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Proximal mapping

the proximal mapping (or proximal operator) of a convex function h is

1
prox, (xr) = argmin (h(u) + §Hu — x\\%)
examples

e h(x) =0: prox,(zr) =x

e h(x) = Ic(x) (indicator function of C): prox, is projection on C

prox, (z) = Po(x) = argmin ||u — x5
ueC

e h(x) =t||x||1: prox, is shrinkage (soft threshold) operation
X; — 1 X; 2 t

prox,(z); =4¢ 0 ;| <t
T+t x; < —t
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Proximal gradient method

unconstrained problem with cost function split in two components
minimize f(x) = g(x) + h(x)

e ¢ convex, differentiable, with dom g = R"

e h closed, convex, possibly nondifferentiable; prox; is inexpensive

proximal gradient algorithm
r*) = prox; (x(k_l) — thg(:c(k_l)))

t > 0 is step size, constant or determined by line search

Proximal gradient method
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Interpretation
x" = proxy, (z — tVg(x))

from definition of proximal operator:

u

1
¥ = argmin (h(u) + o lu—a+ th(ﬂ?)Hg)

= argmin (h(u) +g(z) + Vg(x)" (u—z) + 2%““ - xH%)

u

T minimizes h(u) plus a simple quadratic local model of g(u) around x

Proximal gradient method
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Examples

minimize g(x) + h(x)

gradient method: h(x) =0, i.e., minimize g(x)

2B — p(k=1) thg(x(k_”)

gradient projection method: h(z) = Io(x), i.e., minimize g(x) over C

z*) = P (:I:(k_l) — thg(az(k_l)))

Proximal gradient method
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iterative soft-thresholding: h(z) = ||x||1, i.e., minimize g(z) + ||x|1
z*) = prox; (:c(k_l) — thQ<33(k_1)))

and
’U,Z'—t ’U,Z'Zt

prox,;(u); =< 0 —t <wu; <t
u; +t u; >t

prox,, (u);
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Definition

proximal mapping associated with closed convex h

u

1
prox, (xr) = argmin (h(u) + §Hu — .CUH%)

it can be shown that prox, () exists and is unique for all x

subgradient characterization

from optimality conditions of minimization in the definition:

u = prox;(r) <= x—ue€ dh(u)

Proximal gradient method
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Projection

recall the definition of indicator function of a set

Ic<£C> —

0 x e’
+00 otherwise

I is closed and convex if C'is a closed convex set
proximal mapping of I is the Euclidean projection on C

prox; (z) = argmin ||u — z||3
ueC

= FPo(z)
we will see that proximal mappings have many properties of projections

Proximal gradient method
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Nonexpansiveness

if u = prox,(z), & = prox,(z), then

(u—a)" (z = 2) > [lu— a3

prox, is firmly nonexpansive, or co-coercive with constant 1
e follows from characterization of p.3-7 and monotonicity (p.1-25)

r—u€Ohlu), 2—acoh(t) = @E—-—u—-=2+0) (u—-2a)>0

e implies (from Cauchy-Schwarz inequality)

lu—dall2 < [lz — &2
prox; is nonexpansive, or Lipschitz continuous with constant 1
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Proximal mapping and conjugate

r = prox,(zr) + prox;:(r)
proof: define u = prox,(x), v=z —u

e from subgradient characterization on page 3-7, v € Oh(u)

e hence (from page 1-38) u = x — v € Oh*(v), i.e., v = prox;:(r)

example: let L be a subspace of R", L+ its orthogonal complement
hu) =1Ip(u),  h*(v) =1Ip.(v)
property reduces to orthogonal decomposition

v = Pr(z) + Ppi(v)

Proximal gradient method
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Some useful properties

separable sum: A : R™ x R"2 — R with h(aﬁl,wg) = hl(xl) + hg(il?g)

prox, (1, x2) = (pI'OXh1 (71), prox;,, (932))

scaling and translation of argument: h(z) = f(tx + a) with t # 0

1
prox;(z) = n

(prox(te +a) — a)

conjugate: from previous page and (th)*(y) = th*(y/t)

prox,«(r) = xr — t prox,, ,,(z/t)
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Examples

quadratic function

1
h(x) = §£ETAZE +blx +c, prox,, (z) = (I +tA) ' (z — tb)

Euclidean norm: h(x) = ||x||2

) =t/zl2)z |2 >t
prox,,(z) = { 0 otherwise

logarithmic barrier
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Norms

prox-operator of general norm: conjugate of h(x) = ||z|| is

0 Jyll« <1
+o00 otherwise

) = {

i.e., the indicator function of the dual norm ball B = {y | ||y||« < 1}

if projection on dual norm ball is inexpensive, we can therefore use

prox,,(r) = x — tPg(x/t)

distance in general norm: h(x) = ||z — a

prox,,(r) = x — tPp (x ; a)

for h(x) = ||z||1, these expressions reduce to soft-threshold operations

Proximal gradient method
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Functions associated with convex sets

support function (or conjugate of the indicator function)

h(z) =supx’y, prox,,(r) = x — tPc(x/t)
yel

squared distance

L . t
h(z) = §d13t($> C)?, prox,,(z) = = + 1—_H(PC(5L‘) — )

distance: h(x) = dist(x, C)

(Po(x) —x) dist(z,C) >t

t
T+ —
prOXth(x) — dlSt($, C)
Po(x) otherwise
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Gradient map
proximal gradient iteration for minimizing g(z) + h(x)
r*) = prox; (ZC(k_l) — thg(:c(k_l)))
can write as (8 = z(*=Y — 1, G, (z(*=1)) where

Gulx) =

(z — prox,,(z — tVg(z)))

e from subgradient definition of prox (page 3-7),

Gi(x) € Vg(x) 4+ Oh (x — tG¢(x)) (3.1)
e Gi(x) =0 if and only if  minimizes f(z) = g(x) + h(x)
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Line search
to determine step size ¢ in
vt =12 — tGy(x)
start at some t := ¢; repeat t := Bt (with 0 < 3 < 1) until

oz —1Gu(x)) < g(x) — V() Gulr) + 5| Gu(a)3

e requires one prox evaluation per line search iteration
e inequality is motivated by convergence analysis (see later)

e many other types of line search work

Proximal gradient method
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example: line search for projected gradient method

vt =12 —tGy(x) = Po(x — tVg(x))

Po(x — B*tVg(x))

Po(x — BtV g(x))

| Po(x — tVg(x))

r —tVg(x)
(sometimes called ‘arc search’)
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Convergence of proximal gradient method

assumptions

e Vg is Lipschitz continuous with constant L > 0

IVg(z) =Vg(y)lls < Lz —yla Vz,y
e optimal value f* is finite and attained at x* (not necessarily unique)
result: we will show that f(z(*)) — f* decreases at least as fast as 1/k

o if fixed step size t, = 1/L is used

e if backtracking line search is used
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Quadratic upper bound from Lipschitz property

9(y) (z,g(x))

e affine lower bound from convexity

g(y) > g(z) + Vg(z) (y —x)  Va,y

e quadratic upper bound from Lipschitz property

o(v) < () + Vo(@) (v~ o) + Sl — 23 Vay
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proof of upper bound (define v = y — x)

gly) = g(x)+Vg(x)Tv+/O (Vg(z + tv) — Vg(z))Tvdt
< @)+ Vo@)"o+ [ Vgl + ) = Vo(a) oo
< g(x)+Vg(x)Tv+/O Lt||v]|3 dt

L
= (@) + V@) v+ Sl
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Consequences of Lipschitz assumption

e from page 3-19 with y = x — tG(x),

g(z — tGy(x)) < g(z) — tVg(2)" Ge(z) + %HGt(m)H%

e therefore, the line search inequality

o(x — 1Gu(x)) < glx) ~ 19g()Gule) + SIG@IB  (32)
is satisfied for 0 <t < 1/L

e backtracking line search starting at ¢t = ¢ terminates with

t > tmin = min{t, 8/L}
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A global inequality

if the line search inequality (3.2) holds, then for all z,

[z =tGi(x)) < f(2) + Gi(z)" (z — 2) = %HGt(JJ)H% (3.3)

proof (with v = Gy(z) — Vg(x))
flx —tGy(x)) < g(x) —tVg(a)' Gi(z) + %lth(x)llg +h(z —1Gy(x))

< 4(2) + V(@) (@ — 2) — V(@) Gul) + 5]|Gu(a) |3
+ h(z) + vl (z — 2 — tGy(x))

= g(2) + h(2) + Gi(z)" (z — 2) - %HGt(x)H%

line 2 follows from convexity of g and h, and v € Oh(x — tGy(x))
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Progress in one iteration

xt =12 — tGy(7)

e inequality (3.3) with z = x shows the algorithm is a descent method:
t
fa®) < fla) — HIC @3

e inequality (3.3) with z = z*:

t
f@h) = < Gila) (v —a7) = SlIGu(=)]5

1

= o (e =I5~ o - 2" — tGy(@) )
2t
1 2

= o (o= a2~ o+ — *13)

(hence, ||zT — 2*||2 < [|[& — 2*]|2, i-e., distance to optimal set decreases)

Proximal gradient method 3-23



Analysis for fixed step size

add inequalities for x = 20D g+ =20 t =1/L

k k

. 1 . .
S =) = >0 (Il =) 2 - 2*(3)
1=1 1=1

= o (12© = 23 - 2® — 24]2)
2
1 *

< oo - 27|

since f(x(?) is nonincreasing,

s 1
L3 < et o

?vlr—‘

f)

conclusion: reaches f(z®)) — f* < € after O(1/¢) iterations
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Analysis with line search

add inequalities for x = 20~V 2t =2 ¢t = ¢, >t

k
S =) < Do (100 =B - a9 - 23
i=1 i=1""
I | |
< 57— (1207 =" 3 — o —2*[3)
mln’l:zl
= o (12 — 23— 2® — 2*|3)
2tmin 2 g

since f(x(?) is nonincreasing,

1

2 — &3

Fla®) — f* <

conclusion: reaches f(x®)) — f* < € after O(1/¢) iterations
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Accelerated proximal gradient method

choose (9 € dom A and y(@ = z(O): for k > 1

") = prox,, (y““_”—tNQ(y(’“_”))

k—1
k+ 2

e ;. is fixed or determined by line search
e same complexity per iteration as basic proximal gradient method

e also known as proximal gradient method with extrapolation, FISTA

Nesterov (1983, 2004), Beck and Teboulle (2009), Tseng (2008)

Proximal gradient method
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Example

minimize log >_ exp(alx + b;)
—1

1=

randomly generated data with m = 2000, n = 1000, same fixed step size

— gradient
- - FISTA

f®) — f*
|

-6 ‘ ‘ ‘
1079 50 100 150 200
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another instance

gradient
FISTA

x
S
|

S

3 .

S 107 ' o
107

-6 ‘ !

10 g 50 100
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200
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Line search

purpose: determine step size {; in

™ = prox,, (y("“‘”—thg(y(k_”))

= ¥V =G (")

algorithm: start at ¢t := ¢;_1 and repeat ¢ := [t until
t
9(y = tGi(v)) < 9(y) = tVg(y)" Gily) + SlIGe(w)I3
(where y = y*—1)

e for ty, can choose any positive value ty = t

e this line search method implies ¢, < t._1
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Convergence of accelerated proximal gradient method

assumptions

e Vg is Lipschitz continuous with constant L > 0

1Vg(x) —Vg(y)lls < L||lx —yll2 Y,y

e optimal value f* is finite and attained at x* (not necessarily unique)

result: f(z(*)) — f* decreases at least as fast as 1/k?

o if fixed step size t = 1/L is used

e if backtracking line search is used
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Consequences of Lipschitz assumption

from page 3-21 and 3-22

e the line search inequality

g(y —tGe(y)) < g(y) — tVg(y)" Gi(y) + %”Gt<y)”% (3.4)

holds for 0 <t < 1/L
e backtracking line search terminates with ¢ > t,,;, = min{¢, 3/L}

e if ¢ satisfies the line search inequality, then, for all z,

fly—1tGi(y)) < f(2) + Gely) (y — 2) — %HGt(y)H% (3.5)

Proximal gradient method 3-31



Notation
define (9 = 2(0) and, for k > 1,

1
6, — —— (k) — p(k=1) 4 = (k) _ .(k=1)
E= T v x + ek(x x )

e update of y*) can be written as

o v(k) satisfies

SR (k1) +9i <y<k—1> 4Gy (D) — x(k—l))
k
!
— =1 _ —thk(y(’“_l))
O

e 0} satisfies (1 —0;)/02 <1/607_,
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Progress in one iteration

T = 3;(73—1), ZC_I— — gj(z)’ Yy = y(i_”’ V= U(i_l), ’U+ — ,U(i)’ t = ti, O = (97,

use inequality (3.5) with z = x and z = x*, and make convex combination:

Fat) < (1= 0)f() +0f* +Guly) (y — (1 - 0)x — 627) — T|Gulw)

(1= 6)f(2) + 0F* + 6Gu(w) (v — 2*) — 2| Gulw)

* 92 * * t
= (= 0f@) + 05+ 5 (o= B - o - o~ JGIR)
92 2 2
= A= Of@) 05+ (o - a3~ o — 2 3)
1 : 1 : 1 — 0, : 1 .
- (DY £y |y (8) %12 < t (i—1)\ __ p*\ = l.,(i—1)  _*2
U=y o=} < 2P oD =
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Analysis for fixed step size

apply inequality with ¢t = t; = 1/L recursively, using (1 —0;)/6? < 1/6%_,:

]‘ * 1 *

5 ([@™) = 1)+ o™ — 273

k
1—6 L1 X

< g (FEO) = )+ 0@ - a7
1
1 *
= @ — 2|3
therefore,
2
Fa®) = o< e _ g2 20 2

~ 2t (k+1)%t

conclusion: reaches f(z®)) — f* < € after O(1/,/€) iterations
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Analysis for backtracking line search

recall that step sizes satisfy t;,_1 > t; > tmin

apply inequality on page 3-33 recursively to get

tmin * t * 1 *
2 (f@®) =) < S(FEW) = £ + g lo® a3
k k
t1(1 —6q) . 1 .
< B EO) - £+ 5l — 27
1
1 *
= Sl - 2
therefore 5

conclusion: #iterations to reach f(x®)) — f* < eis O(1//e)
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Descent version of accelerated proximal gradient method

a modification that guarantees f(z(®)) < f(z(*=1)

2 = prox, , (y("“_”—thg(y(k‘”))
o A fEW) < fath)
=1 otherwise
p®) = gD L 2t )

O
s B = (1= )2 4 00

same complexity; in the analysis of page 3-33, replace first line with

fa) < 5
< (1= 0)f@) + 65"+ Cily) (y — (1 - 0)x — 62%) — _[Gul)]
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example (from page 3-28)

10%¢ ! ]
i — gradient|]
L FISTA

107 N -~ FISTA-d |

-6 1 1 1
1070 50 100 150 200
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Example: quadratic program with box constraints

minimize (1/2)xl Az + b1z
subjectto 0=z =<1

— gradient

0 - - FISTA

(F@®) — /1]

n = 3000; fixed step size t = 1/Apax(A)
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1-norm regularized least-squares

(f(@®) — )/

1
minimize §HA:1: —b||3 + ||zl

— gradient
- - FISTA

20

40

60

80 100

randomly generated A € R2000x1000. grep ¢, = 1/L with L = X\ (AT A)

Proximal gradient method
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Example: nuclear norm regularization

minimize ¢g(X) + || X/«

g is smooth and convex; variable X € R™*" (with m > n)

nuclear norm

X1 = 3 oi(X)

e 01(X)>09(X) > --- are the singular values of X
e the dual norm of the matrix norm || - || (maximum singular value)
e for diagonal X, reduces to the 1-norm of diag(X)

e popular as penalty function that promotes low rank
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prox operator of prox,,(X) for h(X) = || X |«

, 1
pros,,(X) = argmin (U] + 51U - X[

e take singular value decomposition X = P diag(oy,...,0,)Q"

e apply thresholding to singular values:
prox,,(Y) = Pdiag(61,...,0,)Q"

where
O — 1 O Zt

O = 0 —1t <o <1
o+t o <-—t

Proximal gradient method
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Approximate low-rank completion
minimize Z (XZ] —AZ])2—|—’}/HX||*
(2,7)EN

e entries (i,j) € IN are approximately specified (X;; ~ A;;); rest is free

e nuclear norm regularization added to obtain low rank X

example

m = n = 500
5000 specified entries
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convergence (fixed step size t = 1/L)

— gradient

- - FISTA

107 50 100 150 200
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result

normalized singular value

-17 ‘ ‘ \ \
1079 10 20 30 40 50
index

optimal X has rank 38; relative error in specified entries is 9%
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Monotone inclusion problems

a multivalued mapping F (i.e., mapping x to a set F/(x)) is monotone if

(w—v)(x—y)>0 Va,y,u € F(x),v € F(y)

monotone inclusion problem: find x with

0 € F(x)

examples

e unconstrained convex optimization: 0 € df(x)

e saddle point of convex-concave function f(z,y)

0 € Ouf(z,y) x Oy(—f)(2,9)
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Monotone variational inequality

given continuous monotone F', closed convex set C, find £ € C such that

F@)'(x—2)>0 vVreC

e with F'(x) = V f(x), gives optimality condition for convex optimization
e includes as special cases various types of equilibrium problems

e a monotone inclusion: 0 € No(x) + F(x) (Ne(x) is normal cone at x)
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Maximal monotone operator

the graph of F is the set gr(F) = {(z,y) | y € F(x)}

monotone F' is maximal monotone if gr(F) is not contained in the graph
of another monotone mapping

maximal monotone not maximal monotone

example: the subdifferential 0f of a closed convex function f
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Resolvent

the resolvent of a multivalued mapping A is the mapping
Ry=(I+tA)™"
(with t > 0), i.e., gr(R:) = {(y +tz,y) | z € A(y)}
e if A is monotone than R; is firmly nonexpansive:
y € Ri(x), g€ Re(2) = (y—9)" (z—2)>[ly -3l
hence R;(x) is single valued and Lipschitz continuous on dom R;:

|Ri(z) — Re(2)][2 < ||z — 2|2
e if A is maximal monotone, then dom R; = R"
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Resolvent of subdifferential

the resolvent of Oh is the proximal mapping:
(I+t0h) " (z) = prox,,()

, 1
~anguin (o) + 5y — ol )
Yy

from optimality conditions in the definition of prox,,:

1
y = proxy,(r) <= 0€0h(y)+ ;(y — )

e gz e (I+1t0h)(y)
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Resolvent of normal cone

the resolvent of the normal cone operator N¢ is the projection on ('

(I +tNeo) Hz) = Po(z)

y=(I+tNc) '(z) < x€y+tNc(y)
— y= Pc(x)
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Forward-backward method

monotone inclusion 0 € F'(x)
operator splitting: write I’ as F'(x) = A(x) + B(x)

e A B monotone
e A(x) single valued

e B has easily computed resolvent

forward backward algorithm
%) = (I +¢,B) "I — tzA)(z*~Y)

e ‘forward operator’ I — t; A followed by ‘backward operator’ (I + t,B)~1

e step size rules depend on monotonicity properties of A or A1
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Applications

proximal gradient method for minimizing g(z) + h(x)

zF) = prox, 5 (x(k_l) — thg(a:(k_l)>
this is the forward-backward method with A(x) = Vg(x), B(x) = dh(x)

projection method for variational inequality defined by F', C

z*) = P (a:(k_D — tk;F(:U(k_l)))

this is the forward-backward method with A(x) = F(x), B(z) = N¢(x)
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