EE 227A: Convex Optimization and Applications February 9, 2012
Lecture 8: Strong Duality

Lecturer: Laurent El Ghaoui

Reading assignment: Sections 5.1 through 5.4 (included) of BV. Sections 4.1-4.2 of the WTB.

8.1 Strong duality for convex problems

8.1.1 Primal and dual problems

In this section, we consider a convex optimization problem

p*:=min fo(z) : fi(z) <0, i=1,--- m, (8.1)
’ hz(l‘):07 izla"'apv
where the functions fy, f1,..., fm are convex, and hq,...,h, are affine. We denote by D

the domain of the problem (which is the intersection of the domains of all the functions
involved), and by X C D its feasible set.
To the problem we associate the Lagrangian £ : R" x R™ x R? — R, with values

Lz, \v) = folz) + Z Aifi(z) + Z vihi(z).

The dual function is g : R™ x R? — R, with values

g\, v) :==min L(z,\,v).
The associated dual problem is

" = A ).
max g(A,v)

8.1.2 Strong duality via Slater’s condition

Duality gap and strong duality. We have seen how weak duality allows to form a convex
optimization problem that provides a lower bound on the original (primal) problem, even
when the latter is non-convex. The duality gap is the non-negative number p* — d*.

We say that strong duality holds for problem (8.1) if the duality gap is zero: p* = d*.
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Slater’s condition. We say that the problem satisfies Slater’s condition if it is strictly
feasible, that is:

Jzg €D : fi(xro) <0, i=1,....,m, hi(xg) =0, i=1,...,p.

We can replace the above by a weak form of Slater’s condition, where strict feasibility is not
required whenever the function f; is affine.
We then have the

Theorem 1 (Strong duality via Slater condition). If the primal problem (8.1) is con-
vex, and satisfies the weak Slater’s condition, then strong duality holds, that is, p* = d*.

Note that there are many other similar results that guarantee a zero duality gap. For
example:

Theorem 2 (Quadratic convex optimization problems). If fj is quadratic convex, and
the functions fi,..., fm, 1, ..., hy are all affine, then the duality gap is always zero, provided
one of the primal or dual problems is feasible. In particular, strong duality holds for any
feasible linear optimization problem.

A counterexample. Convexity alone is not enough to guarantee strong duality. Consider
for example the convex problem

min e ¥ : 2?/y <0,
z,y>0

with variables x and y, and domain D = {(x,y) | y > 0}. We have p* = 1. The Lagrangian
is L(x,y,\) = e + \x?/y, and the dual function is

0 A>0

z,y>0 —00 A <0,

g(\) = inf (e + \2?/y) = {

so we can write the dual problem as

d*:mfux() :A>0

with optimal value d* = 0. The optimal duality gap is p* —d* = 1. In this problem, Slater’s
condition is not satisfied, since = 0 for any feasible pair (z,y).

8.1.3 Geometric interpretation

Assume that there is only one inequality constraint in (8.1) (m = 1), and let

A:={(u,t) : Jz eR", u> fi(z), t> folx)}.
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The problem is feasible if and only if A intersects the left-half plane. Furthermore, we
have
p*:mitnt c(u,t) € A, u<0.

and
g(\) = I%ltn A D5 (u,t) 2 (u,t) € A

If the minimum is finite, then the inequality (A, 1)T(u,t) > g()\) defines a supporting hyper-
plane, with slope —\, of A at (u,t). (See Figs. 5.3 and 5.4 in [BV,p.233].)

If the problem is convex, then A is also convex. If Slater’s condition holds, then the inte-
rior of A intersects the left-half plane, and strong duality holds. (See Fig. 5.6 in [BV,p.236].)

8.2 Examples

8.2.1 Minimum Euclidean distance problem

The minimum distance to an affine set mentioned in lecture 11 is
1
min 5”3:“3 o Az =, (8.2)

where A € RP*" b € RP. The problem is convex, and satisfies Slater’s condition (in
fact, strong duality always holds for this convex quadratic problem). Hence, we know that
p* = d*. This allows us to compute the optimal value of the problem analytically: p* = d* =
LT (AAT) 1
5 .

We can also find a corresponding optimal point: for every v, the point z(v) = —ATv
achieves the minimum in the definition of the dual function g(v). Let us set z* := z(v*),
where v* = —(AAT)~!b denotes the optimal dual variable. The point z* = AT(AAT)"1b is

optimal for the primal problem. Indeed, it is feasible, since Az* = AT A(AAT)~1b = b, and
its objective value equals to the optimal value (1/2)|z*(|3 = 30" (AAT)~'b = d* = p*. Hence,
r* is optimal, as claimed.

8.2.2 Linear optimization problem
Consider the LP in inequality form:
p* =min ¢’z : Az <b,

where A € R™", b € R™. Assume that the above problem is feasible, so that strong duality
holds. Then the problem can be equivalently written in the dual form, as an LP:

p*:d*:mfxx —b'A : A>0, ATA+c=0.

The above LP is in standard form, with the number of constraints and variables exchanged.
Duality is another way to convert any LP in inequality form into a standard form, and
vice-versa. (The other method, seen in lecture 5, is via the introduction of new variables.)

8-3
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8.2.3 Support vector machine classification

Return to the example seen in lecture 5, which involved a binary classification problem.
Given m data points z; € R", each of which is associated with a label y; € {—1,1}, the
problem is to find a hyperplane that separates, as much as possible, the two classes. Let us
denote Z = [y121, ..., YmTm| € R™™.

Ideally, we would like to minimize the number of errors on the training set (x;,y;)";.
This is hard as it involves a non-convex function. An upper bound on the number of errors
is provided by the so-called hinge loss function

m

L(w,b) := Z(l —yi(wz; + b)),

=1

We’d also like to control robustness of the resulting linear classifier, and at the same time
guarantee unicity. It turns out that these objectives can be achieved via the following
problem:

1
min C - L(w, b) + §||w||§

w,b

where C' > 0 is a parameter that controls the trade-off between robustness and performance
on the training set (a greater C' encourages performance at the expense of robustness).
The above can be written as a QP, by introducing slack variables:

1 m
g};};}l §||w||g+czzlvl : 7}207 yz(wal+b)21_Uzu i:]-a"wma

or, more compactly:

1
min §||w]|§+C’vT1 c >0, v+ ZTw+by > 1.

Vs

The corresponding Lagrangian is
1
£(U}, ba >‘7 M) = 5”11)”% + CUT]‘ + /\T(l —v—- ZTw - by) - MTU7

where © € R™ corresponds to the sign constraints on v.
The dual function is given by

g(A, p) = min L(w,b, A, ).

)

We can readily solve for w by taking derivatives, which leads to w(\,u) = Z\. Taking
derivatives with respect to v yields the constraint C'1 = A + u, while taking derivatives with
respect to b leads to the dual constraint ATy = 0. We obtain

AT ZX3 My =0, A+ pu=C1,
9\ ) = { +00 otherwise.

8-4
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We obtain the dual problem

x T Lir 7 ) T, _
d —Azrglixzog(/\,u)—mgx)\ 1—5)\ Z°ZN 2 0< A< (C1, My=0.
Strong duality holds, since the primal problem is a QP.

Note that the result depends only on the so-called kernel matriz K = Z*Z € ST, and
the dual problem involves only m variables and m constraints. Hence, the only dependence
on the number of dimensions (features), n, is via the required computation of the kernel
matrix, that is, on scalar products zlz;, 1 < i < j < m. Thus, duality allows a great
reduction in the computational effort, compared to solving the original QP in n variables
and m constraints. This is known as the “kernel trick”.

Note also that duality allows to show that the optimal value of the problem is a convex
function of the kernel matrix, which allows to optimize over it. We will elaborate on this
later.

8.3 Minimax equality theorems

8.3.1 Minimax inequality

As seen in lecture 7, weak duality can be obtained as a consequence of the minimaz inequality,
valid for any function ¢ of two vector variables z,y, and any subsets X, J:

d* = i < mi =p. 8.3
max min ¢(z,y) < min max ¢(z,y) = p (8.3)

Minimax equality theorems identify cases for which the equality p* = d* can be proven.

8.3.2 Saddle points
A point (z*,y*) € X x Y is called a saddle point if

VeeX, Yyel : ¢(a",y) < o™ y") < o(z,y7).
The existence of saddle points is related to the minimax equality, as follows:

Proposition 3. (z*,y*) is a saddle point if and only if the minimax equality holds, and is
attained, in the sense that

z* € arg min max o(x * € argmax min o(z,vy).
gmin max o(z,y), vy g max mig o(x,y)
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8.3.3 A minimax equality theorem

*

It can be shown that the gap p* — d* is zero if:

e X )V are both convex, and one of them is compact.

e The function ¢ is convex-concave: ¢(-,y) is convex for every y € Y, and ¢(z,-) is
concave for every x € X.

e The function ¢ is continuous.

8.3.4 Examples

The LASSO problem The following is a penalized least-norm problem, where the penalty
is the l;-norm (which is known empirically to encourage a sparse solution):

p* = H}Uill 1 X w — yll2 + Awl):.

Here X = [x1,...,%,] is a p X n matrix of data points, y € R" is a "response” vector, and
A > 0 is a parameter. The higher the A, the more zeroes we find in the solution w. A zero
in the j-th position means that the j-th feature (row of X) is not used by the model. Thus
the above approach allows us to learn which few features are important.

The above can be put in standard SOCP format, and we can form the dual that way (see
lecture 9). More directly, we can form a dual based on the minimax expression:

pti= rrgn max {u(y — XTw) + 0w ¢ fulla <1, |v]le <A}

We can exchange the min and max due to the convex-concave property of the objective
function, and to the fact that the dual feasible set is compact. We obtain
p* = max min {v'(y— X w)+v'w : [Jula <1, [|v]|s <A}

u,v w
= max u'y 1 v=Xu, [V <A, Jul2 <1
u,v

= max uly || Xl < A, ullz < 1

Denote by a;, j = 1,...,p the j-th feature vector (corresponding to the j-th row in X).
If | Xul|s < A for every u with [lul|; <1, that is, if A > max;<j<, ||a;||2, then the constraint
| Xu|lo < Aisinactive in the dual and

p'= max_u'y =y
u:luf2<1
This means that w = 0 is optimal for the primal problem, since the value above is attained
for w = 0. Note that o; := (1/y/n)||a;||2 is nothing else than the empirical variance of feature
J.

In a cross-validation setting, we often to solve the problem for a range of A-values. Duality
allowed us to prove that we can safely restrict our search to the interval A € [0, /no], where
o :=(1/y/n)o; is the maximum variance among all the features. For normalized data, such
that |la;||2 = 1 for every j, the interval is [0, 1].

8-6
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Exercises

1. Duality via the conjugate function: examples from supervised learning. Many super-
vised learning problems can be expressed in the form

min f(X7w)

where the matrix X € R™™ contains problem data, and w € R" contains (regression
or classification) coefficients. Here, n is the number of features, while m is the number
of observations. A few examples, in which y € R™ is given:

e Least-squares: f(z) = ||z — yl|3.
e Support vector machine (hinge loss) classification: f(z) =", max(0,1 — y;z;).

e Logistic regression: f(z,y) = .-, log(l + e ¥*).
In this exercise you will derive a dual based on the conjugate function of f, defined as

f(u) = max Tu— f(2).

(a) Find the conjugate functions for the three examples above.

(b) Express the original (unconstrained) problem as a constrained one, involving a
new variable z ;= X Tw.

(c) Take the Lagrange dual for the constrained problem, and show that it can be
written as
max —f*(—u) : Xu=0.
(d) Express the dual for the three cases mentioned above.

(e) What becomes of the dual is we add a penalty term p(w) = ||w||; to the original
objective function?

2. QP duality. Consider the QP
min ||z|]3 : Az <b.

We assume that A € R™*", with n > m.

(a) Show that we can always assume that the solution lies in the range of AT.

(b) Show that the problem’s solution depends only on K := AAT  and that the
problem’s complexity is linear in n, the number of variables.
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3. Scenarios with incomplete distribution information. Consider the convex problem

min ¢z,

zeX
where X is convex, and in which the n-vector c is actually random, with values in the
set {c!',...,cN}, where the “scenarios” ¢ € R",i=1,..., N, are given. One approach
to handle uncertainty in the cost vector ¢ is to minimize the “worst-case” objective:

min max (c)'z.
TEX 1<i<N

Let us develop a less pessimistic solution, which relies on additional knowledge about
the distribution of c.

We assume that the (discrete) distribution of ¢, which we refer to as a vector p (p > 0,
1Tp = 1, with 1 the n-vector of ones), is also only partially known. Specifically, we
assume that its “Kullback-Leibler distance” to the uniform distribution is bounded, as
follows: .
h(p) == — Zpi logpi =7,

i=1
where 7 > 0 is a measure of how “far” the distribution is from the uniform one. The
function h is often referred to as the “entropy” of p; it is non-negative, and defined
everywhere on its domain P := {p > 0 : 17p = 1}, with the convention 0log0 = 0.

(a) Show that h is concave. Plot it in the case n = 1. In the case n = 3, plot the set
defined by p € P, h(p) > , for various values of 7. (You can plot the projection
of the set on P.)

(b) Show that the entropy constraint is strictly feasible if v < 4ax, where

max ‘= h(p).
¥ max (p)

Compute Ymax, and the corresponding optimal distribution.

(c) Assume from now on that v < yax. For a given z € R", solve the problem
max E,(c"z) : h(p) >,
peEP

where the symbol E, denotes the expectation with respect to p. Interpret this
approach.

(d) Show that the problem

i E,(c"z) : h(p) >
min max Ey(c'z) : hl(p) 27,

can be written as

N
min ~ —yA + Alog Z el =/,

zeX, A>0 -
=1

Is the above formulation convex? Hint: search for the term “perspective function”
in BV.

8-8
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(e) What becomes of the problem when v = 7,7 Interpret.

(f) Can you generalize the approach to the case when the objective is not linear, but
convex? Discuss.



