EE 227A: Convex Optimization and Applications March 8, 2012
Lecture 15: Exercises on Duality and Optimality

Lecturer: Laurent El Ghaoui

Exercises

1. Magnitude least-squares. The magnitude least-squares problem has the form

min [|[[X"w| -y,
w

where X € R™™, y € R are given, and |z| stands for the vector formed with the
magnitude of the elements of vector z. This problem arises in many applications, for
example in when recovering a signal or image from the intensity measurements of its
Fourier transform, as in X-ray crystallography. (Here, we only work with real numbers,
although the problem is often posed in a complex-valued setting, for which the problem
is referred to as the phase retrieval problem.) Derive an SDP approximation to the
problem. Find its dual. Hint: Express the problem as a quadratic one:

2

: 2 . .2 __ (yT L
min [jv—y|; @ vy =(X"w);, i=1,...,m,
w,v
and use rank relaxation.
2. Sparse Gaussian models. We are given data points z1,...,x, € RP, which we assume

are generated by a multivariate Gaussian. The empirical covariance matrix C' is given
by

1 1<
C==> (&;—2)(x; —2)", 2:==)
- ;( ) (i — 2) - Z:;
This formula can be obtained by assuming that the data points are generated by a
Gaussian (z,C'), and solving the maximum-likelihood problem, which turns out to
have the form

max logdet X — Tr CX,
X>0

At optimum, we have X = C~! if C is invertible; otherwise, the maximum-likelihood
problem is not well-posed. The matrix X = C~! is called the precision matrix. It can
be shown that X;; = 0 implies that variables 7, j are conditionally independent.

In many applications, we’d like to fit a sparse Gaussian model to data, in the sense
that many pairs (7, j) are conditionally independent. This leads to a modified version
of the above problem:

max logdet X — Tr XC — p|| X |1
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where p > 0 is a parameter, and ||X||; contains the sum of the absolute values of all
the elements of X.

(a)
(b)

Form a dual to the problem.

Show that for every p > 0, the optimal solution to the penalized problem is
unique, and bounded as follows: ol < X < 31, where
1 p
a=—— [:==
Amax(C) + pp p

where A\yax(C) is the largest eigenvalue of C'.

Solution:

(a)

We can write the problem as

max min logdet X + Tr X(C + U),

X-0 [Uflo<p
where ||U||o denotes the maximal absolute value of the entries of U. This cor-
responds to seeking an estimate with maximal worst-case likelihood, over all
component-wise bounded additive perturbations C'+U of the empirical covariance
matrix C.

We can obtain the dual by exchanging the max and the min:

m&n{—logdet(C’—l— U)—p: Ul <p, C+U>0} (15.1)

The diagonal elements of an optimal U are simply Uy = p. The corresponding
covariance matrix estimate is C' := C' + U. Since the above dual problem has a
compact feasible set, the primal and dual problems are equivalent, that is, strong
duality holds. The optimality conditions relate the primal and dual solutions by
CX =1.

An optimal X satisfies X = (C' + U)™!, where ||U]|o < p. To establish a lower
bound on the eigenvalues of X, we need an upper bound on those of C'+ U. We
have, from convexity and positive homogeneity of the largest eigenvalue function:

)\max(c + U) S )\max(c) + )\max(U)-
Since ||U||oo < p, we have

Aax(U) < Ul = max ||U < pp,
) < U] = max | U€la < v

In the above, we have used that, for every i € {1,...,p}, the i-th component of
U¢ is of the form u”¢ where ||ul|» < p, hence its absolute value is bounded above
by p. We obtain X > al, where o = 1/(Apmax(C) + pp).
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Likewise, we can show that X is bounded above. Indeed, at optimum, the primal-
dual gap is zero:

0 = —logdet(C+U)—p—1logdet X + (C, X) + p|| X||1
= —p+(C,X) +pll X1,

where we have used (C'+ U)X = I. Since C, X are both positive semi-definite,
we obtain »
IXT < 11X < 11Xl < 2T,

as claimed.

3. The unconstrained optimization problem

= Z \/p2 + (af:ﬁ — bk)Q, (15'2)
k=1

where p is a small positive constant, is sometimes used as a smooth approximation of
the ¢1-minimization problem

p* := minimize |[Ax — b||;.

(A € R™" is the matrix with rows a}.) In this problem, we investigate the following
issue: how small should p be, in order to guarantee that |¢(p) — p*| < €7

Solution:

(a) Problem (15.2) is equivalent to

minimize Z \/ P+ y

subject to y = Az — b,

with variables z € R", y € R™. Derive the Lagrange dual.

(b) Let & be the optimal solution of (15.2) and define §y = Az — b for k = 1,...,m.
Let p* be the optimal value of the ¢;-minimization problem. Show that

19l = p* = 7

Pt 2 + y2

and that this implies
7"(p) 2 p" 2 q"(p) —mp
where ¢*(p) is the optimal value of (15.2).
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Solution.

(a) The Lagrangian is

m

L(x,y,z):Z\/pQ—iry,%—i—zT(y—Ax%—b).

k=1

This is bounded below as a function of z only if A7z = 0. We find the minimum
over ¥y, by setting the derivative equal to zero:

Yk

This is solvable only if |z;| < 1, with solution

zZ .
Yk = —P—kQ> inf (\/ P>+ yi + Zkyk> =py\/1- %
11—z y

If 2, = 1, the infimum of (p?4y?)"/2+ z,yy is reached asymptotically as y, — —o0,

2k — —

and if zp = —1, the infimum of is reached as y; — oo. Therefore the dual problem
is
maximize b'z+p> 0t /1 — 22
subject to ATz =10 (15.3)
2]]oc < 1.

(b) The first inequality is an immediate consequence of the definition of p*. The
second inequality can be derived from the optimality conditions of the smooth
problem,

. = T, _ S s
2y = —F—, A" 2 =0, y= Az — b,
VP i

and the dual of the ¢; problem

maximize —b'z
subject to ATz =0
[2]le < 1.

If we plug in 2 in the dual of the ¢;-approximation problem we find the lower

bound

pr > —b'z
= (A2 —b)"2

= —QTZ
= Z Ui/ P* + Ui
k=1
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The inequality ¢*(p) > p* follows from

ol < 37 4/% + (@Fd — )2 = g (p).
k

The second inequality ¢*(p) — mp follows from

m A2 m m
Y 2 | 22 2 1
T = pPeFT Yy — P —F—
PRV ; ; P+ Ui
e 1
= ¢"(p)—p° -
; P2+
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=
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