Statistical Analysis of Online News

Laurent El Ghaoui
EECS, UC Berkeley

Information Systems Colloquium, Stanford University

November 29, 2007
Collaborators

Joint work with

Alexandre d’Aspremont (ORFI, Princeton)
Bin Yu (Stat/EECS, Berkeley),
Babak Ayazifar (EECS, Berkeley)
Suad Joseph (Anthropology, UC Davis)
Sophie Clavier (International Relations, SFSU)

and UCB students:

Onureena Banerjee, Brian Gawalt, Vahab A. Pournaghshband
Online data

Online data:

• online news (text, video)
• voting records (Senate, UN, . . .)
• demographic data
• economic data

Now *widely* available . . . Or, easy to scrape!
What about statistics?

Progresses in statistical learning:

- efficient algorithms for large-scale optimization
- better understanding of sparsity (interpretability) issues
 (LASSO and variants, compressed sensing, etc)

Current hot application topics in Stat, Applied Math: *biology, finance*
StatNews project

Our data:

• online text news

• voting and other political records (PAC contributions, etc)

• International bodies voting records, such as UN General Assembly votes
StatNews project

Goals:

- Provide open source tools for fetching, assembling data, and perform statistical analyses
- Show compressed (sparse) views of data
- Ultimately foster a forum where such views are discussed

Project is in its infancy
Example: Senate voting analysis

(Courtesy Georges Natsoulis, Stanford Genome Technology Center)

• 100 variables, 542 samples, each sample is a bill that was put to a vote

• Records 1 for yes, −1 for no/abstention on each bill

The next slide shows the result of hierarchical clustering, using off-the-shelf commercial software
No=green Yes=Red

3 completely different voting patterns on 3 sets of bills
Hierarchical clustering: analysis

The data appears to have *structure*:

- As expected, Senators are divided by party line
- Perhaps more surprisingly, bills appear to fall into three distinct categories, of comparable size

Now let’s learn more about the categories . . .
Challenging the results

As a statistician, we can easily *challenge these results:*

- The number of samples may not be sufficient, but we don’t see it on the plot!
- There might be better (more robust) methods for clustering
- What could be the underlying model, and what are the simplifying assumptions? (stationarity, complexity, etc)
- The word frequency count method can be improved

Many approaches can be thrown at the problem—whatever the method, it will always only provide a particular, *biased* view of data
Online news

Current data sets:

- New York Times, since August 2007
- Reuters corpus, 1996-7
- Reuters “Significant Development” corpus, 2000-2007
Image of Presidential candidates

Adverbs in Obama vs. McCain:

- Gather 200 NYT articles mentioning the candidates’ names in the past 6 months
- perform sparse logistics regression, with features the 2300 words ending in ‘ly’, and label +1 if “Obama” appears more than “McCain”, −1 otherwise
- then look at the non-zero coefficients of the classifier, > 0 ones correspond to Obama, < 0 ones to McCain
<table>
<thead>
<tr>
<th>Word</th>
<th>Coefficient</th>
<th>Word</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearly</td>
<td>0.00281</td>
<td>really</td>
<td>-0.00149</td>
</tr>
<tr>
<td>commonly</td>
<td>0.00100</td>
<td>aggressively</td>
<td>-0.00140</td>
</tr>
<tr>
<td>utterly</td>
<td>0.00086</td>
<td>actually</td>
<td>-0.00120</td>
</tr>
<tr>
<td>lovely</td>
<td>0.00073</td>
<td>early</td>
<td>-0.00110</td>
</tr>
<tr>
<td>highly</td>
<td>0.00061</td>
<td>beautifully</td>
<td>-0.00106</td>
</tr>
<tr>
<td>family</td>
<td>0.00058</td>
<td>rarely</td>
<td>-0.00102</td>
</tr>
<tr>
<td>previously</td>
<td>0.00047</td>
<td>emily</td>
<td>-0.00096</td>
</tr>
<tr>
<td>recently</td>
<td>0.00042</td>
<td>arrestingly</td>
<td>-0.00091</td>
</tr>
<tr>
<td>especially</td>
<td>0.00011</td>
<td>relatively</td>
<td>-0.00077</td>
</tr>
</tbody>
</table>

The table compares the word coefficient for "OBAMA" and "McCain".
Statistical learning: the pandora box is open

Following Bin Yu (2007): statistical learning is now deeply linked to

- distributed (web) databases, networks
- large-scale optimization
- compressed sensing and sparsity
- visualization methods

We need to design statistical learning algorithms with these interactions in mind.
Challenges

• Sparse multivariate statistics (sparse PCA, sparse covariance selection, etc)

• Discrete random Markov field modelling (e.g. for voting data)

• Large-scale computations: distributed, online (recursive updates)

• Heterogeneous data and kernel optimization methods (handling text and images)

• Visualization of statistical results
 (e.g., how to visualize a graph and the level of confidence we can associate to it)
Sparsity

Consider the problem of representing features on a graph: to be interpretable, the graph must not be too dense.

Here, “interpretable” often involves sparsity.

- Find a few keywords that best explain the Senators votes.
- Find a sparse representation of the joint distribution of votes.
- Find the few keywords that are important in predicting the appearance of a reference word.
Sparse Covariance Selection

- Draw n independent samples $y_i \sim \mathcal{N}_p(0, \Sigma)$, where Σ is unknown.

- Prior belief: many conditional independencies among the variables in this distribution.

- Zeros in inverse covariance correspond to conditional independence properties among variables.

- Covariance estimation: From y_1, \ldots, y_n, recover the covariance matrix Σ.

- Covariance selection: choosing which elements of our estimate $\hat{\Sigma}^{-1}$ to set to zero.
Penalized Maximum-Likelihood Approach

Penalized ML problem:

\[\max_{X \succ 0} \log \det X - \text{Tr}(SX) - \rho \|X\|_1 \]

- \(\rho > 0 \) is regularization parameter, and \(\|X\|_1 := \sum_{i,j} |X_{ij}| \).

- Convex, non-smooth problem, can be solved in \(O(n^{4.5}) \) with first-order methods.

- Same idea used in \(l_1 \)-norm penalized regression (LASSO), for example.
Graph of Senators via sparse maximum-likelihood
Sparse Principal Component Analysis

Principal Component Analysis (PCA) is a classic tool in multivariate data analysis.

- **Input:** a $n \times m$ data matrix $A = [a_1, \ldots, a_m]$, containing m observations (samples) $a_i \in \mathbb{R}^n$.

- **Output:** a sequence of factors ranked by variance, where each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing the information (variance) contained in the simplified model.
Variational formulation of PCA

We can rewrite the PCA problem as a sequence of problems of the form

$$\max_x \ x^T \Sigma x : \|x\|_2 = 1,$$

where $\Sigma = AA^T$ is (akin to) the covariance matrix of the data. This finds a direction of maximal variance.

The problem is easy, its solution is $\lambda_{\text{max}}(\Sigma)$, with $x^* = \text{any associated eigenvector}$.
Sparse PCA

We seek to increase the sparsity of "principal" directions, while maintaining a good level of explained variance.

Sparse PCA problem:

$$\phi := \max_{x} x^T \Sigma x - \rho \text{Card}(x) : \|x\|_2 = 1.$$

where $\rho > 0$ is given, and $\text{Card}(x)$ denotes the cardinality (number of non-zero elements) of x.

This is non-convex and **NP-hard**.
Lower bound

The Cauchy-Schwartz inequality:

$$\forall x : \|x\|_1 \leq \sqrt{\text{Card}(x)} \cdot \|x\|_2$$

yields the lower bound:

$$\phi \geq \phi_1 := \max_x x^T \Sigma x - \rho \|x\|_2^2 : \|x\|_2 = 1.$$

Above problem is still not convex . . .
Relaxation of l_1-norm bound

Using the lifting $X = xx^T$ we obtain the SDP approximation

$$
\phi_1 \leq \psi_1 := \max_X \langle \Sigma, X \rangle - \rho \|X\|_1 : X \succeq 0, \ \text{Tr} \ X = 1,
$$

where $\|X\|_1$ is the sum of the absolute value of the components of matrix X.

Above approximation can be interpreted as a robust PCA problem:

$$
\psi_1 = \max_{X : X \succeq 0, \ \text{Tr} \ X = 1} \min_{\|U\|_\infty \leq \rho} \langle (\Sigma + U), X \rangle = \min_{\|U\|_\infty \leq \rho} \lambda_{\max}(\Sigma + U).
$$
Kernel optimization for supervised problems

Many problems in text corpora analysis involve regression or classification with heterogeneous data

- Sentiment detection ("is this piece of news good or bad?")
- Classification approaches to clustering
- In some cases, we need to predict a value based on text (and possibly other information, such as prices)

We can represent text, images, and in general, heterogeneous data with numbers (e.g. bag-of-words), but there are many such representations—which is the best?
Linear regression

Linear regression model for prediction:

\[y(t) = \theta^T x(t) + e(t) \]

where \(X = [x(1), \ldots, x(T)] \) is the feature matrix, \(y \) is the vector of observations, and \(e \) contains the noise.

Regularized least-squares solution:

\[
\min_w \|X^T \theta - y\|_2^2 + \rho^2 \|w\|_2^2,
\]

where \(\rho \) is given.
Solution

The dual to the LS problem writes

$$\max_{\alpha} \alpha^T y - \alpha^T K_{\rho} \alpha,$$

where $K_{\rho} := X^T X + \rho^{-2} I$.

- The optimal dual variable is $\alpha = K_{\rho}^{-1} y$
- The optimal value of the LS problem is $y^T K_{\rho}^{-1} y$
- The prediction at a test point x is $w^T x = \rho^{-2} x^T X \alpha^*$
The kernel matrix

The solution (optimal value, and prediction) depends only on the “kernel matrix” K containing the scalar products between training points, and those between training points and the test point.

$$K := \begin{pmatrix} K & X^Tx \\ x^TX & x^Tx \end{pmatrix}, \text{ with } K := X^TX.$$

This matrix is positive semidefinite, and the optimal value of the LS problem, $y^TK^{-1}y$, is convex in that matrix.
Kernel optimization

Let \mathcal{K} be a subset of the set of positive, semidefinite matrices of order $T + 1$ ($T = \text{number of samples}$).

Kernel optimization problem:

$$\min_{K \in \mathcal{K}} y^T K^{-1} y$$

The above problem is convex.
Choose

\[
K = \left\{ K(\mu, \lambda) = \rho^2 \sum_{i=1}^{n} \mu_i e_i e_i^T + \sum_{i=1}^{m} \lambda_i k_i k_i^T, \sum_{i=1}^{n} \mu_i = \sum_{i=1}^{m} \lambda_i = 1, \mu \geq 0, \lambda \geq 0 \right\},
\]

where \(e_i \)'s are the unit vectors in \(\mathbb{R}^n \), and \(k_i \)'s are given vectors.

The kernel optimization problem writes

\[
\phi^2 = \min_{\lambda, \mu} y^T K(\mu, \lambda)^{-1} y : \lambda \geq 0, \mu \geq 0, \sum_{i=1}^{n} \mu_i + \sum_{i=1}^{m} \lambda_i = 1,
\]
LP solution

The problem reduces to the LP

$$\min_u \|y - \sum_{i=1}^{m} u_i k_i\|_1 + \rho \|u\|_1.$$

The corresponding optimal kernel weights are given by

$$\mu_i = \frac{|v_i|}{\rho \phi}, \quad i = 1, \ldots, n, \quad \lambda_i = \frac{|u_i|}{\phi}, \quad i = 1, \ldots, m,$$

where $v = y - \sum_{i=1}^{m} u_i k_i$.
Kernel optimization in practice

In the context of text corpora analysis, the approach can be applied as follows:

- We select a collection of Kernels, each of which provides a representation of data (e.g. a bag-of-words kernel, another based on some other feature, such as prices)

- We compute the eigenvectors of all the kernel matrices, which gives us a collection of rank-one kernels $k_i k_i^T$, $i = 1, \ldots, m$.

- We include the dyads $e_i e_i^T$ for regularization purposes.
Ising models of binary distributions

Second-order Ising model: distribution on a binary random variable x parametrized by

$$p(x; Q, q) = \exp(x^T Q x + q^T x - Z(Q, q)), \quad x \in \{0, 1\}^n,$$

where (Q, q) are the model parameters, and $Z(Q, q)$ is the normalization term.

WLOG $q = 0$, and define the *log-partition function*

$$Z(Q) := \log \left(\sum_{x \in \{0, 1\}^n} \exp[x^T Q x] \right).$$
Given and empirical covariance matrix S, solve

$$\min_{Q \in \mathcal{Q}} \ Z(Q) - \text{Tr} \ QS$$

where \mathcal{Q}, and Q is a subset of the set S^n of $n \times n$ symmetric matrices.

When $\mathcal{Q} = S^n$, the above corresponds to the maximum entropy problem

$$\max_{p} \ H(p) : \ p \geq 0, \ p^T \mathbf{1} = 1, \ S = \sum_{x \in \{0,1\}^n} p(x) xx^T,$$

where H is the discrete entropy function, $H(p) = - \sum_{x \in \{0,1\}^n} p(x) \log p(x)$.
Bounds on the log-partition function

- Due to its *exponential number of terms*, computing or optimizing the log-partition function is NP-hard

- We are interested in finding tractable, convex upper bounds on $Z(Q)$

- such bounds yield suboptimal points for the ML problem
Cardinality bound

Let Δ_k be the set of vectors in $\{0, 1\}^n$ with cardinality k. Since $(\Delta_k)_{k=0}^n$ forms a partition of $\{0, 1\}^n$, we have

$$Z(Q) = \log \left(\sum_{k=0}^{n} \sum_{x \in \Delta_k} \exp[x^T Q x] \right).$$

Thus,

$$Z(Q) \leq \log \left(\sum_{k=0}^{n} |\Delta_k| \exp[\psi_k(Q)] \right)$$

where $\psi_k(Q)$ is any upper bound on the maximum of $x^T Q x$ over Δ_k.
Cardinality bound

Use

$$\psi_k(Q) = \max_{X \succeq d(X)d(X)^T} \text{Tr } QX : d(X)^T d(X) = k, \ 1^T X 1 = k^2,$$

with $d(X)$ the diagonal matrix formed by zeroing out all off-diagonal elements in X.

• This results in a new bound, the cardinality bound, which can be computed in $O(n^4)$.

• The corresponding maximum-likelihood problem is also tractable ($O(n^4)$).
Approximation error

Standard Ising models: $Q = \mu I + \lambda 1 1^T$, with λ, μ scalars

(such models describe node-to-node interactions via a mean-field approximation)

• The cardinality bound is exact on standard Ising models

• The approximation error is controlled by the l_1-distance to the class of standard Ising models:

$$0 \leq Z_{\text{card}}(Q) - Z(Q) \leq 2D_{\text{st}}(Q), \quad D_{\text{st}}(Q) := \min_{\lambda, \mu} \|Q - \mu I - \lambda 1 1^T\|_1.$$
Comparison with the log-determinant bound

Wainwright and Jordan’s log-determinant bound (2004):

\[Z_{\text{rld}}(Q) := (n/2) \log(2\pi e) + \max_{d(x)=x} \text{Tr} \ Q X + \frac{1}{2} \log \det (X - xx^T + \frac{1}{12}I) \]

Fact: The cardinality bound is better than the log-determinant one, provided \(\|Q\|_1 \leq 0.08n \)

(In practice, the condition is very conservative)
Bounds as a function of distance to standard Ising models
approximation error for upper bounds on the exact log–partition function (n=20)
Consequences for the maximum-likelihood problem

Including the convex bound $D_{st}(Q) \leq \epsilon$ in the maximum-likelihood problem makes a lot of sense:

- It ensures that the approximation error is less than 2ϵ

- It will tend to produce an optimal Q^* that has few off-diagonal elements differing from their median

Hence, the model is “interpretable” — we can display a graph showing only those non-median terms, the user needs to know that there is an overall “mean-field” effect.
Concluding remarks

• Online news analysis, and more generally, the *analysis of social data* found on the web, constitute a new frontier for statistics and optimization, as were biology and finance in the last decade.

• This raises new *fundamental challenges for machine learning*, especially in the areas of sparsity, online learning and binary data models.

• Calls for a renewed interaction between engineering and social sciences.