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Feedforward Networks



Why I have trouble with neural nets

A picture taken from [Koutnik et al., 2014].
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Feedforward Networks

Given input point x ∈ Rn, predicted output:

ŷ(x) = xL+1,

xl+1 = φl (Wlxl + bl ), l = 0, . . . , L,

with x0 = x .

• l = 1, . . . , L denotes layer index;

• (Wl , bl )’s are the parameters of the NN;

• φl ’s given non-linear maps (“activation functions”);

• xl ’s “state” (“hidden” or “feature” vector)—note size may vary from layer
to layer.

For multiple input points contained in the n ×m matrix X : set Ŷ (X ) = XL+1,
where

Xl+1 = φl (WlXl + bl1T ), l = 0, . . . , L,

with initial value X0 = X .
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Training problem

min
(Wl ,bl )

L
l=0,(Xl )

L+1
l=1

L(Y ,XL+1) +
L∑

l=0

πl (Wl )

s.t. Xl+1 = φl (WlXl + bl1T
m), l = 0, . . . , L,

X0 = X ,

where

• L is a loss function;

• πl ’s are penalty functions;

• X = [x1, . . . , xm] ∈ Rn×m contains m input points xi ∈ Rn

• Y = [y1, . . . , ym] ∈ Rp×m contains the corresponding responses (or
labels)
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Solving the training problem

To solve the training problem:

• eliminate X -variables via the recursion

Xl+1 = φl (WlXl + bl1T
m), l = 0, . . . , L, X0 = X .

• Minimize the resulting objective function of the (W , b)-variables.

The complicated structure of the resulting objective function points to
stochastic gradients as the only viable solution method.

• Can take a long time to converge.

• Can fail to converge due to numerical issues (vanishing / exploding
gradients)

• Difficult to handle constraints.
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Side note: training NNs is an end-to-end control problem

Consider a dynamical system with state x(t) and control variable u(t)

x(t + 1) = φ(u(t)), t = 0, 1, 2, . . .

Assume (WLOG) that all the layers, including the last one, have the same
dimension, n; then X ,Y ∈ Rn×m.

The training problem can be
formulated as an end-to-end control
synthesis problem: find a linear,
state-feedback, time-varying control
law u(t) = W (t)x(t) such that each
input point (column in X ) is mapped
onto the corresponding output
(column in Y ).
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Lifted Framework



Lifted framework

Recall training problem:

min
(Wl ,bl )

L
l=0,(Xl )

L+1
l=1

L(Y ,XL+1) +
L∑

l=0

πl (Wl )

s.t. Xl+1 = φl (WlXl + bl1T
m), l = 0, . . . , L, X0 = X .

Proposed approach:

• Keep the X -variables;

• Penalize the constraints, first representing activations as “argmin” maps;

• Solve via block-coordinate descent.
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RELU activation as an “argmin” map

For a vector u, RELU defined as

φ(u) = max(0, u),

with max acting component-wise on the vector input.

RELU can be represented as the solution map of an optimization problem:

φ(u) = max(0, u) = arg min
v≥0
‖v − u‖2.

Hence the activation condition

Xl+1 = φl (WlXl + bl1T
m)

can be equivalently written

Xl+1 ∈ arg min
Z≥0
‖Z −WlXl − bl1T‖2

F .
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Example: multi-layer ridge regression with RELUs

min
(Wl ,bl )

L
l=0,(Xl )

L
l=1

‖Y − XL+1‖2
F +

L∑
l=0

(
λl+1‖Xl+1 −WlXl − bl1T‖2

F + ρl‖Wl‖2
F

)
s.t. Xl ≥ 0, l = 1, . . . , L, X0 = X .

where (λl )
L+1
l=1 are given hyper-parameters (WLOG can assume all equal).

Solve problem via block coordinate descent (BCD), i.e. alternate minimization
over (W , b)- and X -variables:

• For fixed (W , b)-variables, the problem is is a (matrix) non-negative
least-squares problem. The problem is fully parallelizable across the
data points.

• For fixed X -variables, the problem is a set of parallel (matrix) ridge
regression problems, and is parallelizable across layers and data points.
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Variational representation of activations

Consider the following condition on a generic activation function φ : Rk → Rh.

JC Condition. The activation function φ : Rk → Rh satisfies the
jointly convex (JC) condition if it can be represented as follows:

φ(u) = arg min
v
Dφ(u, v),

where Dφ : Rk × Rh → R is a jointly convex function, which is
referred to as a JC-divergence associated with the activation
function.

Note that for the JC condition to hold, the activation function needs to be
monotone increasing.
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Examples of JC activations

RELU:

max(u, 0) = arg min
v
Dφ(u, v) :=

{
‖v − u‖2

2 if v ≥ 0,
+∞ otherwise.

“leaky” ReLU with parameter α ∈ (0, 1):

max(u/α, u) = arg min
v
‖v − u‖2

2 : v ≥ (1/α)u.

Piece-wise sigmoı̈d:

min(1,max(0, u)) = arg min
v
‖v − u‖2

2 : 0 ≤ v ≤ 1.
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Examples of JC activations

Euclidean projection of a real vector u ∈ Rk onto the probability simplex in Rk :

φ(u) = arg min
v
‖v − u‖2

2 : v ≥ 0, vT 1 = 1.

Max-pooling: for example

φ(u) = ( max
1≤i≤p1

u(1)
i , max

1≤i≤p2
u(2)

i ) ∈ R2. (1)

Then
φ(u) = arg min

v
1T v + 1T (u − Dv)+,

where D is an appropriate block-diagonal matrix of size p × 2 that encodes
the specifics of the max-pooling, namely in our case D = diag(1p1 , 1p2 ).
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Variational representation of activations

We express the activation at layer l as

Xl+1 ∈ arg min
Z

Dl (WlXl + bl1T ,Z ), l = 0, . . . , L.

where Dl ’s are the JC-divergences associated with φl ’s.
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Lifted neural networks

Replace constraints with penalties

min
(Xl )

L+1
l=1 ,(Wl )

L
l=0

L(Y ,XL+1) +
L∑

l=0

(
λl+1Dl (WlXl + bl1T ,Xl+1) + πl (Wl )

)
: X0 = X .

with λ1, . . . , λL+1 given positive hyper-parameters.

Solve problem via block coordinate descent (BCD):

• For fixed (W , b)-variables, the problem is convex in the X -variables Xl ,
l = 1, . . . , L, and is fully parallelizable across the data points.

• For fixed X -variables, the problem is convex in the (W , b)-variables, and
is parallelizable across layers and data points.
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Prediction rule in a standard NN

In a standard NN:

ŷ(x) = min
y
L(y , xL+1) : xl+1 = φl (Wlxl + bl ), l = 0, . . . , L, x0 = x ,

where

• weights are now fixed;

• y ∈ Rp is a variable.

Trivially reduces to the standard prediction rule, ŷ(x) = xL+1, where xL+1 is
obtained via the recursion above.
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Prediction rule in lifted framework

ŷ(x) = arg min
y,(xl )

L+1
l=1

L(y , xL+1) +
L∑

l=0

λl+1Dl (Wlxl + bl , xl+1) : x0 = x .

where

• weights are now fixed;

• y ∈ Rp is a variable.

• Can solve as convex problem.

• Not the same as the standard rule!

• Activation now depends on data.

16 / 31



Links with matrix factorization

Lifted model can be written

min
W̃∈W, X̃∈X

L(W̃ X̃ , Ỹ )

where

• W̃ (resp. X̃ ) is a matrix containing the (W , b) (resp. X -variables);

• Ỹ contains the input and output matrices;

• L is a loss function, encoding that of last layer, and the JC-divergences
representing the activation functions;

• Sets X ,W are convex.

• Connects with generalized low-rank models [Udell et al., 2016];

• can solve using alternative minimization (BCD);

• covers may extensions such as recurrent NNs, attention models, etc.
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Links with Lagrange relaxations

We can represent any strictly monotone activation

v = φ(u)⇐⇒ Bφ(u, v) ≤ 0,

where Bφ is bi-convex:

Bφ(u, v) := F (u) + F∗(v)− uT v ,

where F is a convex function:

F (u) :=

p∑
i=1

∫ vi

0
φi (ξ) dξ,

with F∗ the Fenchel conjugate of F .

In this setting, lifted model leads to a Lagrange relaxation; X -update prblem
is then not jointly convex, but BCD methods apply.
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Extensions and variants



Optimizing over activation functions

Parametrize activations via

φ(u) = max(α,min(β, u)) = arg min
v
‖v − u‖2

2 : α ≤ v ≤ β,

where α ≤ β ∈ Rk are now variables. In multi-layer ridge regression:

min
(Wl ,bl )

L
l=0,(Xl )

L
l=1,(αl ,βl )

L
l=1

‖Y − XL+1‖2
F +

L∑
l=0

(
λl+1‖Xl+1 −WlXl − bl1T‖2

F + ρl‖Wl‖2
F

)
s.t. αl1T ≤ Xl ≤ βl1T , l = 1, . . . , L, X0 = X .

Update of X -variables can be done jointly with that of scale variables
(αl , βl )

L
l=1, and the resulting problem is jointly convex.
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Unitary networks

Idea of unitary constraints on Wl ’s proposed in [Arjovsky et al., 2016]. In the
lifted model:

min
(Wl ,bl )

L
l=0,(Xl )

L+1
l=0

‖XL+1 −WLXL‖2
F + ρ‖WL‖2

F +

λ

L−1∑
l=0

‖Xl+1 −WlXl‖2
F + ρ‖W0‖2

F

s.t. W T
l Wl = Iq , l = 1, . . . , L− 1,

Xl ≥ 0, l = 1, . . . , L, X0 = X , XL+1 = Y .

Unitary constraints on matrices Wl ’s is a form of regularization.

• Updating W -variables is a simple SVD.

• Updating X -variables can be done in closed-form.
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Unitary networks

• W -update: orthogonal Procrustes problem

Wl = arg min
W∈Rq×q

‖Xl+1 −WXl‖F : W T W = Iq

= arg max
W

Tr WXlX T
l+1 : W T W = Iq .

Can solve via SVD of Ml := Xl+1X T
l . In typical architectures, these

matrices are of order ≈ 100− 500.

• X -update: with RELUs, simple expression for intermediate layers

X+
l = φ(

1
1 + λ

W T
l Xl+1 +

λ

1 + λ
Wl−1Xl−1), l = 1, . . . , L− 1.
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Input matrix completion

Can allow partially known entries in X to be variables in the problem:

min
(Wl ,bl )

L
l=0,(Xl )

L
l=0

‖Y − XL+1‖2
F

+
L∑

l=0

(
λl+1‖Xl+1 −WlXl − bl1T‖2

F + ρl‖Wl‖2
F

)
s.t. Xl ≥ 0, l = 1, . . . , L, Xlow ≤ X0 ≤ Xup.

• The only difference being that X0, which was fixed to the input X before,
is now a variable.

• At test time, we may also allow for X0 to be a variable.
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Robustness

Assume X is unknown-but-bounded: X ∈ X ⊆ Rn×m.

Robust counterpart [Ben-Tal et al., 2009] of training problem:

min
(Wl ,bl )

L
l=0,(Xl )

L
l=1

max
X∈X

‖Y − XL+1‖F +
L∑

l=0

‖Xl+1 −WlXl − bl1T‖F

s.t. Xl ≥ 0, l = 1, . . . , L, X0 = X .

First layer problem is modified to

max
X∈X

‖X1 −W0X − b01T‖F

For example, with the uncertainty set

X = {X + ∆ : ‖∆‖ ≤ ρ0}

with ‖ · ‖ the largest singular value norm, the expression above reads

‖X1 −W0X − b01T‖F + ρ0‖W0‖.
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Numerical Results



MNIST

MNIST dataset:

• 70,000 images total, we randomly split to 60,000 training images, 10,000
test images;

• 10 classes (digits 0-9);

• Preprocess the data by zero-meaning and scale to unit variance

• Use RELUs throughout;

• For the last layer, use a cross entropy loss for training and a softmax
function to ensure our output is a probability distribution over classes.

• Two 1-layer networks with 300, 1000 hidden units, two 2-layer
500− 150, 300− 100 hidden units and one 4-layer network were tested.
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Error rates

Architecture Our Model NN [random] NN [init]
28 × 28 − 300 − 10 0.102 ± 0.001 0.022 ± 0.001 0.0210 ± 0.0017
28 × 28 − 1000 − 10 0.096 ± 0.004 0.019 ± 0.001 0.0182 ± 0.0007
28 × 28 − 300 − 100 − 10 0.139 ± 0.003 0.071 ± 0.015 0.0224 ± 0.0005
28 × 28 − 500 − 150 − 10 0.128 ± 0.002 0.080 ± 0.025 0.0218 ± 0.0005
28 × 28 − 500 − 300 − 150 − 100 − 10 0.148 ± 0.002 0.83 ± 0.07 0.0223 ± 0.0005

Error rate on the test set using different networks, best result is highlighted in boldface.

NN[random] is a standard neural network with random initialization while NN[init] is a

neural network initialized with the weights and biases learned from training our

model.The neural networks were trained for 20 epochs using RMSprop in Tensorflow.
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Test and training accuracy vs. # BCD iterations

Model: lifted NN using 1 hidden layer with 300 nodes

• x-axis is # iterations, 1 iteration is either a W update or an X -update, so
a total of 40 iterations is 20 W -updates and 20 X -updates;

• ρ-optimization is used to determine the optimal regularization parameter
at every step of the optimization; at every step for the W update, ρ is
optimized using 10-fold CV over 10 different values of ρ.

Note: after just one update of both W - and X -variables, the training accuracy
immediately jumps up to around 90%.
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Using lifted model as initialization

Model: lifted NN using 1 hidden layer with 300 nodes, 4 different initialization
schemes

• Right at step one for the lifted initialization we are already at 90%
accuracy, indicates that we are definitely learning something similar to
regular NN
• We are already near optimal;
• There is a noticeable gap between training using our initialization and

other initialization methods.
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Conclusions and References



Some take-aways

• Lifted model provides competitive accuracy;

• Appears to be an excellent initialization scheme;

• Allows for block-coordinate descent methods to be applied;

• Much speed gains can result from exploiting simple structure of
sub-problems, via modern methods such as
sketching [Woodruff, 2014, Pilanci and Wainwright, 2016];

• Lifted framework can handle constraints on weight matrices, or various
variants, quite easily;

• Connects NNs with other areas such as matrix
factorization [Udell et al., 2016].
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