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Lecture 15: Exercises on Duality and Optimality

Lecturer: Laurent El Ghaoui

Exercises

1. Magnitude least-squares. The magnitude least-squares problem has the form

min
w
‖|XTw| − y‖2,

where X ∈ Rn×m, y ∈ Rm
+ are given, and |z| stands for the vector formed with the

magnitude of the elements of vector z. This problem arises in many applications, for
example in when recovering a signal or image from the intensity measurements of its
Fourier transform, as in X-ray crystallography. (Here, we only work with real numbers,
although the problem is often posed in a complex-valued setting, for which the problem
is referred to as the phase retrieval problem.) Derive an SDP approximation to the
problem. Find its dual. Hint: Express the problem as a quadratic one:

min
w,v
‖v − y‖22 : v2i = (XTw)2i , i = 1, . . . ,m,

and use rank relaxation.

2. Sparse Gaussian models. We are given data points x1, . . . , xn ∈ Rp, which we assume
are generated by a multivariate Gaussian. The empirical covariance matrix C is given
by

C =
1

n

n∑
i=1

(xi − x̂)(xi − x̂)T , x̂ :=
1

n

n∑
i=1

xi.

This formula can be obtained by assuming that the data points are generated by a
Gaussian (x̂, C), and solving the maximum-likelihood problem, which turns out to
have the form

max
X�0

log detX −TrCX,

At optimum, we have X = C−1 if C is invertible; otherwise, the maximum-likelihood
problem is not well-posed. The matrix X = C−1 is called the precision matrix. It can
be shown that Xij = 0 implies that variables i, j are conditionally independent.

In many applications, we’d like to fit a sparse Gaussian model to data, in the sense
that many pairs (i, j) are conditionally independent. This leads to a modified version
of the above problem:

max
X

log detX −TrXC − ρ‖X‖1
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where ρ > 0 is a parameter, and ‖X‖1 contains the sum of the absolute values of all
the elements of X.

(a) Form a dual to the problem.

(b) Show that for every ρ > 0, the optimal solution to the penalized problem is
unique, and bounded as follows: αI � X � βI, where

α :=
1

λmax(C) + ρp
, β :=

p

ρ
,

where λmax(C) is the largest eigenvalue of C.

Solution:

(a) We can write the problem as

max
X�0

min
‖U‖∞≤ρ

log detX + TrX(C + U),

where ‖U‖∞ denotes the maximal absolute value of the entries of U . This cor-
responds to seeking an estimate with maximal worst-case likelihood, over all
component-wise bounded additive perturbations C+U of the empirical covariance
matrix C.

We can obtain the dual by exchanging the max and the min:

min
U
{− log det(C + U)− p : ‖U‖∞ ≤ ρ, C + U � 0} (15.1)

The diagonal elements of an optimal U are simply Ûii = ρ. The corresponding
covariance matrix estimate is Ĉ := C + Û . Since the above dual problem has a
compact feasible set, the primal and dual problems are equivalent, that is, strong
duality holds. The optimality conditions relate the primal and dual solutions by
ĈX = I.

(b) An optimal X satisfies X = (C + U)−1, where ‖U‖∞ ≤ ρ. To establish a lower
bound on the eigenvalues of X, we need an upper bound on those of C + U . We
have, from convexity and positive homogeneity of the largest eigenvalue function:

λmax(C + U) ≤ λmax(C) + λmax(U).

Since ‖U‖∞ ≤ ρ, we have

λmax(U) ≤ ‖U‖ = max
ξ : ‖ξ‖2≤1

‖Uξ‖2 ≤ pρ,

In the above, we have used that, for every i ∈ {1, . . . , p}, the i-th component of
Uξ is of the form uT ξ where ‖u‖∞ ≤ ρ, hence its absolute value is bounded above
by ρ. We obtain X � αI, where α = 1/(λmax(C) + ρp).
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Likewise, we can show that X is bounded above. Indeed, at optimum, the primal-
dual gap is zero:

0 = − log det(C + U)− p− log detX + 〈C,X〉+ ρ‖X‖1
= −p+ 〈C,X〉+ ρ‖X‖1,

where we have used (C + U)X = I. Since C,X are both positive semi-definite,
we obtain

‖X‖ ≤ ‖X‖F ≤ ‖X‖1 ≤
p

ρ
I,

as claimed.

3. The unconstrained optimization problem

q?(ρ) :=
m∑
k=1

√
ρ2 + (aTk x− bk)2, (15.2)

where ρ is a small positive constant, is sometimes used as a smooth approximation of
the `1-minimization problem

p? := minimize ‖Ax− b‖1.

(A ∈ Rm×n is the matrix with rows aTk .) In this problem, we investigate the following
issue: how small should ρ be, in order to guarantee that |φ(ρ)− p?| ≤ ε?

Solution:

(a) Problem (15.2) is equivalent to

minimize
m∑
k=1

√
ρ2 + y2k

subject to y = Ax− b,

with variables x ∈ Rn, y ∈ Rm. Derive the Lagrange dual.

(b) Let x̂ be the optimal solution of (15.2) and define ŷ = Ax̂ − b for k = 1, . . . ,m.
Let p? be the optimal value of the `1-minimization problem. Show that

‖ŷ‖1 ≥ p? ≥
m∑
k=1

ŷ2k√
ρ2 + ŷ2k

,

and that this implies
q?(ρ) ≥ p? ≥ q?(ρ)−mρ

where q?(ρ) is the optimal value of (15.2).
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Solution.

(a) The Lagrangian is

L(x, y, z) =
m∑
k=1

√
ρ2 + y2k + zT (y − Ax+ b).

This is bounded below as a function of x only if AT z = 0. We find the minimum
over yk by setting the derivative equal to zero:

zk = − yk√
ρ2 + y2k

.

This is solvable only if |zk| < 1, with solution

yk = −ρ zk√
1− z2k

, inf
y

(√
ρ2 + y2k + zkyk

)
= ρ
√

1− z2k.

If zk = 1, the infimum of (ρ2+y2k)
1/2+zkyk is reached asymptotically as yk → −∞,

and if zk = −1, the infimum of is reached as yk →∞. Therefore the dual problem
is

maximize bT z + ρ
∑m

k=1

√
1− z2k

subject to AT z = 0
‖z‖∞ ≤ 1.

(15.3)

(b) The first inequality is an immediate consequence of the definition of p?. The
second inequality can be derived from the optimality conditions of the smooth
problem,

ẑk =
−ŷk√
ρ2 + ŷ2k

, AT ẑ = 0, ŷ = Ax̂− b,

and the dual of the `1 problem

maximize −bT z
subject to AT z = 0

‖z‖∞ ≤ 1.

If we plug in ẑ in the dual of the `1-approximation problem we find the lower
bound

p? ≥ −bT ẑ
= (Ax̂− b)T ẑ
= −ŷT z

=
m∑
k=1

ŷ2k/
√
ρ2 + ŷ2k.
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The inequality q?(ρ) ≥ p? follows from

‖ŷ‖1 ≤
∑
k

√
ρ2 + (aTk x̂− bk)2 = q?(ρ).

The second inequality q?(ρ)−mρ follows from

m∑
k=1

ŷ2k√
ρ2 + ŷ2k

=
m∑
k=1

√
ρ2 + ŷ2k − ρ

2

m∑
k=1

1√
ρ2 + ŷ2k

= q?(ρ)− ρ2
m∑
k=1

1√
ρ2 + ŷ2k

≥ q?(ρ)−mρ.

15-5


