
EE 227A: Convex Optimization and Applications April 24, 2008

Lecture 24: Robust Optimization: Chance Constraints

Lecturer: Laurent El Ghaoui

Reading assignment: Chapter 2 of the book on Robust Optimization1

24.1 Stochastic Optimization

Example 1: Stochastic LP

min cTx (24.1)

st : A(wi)x ≤ b(wi), ∀i

where A(wi), b(wi) are realizations of the random variables A, b.

Example 2: Stochastic portfolio optimization

max
u1,u2

E(y1u1 + y2u2 −
1

2
σ2

1
u2
1
− 1

2
σ2

1
u2
1
− c1|u1 − u0| − c2|u2 − u1|) (24.2)

where y1, y2 are random variables. The problem is maximizing the expectation.
The stochastic recourse problem, however, becomes complicated. (Taking the expectation

of the objective function in (24.11), E(c2| ˆ(u2 +U2y1)− u1|) usually is not in a simple form.)

24.2 Chance Optimization

Consider the LP

min cTx (24.3)

st : aTi x ≤ bi

where ai ∼ N(σ̂i,Σi). We can formulate a chance constrained LP

min cTx (24.4)

st : Pr{aTi x ≤ bi} ≥ 1− ǫ

If we take into account the correlation between ai’s, the problem is

min cTx (24.5)

st : Pr{Ax ≤ b} ≥ 1− ǫ

1A. Ben Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization.
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where A is the random variable.
If c is also a random variable, the problem can be formulated as

min t (24.6)

st : Pr{t ≥ cTx} ≥ 1− ǫ,Pr{Ax ≤ b} ≥ 1− ǫ

24.3 Robust Optimization topics

In the following lectures, we will cover the following topics about Robust Optimization

• Form efficient convex approximation

• Chance constraints relaxation (including the case with partially known distribution)

• Evaluate quality of relaxation

• Recourse programming

24.4 Chance Constraints

Chance constraints are a probabilistic way of handling probabilistic uncertainty. We would
like to convert chance constraints into robustness constraints, which are easier to deal with.
Consider the LP:

min cTx (24.7)

s.t. Ax ≤ b (24.8)

Our basic problem with chance constraints is:

min cTx (24.9)

s.t. Prob{Ax ≤ b} ≥ 1− ǫ (24.10)

The technique we use to simplify the the chance constraints is to assume no correlation
between rows of the A-matrix, which allows us to write the chance constraint as:

Prob{aTi x ≤ bi} ≥ 1− ǫ, i = 1, 2, . . . m (24.11)

This is a less general model, but it is often much easier to solve. The question now becomes:
how do we handle such scalar chance constraints?

We will consider a constraint of the form

Prob{aTx ≤ b} ≥ 1− ǫ,

where a, b are random, and say that x is ǫ-reliable if it satisfies the above constraint.
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24.5 Example: Gaussian Case

In this particular case, this scalar constraint is easy to handle. Suppose a ∼ N (â,Σ), then
for fixed x:

ξ = aTx− b ∼ N (âTx− b, xTΣx) (24.12)

Scaling with ξ = ξ̂ + σu, where ξ̂ = âTx− b, σ2 = xTΣx, and u ∼ N (0, 1), gives that:

Prob{ξ ≤ 0} = Prob

{

u ≤ − ξ̂

σ

}

=

∫

−
ξ̂

σ

−∞

1

2π
exp(−u2/2)du ≥ 1− ǫ (24.13)

Defining Erf(α) =
∫

∞

α
1

2π
exp(−u2/2)du, we can rewrite the inequality above as Erf

(

− ξ̂
σ

)

≤
ǫ. Note that Erf(·) is a decreasing function and that Erf(0) = 1/2. Further simplifying our
expression, we get that:

Erf

(

− ξ̂

σ

)

≤ ǫ ⇔ − ξ̂
σ
≥ Erfinv(ǫ) =: ψ(ǫ) (24.14)

⇔ ξ̂ + ψ(ǫ)σ ≤ 0 (24.15)

⇔ âTx+ ψ(ǫ)
√
xTΣx ≤ b (24.16)

Note that ψ(ǫ) > 0 if ǫ < 1/2, and ψ(ǫ) is like a coefficient that can be precomputed.
Consequently, the inequality above is a SOCP constraint. Making ǫ smaller causes ψ(ǫ)
to become larger, which makes the constraint harder to satisfy. Also, we can interpret
ψ(ǫ)

√
xTΣx as a risk term and âTx as an average term.

Besides this case, there are very few cases where we can do symbolic calculations. In
practice, assuming Gaussian uncertainty is fine for most cases, even when the randomness is
not Gaussian. Also, notice that the SOCP constraint derived above is the same as the one
obtained using a robust optimization approach with an uncertainty model. Indeed, suppose
that all we know is that:

a ∈ U := {â+ Σ1/2u | ‖u‖2 ≤ ψ(ǫ)} (24.17)

Thenn, we have that aTx ≤ b, ∀a ∈ U if and only if âTx + ψ(ǫ)
√
xTΣx. This uncertainty

model seems very restrictive, but it can be interpreted as a probabilistic approach; it is fairly
reasonable.
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24.6 Case with Independent, Bounded Random Un-

certainties

Suppose that we have a vector uncertainty ξ ∈ RL, which is a random variable, such that
the coefficients ξl’s are mutually independent, and E(ξl) = 0, and |ξl| ≤ 1, ∀l. The last
constraint is a deterministic bound, which tells us about the support of the random variable
ξ. We consider the chance constraint

Prob{a(ξ)Tx ≤ b(ξ)} ≥ 1− ǫ (24.18)

where a, b depend on the random variable ξ in an affine fashion, precisely a(ξ) = a0 +Σξiai
and b(ξ) = b0 + Σξibi, where vector ai and scalars bi, i = 0, . . . , L, are given.

In the case that ξi = 1 with probability 1/2 and ξi = −1 with probability 1/2, computing
the probability in (24.29) for fixed x can be shown to be NP-hard, and so it is quite reasonable
to use an approximation, precisely, a sufficient condition for the chance constraint to hold.

Our chance constraint can be rewritten as

Prob{ξT z > b0 − aTo x} ≤ ǫ. (24.19)

We will show later the following lemma. Let z ∈ RL be a deterministic vector, and
ξ1, . . . , ξL be independent random variables with zero mean taking values in [−1, 1]. Then

Prob{ξT z > Ω‖z‖2} ≤ exp(−Ω2/2).

Applying the lemma with zi = aTi x− bi, we see that the constraint

b0 − aTo x ≥ Ω

√

√

√

√

L
∑

i=1

(aTi x− bi)2 (24.20)

implies that
Prob{ξT z > b0 − aTo x} ≤ Prob{ξT z > Ω‖z‖2} ≤ ǫ,

provided Ω ≥
√

2 log(1/ǫ) Thus, the SOC condition (24.31) is a sufficient for our chance
constraint (24.30) to hold.

Again, the conic constraint (24.31) can be reinterpreted as a robust condition, against
ellipsoidal uncertainties:

aT (ξ)x ≤ b(ξ), ∀ξ ∈ U (24.21)

U = {ξ | ‖ξ‖2 ≤ Ω} (24.22)

Define BΩ = {ξ| ‖ξ‖2 ≤ Ω} and Box1 = {ξ| ‖ξ‖∞ ≤ 1}. We can impose robustness
against a Box uncertainty:

aT (ξ)x ≤ b(ξ), ∀ξ ∈ Box1 ⇔ b0 ≥ aT
0
x+ ΣL

i=1

∣

∣aTi x− bi
∣

∣
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This condition gives us 100% reliability, while a ball uncertainty, which corresponds to the
SOCP condition (24.31) gives a reliability of ǫ. If Ω ≥ 7.44, then exp(−Ω2/2) ≤ 10−12 = ǫ,
so we get huge reliability for small Ω. In high dimensions, the ball is much smaller in volume
than the box, precisely:

volBΩ

volBox1
=

(

Ω
√

eπ/2√
m

)m

→m→∞ 0 (24.23)

Hence, in high dimensions, it is better to use BΩ: although it does not give 100% reliability,
it does provide a highly reliable solution. A solution robust against a set that is much smaller
in volume than the box is still highly reliable over the entire box.

We can even arrange that the set over which we enforce a robustness condition is actually
entirely included in the original box (this is not the case with the previous setting). Indeed,
consider ξ ∈ U := Box1∩BΩ. It turns out that an equivalent representation of the robustness
constraint a(ξ)Tx ≤ b(ξ), ∀ξ ∈ U is: there exist z, w such that

‖z‖1 + Ω
√

Σw2
i ≤ b0 − aT

0
, zi + wi = bi − aTi x, ∀i. (24.24)

Now this robustness constraint still guarantees a high reliability: If x is feasible for the above
robustness condition, and infeasible for the constraint a(ξ)Tx ≤ b(ξ) for some realization ξ,
then

Σξi(a
T
i x− bi) > b0 − aT

0
x ⇒ −Σziξi − Σwiξi > b0 − aT

0
x

⇒ Σ|zi| − Σwiξi > b0 − aT
0
x

⇒ −Σwiξi > Ω
√

Σw2
i

Consequently, we have that Prob{a(ξ)Tx > b(ξ)} ≤ Prob{−wT ξ > Ω‖w‖2} ≤ exp(−Ω2/2).
When m > Ω2, ξ takes only ±1 values, the set Box1 ∩BΩ does not even contain a single

realization of ξ. Still, we can find a highly reliable solution by enforcing the robustness
constraint (24.35).

This illustrates that a solution that is robust with respect to an uncertainty set that not
only is smaller, but is actually contained in the original box, is actually still highly reliable.

24.7 Example: Investment Problem

We have several assets including cash (or, risk-free asset) and stocks, and denote by r the
n + 1 vector of returns over the investment period, with r0 being the return of cash (say,
r0 = 1.05 for a 5% CD). How should we distribute some sum (say, one dollar) over these
assets, where we take the returns to be a random variable?

We invest amounts y0, y1, . . . , yn, such that Σyi = 1 and yi ≥ 0. The total return of the
portfolio is given by r0y0 +Σriyi ≥ t. We make the further assumption that the returns are
random in the form ri = µi + σiξi, where µi is the mean and σi is the standard deviation.
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We have two models, the first is the robust case where ξ ∈ Box1 and the second is the
ball-box case where ξ ∈ Box1 ∩ BΩ. Take the tolerance of Ω = 3.255 or ǫ = 0.005 and use
µi = 1.05 + 0.3(200− i)/199 and σi = 0.05 + 0.6(200− i)/199. Using the first model, we get
y0 = 1 and yi = 0, which means that a purely robust approach leads to the very conservative
investment of putting everything in a risk-free asset. The second model gives a worst-case
return of 10.1% with a 0.5% chance of not getting this return. We thus observe that chance
constraints allow to make the robustness condition much less conservative, at the expense of
a very slight increase in risk.
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