 = VI

We note that the above problem is completely separable hence the minimizers L and S can be
determined independently. Using optimality conditions based on the subgradient it can be shown [8),
33] that the minimizers L and S are both of a simple form. To this end, consider the following
extension to the matrix case of the well known soft-thresholding operator (e.g. from the proximal

'note that the iterative thresholding algorithm seems to never have appeared in the published version of [33],
which instead contains the accelerated proximal gradient method described in section
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mapping of the /;-norm in the vector case):

Tjj — € if Tij > €
xij+e  if xy; < —€ (2.11)

0 otherwise

(Ss[X])' =

g "

Theorem 7 (Singular Value Thresholding [8]). For each 7 > 0 and Y € R™*", we have that
1
D, (Y) :=US, [Y]VT = argmin | X]||, + EHX — Y% (2.12)
X

where Y = UXV™ is the SVD of Y.

Since Theorem [7]is of fundamental importance to all algorithms discussed in this chapter, we give
its proof here.

Proof of Theorem[7 Since the objective function fo(X) := argminy [ X||, + o[ X —Y|% is
strictly convex its minimizer is unique. Recall that Z is a subgradient of a convex function
f:R™" — R at Xp if f(X) > f(Xo) + (Z,X — Xp) for all X. The set of all sugradients Z
at X is called the subdifferential and denoted 8f(Xo). By definition it follows that X minimizes
fo if and only if 0 is a subgradient of fy at X. Using standard subgradient calculus this translates
to 0 € X —Y + 79||X||«, where 8||X||, is the subdifferential of the nuclear norm at X. To show
that D, (Y') satisfies we therefore need to show that 0 € D-(Y) =Y + 79||D,(Y)||.

Let X € R™*™ be arbitrary. Let UXV* be its SVD. It can be shown that
| X ||« = {UVk +W | WeR™" UW=0 WV=0, W[, < 1}

To use the above result decompose the SVD of Y as Y = UV + U1 X1 V{*, where Uy, Vo (U1, V1)
are the singular vectors associated with singular values greater (less or equal) than 7. With this
notation we have D, (Y) = Uy(Xo — 7I)V7, s0 Y — D (V) = 7(Ug Vg + W) with W = 7~ 1U; 5, Vi
By definition of the SVD UjW = 0 and W1, = 0. Furthermore, since max(¥;) < 7 it also holds
that ||W], < 1. Together this shows that Y — D, (Y) € 70||D,(Y )|+ O

It is also not hard to find the minimizer S of (2.9), as the following proposition shows:

Proposition 1 (Matrix Value Thresholding). For each 7,A >0 and Y € R™*", we have that

. 1
SealY] = argmin XX, + - |1X - Y|} (2.13)
X T

Proof of Proposition [1. Note that the objective function ho(X) := A| X||; + o&=|| X Y% in
is completely decomposable and can be written in the form ho(X) = >, ; A[X;;| + = (X —Yi5)%
so the minimization over X can be carried out element-wise. Using the same reasoning as in the
proof of Theorem (7| we have that the element X;; is a minimizer if and only if 0 € Oho(X). This
condition can be written as Y;; — X;; € 7A 8\Xij]. We consider the cases X;; = 0 and X;; # 0. If
Xij = 0 then the condition reads Yj; € 7y[—1,1]. In other words, when |Y;;| < 7y then X;; = 0.
On the other hand, if X;; # 0, then 0 |X;;| = sign(X;;) and we have X;; = Y;; — 7 Asign(Y;;), which
is in fact the soft-thresholding operator S;[Xi;]. O
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Applying Theorem (7| and Proposition |1/ to (2.10) we find that the minimizers L and § of (2.9) are
given, respectively, by

L=US [xvT (2.14)
S =8,[Y] (2.15)

Algorithm [6] summarizes the overall iterative thresholding algorithm for Robust PCA.

Algorithm 6: Iterative Thresholding Algorithm
Input: Observation matrix M, parameters A, 7
initialization: k =0, Yy = 0;
while not converged do

k=k+1;

(U,2,V) =svd(Yi—1);

Ly =US. [Z|VT,

Sk = Sxr[Ye-1l;

Yi = Y1+t (M — Ly — Sk);
Output: L = Ly, S = 5k

Algorithm [0] is extremely simple to implement, as each iteration only requires the computation
of an SVD of the current dual variable Y; and a few elementary matrix operations. Note that,
in fact, since the shrinking operator sets all singular values less than the threshold parameter
to zero one really only needs to compute the singular values that lie above this threshold. In
section we will discuss how this can be exploited to achieve potential speedups in all of the
algorithms considered in this chapter. The convergence criterion used in practice is usually of the
form ||M — Ly — Sk||r < e||M||p, where € is the desired relative accuracy.

While the iterative thresholding scheme in Algorithm [6] is very simple and has been proved to
converge, its convergence speed unfortunately is extremely slow. The authors of [33] found that it
typically requires about 10* iterations to converge for problems of reasonable size, an observation
that is confirmed by our numerical experiments. Furthermore it is hard to find good general schemes
to optimize the choice of the step size ¢ [22]. As it turns out the other algorithms discussed in
the following sections have a comparable complexity but converge much faster, both in theory and
practice. Therefore the practical applicability of this approach is limited.

2.2.3 Accelerated Proximal Gradient Method

An accelerated proximal gradient (APG) method for solving was proposed in [23]. The method
is essentially an application of the FISTA algorithm [4] to a relaxation of the original RPCA prob-
lem in combination with a continuation technique. This FISTA algorithm algorithm is reminiscent
of Nesterov’s “optimal” first-oder method for smooth objective functions [26], whose O(1/¢) conver-
gence result was extended to non-smooth objectives in [27]. Besides being theoretically appealing,
the APG method is also in practice much faster than the iterative thresholding algorithm discussed

in section 2.2.21

The following sections describe the APG algorithm. As in [23] we first give a general formulation and
then show how it can be applied to the Robust PCA problem, using ideas from section [2.2.2]
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A General Form of the Accelerated Proximal Gradient Method

Proximal gradient algorithms in general can be used to solve unconstrained problems of the
form

mzin f(z) :=g(x) + h(x) (2.16)

where ¢ is convex and differentiable and h is ClosedEL convex but need not be differentiable. The
proximal mapping of a convex function % is defined as

1
prox,(z) := arg min (h(u) + iHu - wH2> (2.17)

Here ||| denotes the inner product nornrﬁ Note that since h is convex and the norm is strictly
convex, the optimizer in (2.17)) is unique. The step of each iteration of the classic (non-accelerated)
proximal gradient algorithm is

o = proxg, (r — §Vg(z)) (2.18)

where zt denotes the next iterate, based on the current iterate x, and § is the step size (which can
be fixed or determined via backtracking line search). Since the proximal mapping needs to
be computed at each iteration (possibly multiple times because of the line search), the algorithm is
most effective when this can be done cheaply. Depending on the function h, the proximal gradient
algorithm can be seen as a generalization of different gradient-based algorithms. In particular,
for h(xz) = 0 the standard gradient algorithm is recovered and for h(x) = Io(x), where I denotes
the indicator function for the convex set C, the projected gradient algorithm is recovered.

Note that (2.18]) can be written as

* = argmin (h(u) LN 5Vg(a:)||2> — argmin <h(u) + L G(x)||2>
u 20 u 24

. (2.19)

= arg min (h(u) +g(x) + (Vg(z),u —x) + %Hu - x\2>
u

where G(z) := x — § Vg(x). Therefore, each step can be interpreted as minimizing the
function h(u) plus a quadratic local model of g(u) around the current iterate x. This classic form of
the proximal gradient algorithm is well known in the literature and, under Lipschitz continuity of the
gradient of g and some technical conditions on the step size ¢, has been shown to have a convergence
rate no worse than O(1/k) [27]. In particular, a popular choice for ¢ is the fixed step size § = 1/L,,
where L, is a Lipschitz constant of the gradient of g, that is we have ||Vg(z) — Vg(y)|| < Lg|lz — y|
for all z,y. Note that in practice for a general problem the value of L, might be unknown. However,
this is not a big concern for the type of problem arising in Robust PCA, hence we will assume this
choice of § = 1/L, in the following.

It turns out that the choice for the point around which the quadratic local model of g(u) is con-
structed has an important effect on the convergence rate, and that less obvious choices than just
the previous iterate x are actually better (in the sense that they yield higher convergence rates).

2that is, its epigraph is closed
3the derivation holds for real inner product spaces, not just R™. We are particularly interested in the case R™*"
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Specifically, consider a generalized version of ([2.19), where the approximation of g is constructed
around some y that may depend on all prior iterates xg, ..., xk:

ot = argmin <h(u) + %Hu - G(y)||2> (2.20)

Nesterov in [26] showed that in the smooth case the standard gradient algorithm (i.e. h(x) = 0)
can be accelerated by choosing y, = xx + t’“*tl_l (xx — xx—1), leading to a theoretical convergence

rate of O(1/k?). This algorithm is optimal in the sense that its convergence rate achieves (in terms
of order) the theoretical complexity bound on all first order algorithms. The seminal work [26] has
been extended to the non-smooth case in [4, 27], yielding the generic accelerated proximal gradient
method given in Algorithm

Algorithm 7: Accelerated Proximal Gradient Algorithm
initialization: k=0, tg =t_1 = 1;
while not converged do
-1
Yk = Tk + 1tkf(ﬁﬁk — Tg-1);
G =yr — 7. Vo(yr);
. L
w41 = argmin,, (h(z) + 52l - Gy );
1+4/4t2+1
l1 = D) —;
k=k+1;

Accelerated Proximal Gradient Algorithm Applied to Robust PCA

Using some the ideas from the iterative thresholding method in section it is possible to
construct an accelerated proximal gradient algorithm for a relaxation of the original problem .
In particular, it is easy to see that in the common case h(z) = ||z||; the update for z in Algorithm [7]
is simply given by xx11 = Sy/1,[G(yk)], where S is the soft-thresholding operator defined in ([2-11).
Similar ideas can be used to develop an APG algorithm for the Robust PCA problem.

The authors of [23] consider a relaxation of (2.1)) of the form
. 1
win L, + NS+ 3 1L+ S — M (2.21)

It can be shown that for ¢ — 0, any solution of approaches the solution set of .
In practice, rather than fixing u to some small value, one can achieve superior convergence of the
algorithm by using a continuation technique on p, that is, by solving by repeatedly decreasing
the value of i in the steps of the accelerated proximal gradient algorithm. This can be interpreted
as a particular homotopy method.

With X = (L, S) we identify h(X) = u||L|, + p||S||; and g(X) = ;|yL+s M|% in . The

gradient of g is Vg(X) = (V5g(X), Vsg(X)), where Vpg(X) =Vsg(X)=L+S— M. Thus
Li+ 8 — Lo+ 55 — — Lo+ 51— 95
X (X9)|| =
IV (X1) = Vo(Xo)| = H L1+ 51— ] [LQ—G-SQ— H H[ L2+S1—52} ‘

=2||X; — X

|
o [ | R [l
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which means that a Lipschitz constant is given by L, = 2. It turns out that because of the
separability of both the function i and the Frobenius norm the update can be be decomposed as
follows:

. L
(L1, Sier) = X = argain () + 21X - GODIR)

_ aremi LGP Lis_ s
—angmin (21, + 512~ GEI* + Al + 5 - G

. L GL
= arg min <M|IL|* + S+ H [5] B [Gg]
1.8 g

The problem is therefore completely separable and clearly the sum of two problems of the form ([2.16]).
In particular, if GE = ULV is the SVD of G£ then, using the results from section the iter-
ates Li41 and Sk are given by

L1 = USe[S]VT (2.22)

Sk1 =Sy [G7] (2.23)
Therefore it is rather straightforward to formulate a version of Algorithm [7] for the Robust PCA
problem. One extension to the basic form of Algorithm [7] is the use of a continuation technique
(or homotopy method) for the parameter p. In [23], the authors propose to start from some large
value po and then choose pgi1 = max(nug,ji), where 0 < n < 1 and f is a lower limit on py.
This continuation technique has been observed to improve convergence, and is used much for the
same reasons as the one in modern interior point methods. The Accelerated Proximal Gradient
Algorithm applied to the Robust PCA problem is summarized in Algorithm

Algorithm 8: Accelerated Proximal Gradient Algorithm for Robust PCA

Input: Observation matrix M, parameter A
initialization: k =0, Lo=L_1 =0, 5 =5_1=0,tg =t_1 =1, i = dug;
while not converged do

ViE =L+ %(Lk — Lg-1), Y =S+ %(Sk — Sk-1);

Gy =Y —3(V +V7 - M);

(U,2,V) = svd(Gﬁ), Ly = USM/Q[E}VT;

Gy =Y -tvE+YS - M)

Skt1 = S /2lGR;

14++/4t2+1
thp1 = —V5
M1 = Max(npy, ft);
k=k+1;

Output: L = Ly, S =5

We will restate the main convergence theorem for Algorithm [§ without proof.

Theorem 8 ([22]). Let F(X) = F(L,S) := f||L|, + G\|S|; + L[L + S — M|%. Then for all
k> ko := —C1log(n) it holds that

4/|Cry — X7
F(X}) — F(X*) < 2k =2 110
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where Cy = log(uo/i) and X* is any solution to (2.21)).

Remark 2.2.1 (Accuracy of the APG method). Note that for any finite i Algorithm 8| provides only
an approximate solution of the Robust PCA problem due to the replacement of the equality con-
straint with the penalty term % \L+S—M ||2F In practice one therefore has to tradeoft accuracy
(i extremely small) and computational efficiency.

2.2.4 Gradient Ascent on the Dual

In section we discussed why solving the Robust PCA dual problem (2.5 via interior point
techniques quickly becomes infeasible with growing size of the data matrix M. Another way
of solving the dual given in [23] is based on a steepest ascent algorithm. Note that the dual

problem ([2.5)) derived in section can be written as

d = max Tr MTY  subject to J(Y) <1 (2.24)

where J(Y) := max (||Y|ly, A !|Y]|). Denote by F := {Y | J(Y) < 1} the feasible set. The
maximum operator in the function J implies that F = {Y | [V, < 1} N {Y | \7YY| < 1},
hence F is clearly convex, being the intersection of two convex sets. Further, the function J(Y') is
positive and homogenous in Y, hence the maximum over a linear of the objective function is achieved
on the boundary OF of the feasible set, that is, the optimum is achieved when J(Y) = 1.

To solve , the authors in [23] propose to use a projected gradient algorithm. The gradient of
the objective function Tr M7Y is simply M. The projection onto the constraint set is more involved
but can be treated using standard methods from convex optimization. In particular, the algorithm
at each iteration k involves projecting the gradient M onto the tangent cone Tr(Y}) of the feasible
set F' at the point Y. If W} is the steepest ascent direction obtained from this projection, the
iterate can be updated using the (projected) gradient step

Y, + Wi
Yir1=———— 2.25
LT (Y + W) (2:25)
where t;, is the step size that can be determined by a simple line search of the form
Yy +tWi >
ty =argmax ( M, ————— 2.26
L R < T (Y5, + tWy) (2.26)

Note that the division by J(Yj + W} ) ensures that the next iterate Yiq lies on F. It is shown
in [23] that if the maximizing step size tj, is equal to zero at some point Y, then Y} is the optimal
solution to the dual problem ([2.24]).

In order to perform the projection on the tangent cone Tr of F' at the point Y}, the authors of [23]
make use the following two facts:

1. For any convex subset K C V of a real vector space V the normal cone Nk(z) at the
point z € K is the polar cone to the tangent cone Tk (x).

2. If two cones C and Cy in V are are polar cones to each other and Pc, and P, are the
projection operators onto Cj and Cy, respectively, then Pc, (X) + Pc, (X) = X for any point
XeV.
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From these facts, it follows immediately that Pr,(y,)(M), the projection of M onto the dual
cone of F' at Y, can be computed as Pr,(yv,)(M) = M — My, where My = Py, (v,)(M). It
can be shown that the normal cone is characterized by the subgradient of the function J via
NY;) ={aX | « > 0,X € 0J(Y)}. Note that J is in fact the pointwise maximum over two
functions, hence from strong subgradient calculus it follows that

OlIYil, i ([Yelly > A Vil
9J(Y) = { A10]| Vi i ([Yelly < A1 Yillo (2.27)
Conv {0 Villy, A0 Yalloo} i [[¥elly = A~ Vil

where |||, is the maximum absolute value of the matrix entries (not the induced oo-norm).

The first two cases are rather simple and the associated projections Pa2(-) and P (-) onto the
normal cones generated by the sub gradients of ||-||, and [|-||, at Y}, respectively, are efficiently
computable [23]. In particular, at each step the projection Ps(:) requires the computation of the
largest singular ValueEI (and associated singular vectors) of the matrix Y}, and the projection Py (+)
requires only a simple element-wise comparison of the matrices M and Y. The projection in
the third case, i.e. when N(Yy) = Na(Yi) + Noo(Y%), is more involved and can be performed
using an alternating projections algorithm. It can be shown [23] that by initializing Sp = 0 and
j = 0, and then repeatedly setting Ljy1 = Po(M — S;), Sjy1 = Poo(M — Lj;1) will yield the
projection My = Py, (M) in the sense that lim;, L;j + S; = My. The projected gradient
ascent algorithm for the dual problem is given in Algortihm @

Algorithm 9: Projected Gradient Ascent for the Dual Problem

Input: Observation matrix M, parameter A
initialization: k = 0, Yy = sign(M)/J(M);
while not converged do
Compute the projection My, of M onto Np(Yy):
if |YVily, > A7 Vil then
My =Po(M),L=M,S=0
else if ||Yi|l, < A7 V%], then
My =P (M), L=0,5=M
else
L=0,5=0;
while not converged do
L=Py(M—-S5), S =Po(M—-1L)
My=L+S
Perform a line search as in to determine step size t;

_ YAt (M—My) |
Vi1 = J(Y+tr (M—My))?

k=k+1;
Output: L, S

Using the properties of dual norms, it is possible to show [23] that the primal solution (ﬁ, 5') can
easily be recovered from the dual optimal Y. Specifically, it can be shown that if ||Y|, < 1 or
A~|Vi|l, < 1 the solution is degenerate and given by L = 0,5 = M (in case ||Y]|, < 1) or

4Note that the largest singular value of Y; needs to be computed anyway at each step in order to distinguish the

three cases in ([2.27)
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L=M,8=0 (in case \"Y|Vi|lo, < 1). If |Villy, = A~V Yillo, = 1, then (L, S) is any pair of points
that achieves convergence of the alternating projections method described above.

Algortihm @ at heart is really just a simple projected gradient ascent algorithm, the convergence
rate of which is known to be O(1/k) (in terms of outer iterations, not counting the alternating
projection sub-algorithm). The most costly operations are the projections Pa(-) that require the
computation of the largest singular value of matrices of the same size as M. As our numerical
simulations show, while faster than naive application of interior point methods or the iterative
thresholding algorithm, Algortihm @]} in general performs much worse than the Augmented La-
grangian methods discussed in the following sections.

2.2.5 Augmented Lagrangian Method
The General Case

The classic Augmented Lagrangian Method (ALM), described in [6], is a method for solving
equality-constrained convex optimization problems. Consider a generic equality-constrained op-
timization problem of the form

p* =min fo(x) st. fe(zr)=0 (2.28)

z€EH

where H and H’ are Hilbert spaces and f, : H — R and f.: H — H' are both convex functions.
The conventional Lagrangian of the problem is £(z,\) = fo(z) + (A, fe(z)), with A € H' being
the dual variable. The augmented Lagrangian method, as its name suggests, uses an augmented
Lagrangian of the form

Lla, M p) = fola) + O fola)) + Sl fela)]” (2:29)

where ||-|| is the inner product norm. Here A can now be interpreted as an estimate of a dual
variable. The general algorithm is quite simple and given in Algorithm

Algorithm 10: Generic Augmented Lagrangian Method

while not converged do
Tk41 = arg minac /:,(.%', )\k7 ,U/k);
Mot = A+ prefe(@rg1);
update py to pg11;
k=k+1;

Output: X = X

Alternating Directions ALM for Robust PCA
For the Robust PCA problem (£2.1)) the augmented Lagrangian is (associating = = (L, S))
©
L(LS. Vo) = Ll + MST, + (V.M — L 8) + Bjar - - 5|} (2.30)

Note that one of the usual assumptions made when using an augmented Lagrangian method is that
the objective function f, is differentiable. This is clearly not the case for the Robust PCA problem.
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However, in [22] the authors show that the same convergence properties as for the differentiable case
can be retained also for the Robust PCA problem. The main step in Algorithm [10] is solving the
problem zy1 = arg min, £(x, Ak, i), which in the case of the Robust PCA problem reads

(Lisr, Si) = avgamin ||, + XS] + (i M = L=$)+ GEa - L-sIE - @s1)

and can be solved using an alternating directions approach based on the ideas in section [2.2.2
Specifically, consider (2.31) for S fixed. The corresponding “directional” subproblem in the vari-
able L can be formulated as

Lisr = axgmin L], + NS, + (Vi, M~ L =) + EFIM — L= 57
1

e

= arg min L], + (Yo, M — L = S) + 1M — L - S| (2.32)

| 1 _
= argmuin [IL], + 5 S| — (M CR e (31|

Suppose ULVT = M — S + ,ulek is the SVD of M — S + ,u,;lYk. Using the same arguments
as in section 2.2.2|7 the minimizer in (2.32)) is given by Lyi1 = USM?[Z]VT, where S; is the
soft-thresholding operator defined in (2.11)).

Conversely, suppose that L in (2.31) is fixed. The “directional” subproblem in the variable S
is

Sir = argmin [, + N|S] + (¥i M~ L~ 8) + GHM ~ L - S|l

1 2
— argmin S|, + (Ys, M =L - S) + ——=||M —L—S
min AllS]ly + ) 2 rll I (2.33)

k

. 1 -
= argsmln S|, + JEIHS — (M = L+ IY’C)H;

Again using the results from section [2.2.2| we find that Sy =S, 1[M — L + ulzlYk].

T

The alternating directions method for solving is based on solving and iteratively,
alternating between using a fixed S to update L and using the newly computed L to update .S until
convergence. Note that one can use prior iterates Li and Sy for hot-starting the alternative direc-
tions based solution of in order to significantly reduce the necessary number of directional
steps within each iteration. These are all the ingredients needed for the alternating directions ALM

method, which is given is Algorithm

The following theorem gives the main convergence result for Algorithm

Theorem 9 ([22]). For Algorithm any accumulation point (ﬁ,g) of (f}k,gk) is an optimal
solution to the Robust PCA problem (2.1) with convergence rate of at least O(u;_ll) in the sense
that

[Z4l1 + MISell = 1| = 0Gy)

where f* is the optimal value of the Robust PCA problem.
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Algorithm 11: Alternating Directions Augmented Lagrangian Method

Input: Observation matrix M, parameter A
initialization: k =0, ug > 0, Yo = sign(M)/J (sign(M));
while not converged do
j = 07 L2+1 = Lk7 S2+1 = Sku
while not converged do
U, ? V) =svd(M — S, + p;, ' Ya);
j+1 _ T.
L?c—i—l = US”?[E]V ;
j+1 j+1 —17r 1.
Spi1 = Syt (M = Ly + e Yal;
j=i+1;
Yip1 = Yi + pe(M — Liy1 — Skt1);
Update ug to pgy1;
k=k+1;
Output: L = f)k, S =3,

Inexact ALM for Robust PCA

The authors in [22] point out that it is not really necessary to solve exactly at each iteration k
by running the alternating directions subroutine until convergence. In fact, at the next iteration
the computation will be done again for the updated matrix Ykﬂ, so the solution of the subproblem
need only provide an intermediate result that is adequate to perform a sufficiently good update
of Y. It turns out that, under some technical conditions on the sequence {py}, one can also prove
convergence of the overall algorithm when performing only a single step in either direction at each
iteration k. This results in Algorithm |12 which in [22] is referred to as the “Inexact Augmented
Lagrangian Method” (IALM).

Algorithm 12: Inexact Augmented Lagrangian Method

Input: Observation matrix M, parameter A
initialization: k =0, pp > 0, Yo = M /J(M);
while not converged do

(U, %, V) = svd(M — Sy, + 11, ' Y);

Liy1 = USMI;l[E]VT ;

Skt1 = Syt [M = Ly + pp Yl

Yip1 = Yi + pe(M — Liy1 — Skt1);

Update py to pg1;

k=k+1;
Output: L =L, S =5,

While it is possible to show convergence of Algorithm the authors do not provide a bound
on the rate of convergence as they do for the “exact ALM” (Algorithm [11)). However, empirical
results, both in the original papers and in the following section, suggest that the IALM algorithm
is generally significantly faster that the EALM algorithm with only slightly lower accuracy.
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2.3 Discussion of the Algorithms

In the previous section we discussed a number of algorithms for Robust PCA. The naive application
of general-purpose interior point solvers to the dual problem only works for small problems but
does not scale with the size of the data matrix M. The simple iterative thresholding algorithm
can handle very large problem sizes but its convergence is extremely slow. Both the dual gradient
ascent algorithm and in particular the APG algorithm are much faster and better suited for large
problems. An extension of the APG algorithm that uses a prediction strategy for the dimension
of the principal singular space whose singular values are larger than the threshold allows to only
compute a partial SVD in each step of the algorithm. With this extension the the APG algorithm
turns out to be faster than the dual gradient ascent algorithm.

The current state of the art in terms of complexity, accuracy and convergence seem to be the ALM
methods discussed in section Though the authors of [22] do not give a complexity analysis
for the inexact ALM algorithm, empirical results suggest that for practical problems the inexact
ALM is considerably faster than its exact counterpart.

2.3.1 The Importance of the SVD

Most of the presented algorithms (in fact, all of them except for the direct use of interior point
solvers on the dual) involve repeated computations of the Singular Value Decomposition (or at
least a partial SVD) of matrices of considerable size. This is not very surprising, as the nuclear
norm in the objective function is the sum of the singular values of the matrix argument. This
repeated computation of the SVD is in fact the bottleneck of most current algorithms for Robust
PCA. Hence it seems that, at least for the algorithms discussed above, being able to perform SVD
on large matrices are the key to developing fast algorithms that can be used in applications with
large-scale data.

Comparison of different SVD algorithms

Figure shows a comparison of the average computation time of the SVD of matrices of different
sizes using Matlab’s internal SVD routine (based on the algorithm in [I3]) and PROPACK [20],
which is based on a Lanczos bidiagonalization algorithm with partial reorthogonalization. We have
compared the average running time for square matrices of different sizes, up to dimension 3000.
For each size we generated 20 random matrices, and determined the average running time over this
set. From Figure [2.2] we see that for smaller matrices Matlab’s internal SVD routine is significantly
faster than PROPACK. On the other hand, for large matrices (of dimension greater than 500 x 500)
PROPACK is much faster than the Matlab routine. In fact, for the largest matrices we tested it is
about one order of magnitude faster. This shows that the SVD-based algorithms discussed above
can all benefit strongly from fast SVD algorithms.

When the matrix under consideration is sparse, the SVD can be carried out much faster using
specialized methods [5]. Unfortunately, while the iterates of the matrix Sy (in case of primal
algorithms) are indeed sparse, the matrices for which the SVD actually needs to be computed are
not. Therefore it does not seem clear how sparse SVD methods could help in improving performance
of SVD-based Robust PCA algorithms.
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Average running time of Matlab’s SVD routine vs. PROPACK
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Figure 2.2: Numerical comparison of Matlab’s and PROPACK’s SVD routines

Partial SVD methods

If we look at the a Singular Value Thresholding operation it is obvious that we really only needs
to compute those singular values that lie above the specified threshold (which is known a priori in
each step and does not depend on the singular values), since the other singular values will be set to
zero anyway. One possibility to speed up the algorithms that involve thresholding of singular values
is therefore to use a partial SVD to compute only those singular values of interest. For the APG
algorithm the authors of [22] use the software PROPACK that allows the computation of such a
partial SVD. However, PROPACK by default requires the dimension of the principal singular space
whose singular values are larger than the threshold, which is of course unknown a priori. Since it
turns out that the rank of the the iterates L in the APG algorithm is monotonically increasing, a
reasonable prediction of this dimension is not too hard [22]. Doing so then allows to a partial SVD
at each step rather than a full SVD, which can potentially speed up the algorithm (if the partial
SVD can be computed efficiently).

The PROPACK package has later also been modified to allow the computation of those singular
values above a given threshold [21]. Figure shows a comparison of the computation times of
PROPACK’s standard (full) SVD routine and the algorithm [21] for different thresholds. Contrary
to what one would expect, the full SVD in all cases is significantly faster than the partial SVD.
At this point it is not clear what the reason for this is. Either the algorithm for performing the
“thresholded SVD” itself is very slow, or the implementation that is provided by [21] is extremely
inefficient (or both). Either way, it obviously makes no sense to use to the provided implementation
to compute partial SVDs. This is not to say that partial SVD is in generally slow. In fact, in [22]
it is found that computing the partial SVD for a fixed dimension of the principal singular space
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using PROPACK indeed results in a speedup of the APG algorithm.

Average running time partial SVD vs full SVD (PROPACK)
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Figure 2.3: Numerical comparison of partial and full SVD via PROPACK

If we look at the discussed algorithms, we notice another problem with the partial SVD methods:
the value of the threshold for the singular value thresholding operation in all cases decreases with
the iteration number. Hence the number of singular values that need be computed actually grows
with the number of iterations, which means that computing a partial SVD yields the highest benefit
only in the early stages of the algorithm.

Warm-start methods for SVD

Another potential way of speeding up many SVD-based algorithms is to exploit the fact that the
matrix of which the SVD has to be computed does generally not change much between itera-
tions, in particular after a few iterations. To utilize this fact, the authors of [24] propose a warm
start technique for the block Lanczos method for SVD computation. In the following section we
will also provide simulation results of an inexact ALM algorithm based on this warm-start SVD
method.

2.3.2 Numerical Comparison of Robust PCA algorithms

In this section we provide some simulation results to illustrate the performance of the different
Robust PCA algorithms. As seen in section using interior point methods to solve the dual
problem is computationally infeasible for all but the smallest problems, hence we will not include
interior point methods into the comparison. Furthermore, the iterative thresholding method, while
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applicable also to very large problem sizes, exhibits extremely slow convergence. For a comparable
relative error the required number of iterations (and therefore the computation time) for problems
of reasonable size is so large that a more detailed comparison with the faster APG and ALM
algorithms seems unnecessary.

The implementation of the algorithms used for the simulation are slightly modified versions of
the matlab code that is freely available from http://perception.csl.uiuc.edu/matrix-rank/
sample_code.html. The files are all provided with this report.

All of the numerical results that will be presented in this section have been obtained from simu-
lations on randomly generated data. The (square) test matrices were generated as M = L + S,
where the low rank component L was formed as L = Lng, with L; € R™*" where r = 0.1n is the
rank of L, and each entry (Lg);; i.i.d. Gaussian with variance 0 = n~!. The cardinality of the
support of the sparse error component S was chosen as 0.1n, with each non-zero entry i.i.d uni-
form in [—500, 500]. For each of the selected matrix dimensions we simulated 10 different scenarios
and computed the average overall running time, the average number of iterations and the average
relative errors ||L — L||p/||L||r and ||S — S||z/||S| #-

As can be seen from the first comparison in Figure the Dual Projected Gradient Ascent algo-
rithm (dpga) is much slower than both the Accelerated Proximal Gradient method (apg) and the
Exact and Augmented Lagrangrian Method (ealm). Therefore we will exclude the Dual Projected
Gradient Ascent algorithm from the following comparisons.

This leaves us with the Accelerated Proximal Gradient method (apg), the Accelerated Proximal
Gradient method with partial SVD (papg), the Exact and Inexact Augmented Lagrangrian Methods
(ealm and ialm, respectively) and the Inexact Augmented Lagrangrian Method with warm-start
Block Lanczos SVD computation (BLWSialm). Figure shows simulation results for these algo-
rithms on matrices of sizes between n = 50 and n = 1500.

From Figure [2.5] we can see that there is a clear qualitative and quantitative difference between
the APG-based algorithms and the ALM-based algorithms in terms of the relative errors, with the
ALM-based algorithms achieving much higher accuracies, in particular problems of large size. This
relates back to Remark in which we pointed out that the APG algorithm provides only an
approximate solution to the problem (to be fair, we also chose the tolerance of the APG-based
algorithms a slightly higher so as to achieve comparable average running times). Moreover, we
notice that the number of iterations of the APG-based algorithms is much higher than the one of
the ALM-based algorithms, in particular the one of the exact ALM algorithmﬂ Interestingly, the
number of required iterations for all of the simulated algorithms is more or less independent of
the problem size. Figure [2.5] also shows that the APG algorithm using partial SVD computation
(papg) is significantly faster than the one computing a full SVD at each step (apg). As one would
expect, the average number of iterations in both cases is the same.

Numerical Comparison of ALM-based algorithms

The previous simulation results show that the Augmented Lagrangian Methods are superior to all
other algorithms discussed so far, both in terms of average running time and in terms of accuracy
(the memory requirements do not differ much between the first-order algorithms). At this point we

®note that for this algorithm we only count the outer number of iterations, not the inner iterations that are needed
for solving the subproblem using the alternating directions method
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Figure 2.4: Simulation result for different algorithms for Robust PCA

do not see any reason to use a different algorithm, at least for the type of problem we study here.
In our final simulation study, summarized in Figure [2.6] we compare the different ALM-based
algorithms, namely the Exact and Inexact Augmented Lagrangrian Methods (ealm and ialm,
respectively) and the Inexact Augmented Lagrangrian Method with warm-start Block Lanczos
SVD computation (BLWSialm). We consider random (square) data matrices up to dimension n =
3000.

Here the verdict is also quite clear, with both inexact ALM algorithms consistently faster than
the exact ALM algorithm, while achieving a comparable accuracy. For all but the smallest matrix
dimensions, the inexact ALM algorithm based on the warm-start Block Lanczos SVD computation
is faster (about 1.5x) than the standard inexact ALM algorithm. However, its accuracy is generally
lower (this can be more easily seen in Figure which does not include the exact ALM algorithm).
It should be pointed out that this is also the case when the tolerance of the stopping criterion is
reduced. This seemingly counterintuitive behavior is due to the fact that the SVD computation of
the warm-start Block Lanczos SVD method is inherently approximate (which is not the case for
the standard inexact ALM algorithm). What is remarkable in Figure is that the number of
iterations is essentially independent of the matrix size. Note however that this strong consistency
very likely also has to do with the fact that all the considered randomly generated matrices are
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Figure 2.5: Numerical comparison of first-order algorithms for Robust PCA

structurally identical.

We want to emphasize here that the implementation of the warm-start block Lanczos method, as
provided by [21], is completely Matlab-based and not fully optimized for performance. A careful
implementation of the complete warm-start block Lanczos based inexact ALM algorithm in a
performance-oriented language such as C can be expected to yield further speedups. Nevertheless,
even with the current implementation it is possible to solve rather large problems quite fast, with
problems involving matrices with tens of million entries being solved in just a few minutes.

2.3.3 Possible Directions for Parallelization

With the advent of highly parallelized computing architectures in modern CPUs and GPUs, a
number of projects have been devoted to the development and implementation of algorithms that
exploit this massive computing power. Examples for these are MAGMA [29] and CULA [17], which
are adapting classic high-performance linear algebra packages such as LAPACK and BLAS to the
highly parallelized architecture of modern GPUs.

Some of the steps in the discussed SVD-based algorithms are inherently parallelizable, for example
the entry-wise soft-thresholding of a matrix, the elementary matrix operations or the computation
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Figure 2.6: Numerical comparison of different ALM methods for Robust PCA

of the Frobenius norm for the stopping criterion. The parallelization of the SVD is less obvious,
but research in this area is quite active and some methods have been proposed [5]. At this point we
do not want to go into the details of how to parallelize the surveyed algorithms (in particular the
fast augmented Lagrangian methods), we merely want to point out that we indeed see potential
for further speedups and hence the use of the discussed algorithms also on large-scale data.

2.4 Outlook: Algorithms for Stable Principal Component Pur-
suit

As was discussed in section the results obtained for the Robust PCA problem have been
extended to the case when in addition to the sparse noise, the data is corrupted also by a small
non-sparse noise component [36]. This problem is usually referred to as Stable Principal Component
Pursuit (Stable PCP). The associated optimization problem is

p" =min [[L], + AllS]l;
Ls = (2.34)
st. |M—L—S|p<é
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Figure 2.7: Numerical comparison of warm-start vs. standard Block-Lanczcos method

where § > 0 is given. In this section we want to give a brief outlook on what algorithms have been
proposed for (2.34). While to date the literature on algorithms for this problem is less extensive
than for the classic Robust PCA problem, a number of efficient ALM algorithms have already been
proposed.

First of all, it is not hard to reformulate problem as an SDP, which can then in principle
be solved using general purpose interior point solvers. However, the same scalability issues as in
the standard Robust PCA problem will prohibit the use of these methods for most problems of
practical interest.

In the original Stable PCP paper [36], the authors directly use the Accelerated Proximal Gradient
(APG) algorithm from section for solving an approximate version of (2.34)). Using a duality
argument it is easy to see that (2.34)) is equivalent to

1
in ||L||[« + Al|:S —||M —-L-S
i L]l + ISl + 5| Ir

for some value p(9). Note that the above problem is just (2.21). The authors make the argument
that it makes sense to choose p to be the smallest value such that the minimizer of is likely to be
L=S=0ifL=S=0and M = Z. In this way, p is large enough to threshold away the noise,
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but not too large to over-shrink the original matrices. Assuming an iid Gaussian distribution of
the dense noise component, i.e. (Zp);,5) ~ N(0,02), it turns outﬁ that n=1/2|| Zy|| — V20 a.s. as
n — 0o. As a result of this, the choice for y becomes p = v2no. We note that the assumption
of a Gaussian noise matrix Zj is often reasonable but not always satisfied. If it is not, then it is
not clear whether using the APG algorithm to solve the associated approximate problem is a good
idea and different algorithms may be needed.

In [31] an algorithm for (2.34) based on partial variable splitting is proposedﬂ In fact, the problem
an simply be written as

*— min ||L||. + X
P = min LI, + AllS|,
st. M=L+S+7Z (2.35)
1Z]|r <6

At heart, the proposed ASALM algorithm is the extension of the ALM method from section [2.2.5
to the case with partial variable splitting. It turns out that the additional subproblem appearing
at each iteration can be solved explicitly at a cost similar to the matrix value thresholding (the
cost of which is O(mn)). The dominant computation is still the singular value thresholding oper-
ation that is based on the computation of the SVD. Hence the proposed method is comparable in
computational complexity to the ALM method from section

In [I] a number of different algorithms for Stable PCP are discussed, most of which are based on
a smoothed or partially smoothed objective function. Two of these algorithms essentially apply
Nesterov’s optimal algorithms [25] to the partially smoothed problem, which yields a theoretical
complexity of O(1/e). It is further shown that the subproblems appearing in these algorithms
either have a closed-form solution or can be solved very efficiently. Still using a partially smoothed
objective function, the authors also apply a partial variable splitting technique and propose to
use an alternating minimization algorithm for a linearized version of the associated augmented
Lagrangian function. This also yields an algorithm with a theoretical complexity of O(1/¢).

The authors of [I] also propose a first-order algorithm that works directly with the fully non-
smooth objective, which they call NSA. Very similar in nature to the ASALM method proposed
in [31], this algorithm is also an extension of the ALM method from section to the setting
with partial variable splitting. While the authors were not able to derive theoretical complexity
results, empirical evidence suggests that this algorithm is quite efficient in solving the Stable PCP
problem. In particular, numerical simulations indicate that NSA consistently outperforms ASALM.
The main reason for this seems to be that while ASALM performs an alternating minimization over
three directions (L, S and Z), NSA uses the fact that the joint minimization over (S, Z) also has
an explicit solution and therefore only alternates over two directions.

Sthis based on the strong Bai Yin Theorem [3], which implies that for an nx n real matrix with entries &;; ~ N(0, 1)
the it holds that limsup,,_, ., || Zo||,/v/n = 2 almost surely

"The authors in fact consider the more general problem where the constraint reads ||Po(M — L — S)||» < &, where
Pq is the projection on the set € of observed data
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Chapter 3

Applications

3.1 Overview

This section will review some applications using Robust PCA. Currently, most of the applications
are related to computer vision. As we will show later, many images involve natural characteristic
of low-rank structure, which makes Robust PCA a perfect fit to them. We will also explore some
other applications that is theoretically with low-rank and sparse structure and show what we get
from them.

3.2 Robust PCA Applications

3.2.1 Background modeling from surveillance video

Video data is a natural candidate for low-rank modeling, due to the correlation between frames.
One of the most basic algorithmic tasks in video surveillance is to estimate a good model for the
background variations in a scene. This task is complicated by the presence of foreground objects:
in busy scenes, every frame may contain some anomaly. The background model needs to be flexible
enough to accommodate changes in the scene, for example due to varying illumination In such
situations, it is natural to model the background variations as approximately low rank. Foreground
objects, such as cars or pedestrians, generally occupy only a fraction of the image pixels and hence
can be treated as sparse errors.

Figure 3.1: Original video frames

We consider five frames from an original video, as shown in fig. [3.1] which is a scenario that one man
passes by. The resolution of each frame is 176 x 144. We first separate them into three channels
(RGB). For each channel, we stack each frame as a column of our matrix M € RZ53445  We
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Figure 3.2: Low-rank components

Figure 3.3: Sparse components

decompose M into low-rank components L and sparse components S by applying the Robust PCA
framework. Then we combine the three channels again to form images with low-rank component
and sparse components respectively. We are using a 2GHz quad core laptop on which it takes 0.92s
to finish decomposition for three channels. We can find that the L, as shown in fig. correctly
recovers the background, while S, as shown in fig. [3.3] correctly identifies the moving person.

The same setting is used for our own video that we took at UC Berkeley. The resolution in our
video is 480 x 640, which is consistent with the resolution of many cell phone cameras. Figure
shows the result on 5 images each taken one second apart. In this case the computation takes 15
seconds. We can see that, even though there is more than one moving person present, as long as
the noise (which in this case is the foreground) is sparse, Robust PCA can still separate background
and foreground. Since it does not consume too much time, this method could potentially be used
to removing wandering people when someone takes a picture.

Figure 3.4: Perfect decomposition from campus video frames

Finally, we used all the frames from the 30 seconds video to run Robust PCA. We first down-sample
them into 160 x 214 resolution in order to reduce the running time. We capture some frames from
the resulting video. Most frames are good, but some are imperfect in terms of separating the

May 10, 2012 74



3.2. ROBUST PCA APPLICATIONS CHAPTER 3. APPLICATIONS

Figure 3.5: Imperfect decomposition from campus video frames

foreground and background. We can find that in Figure [3.5] when the foreground objects are
dense, there are some “ghost” foreground people appearing in background video frames (known to
us as the “Ghosts of Berkeley”). To explain this behavior, consider the following matrix:

100 100 100 100 100
M= 100 100 100 100 100
0 0 100 100 100
100 100 100 100 100

We can seperate M into low-rank component and sparse component by Robust PCA. However,
Robust PCA will favor a decomposition as:

100 100 100 100 100 100 100 100 100 100 [0 0 0 0
M= 100 100 100 100 100| _ | 100 100 100 100 100 n 0 0 0 0

0 0 100 100 100 34.0 34.0 36.8 36.8 36.8 —-34.0 —-34.0 63.2 63.2

100 100 100 100 100 100 100 100 100 100 | 0 0 0 0

such that ||L||« + A||S||1 = 513.64 rather than

100 100 100 100 100 100 100 100 100 100 0 0 0 00

M- 100 100 100 100 100| _ |100 100 100 100 100 n 0 0 0 00
0 0 100 100 100 100 100 100 100 100 —-100 —-100 0 0 O

100 100 100 100 100 100 100 100 100 100 0 0 0 00

such that ||L||« + A||S]]1 = 536.66

From the above example, we can see that if most of the frames are corrupted in given pixels,
Robust PCA will generally not be able to separate the background and foreground at those pixels
perfectly. In fact, in this case the sparsity assumption on the noise is not satisfied. One way to fix
this issue in a given frame is to adjust the value of A, but it is generally hard to choose a A that
fits the entire video. Despite that, Robust PCA is still performing well in separating background
and sparse foreground moving objects.
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3.2.2 Using Robust PCA in speech recognition

Intuitively, a consistent sound would have a low-rank structure. If someone is speaking with
background noise which is consistent, we would believe that we can separate a clearer speech (the
sparse component) from background noise (low-rank component) using the Robust PCA framework.
If we get a clearer speech signal, the accuracy of speech recognition with current standard technique
will increase. According to this thought, we did an experiment and tried to see whether Robust
PCA works in such cases.

clean
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Figure 3.6: Speech features

Figure [3.6a] shows the features of a clean speech signal, where the x-axis denotes indices of small
time frames and the y-axis denote the features vectors at each frame. These features are computed
by a standard method [19]. Figure shows the features domain of the same speech signal
subjecting to noise with SNR = 0 in this case. We apply Robust PCA to decouple these features
into low-rank component, as shown in Figure [3.6d] and sparse component, as shown in Figure
Technically, we would believe that sparse component is corresponding to our speech signal whereas
low-rank component is corresponding to noise. Then we use the sparse component as new features
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and train a classifier via method in [34]. Unfortunately, comparing to the original method without
Robust PCA, we only got improvement in data set with subway noise, which we consider as the
most consistent noise among the data set. In this data set, Robust PCA improve the accuracy
rate with 3% comparing to original method. For other noise, such as street noise and car noise,
we both got decrease about 7% in accuracy. One possible reason is that in the real world, most of
the noise is not low-rank and they are not consistent. However, speech signal could be low-rank
sometimes because there are only a limited vowels and consonants in a language, which seems to
makes Robust PCA not very suitable for de-noising.

3.2.3 Senate voting data analysis

We have used Robust PCA to analyze voting data of the US senators. The data involves 100
senators voting at 542 bills around 2005 to 2008. The original data matrix is a 542 x 100 matrix
with elements {-1, 0, 1}, representing voting for and against the bill and abstention. We first
form a 100 x 100 covariant matrix and then run Robust PCA to this covariant matrix. We choose
A = 1/4/10 as general. The rank of the low-rank component is 58 and the number of non-zero
entries in sparse component is 6222. The results is shown in Figure 3.7

Covariant Matrix Low-rank Components

Sparse Components

Figure 3.7: Covariant matrix and its low-rank component and sparse component

By analyzing the sparse component, we found that the sparse matrix seems to tell us some elements
(i.e. senators) with strong connection. In general, the values in diagonal terms are large in sparse
component because they are highly correlated. On the other hand, we could find that there are
some other highly correlated elements expect for the diagonal terms from the sparse matrix. We
filter the values larger than 0.8 in the sparse matrix expect for the diagonal terms. We found the
following senators who are highly correlated in the sparse matrix: 1. (Specter, Snowe); 2. (Specter,
Collins); 3. (Snowe, Collins) 4. (Jeffords, Collins) 5. (Dorgan, Conrad) 6. (Inouye, Akaka) 7.
(McCain, Kyl). Interestingly, the facts seem to match these results. First, the three Republican
senators Specter, Snowe and Collins, who appear in pairs 1, 2 and 3, are always doing the same
decisions, which has been noted by several reportsE”ﬂ Dorgan and Conrad in pair 5 are both from
North Dakota. Inouye and Akaka in pair 6 are both from Hawaii. McCain and Kyl are both from
Arizona.

As shown in Fig [3.8] and Fig [3.9] we also compared the first two principal components in the

»The Gang of Three: Specter, Collins and Snowe” http://usconservatives.about.com/b/2009/02/11/
the-gang-of-three-specter-collins-and-snowe.htm

Z’NYT: Obama thanked Collins, Snowe, Specter for their patriotism http://hotair.com/archives/2009/02/07/
nyt-obama-thanked-collins-snowe-specter-for-their-patriotism/
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original covariant matrix and the low-rank component. Their patterns remain similar with each

other.
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Figure 3.8: Standard PCA with first two principal components in original covariant matrix

Standard PCA with first two principal components in low-rank component of covariance matri:
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Figure 3.9: Standard PCA with first two principal components in low-rank component of covariant

matrix

3.2.4 Pre-processing of Brain-Machine Interface neural spike data

We have used Robust PCA on some neural spike data that was collected from a monkey’s brain. The
Brain-Machine Interface project investigates how neural spike data can be used to interface with
machines, with the ultimate goal of establishing some sort of bi-directional link (that is, to be able
to control a machine through brain activity and, conversely, to “feel” feedback from measurements

obtained by the machine).
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The particular problem we have looked at in this project was to use Robust PCA to analyze the
neural spike data obtained from the motor cortex of a monkey, who was moving his arms to control
a computer cursor in different directions. The assumption was that the measurements would consist
of a somewhat “low-rank” component associated to the movement required by the particular task,
and some superimposed sparse noise associated to neuron firings in the background. The data
available was time-series neural spike data from a particular experiment, where the monkey had to
move the cursor in 8 different directions, according to 45 degree increments. Each of the task was
repeated a certain number of times. A total of 127 parallel measurement channels were available,
each corresponding to a neuron (or a small number of neurons).

As a pre-processing step, we normalized the time over the different trials for each component. The
reasoning here was that the same task will correspond to the same neural firing pattern, independent
of whether it was performed faster or slower{ﬂ The next step was to group each of the trials for
each of the tasks into a number of time bins, i.e. if the number of bins is IV then the i-th bin
associated to neuron k counts the number of firings of neuron &k within the interval [(i —1)/N,i/N]
(recall that trial time is normalized to 1).

Figure [3.10] shows the raw data after binning with 3 bins. here each of the 25 columns in each task
represent the binned data from a single trial, where the 3 bins are stacked vertically. That is, within
the large column associated to the 0deg task, the first three entries of the first column correspond
to the three time bins of the first neuron. The data is for 127 neurons, hence the overall matrix has
3127 = 381 rows. From the raw data in Figure we can already see some interesting features
in the data, namely that each of the tasks seems to have its characteristic pattern.

For each of the tasks we apply Robust PCA to the data matrix to extract low-rank and sparse
components. Figure shows the low rank component extracted from the raw data of Figure|3.10]
We notice that, as expected, the result is a “filtered” version of the raw data, in which the principal
characteristics are retained while a sparse component has been removed. We think that the low-rank
component in each of the tasks corresponds to the neuron firing pattern that can be directly related
to the task, while the sparse component may be mis-detections, firings due to other movements, or
simply sparse “background” firing that is always present.

For the 90 deg task Figure shows a direct comparison of the raw data and the low-rank and
sparse components obtained via Robust PCA. While for this comparably small data set the basic
characteristics can be extracted visually just by looking at the matrix, this in general is not possible
for high-dimensional data. One issue that we see with the available dataset is that the low rank
component itself is quite sparse (since we are considering time-series data), hence some technical
assumptions such as the incoherence condition will not necessarily hold. However, since not even
neuroscientists have a clear understanding of what the data characteristics are and what the different
patterns mean, we will not attempt to resolve this issue here. After the end of the semester we
plan to learn more about the Brain-Machine interface project and, together with domain experts,
to identify possible problems where Robust PCA could be used.

Based on the difference in neurons firing patterns between different tasks one can use machine
learning techniques to predict from neural measurements which task the monkey is performing.
Here Robust PCA could be used as a pre-processing step to filter out the sparse noise component.
However, due to our lack of domain knowledge it is at this point unclear whether the Robust PCA
framework has advantages over other and possibly simpler methods, for example a simple low-pass

3very little is known at this point about the structure of the dataset, so it was up to us to make reasonable
assumptions about the data
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Figure 3.10: Raw (normalized and binned) neural spike data, ny;, = 3

filters along the rows of the data matrix. Our main reason for presenting this application example
here was to illustrate that Robust PCA can indeed be used as a tool to analyze interesting real
data of reasonable size.

3.3 Discussion

Robust PCA framework is a powerful tool to separate low-rank components and sparse components
if we are given a combination of these two structures. However, generally most of the real world
data is not directly a combination of these two structures unless the data is subjected to some
kinds of transformation. One example is the data set of human faces with different expressions and
illuminations. In this case, some researches have proposed some methods, RASL [28] and TILT [35],
based on the original convex optimization problem in Robust PCA. They introduce transformation
parameters to the original framework and by linearizing with respect to the transformation parame-
ters, we got a new but not difficult convex problem. As long as the data is within a certain degree of
transformation, the algorithms can still recover the low-rank structure and sparse structure.
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Figure 3.11: Processed neural spike data, ng;, = 3

We can also observe that in image data, the sparse noise is always presented as blocks. For example,
the person in fig. appears in connected pixels, so the noise is not distributed randomly in pixels.
A possible direction that can improve the separation in image data is that we can introduce a
penalty term in the original optimization problem:

p* = min ||L[|« + A[||S|[1 + 8 > (Sij — Sw)?
L,S
(6,1), (kD) EN (i.5) (3.1)
st. M=L+S

where N (4,j) means all the entries neighbor to (i,7) in matrix S and / is an constant. This
problem is still convex so we can solve it via existing algorithms for convex optimization problems
theoretically. However, we are not able to directly applying ALM which we discussed in Robust
PCA problem because Sj; and Sy are now coupled with each other that argming L(L,S,Y, p)
cannot be solved efficiently. If the scale of the problem becomes larger, an efficient algorithm to
solve the problem is still needed to be developed.
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Figure 3.12: Raw data, low-rank component L and sparse component L for 90 deg task, ng;, = 3

Summary

In this report, we studied the recently proposed Robust Principal Component Analysis framework
in terms of its underlying theory, algorithms and applications.

Regarding the theory, we focused our discussion on the proof of the probabilistic guarantees for
recovery of a low rank matrix corrupted by sparse noise via a convex optimization techniques based
on the a heuristic of minimizing ¢/1-norm and nuclear norm. We recalled the results from several
papers containing the initial contributions and discussed and derived proofs for details that were left
out in the original discussion. In addition, we surveyed different existing variants and generalization
of Robust PCA. Finally, we extended the Robust PCA framework to problems in which a bound
on the rank of the low rank component is known. In this setting, we discussed an #; heuristic for
this problem which is applicable also to very large scale problems.

In the algorithms part, we surveyed different algorithms for the Robust PCA problem. We com-
pared their theoretical complexity and convergence rates and performed numerical experiments on
synthetic data. Our main finding was that the bottleneck of essentially all efficient algorithms is
the computation of the Singular Value Decomposition of large but unfortunately non-sparse matri-
ces. We have also discussed potential methods that could alleviate this bottleneck. Despite these
shortcomings, we have found Robust PCA to work well on standard computers, even on large scale
data involving matrices with tens of millions of entries.

We applied Robust PCA to several different problem domains. We used it to extract moving objects
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from a sequence video frames and to extract speech from recordings corrupted by background noise.
In addition, we analyzed the correlation of votes by candidates in senate voting data and used the
framework to extract the low-rank component corresponding to particular movements from neural
spike data.

To summarize, we have found Robust PCA to be a powerful tool to recover a low-rank matrix that
is grossly corrupted by sparse noise. The framework provides strong performance guarantees, it
can be implemented easily using efficient algorithms and has to potential to be applied to many
practical problems.
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