3. Proximal gradient method

- introduction
- proximal mapping
- proximal gradient method
- convergence analysis
- accelerated proximal gradient method
- forward-backward method

Proximal mapping

the proximal mapping (or proximal operator) of a convex function h is

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

examples

- $h(x)=0: \operatorname{prox}_{h}(x)=x$
- $h(x)=I_{C}(x)$ (indicator function of C): prox $_{h}$ is projection on C

$$
\operatorname{prox}_{h}(x)=P_{C}(x)=\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2}
$$

- $h(x)=t\|x\|_{1}: \operatorname{prox}_{h}$ is shrinkage (soft threshold) operation

$$
\operatorname{prox}_{h}(x)_{i}= \begin{cases}x_{i}-t & x_{i} \geq t \\ 0 & \left|x_{i}\right| \leq t \\ x_{i}+t & x_{i} \leq-t\end{cases}
$$

Proximal gradient method

unconstrained problem with cost function split in two components

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex, differentiable, with $\operatorname{dom} g=\mathbf{R}^{n}$
- h closed, convex, possibly nondifferentiable; prox_{h} is inexpensive
proximal gradient algorithm

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)
$$

$t_{k}>0$ is step size, constant or determined by line search

Interpretation

$$
x^{+}=\operatorname{prox}_{t h}(x-t \nabla g(x))
$$

from definition of proximal operator:

$$
\begin{aligned}
x^{+} & =\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2 t}\|u-x+t \nabla g(x)\|_{2}^{2}\right) \\
& =\underset{u}{\operatorname{argmin}}\left(h(u)+g(x)+\nabla g(x)^{T}(u-x)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right)
\end{aligned}
$$

x^{+}minimizes $h(u)$ plus a simple quadratic local model of $g(u)$ around x

Examples

$$
\operatorname{minimize} \quad g(x)+h(x)
$$

gradient method: $h(x)=0$, i.e., minimize $g(x)$

$$
x^{(k)}=x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)
$$

gradient projection method: $h(x)=I_{C}(x)$, i.e., minimize $g(x)$ over C

$$
x^{(k)}=P_{C}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)
$$

iterative soft-thresholding: $h(x)=\|x\|_{1}$, i.e., minimize $g(x)+\|x\|_{1}$

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)
$$

and

$$
\operatorname{prox}_{t h}(u)_{i}= \begin{cases}u_{i}-t & u_{i} \geq t \\ 0 & -t \leq u_{i} \leq t \\ u_{i}+t & u_{i} \geq t\end{cases}
$$

Outline

- introduction
- proximal mapping
- proximal gradient method
- convergence analysis
- accelerated proximal gradient method
- forward-backward method

Definition

proximal mapping associated with closed convex h

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

it can be shown that $\operatorname{prox}_{h}(x)$ exists and is unique for all x

subgradient characterization

from optimality conditions of minimization in the definition:

$$
u=\operatorname{prox}_{h}(x) \quad \Longleftrightarrow \quad x-u \in \partial h(u)
$$

Projection

recall the definition of indicator function of a set C

$$
I_{C}(x)= \begin{cases}0 & x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

I_{C} is closed and convex if C is a closed convex set
proximal mapping of I_{C} is the Euclidean projection on C

$$
\begin{aligned}
\operatorname{prox}_{I_{C}}(x) & =\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2} \\
& =P_{C}(x)
\end{aligned}
$$

we will see that proximal mappings have many properties of projections

Nonexpansiveness

if $u=\operatorname{prox}_{h}(x), \hat{u}=\operatorname{prox}_{h}(\hat{x})$, then

$$
(u-\hat{u})^{T}(x-\hat{x}) \geq\|u-\hat{u}\|_{2}^{2}
$$

prox_{h} is firmly nonexpansive, or co-coercive with constant 1

- follows from characterization of p.3-7 and monotonicity (p.1-25)

$$
x-u \in \partial h(u), \quad \hat{x}-\hat{u} \in \partial h(\hat{u}) \quad \Longrightarrow \quad(x-u-\hat{x}+\hat{u})^{T}(u-\hat{u}) \geq 0
$$

- implies (from Cauchy-Schwarz inequality)

$$
\|u-\hat{u}\|_{2} \leq\|x-\hat{x}\|_{2}
$$

prox_{h} is nonexpansive, or Lipschitz continuous with constant 1

Proximal mapping and conjugate

$$
x=\operatorname{prox}_{h}(x)+\operatorname{prox}_{h^{*}}(x)
$$

proof: define $u=\operatorname{prox}_{h}(x), v=x-u$

- from subgradient characterization on page 3-7, $v \in \partial h(u)$
- hence (from page 1-38) $u=x-v \in \partial h^{*}(v)$, i.e., $v=\operatorname{prox}_{h^{*}}(x)$
example: let L be a subspace of $\mathbf{R}^{n}, L^{\perp}$ its orthogonal complement

$$
h(u)=I_{L}(u), \quad h^{*}(v)=I_{L^{\perp}}(v)
$$

property reduces to orthogonal decomposition

$$
x=P_{L}(x)+P_{L^{\perp}}(x)
$$

Some useful properties

separable sum: $h: \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}} \rightarrow \mathbf{R}$ with $h\left(x_{1}, x_{2}\right)=h_{1}\left(x_{1}\right)+h_{2}\left(x_{2}\right)$

$$
\operatorname{prox}_{h}\left(x_{1}, x_{2}\right)=\left(\operatorname{prox}_{h_{1}}\left(x_{1}\right), \operatorname{prox}_{h_{2}}\left(x_{2}\right)\right)
$$

scaling and translation of argument: $h(x)=f(t x+a)$ with $t \neq 0$

$$
\operatorname{prox}_{h}(x)=\frac{1}{t}\left(\operatorname{prox}_{t^{2} f}(t x+a)-a\right)
$$

conjugate: from previous page and $(t h)^{*}(y)=t h^{*}(y / t)$

$$
\operatorname{prox}_{t h^{*}}(x)=x-t \operatorname{prox}_{h / t}(x / t)
$$

Examples

quadratic function

$$
h(x)=\frac{1}{2} x^{T} A x+b^{T} x+c, \quad \operatorname{prox}_{t h}(x)=(I+t A)^{-1}(x-t b)
$$

Euclidean norm: $h(x)=\|x\|_{2}$

$$
\operatorname{prox}_{t h}(x)= \begin{cases}\left(1-t /\|x\|_{2}\right) x & \|x\|_{2} \geq t \\ 0 & \text { otherwise }\end{cases}
$$

logarithmic barrier

$$
h(x)=-\sum_{i=1}^{n} \log x_{i}, \quad \operatorname{prox}_{t h}(x)_{i}=\frac{x_{i}+\sqrt{x_{i}^{2}+4 t}}{2}, \quad i=1, \ldots, n
$$

Norms

prox-operator of general norm: conjugate of $h(x)=\|x\|$ is

$$
h^{*}(y)= \begin{cases}0 & \|y\|_{*} \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

i.e., the indicator function of the dual norm ball $B=\left\{y \mid\|y\|_{*} \leq 1\right\}$
if projection on dual norm ball is inexpensive, we can therefore use

$$
\operatorname{prox}_{t h}(x)=x-t P_{B}(x / t)
$$

distance in general norm: $h(x)=\|x-a\|$

$$
\operatorname{prox}_{t h}(x)=x-t P_{B}\left(\frac{x-a}{t}\right)
$$

for $h(x)=\|x\|_{1}$, these expressions reduce to soft-threshold operations

Functions associated with convex sets

support function (or conjugate of the indicator function)

$$
h(x)=\sup _{y \in C} x^{T} y, \quad \operatorname{prox}_{t h}(x)=x-t P_{C}(x / t)
$$

squared distance

$$
h(x)=\frac{1}{2} \operatorname{dist}(x, C)^{2}, \quad \operatorname{prox}_{t h}(x)=x+\frac{t}{1+t}\left(P_{C}(x)-x\right)
$$

distance: $h(x)=\operatorname{dist}(x, C)$

$$
\operatorname{prox}_{t h}(x)= \begin{cases}x+\frac{t}{\operatorname{dist}(x, C)}\left(P_{C}(x)-x\right) & \operatorname{dist}(x, C) \geq t \\ P_{C}(x) & \text { otherwise }\end{cases}
$$

Outline

- introduction
- proximal mapping
- proximal gradient method
- convergence analysis
- accelerated proximal gradient method
- forward-backward method

Gradient map

proximal gradient iteration for minimizing $g(x)+h(x)$

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)
$$

can write as $x^{(k)}=x^{(k-1)}-t_{k} G_{t_{k}}\left(x^{(k-1)}\right)$ where

$$
G_{t}(x)=\frac{1}{t}\left(x-\operatorname{prox}_{t h}(x-t \nabla g(x))\right)
$$

- from subgradient definition of prox (page 3-7),

$$
\begin{equation*}
G_{t}(x) \in \nabla g(x)+\partial h\left(x-t G_{t}(x)\right) \tag{3.1}
\end{equation*}
$$

- $G_{t}(x)=0$ if and only if x minimizes $f(x)=g(x)+h(x)$

Line search

to determine step size t in

$$
x^{+}=x-t G_{t}(x)
$$

start at some $t:=\hat{t}$; repeat $t:=\beta t$ (with $0<\beta<1$) until

$$
g\left(x-t G_{t}(x)\right) \leq g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}
$$

- requires one prox evaluation per line search iteration
- inequality is motivated by convergence analysis (see later)
- many other types of line search work
example: line search for projected gradient method

$$
x^{+}=x-t G_{t}(x)=P_{C}(x-t \nabla g(x))
$$

(sometimes called 'arc search')

Outline

- introduction
- proximal mapping
- proximal gradient method
- convergence analysis
- accelerated proximal gradient method
- forward-backward method

Convergence of proximal gradient method

assumptions

- ∇g is Lipschitz continuous with constant $L>0$

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y
$$

- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)
result: we will show that $f\left(x^{(k)}\right)-f^{\star}$ decreases at least as fast as $1 / k$
- if fixed step size $t_{k}=1 / L$ is used
- if backtracking line search is used

Quadratic upper bound from Lipschitz property

- affine lower bound from convexity

$$
g(y) \geq g(x)+\nabla g(x)^{T}(y-x) \quad \forall x, y
$$

- quadratic upper bound from Lipschitz property

$$
g(y) \leq g(x)+\nabla g(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2} \quad \forall x, y
$$

proof of upper bound (define $v=y-x$)

$$
\begin{aligned}
g(y) & =g(x)+\nabla g(x)^{T} v+\int_{0}^{1}(\nabla g(x+t v)-\nabla g(x))^{T} v d t \\
& \leq g(x)+\nabla g(x)^{T} v+\int_{0}^{1}\|\nabla g(x+t v)-\nabla g(x)\|_{2}\|v\|_{2} d t \\
& \leq g(x)+\nabla g(x)^{T} v+\int_{0}^{1} L t\|v\|_{2}^{2} d t \\
& =g(x)+\nabla g(x)^{T} v+\frac{L}{2}\|v\|_{2}^{2}
\end{aligned}
$$

Consequences of Lipschitz assumption

- from page 3-19 with $y=x-t G_{t}(x)$,

$$
g\left(x-t G_{t}(x)\right) \leq g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t^{2} L}{2}\left\|G_{t}(x)\right\|_{2}^{2}
$$

- therefore, the line search inequality

$$
\begin{equation*}
g\left(x-t G_{t}(x)\right) \leq g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \tag{3.2}
\end{equation*}
$$

is satisfied for $0 \leq t \leq 1 / L$

- backtracking line search starting at $t=\hat{t}$ terminates with

$$
t \geq t_{\min } \triangleq \min \{\hat{t}, \beta / L\}
$$

A global inequality

if the line search inequality (3.2) holds, then for all z,

$$
\begin{equation*}
f\left(x-t G_{t}(x)\right) \leq f(z)+G_{t}(x)^{T}(x-z)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \tag{3.3}
\end{equation*}
$$

proof (with $v=G_{t}(x)-\nabla g(x)$)

$$
\begin{aligned}
f\left(x-t G_{t}(x)\right) \leq & g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}+h\left(x-t G_{t}(x)\right) \\
\leq & g(z)+\nabla g(x)^{T}(x-z)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \\
& +h(z)+v^{T}\left(x-z-t G_{t}(x)\right) \\
= & g(z)+h(z)+G_{t}(x)^{T}(x-z)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}
\end{aligned}
$$

line 2 follows from convexity of g and h, and $v \in \partial h\left(x-t G_{t}(x)\right)$

Progress in one iteration

$$
x^{+}=x-t G_{t}(x)
$$

- inequality (3.3) with $z=x$ shows the algorithm is a descent method:

$$
f\left(x^{+}\right) \leq f(x)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}
$$

- inequality (3.3) with $z=x^{\star}$:

$$
\begin{aligned}
f\left(x^{+}\right)-f^{\star} & \leq G_{t}(x)^{T}\left(x-x^{\star}\right)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \\
& =\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x-x^{\star}-t G_{t}(x)\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x^{+}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

(hence, $\left\|x^{+}-x^{\star}\right\|_{2} \leq\left\|x-x^{\star}\right\|_{2}$, i.e., distance to optimal set decreases)

Analysis for fixed step size

add inequalities for $x=x^{(i-1)}, x^{+}=x^{(i)}, t=1 / L$

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) & \leq \frac{1}{2 t} \sum_{i=1}^{k}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

since $f\left(x^{(i)}\right)$ is nonincreasing,

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) \leq \frac{1}{2 k t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: reaches $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ after $O(1 / \epsilon)$ iterations

Analysis with line search

add inequalities for $x=x^{(i-1)}, x^{+}=x^{(i)}, t=t_{i} \geq t_{\text {min }}$

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) & \leq \sum_{i=1}^{k} \frac{1}{2 t_{i}}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t_{\min }} \sum_{i=1}^{k}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t_{\min }}\left(\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

since $f\left(x^{(i)}\right)$ is nonincreasing,

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{1}{2 k t_{\min }}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: reaches $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ after $O(1 / \epsilon)$ iterations

Outline

- introduction
- proximal mapping
- proximal gradient method
- convergence analysis
- accelerated proximal gradient method
- forward-backward method

Accelerated proximal gradient method

choose $x^{(0)} \in \operatorname{dom} h$ and $y^{(0)}=x^{(0)} ;$ for $k \geq 1$

$$
\begin{aligned}
x^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y^{(k-1)}-t_{k} \nabla g\left(y^{(k-1)}\right)\right) \\
y^{(k)} & =x^{(k)}+\frac{k-1}{k+2}\left(x^{(k)}-x^{(k-1)}\right)
\end{aligned}
$$

- t_{k} is fixed or determined by line search
- same complexity per iteration as basic proximal gradient method
- also known as proximal gradient method with extrapolation, FISTA

Nesterov (1983, 2004), Beck and Teboulle (2009), Tseng (2008)

Example

$$
\operatorname{minimize} \quad \log \sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)
$$

randomly generated data with $m=2000, n=1000$, same fixed step size

Line search

purpose: determine step size t_{k} in

$$
\begin{aligned}
x^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y^{(k-1)}-t_{k} \nabla g\left(y^{(k-1)}\right)\right) \\
& =y^{(k-1)}-t_{k} G_{t_{k}}\left(y^{(k-1)}\right)
\end{aligned}
$$

algorithm: start at $t:=t_{k-1}$ and repeat $t:=\beta t$ until

$$
g\left(y-t G_{t}(y)\right) \leq g(y)-t \nabla g(y)^{T} G_{t}(y)+\frac{t}{2}\left\|G_{t}(y)\right\|_{2}^{2}
$$

(where $y=y^{(k-1)}$)

- for t_{0}, can choose any positive value $t_{0}=\hat{t}$
- this line search method implies $t_{k} \leq t_{k-1}$

Convergence of accelerated proximal gradient method

assumptions

- ∇g is Lipschitz continuous with constant $L>0$

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y
$$

- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)
result: $f\left(x^{(k)}\right)-f^{\star}$ decreases at least as fast as $1 / k^{2}$
- if fixed step size $t_{k}=1 / L$ is used
- if backtracking line search is used

Consequences of Lipschitz assumption

from page 3-21 and 3-22

- the line search inequality

$$
\begin{equation*}
g\left(y-t G_{t}(y)\right) \leq g(y)-t \nabla g(y)^{T} G_{t}(y)+\frac{t}{2}\left\|G_{t}(y)\right\|_{2}^{2} \tag{3.4}
\end{equation*}
$$

holds for $0 \leq t \leq 1 / L$

- backtracking line search terminates with $t \geq t_{\text {min }}=\min \{\hat{t}, \beta / L\}$
- if t satisfies the line search inequality, then, for all z,

$$
\begin{equation*}
f\left(y-t G_{t}(y)\right) \leq f(z)+G_{t}(y)^{T}(y-z)-\frac{t}{2}\left\|G_{t}(y)\right\|_{2}^{2} \tag{3.5}
\end{equation*}
$$

Notation

define $v^{(0)}=x^{(0)}$ and, for $k \geq 1$,

$$
\theta_{k}=\frac{2}{k+1}, \quad v^{(k)}=x^{(k-1)}+\frac{1}{\theta_{k}}\left(x^{(k)}-x^{(k-1)}\right)
$$

- update of $y^{(k)}$ can be written as

$$
y^{(k)}=\left(1-\theta_{k+1}\right) x^{(k)}+\theta_{k+1} v^{(k)}
$$

- $v^{(k)}$ satisfies

$$
\begin{aligned}
v^{(k)} & =x^{(k-1)}+\frac{1}{\theta_{k}}\left(y^{(k-1)}-t_{k} G_{t}\left(y^{(k-1)}\right)-x^{(k-1)}\right) \\
& =v^{(k-1)}-\frac{t_{k}}{\theta_{k}} G_{t_{k}}\left(y^{(k-1)}\right)
\end{aligned}
$$

- θ_{k} satisfies $\left(1-\theta_{k}\right) / \theta_{k}^{2} \leq 1 / \theta_{k-1}^{2}$

Progress in one iteration

$$
x=x^{(i-1)}, x^{+}=x^{(i)}, y=y^{(i-1)}, v=v^{(i-1)}, v^{+}=v^{(i)}, t=t_{i}, \theta=\theta_{i}
$$

use inequality (3.5) with $z=x$ and $z=x^{\star}$, and make convex combination:

$$
\begin{aligned}
& f\left(x^{+}\right) \leq(1-\theta) f(x)+\theta f^{\star}+G_{t}(y)^{T}\left(y-(1-\theta) x-\theta x^{\star}\right)-\frac{t}{2}\left\|G_{t}(y)\right\|_{2}^{2} \\
&=(1-\theta) f(x)+\theta f^{\star}+\theta G_{t}(y)^{T}\left(v-x^{\star}\right)-\frac{t}{2}\left\|G_{t}(y)\right\|_{2}^{2} \\
&=(1-\theta) f(x)+\theta f^{\star}+\frac{\theta^{2}}{2 t}\left(\left\|v-x^{\star}\right\|_{2}^{2}-\left\|v-x^{\star}-\frac{t}{\theta} G_{t}(y)\right\|_{2}^{2}\right) \\
&=(1-\theta) f(x)+\theta f^{\star}+\frac{\theta^{2}}{2 t}\left(\left\|v-x^{\star}\right\|_{2}^{2}-\left\|v^{+}-x^{\star}\right\|_{2}^{2}\right) \\
& \frac{1}{\theta_{i}^{2}}\left(f\left(x^{(i)}\right)-f^{\star}\right)+\frac{1}{2 t_{i}}\left\|v^{(i)}-x^{\star}\right\|_{2}^{2} \leq \frac{1-\theta_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i-1)}\right)-f^{\star}\right)+\frac{1}{2 t_{i}}\left\|v^{(i-1)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

Analysis for fixed step size

apply inequality with $t=t_{i}=1 / L$ recursively, using $\left(1-\theta_{i}\right) / \theta_{i}^{2} \leq 1 / \theta_{i-1}^{2}$:

$$
\begin{aligned}
& \frac{1}{\theta_{k}^{2}}\left(f\left(x^{(k)}\right)-f^{\star}\right)+\frac{1}{2 t}\left\|v^{(k)}-x^{\star}\right\|_{2}^{2} \\
& \quad \leq \frac{1-\theta_{1}}{\theta_{1}^{2}}\left(f\left(x^{(0)}\right)-f^{\star}\right)+\frac{1}{2 t}\left\|v^{(0)}-x^{\star}\right\|_{2}^{2} \\
& \quad=\frac{1}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

therefore,

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{\theta_{k}^{2}}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}=\frac{2}{(k+1)^{2} t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: reaches $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ after $O(1 / \sqrt{\epsilon})$ iterations

Analysis for backtracking line search

recall that step sizes satisfy $t_{i-1} \geq t_{i} \geq t_{\text {min }}$
apply inequality on page 3-33 recursively to get

$$
\begin{aligned}
\frac{t_{\min }}{\theta_{k}^{2}}\left(f\left(x^{(k)}\right)-f^{\star}\right) & \leq \frac{t_{k}}{\theta_{k}^{2}}\left(f\left(x^{(k)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(k)}-x^{\star}\right\|_{2}^{2} \\
& \leq \frac{t_{1}\left(1-\theta_{1}\right)}{\theta_{1}^{2}}\left(f\left(x^{(0)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(0)}-x^{\star}\right\|_{2}^{2} \\
& =\frac{1}{2}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

therefore

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{2}{(k+1)^{2} t_{\min }}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: \#iterations to reach $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ is $O(1 / \sqrt{\epsilon})$

Descent version of accelerated proximal gradient method

a modification that guarantees $f\left(x^{(k)}\right) \leq f\left(x^{(k-1)}\right)$

$$
\begin{aligned}
z^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y^{(k-1)}-t_{k} \nabla g\left(y^{(k-1)}\right)\right) \\
x^{(k)} & = \begin{cases}z^{(k)} & f\left(z^{(k)}\right) \leq f\left(x^{(k-1)}\right) \\
x^{(k-1)} & \text { otherwise }\end{cases} \\
v^{(k)} & =x^{(k-1)}+\frac{1}{\theta_{k}}\left(z^{(k)}-x^{(k-1)}\right) \\
y^{(k)} & =\left(1-\theta_{k+1}\right) x^{(k)}+\theta_{k+1} v^{(k)}
\end{aligned}
$$

same complexity; in the analysis of page 3-33, replace first line with

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f\left(z^{+}\right) \\
& \leq(1-\theta) f(x)+\theta f^{\star}+G_{t}(y)^{T}\left(y-(1-\theta) x-\theta x^{\star}\right)-\frac{t}{2}\left\|G_{t}(y)\right\|_{2}^{2}
\end{aligned}
$$

example (from page 3-28)

Example: quadratic program with box constraints

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} A x+b^{T} x \\
\text { subject to } & 0 \preceq x \preceq \mathbf{1}
\end{array}
$$

$n=3000 ;$ fixed step size $t=1 / \lambda_{\max }(A)$

1-norm regularized least-squares

$$
\operatorname{minimize} \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

randomly generated $A \in \mathbf{R}^{2000 \times 1000}$; step $t_{k}=1 / L$ with $L=\lambda_{\max }\left(A^{T} A\right)$

Example: nuclear norm regularization

$$
\operatorname{minimize} \quad g(X)+\|X\|_{*}
$$

g is smooth and convex; variable $X \in \mathbf{R}^{m \times n}$ (with $m \geq n$)
nuclear norm

$$
\|X\|_{*}=\sum_{i} \sigma_{i}(X)
$$

- $\sigma_{1}(X) \geq \sigma_{2}(X) \geq \cdots$ are the singular values of X
- the dual norm of the matrix norm $\|\cdot\|$ (maximum singular value)
- for diagonal X, reduces to the 1-norm of $\operatorname{diag}(X)$
- popular as penalty function that promotes low rank
prox operator of $\operatorname{prox}_{t h}(X)$ for $h(X)=\|X\|_{*}$

$$
\operatorname{prox}_{t h}(X)=\underset{U}{\operatorname{argmin}}\left(\|U\|_{*}+\frac{1}{2 t}\|U-X\|_{F}^{2}\right)
$$

- take singular value decomposition $X=P \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) Q^{T}$
- apply thresholding to singular values:

$$
\operatorname{prox}_{t h}(Y)=P \operatorname{diag}\left(\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{n}\right) Q^{T}
$$

where

$$
\hat{\sigma}_{k}= \begin{cases}\sigma_{k}-t & \sigma_{k} \geq t \\ 0 & -t \leq \sigma_{k} \leq t \\ \sigma_{k}+t & \sigma_{k} \leq-t\end{cases}
$$

Approximate low-rank completion

$$
\operatorname{minimize} \sum_{(i, j) \in N}\left(X_{i j}-A_{i j}\right)^{2}+\gamma\|X\|_{*}
$$

- entries $(i, j) \in N$ are approximately specified $\left(X_{i j} \approx A_{i j}\right)$; rest is free
- nuclear norm regularization added to obtain low rank X
example
$m=n=500$
5000 specified entries

convergence (fixed step size $t=1 / L$)

result

optimal X has rank 38; relative error in specified entries is 9%

Outline

- introduction
- proximal mapping
- proximal gradient method
- convergence analysis
- accelerated proximal gradient method
- forward-backward method

Monotone inclusion problems

a multivalued mapping F (i.e., mapping x to a set $F(x)$) is monotone if

$$
(u-v)^{T}(x-y) \geq 0 \quad \forall x, y, u \in F(x), v \in F(y)
$$

monotone inclusion problem: find x with

$$
0 \in F(x)
$$

examples

- unconstrained convex optimization: $0 \in \partial f(x)$
- saddle point of convex-concave function $f(x, y)$

$$
0 \in \partial_{x} f(x, y) \times \partial_{y}(-f)(x, y)
$$

Monotone variational inequality

given continuous monotone F, closed convex set C, find $\hat{x} \in C$ such that

$$
F(\hat{x})^{T}(x-\hat{x}) \geq 0 \quad \forall x \in C
$$

- with $F(x)=\nabla f(x)$, gives optimality condition for convex optimization
- includes as special cases various types of equilibrium problems
- a monotone inclusion: $0 \in N_{C}(x)+F(x)\left(N_{C}(x)\right.$ is normal cone at $\left.x\right)$

Maximal monotone operator

the graph of F is the set $\operatorname{gr}(F)=\{(x, y) \mid y \in F(x)\}$
monotone F is maximal monotone if $\operatorname{gr}(F)$ is not contained in the graph of another monotone mapping

maximal monotone

not maximal monotone
example: the subdifferential ∂f of a closed convex function f

Resolvent

the resolvent of a multivalued mapping A is the mapping

$$
R_{t}=(I+t A)^{-1}
$$

(with $t>0$), i.e., $\operatorname{gr}\left(R_{t}\right)=\{(y+t z, y) \mid z \in A(y)\}$

- if A is monotone than R_{t} is firmly nonexpansive:

$$
y \in R_{t}(x), \hat{y} \in R_{t}(\hat{x}) \quad \Longrightarrow \quad(y-\hat{y})^{T}(x-\hat{x}) \geq\|y-\hat{y}\|_{2}^{2}
$$

hence $R_{t}(x)$ is single valued and Lipschitz continuous on $\operatorname{dom} R_{t}$:

$$
\left\|R_{t}(x)-R_{t}(\hat{x})\right\|_{2} \leq\|x-\hat{x}\|_{2}
$$

- if A is maximal monotone, then $\operatorname{dom} R_{t}=\mathbf{R}^{n}$

Resolvent of subdifferential

the resolvent of ∂h is the proximal mapping:

$$
\begin{aligned}
(I+t \partial h)^{-1}(x) & =\operatorname{prox}_{t h}(x) \\
& =\underset{y}{\operatorname{argmin}}\left(h(y)+\frac{1}{2 t}\|y-x\|_{2}^{2}\right)
\end{aligned}
$$

from optimality conditions in the definition of $\operatorname{prox}_{t h}$:

$$
\begin{aligned}
y=\operatorname{prox}_{t h}(x) & \Longleftrightarrow 0 \in \partial h(y)+\frac{1}{t}(y-x) \\
& \Longleftrightarrow x \in(I+t \partial h)(y)
\end{aligned}
$$

Resolvent of normal cone

the resolvent of the normal cone operator N_{C} is the projection on C :

$$
\left(I+t N_{C}\right)^{-1}(x)=P_{C}(x)
$$

$$
\begin{aligned}
y=\left(I+t N_{C}\right)^{-1}(x) & \Longleftrightarrow x \in y+t N_{C}(y) \\
& \Longleftrightarrow y=P_{C}(x)
\end{aligned}
$$

Forward-backward method

monotone inclusion $0 \in F(x)$ operator splitting: write F as $F(x)=A(x)+B(x)$

- A, B monotone
- $A(x)$ single valued
- B has easily computed resolvent

forward backward algorithm

$$
x^{(k)}=\left(I+t_{k} B\right)^{-1}\left(I-t_{k} A\right)\left(x^{(k-1)}\right)
$$

- 'forward operator' $I-t_{k} A$ followed by 'backward operator' $\left(I+t_{k} B\right)^{-1}$
- step size rules depend on monotonicity properties of A or A^{-1}

Applications

proximal gradient method for minimizing $g(x)+h(x)$

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right.
$$

this is the forward-backward method with $A(x)=\nabla g(x), B(x)=\partial h(x)$
projection method for variational inequality defined by F, C

$$
x^{(k)}=P_{C}\left(x^{(k-1)}-t_{k} F\left(x^{(k-1)}\right)\right)
$$

this is the forward-backward method with $A(x)=F(x), B(x)=N_{C}(x)$

References

Proximal mappings

- P. L. Combettes and V.-R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation (2005)
- P. L. Combettes and J.-Ch. Pesquet, Proximal splitting methods in signal processsing arxiv.org/abs/0912.3522v4

Accelerated proximal gradient method

- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004)
- P. Tseng, On accelerated proximal gradient methods for convex-concave optimization (2008)
- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences (2009)
- A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal recovery, in: Y. Eldar and D. Palomar (Eds.), Convex Optimization in Signal Processing and Communications (2009)
- A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Transactions on Image Processing (2009)

