Lifted Neural Nets
BoydFest 2018

Laurent El Ghaoui*
Joint work® with G. Negiar**, A. Askari**, R. Sambharya**, T. Roosta***

March 2, 2018

* EECS and IEOR Dept., UC Berkeley

** EECS Dept., UC Berkeley

*** SumUp Analytics, Inc

T Based on a presentation at NIPS Workshop on Optimization, 2017

31



Feedforward Networks



)
D
)
c
©
B
=
)
c
£
F=
S
o
)
3
o
=
=
o
>
©
<
>
=

Output

Input

A picture taken from [Koutnik et al., 2014].

31



Feedforward Networks

Given input point x € R”, predicted output:

V(X) = xp41,
X1 = g(Wixi + by), 1=0,...,L,

with xo = x.

e /=1,..., Ldenotes layer index;
e (W, b))’s are the parameters of the NN;
e ¢/'s given non-linear maps (“activation functions”);

e x;’s “state” (*hidden” or “feature” vector)—note size may vary from layer
to layer.

For multiple input points contained in the n x m matrix X: set V(X) = X111,
where
Xio1 = o(WXi+b17), 1=0,...,L,

with initial value Xp = X.



Training problem

L
min LY, Xeer) + Y m(W)

(W b)) g, (XD 1=0
st X1 =@(WiXi+ b)), 1=0,...,L

Xo = X,

where

L is a loss function;

'S are penalty functions;

e X =[xi,...,Xxm] € R™ contains m input points x; € R"
e Y =|[y1,...,¥m] € RP* contains the corresponding responses (or
labels)



Solving the training problem

To solve the training problem:
e eliminate X-variables via the recursion
X1 = o(WXi+ b)), 1=0,....L, Xo=X.

e Minimize the resulting objective function of the (W, b)-variables.

The complicated structure of the resulting objective function points to
stochastic gradients as the only viable solution method.
e Can take a long time to converge.

e Can fail to converge due to numerical issues (vanishing / exploding
gradients)

e Difficult to handle constraints.



Side note: training NNs is an end-to-end control problem

Consider a dynamical system with state x(t) and control variable u(t)
x(t+1)=o¢(u(t)), t=0,1,2,...

Assume (WLOG) that all the layers, including the last one, have the same
dimension, n; then X, Y € R™™.

The training problem can be

formulated as an end-to-end control
synthesis problem: find a linear,
///\ } \ i X
N state-feedback, time-varying control
Ci’\;:: % law u(t) = W(t)x(t) such that each
- input point (column in X) is mapped
/ onto the corresponding output

(columnin Y).

31



Lifted Framework




Lifted framework

Recall training problem:

L
min L(Y, XL+1)+ZT(/( W)

(W, b)) Py

st Xu1=a(WX +b17), 1=0,....L X=X,

Proposed approach:

e Keep the X-variables;
e Penalize the constraints, first representing activations as “argmin” maps;

e Solve via block-coordinate descent.



RELU activation as an “argmin” map

For a vector u, RELU defined as
o(u) = max(0, v),

with max acting component-wise on the vector input.

RELU can be represented as the solution map of an optimization problem:

¢lu)i= max(0, u) = argmin ||V = uf2-

Hence the activation condition
X1 = oi(WiXi + brlp)
can be equivalently written

. T2
X1 € argmin |2 — WiX; — bt |-



Example: multi-layer ridge regression with RELUs

min 1Y — XeallE+
(Wh,b)f_g o (XD)E_4
L
S (MetllXisr — WiXi — ATIE + il WlE)
1=0
st X >0, I=1,....L, X=X

where (A,),L;1 are given hyper-parameters (WLOG can assume all equal).

Solve problem via block coordinate descent (BCD), i.e. alternate minimization
over (W, b)- and X-variables:

e For fixed (W, b)-variables, the problem is is a (matrix) non-negative
least-squares problem. The problem is fully parallelizable across the
data points.

e For fixed X-variables, the problem is a set of parallel (matrix) ridge
regression problems, and is parallelizable across layers and data points.



Variational representation of activations

Consider the following condition on a generic activation function ¢ : R — R".

JC Condition. The activation function ¢ : R¥ — R" satisfies the
jointly convex (JC) condition if it can be represented as follows:

6(u) = arg min Dy(u,v),

where Dy : R* x R" — R is a jointly convex function, which is
referred to as a JC-divergence associated with the activation
function.

Note that for the JC condition to hold, the activation function needs to be
monotone increasing.

10/31



Examples of JC activations

RELU:

lv—ul3 ifv>0,

max(u,0) = argmin Dy(u, V) := i
x(u,0) em a(U,V) { 400 otherwise.

“leaky” ReLU with parameter a € (0, 1):

max(u/a, u) = arg mvin lv—ul} : v>(1/a)u.

Piece-wise sigmoid:

min(1, max(0, u)) = argmin |[v—ul3 : 0<v<1.
v

11/31



Examples of JC activations

Euclidean projection of a real vector u € R onto the probability simplex in R¥:

d(u) =argmin |[v—ul3 : v>0, v1=1.
v

Max-pooling: for example

_ (1) (2) 2
A0 =gz, o . G e W

Then
o(u) = argmin 17v +17(u— Dv),,
v

where D is an appropriate block-diagonal matrix of size p x 2 that encodes
the specifics of the max-pooling, namely in our case D = diag(1p,,1p,).

12/31



Variational representation of activations

We express the activation at layer / as
Xi.1 € argmin Di(WiX; + b1’,2), I=0,...,L

where Dj’s are the JC-divergences associated with ¢;’s.



Lifted neural networks

Replace constraints with penalties

L
min LY, Xean) + > <)\,+1 Di(WiX; + b7, Xii1) + 7r,(W,)) X=X,

L (W) =

with A1, ..., A1 given positive hyper-parameters.

Solve problem via block coordinate descent (BCD):

e For fixed (W, b)-variables, the problem is convex in the X-variables X,
I=1,...,L, and is fully parallelizable across the data points.

e For fixed X-variables, the problem is convex in the (W, b)-variables, and
is parallelizable across layers and data points.

14/31



Prediction rule in a standard NN

In a standard NN:
y(x) = myin LY, Xi11) = X = o(Wixi+ br), 1=0,...,L, X =x,
where

e weights are now fixed,

e y € R’ is a variable.

Trivially reduces to the standard prediction rule, y(x) = x..1, where x.,1 is
obtained via the recursion above.



Prediction rule in lifted framework

L

P(x) = arg (mi)L LY, Xee1) + D Mt D(Wixi + by, Xig1) 2 Xo = X.
VX124 =0

where

weights are now fixed,

y € RP is a variable.

Can solve as convex problem.

e Not the same as the standard rule!

Activation now depends on data.

16/31



Links with matrix factorization

Lifted model can be written

where

W (resp. X) is a matrix containing the (W, b) (resp. X-variables);

e Y contains the input and output matrices;

L is a loss function, encoding that of last layer, and the JC-divergences
representing the activation functions;

Sets X', W are convex.

Connects with generalized low-rank models [Udell et al., 2016];

can solve using alternative minimization (BCD);

covers may extensions such as recurrent NNs, attention models, etc.



Links with Lagrange relaxations

We can represent any strictly monotone activation
v = ¢(u) < By(u,v) <0,
where B, is bi-convex:
Bys(u,v) == F(u)+ F*(v) —u'v,

where F is a convex function:

P 7
A= / 6i(€) de,

with F* the Fenchel conjugate of F.

In this setting, lifted model leads to a Lagrange relaxation; X-update prblem
is then not jointly convex, but BCD methods apply.

18/31



Extensions and variants




Optimizing over activation functions

Parametrize activations via

o(u) = max(a, min(B, u)) = arg mvin lv—ult : a<v<B,

where o < 3 € R¥ are now variables. In multi-layer ridge regression:

. 2
, min L Y = Xallg+
(W1,01) 1> (X)) (@814
L

5= (sllXisr = WX, — bAT|E + | W E)
=0
st alT <X <p1T, I=1,... L, Xo=X.

Update of X-variables can be done jointly with that of scale variables
(as, B1)k4, and the resulting problem is jointly convex.

19/31



Unitary networks

Idea of unitary constraints on W)’s proposed in [Arjovsky et al., 2016]. In the
lifted model:
min [ Xeer — WiXclIE + pl Wil E+

(W), b)) (X)) S
L—1

AN Xt — WiXilIE + ol Wol 7
1=0
st. WW=1, I=1,....L—-1,
X>0, I=1,....L, Xo=X, X1 = Y.

Unitary constraints on matrices W,'s is a form of regularization.

e Updating W-variables is a simple SVD.
e Updating X-variables can be done in closed-form.

20/31



Unitary networks

e W-update: orthogonal Procrustes problem

Wi = arg min [ X1 — WXi[lF : WTW = |,
weR

= argmax Tr WXX. - WW=I,

Can solve via SVD of M, := X;.1X/. In typical architectures, these
matrices are of order ~ 100 — 500.

e X-update: with RELUs, simple expression for intermediate layers

]
X,+:¢(mvvfx,+1+ WisXi1), I=1,...,L—1.

A
14+ A

21/31



Input matrix completion

Can allow partially known entries in X to be variables in the problem:

min 1Y = X1
(Wh,b)f_ o (XD)E_o

L
+>° (Am 1 Xii1 = WiXi — bAT |2 + pi| W/HQF)
~0
St X >0, I=1,...,L, Xow < Xo < X

e The only difference being that Xp, which was fixed to the input X before,
is now a variable.

e At test time, we may also allow for X, to be a variable.

22/31



Assume X is unknown-but-bounded: X € X C R™".

Robust counterpart [Ben-Tal et al., 2009] of training problem:
L
min  max [|[Y = Xelle+ D X1 — WX — b1 |f
(Wb}, (X)L, XEX " ,;: ’
st. X, >0, I=1,...,L, Xo=X.

First layer problem is modified to

max || Xi — WoX — b1’ ||F

Xex
For example, with the uncertainty set

X ={X+4: Al < po}

with || - || the largest singular value norm, the expression above reads

X — WoX — bo17[|F + pol| Wo .

23/31



Numerical Results




MNIST

MNIST dataset:
e 70,000 images total, we randomly split to 60,000 training images, 10,000
test images;
e 10 classes (digits 0-9);
e Preprocess the data by zero-meaning and scale to unit variance
e Use RELUs throughout;

e For the last layer, use a cross entropy loss for training and a softmax
function to ensure our output is a probability distribution over classes.

e Two 1-layer networks with 300, 1000 hidden units, two 2-layer
500 — 150, 300 — 100 hidden units and one 4-layer network were tested.

24 /31



Architecture Our Model NN [random] NN [init]

28 x 28 — 300 — 10 0.102 £ 0.001 0.022 £ 0.001 0.0210 £ 0.0017
28 x 28 — 1000 — 10 0.096 + 0.004 0.019 £ 0.001 0.0182 + 0.0007
28 x 28 — 300 — 100 — 10 0.139 + 0.003 0.071 £ 0.015 0.0224 + 0.0005
28 x 28 — 500 — 150 — 10 0.128 4 0.002 0.080 £ 0.025 0.0218 £ 0.0005
28 x 28 — 500 — 300 — 150 — 100 — 10 0.148 + 0.002 0.83 4 0.07 0.0223 + 0.0005

Error rate on the test set using different networks, best result is highlighted in boldface.
NN[random] is a standard neural network with random initialization while NN[init] is a
neural network initialized with the weights and biases learned from training our
model.The neural networks were trained for 20 epochs using RMSprop in Tensorflow.

25/31



Test and training accuracy vs. # BCD iterations

Model: lifted NN using 1 hidden layer with 300 nodes

Lifted Net Accuracy: (3001, Cross Entropy, p-optimization

e x-axis is # iterations, 1 iteration is either a W update or an X-update, so
a total of 40 iterations is 20 W-updates and 20 X-updates;

e p-optimization is used to determine the optimal regularization parameter
at every step of the optimization; at every step for the W update, p is
optimized using 10-fold CV over 10 different values of p.

Note: after just one update of both W- and X-variables, the training accuracy
immediately jumps up to around 90%.
26/31



Using lifted model as initialization

Model: lifted NN using 1 hidden layer with 300 nodes, 4 different initialization
schemes

it

o 2000 2000 6000
Number of batches.

e Right at step one for the lifted initialization we are already at 90%
accuracy, indicates that we are definitely learning something similar to
regular NN

e We are already near optimal;

e There is a noticeable gap between training using our initialization and
other initialization methods.



Conclusions and References




Some take-aways

o Lifted model provides competitive accuracy;
e Appears to be an excellent initialization scheme;
¢ Allows for block-coordinate descent methods to be applied;

e Much speed gains can result from exploiting simple structure of
sub-problems, via modern methods such as
sketching [Woodruff, 2014, Pilanci and Wainwright, 2016];

e Lifted framework can handle constraints on weight matrices, or various
variants, quite easily;

e Connects NNs with other areas such as matrix
factorization [Udell et al., 2016].

28/31



References i

@ Arjovsky, M., Shah, A., and Bengio, Y. (2016).
Unitary evolution recurrent neural networks.
In International Conference on Machine Learning, pages 1120—1128.

@ Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009).
Robust optimization.
Princeton University Press.

[3 Bubeck, S. (2015).
Convex optimization: Algorithms and complexity.
Found. Trends Mach. Learn.

@ He, K., Zhang, X., Ren, S., and Sun, J. (2015).

Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification.

CoRR, abs/1502.01852.

29/31



References ii

@ Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014).
A clockwork RNN.
In International Conference on Machine Learning, pages 1863—1871.

@ Maclin, R. and Shavlik, J. W. (1995).

Combining the predictions of multiple classifiers: Using
competitive learning to initialize neural networks.

In Proc. 14th Int. Joint Conference on Artificial Intelligence, IJCAI'95.

@ Negiar, G., Askari, A., Fabian, P, and EIl Ghaoui, L. (2017).
Lifted neural networks for weight initialization.
In 10th NIPS Workshop on Optimization for Machine Learning.

@ Pilanci, M. and Wainwright, M. J. (2016).

Iterative Hessian sketch: Fast and accurate solution approximation
for constrained least-squares.

The Journal of Machine Learning Research, 17(1).

30/31



References iii

@ Seuret, M., Alberti, M., Ingold, R., and Liwicki, M. (2017).

PCA-initialized deep neural networks applied to document image
analysis.

CoRR, abs/1702.00177.

@ Udell, M., Horn, C., Zadeh, R., Boyd, S., et al. (2016).
Generalized low rank models.
Foundations and Trends®) in Machine Learning, 9(1):1—118.

(4 Woodruff, D. P. (2014).
Sketching as a tool for numerical linear algebra.
CoRR, abs/1411.4357.

31/31



	Feedforward Networks
	Lifted Framework
	Extensions and variants
	Numerical Results
	Conclusions and References

