
Lifted Neural Nets

BoydFest 2018

Laurent El Ghaoui∗

Joint work† with G. Negiar∗∗, A. Askari∗∗, R. Sambharya∗∗, T. Roosta∗∗∗

March 2, 2018

∗ EECS and IEOR Dept., UC Berkeley
∗∗ EECS Dept., UC Berkeley
∗∗∗ SumUp Analytics, Inc
† Based on a presentation at NIPS Workshop on Optimization, 2017

1 / 31

Feedforward Networks

Why I have trouble with neural nets

A picture taken from [Koutnik et al., 2014].

2 / 31

Feedforward Networks

Given input point x ∈ Rn, predicted output:

ŷ(x) = xL+1,

xl+1 = φl (Wlxl + bl), l = 0, . . . , L,

with x0 = x .

• l = 1, . . . , L denotes layer index;

• (Wl , bl)’s are the parameters of the NN;

• φl ’s given non-linear maps (“activation functions”);

• xl ’s “state” (“hidden” or “feature” vector)—note size may vary from layer
to layer.

For multiple input points contained in the n ×m matrix X : set Ŷ (X) = XL+1,
where

Xl+1 = φl (WlXl + bl1T), l = 0, . . . , L,

with initial value X0 = X .

3 / 31

Training problem

min
(Wl ,bl)

L
l=0,(Xl)

L+1
l=1

L(Y ,XL+1) +
L∑

l=0

πl (Wl)

s.t. Xl+1 = φl (WlXl + bl1T
m), l = 0, . . . , L,

X0 = X ,

where

• L is a loss function;

• πl ’s are penalty functions;

• X = [x1, . . . , xm] ∈ Rn×m contains m input points xi ∈ Rn

• Y = [y1, . . . , ym] ∈ Rp×m contains the corresponding responses (or
labels)

4 / 31

Solving the training problem

To solve the training problem:

• eliminate X -variables via the recursion

Xl+1 = φl (WlXl + bl1T
m), l = 0, . . . , L, X0 = X .

• Minimize the resulting objective function of the (W , b)-variables.

The complicated structure of the resulting objective function points to
stochastic gradients as the only viable solution method.

• Can take a long time to converge.

• Can fail to converge due to numerical issues (vanishing / exploding
gradients)

• Difficult to handle constraints.

5 / 31

Side note: training NNs is an end-to-end control problem

Consider a dynamical system with state x(t) and control variable u(t)

x(t + 1) = φ(u(t)), t = 0, 1, 2, . . .

Assume (WLOG) that all the layers, including the last one, have the same
dimension, n; then X ,Y ∈ Rn×m.

The training problem can be
formulated as an end-to-end control
synthesis problem: find a linear,
state-feedback, time-varying control
law u(t) = W (t)x(t) such that each
input point (column in X) is mapped
onto the corresponding output
(column in Y).

6 / 31

Lifted Framework

Lifted framework

Recall training problem:

min
(Wl ,bl)

L
l=0,(Xl)

L+1
l=1

L(Y ,XL+1) +
L∑

l=0

πl (Wl)

s.t. Xl+1 = φl (WlXl + bl1T
m), l = 0, . . . , L, X0 = X .

Proposed approach:

• Keep the X -variables;

• Penalize the constraints, first representing activations as “argmin” maps;

• Solve via block-coordinate descent.

7 / 31

RELU activation as an “argmin” map

For a vector u, RELU defined as

φ(u) = max(0, u),

with max acting component-wise on the vector input.

RELU can be represented as the solution map of an optimization problem:

φ(u) = max(0, u) = arg min
v≥0
‖v − u‖2.

Hence the activation condition

Xl+1 = φl (WlXl + bl1T
m)

can be equivalently written

Xl+1 ∈ arg min
Z≥0
‖Z −WlXl − bl1T‖2

F .

8 / 31

Example: multi-layer ridge regression with RELUs

min
(Wl ,bl)

L
l=0,(Xl)

L
l=1

‖Y − XL+1‖2
F +

L∑
l=0

(
λl+1‖Xl+1 −WlXl − bl1T‖2

F + ρl‖Wl‖2
F

)
s.t. Xl ≥ 0, l = 1, . . . , L, X0 = X .

where (λl)
L+1
l=1 are given hyper-parameters (WLOG can assume all equal).

Solve problem via block coordinate descent (BCD), i.e. alternate minimization
over (W , b)- and X -variables:

• For fixed (W , b)-variables, the problem is is a (matrix) non-negative
least-squares problem. The problem is fully parallelizable across the
data points.

• For fixed X -variables, the problem is a set of parallel (matrix) ridge
regression problems, and is parallelizable across layers and data points.

9 / 31

Variational representation of activations

Consider the following condition on a generic activation function φ : Rk → Rh.

JC Condition. The activation function φ : Rk → Rh satisfies the
jointly convex (JC) condition if it can be represented as follows:

φ(u) = arg min
v
Dφ(u, v),

where Dφ : Rk × Rh → R is a jointly convex function, which is
referred to as a JC-divergence associated with the activation
function.

Note that for the JC condition to hold, the activation function needs to be
monotone increasing.

10 / 31

Examples of JC activations

RELU:

max(u, 0) = arg min
v
Dφ(u, v) :=

{
‖v − u‖2

2 if v ≥ 0,
+∞ otherwise.

“leaky” ReLU with parameter α ∈ (0, 1):

max(u/α, u) = arg min
v
‖v − u‖2

2 : v ≥ (1/α)u.

Piece-wise sigmoı̈d:

min(1,max(0, u)) = arg min
v
‖v − u‖2

2 : 0 ≤ v ≤ 1.

11 / 31

Examples of JC activations

Euclidean projection of a real vector u ∈ Rk onto the probability simplex in Rk :

φ(u) = arg min
v
‖v − u‖2

2 : v ≥ 0, vT 1 = 1.

Max-pooling: for example

φ(u) = (max
1≤i≤p1

u(1)
i , max

1≤i≤p2
u(2)

i) ∈ R2. (1)

Then
φ(u) = arg min

v
1T v + 1T (u − Dv)+,

where D is an appropriate block-diagonal matrix of size p × 2 that encodes
the specifics of the max-pooling, namely in our case D = diag(1p1 , 1p2).

12 / 31

Variational representation of activations

We express the activation at layer l as

Xl+1 ∈ arg min
Z

Dl (WlXl + bl1T ,Z), l = 0, . . . , L.

where Dl ’s are the JC-divergences associated with φl ’s.

13 / 31

Lifted neural networks

Replace constraints with penalties

min
(Xl)

L+1
l=1 ,(Wl)

L
l=0

L(Y ,XL+1) +
L∑

l=0

(
λl+1Dl (WlXl + bl1T ,Xl+1) + πl (Wl)

)
: X0 = X .

with λ1, . . . , λL+1 given positive hyper-parameters.

Solve problem via block coordinate descent (BCD):

• For fixed (W , b)-variables, the problem is convex in the X -variables Xl ,
l = 1, . . . , L, and is fully parallelizable across the data points.

• For fixed X -variables, the problem is convex in the (W , b)-variables, and
is parallelizable across layers and data points.

14 / 31

Prediction rule in a standard NN

In a standard NN:

ŷ(x) = min
y
L(y , xL+1) : xl+1 = φl (Wlxl + bl), l = 0, . . . , L, x0 = x ,

where

• weights are now fixed;

• y ∈ Rp is a variable.

Trivially reduces to the standard prediction rule, ŷ(x) = xL+1, where xL+1 is
obtained via the recursion above.

15 / 31

Prediction rule in lifted framework

ŷ(x) = arg min
y,(xl)

L+1
l=1

L(y , xL+1) +
L∑

l=0

λl+1Dl (Wlxl + bl , xl+1) : x0 = x .

where

• weights are now fixed;

• y ∈ Rp is a variable.

• Can solve as convex problem.

• Not the same as the standard rule!

• Activation now depends on data.

16 / 31

Links with matrix factorization

Lifted model can be written

min
W̃∈W, X̃∈X

L(W̃ X̃ , Ỹ)

where

• W̃ (resp. X̃) is a matrix containing the (W , b) (resp. X -variables);

• Ỹ contains the input and output matrices;

• L is a loss function, encoding that of last layer, and the JC-divergences
representing the activation functions;

• Sets X ,W are convex.

• Connects with generalized low-rank models [Udell et al., 2016];

• can solve using alternative minimization (BCD);

• covers may extensions such as recurrent NNs, attention models, etc.

17 / 31

Links with Lagrange relaxations

We can represent any strictly monotone activation

v = φ(u)⇐⇒ Bφ(u, v) ≤ 0,

where Bφ is bi-convex:

Bφ(u, v) := F (u) + F∗(v)− uT v ,

where F is a convex function:

F (u) :=

p∑
i=1

∫ vi

0
φi (ξ) dξ,

with F∗ the Fenchel conjugate of F .

In this setting, lifted model leads to a Lagrange relaxation; X -update prblem
is then not jointly convex, but BCD methods apply.

18 / 31

Extensions and variants

Optimizing over activation functions

Parametrize activations via

φ(u) = max(α,min(β, u)) = arg min
v
‖v − u‖2

2 : α ≤ v ≤ β,

where α ≤ β ∈ Rk are now variables. In multi-layer ridge regression:

min
(Wl ,bl)

L
l=0,(Xl)

L
l=1,(αl ,βl)

L
l=1

‖Y − XL+1‖2
F +

L∑
l=0

(
λl+1‖Xl+1 −WlXl − bl1T‖2

F + ρl‖Wl‖2
F

)
s.t. αl1T ≤ Xl ≤ βl1T , l = 1, . . . , L, X0 = X .

Update of X -variables can be done jointly with that of scale variables
(αl , βl)

L
l=1, and the resulting problem is jointly convex.

19 / 31

Unitary networks

Idea of unitary constraints on Wl ’s proposed in [Arjovsky et al., 2016]. In the
lifted model:

min
(Wl ,bl)

L
l=0,(Xl)

L+1
l=0

‖XL+1 −WLXL‖2
F + ρ‖WL‖2

F +

λ

L−1∑
l=0

‖Xl+1 −WlXl‖2
F + ρ‖W0‖2

F

s.t. W T
l Wl = Iq , l = 1, . . . , L− 1,

Xl ≥ 0, l = 1, . . . , L, X0 = X , XL+1 = Y .

Unitary constraints on matrices Wl ’s is a form of regularization.

• Updating W -variables is a simple SVD.

• Updating X -variables can be done in closed-form.

20 / 31

Unitary networks

• W -update: orthogonal Procrustes problem

Wl = arg min
W∈Rq×q

‖Xl+1 −WXl‖F : W T W = Iq

= arg max
W

Tr WXlX T
l+1 : W T W = Iq .

Can solve via SVD of Ml := Xl+1X T
l . In typical architectures, these

matrices are of order ≈ 100− 500.

• X -update: with RELUs, simple expression for intermediate layers

X+
l = φ(

1
1 + λ

W T
l Xl+1 +

λ

1 + λ
Wl−1Xl−1), l = 1, . . . , L− 1.

21 / 31

Input matrix completion

Can allow partially known entries in X to be variables in the problem:

min
(Wl ,bl)

L
l=0,(Xl)

L
l=0

‖Y − XL+1‖2
F

+
L∑

l=0

(
λl+1‖Xl+1 −WlXl − bl1T‖2

F + ρl‖Wl‖2
F

)
s.t. Xl ≥ 0, l = 1, . . . , L, Xlow ≤ X0 ≤ Xup.

• The only difference being that X0, which was fixed to the input X before,
is now a variable.

• At test time, we may also allow for X0 to be a variable.

22 / 31

Robustness

Assume X is unknown-but-bounded: X ∈ X ⊆ Rn×m.

Robust counterpart [Ben-Tal et al., 2009] of training problem:

min
(Wl ,bl)

L
l=0,(Xl)

L
l=1

max
X∈X

‖Y − XL+1‖F +
L∑

l=0

‖Xl+1 −WlXl − bl1T‖F

s.t. Xl ≥ 0, l = 1, . . . , L, X0 = X .

First layer problem is modified to

max
X∈X

‖X1 −W0X − b01T‖F

For example, with the uncertainty set

X = {X + ∆ : ‖∆‖ ≤ ρ0}

with ‖ · ‖ the largest singular value norm, the expression above reads

‖X1 −W0X − b01T‖F + ρ0‖W0‖.

23 / 31

Numerical Results

MNIST

MNIST dataset:

• 70,000 images total, we randomly split to 60,000 training images, 10,000
test images;

• 10 classes (digits 0-9);

• Preprocess the data by zero-meaning and scale to unit variance

• Use RELUs throughout;

• For the last layer, use a cross entropy loss for training and a softmax
function to ensure our output is a probability distribution over classes.

• Two 1-layer networks with 300, 1000 hidden units, two 2-layer
500− 150, 300− 100 hidden units and one 4-layer network were tested.

24 / 31

Error rates

Architecture Our Model NN [random] NN [init]
28 × 28 − 300 − 10 0.102 ± 0.001 0.022 ± 0.001 0.0210 ± 0.0017
28 × 28 − 1000 − 10 0.096 ± 0.004 0.019 ± 0.001 0.0182 ± 0.0007
28 × 28 − 300 − 100 − 10 0.139 ± 0.003 0.071 ± 0.015 0.0224 ± 0.0005
28 × 28 − 500 − 150 − 10 0.128 ± 0.002 0.080 ± 0.025 0.0218 ± 0.0005
28 × 28 − 500 − 300 − 150 − 100 − 10 0.148 ± 0.002 0.83 ± 0.07 0.0223 ± 0.0005

Error rate on the test set using different networks, best result is highlighted in boldface.

NN[random] is a standard neural network with random initialization while NN[init] is a

neural network initialized with the weights and biases learned from training our

model.The neural networks were trained for 20 epochs using RMSprop in Tensorflow.

25 / 31

Test and training accuracy vs. # BCD iterations

Model: lifted NN using 1 hidden layer with 300 nodes

• x-axis is # iterations, 1 iteration is either a W update or an X -update, so
a total of 40 iterations is 20 W -updates and 20 X -updates;

• ρ-optimization is used to determine the optimal regularization parameter
at every step of the optimization; at every step for the W update, ρ is
optimized using 10-fold CV over 10 different values of ρ.

Note: after just one update of both W - and X -variables, the training accuracy
immediately jumps up to around 90%.

26 / 31

Using lifted model as initialization

Model: lifted NN using 1 hidden layer with 300 nodes, 4 different initialization
schemes

• Right at step one for the lifted initialization we are already at 90%
accuracy, indicates that we are definitely learning something similar to
regular NN
• We are already near optimal;
• There is a noticeable gap between training using our initialization and

other initialization methods.
27 / 31

Conclusions and References

Some take-aways

• Lifted model provides competitive accuracy;

• Appears to be an excellent initialization scheme;

• Allows for block-coordinate descent methods to be applied;

• Much speed gains can result from exploiting simple structure of
sub-problems, via modern methods such as
sketching [Woodruff, 2014, Pilanci and Wainwright, 2016];

• Lifted framework can handle constraints on weight matrices, or various
variants, quite easily;

• Connects NNs with other areas such as matrix
factorization [Udell et al., 2016].

28 / 31

References i

Arjovsky, M., Shah, A., and Bengio, Y. (2016).

Unitary evolution recurrent neural networks.

In International Conference on Machine Learning, pages 1120–1128.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009).

Robust optimization.

Princeton University Press.

Bubeck, S. (2015).

Convex optimization: Algorithms and complexity.

Found. Trends Mach. Learn.

He, K., Zhang, X., Ren, S., and Sun, J. (2015).

Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification.

CoRR, abs/1502.01852.

29 / 31

References ii

Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014).

A clockwork RNN.

In International Conference on Machine Learning, pages 1863–1871.

Maclin, R. and Shavlik, J. W. (1995).

Combining the predictions of multiple classifiers: Using
competitive learning to initialize neural networks.

In Proc. 14th Int. Joint Conference on Artificial Intelligence, IJCAI’95.

Negiar, G., Askari, A., Fabian, P., and El Ghaoui, L. (2017).

Lifted neural networks for weight initialization.

In 10th NIPS Workshop on Optimization for Machine Learning.

Pilanci, M. and Wainwright, M. J. (2016).

Iterative Hessian sketch: Fast and accurate solution approximation
for constrained least-squares.

The Journal of Machine Learning Research, 17(1).

30 / 31

References iii

Seuret, M., Alberti, M., Ingold, R., and Liwicki, M. (2017).

PCA-initialized deep neural networks applied to document image
analysis.

CoRR, abs/1702.00177.

Udell, M., Horn, C., Zadeh, R., Boyd, S., et al. (2016).

Generalized low rank models.

Foundations and Trends R© in Machine Learning, 9(1):1–118.

Woodruff, D. P. (2014).

Sketching as a tool for numerical linear algebra.

CoRR, abs/1411.4357.

31 / 31

	Feedforward Networks
	Lifted Framework
	Extensions and variants
	Numerical Results
	Conclusions and References

