The Curse of Uncertainty in Dynamic Programming and How to Fix It

Laurent El Ghaoui

co-author: Arnab Nilim

EECS Dept., UC Berkeley, USA

LIDS Seminar—November 2004
Overview

- The curse of uncertainty in Markov Decision Processes
- Robust control formulation
- Robust dynamic programming recursion
- Entropy-based uncertainty models
- Application: air traffic routing
Markov decision processes

- Consider a finite-state, finite-action discrete-time process:
 - state set \mathcal{X} (cardinality: n),
 - action set \mathcal{A} (cardinality: m).

- At each time step $t \in T := \{0, \ldots, N - 1\}$, the states make transitions according to a transition matrix $P_t^{a_t}$, where a_t is the current action.

- An action a taken at time t in state i incurs a cost $c_t(i, a)$.

- The decision maker’s policy is represented as $\pi = (a_0, \ldots, a_{N-1})$, where a_t’s are functions of the state.
Nominal problem

Finite-horizon problem:

\[\phi_N(\Pi, \tau) := \min_{\pi \in \Pi} C_N(\pi, \tau), \]

where

- \(\Pi := A^N \) the decision maker’s policy space,
- \(\tau := (P^a_t)_{a \in A, t \in T} \) denotes nature’s policy—it is fixed for now.
- \(C_N \) is the associated \(\gamma \)-discounted total expected cost:

\[C_N(\pi, \tau) := \mathbb{E} \left(\sum_{t=0}^{N-1} \gamma^t c_t(i_t, a_t(i_t)) + c_N(i_N) \right). \]
Bellman’s recursion

- The optimal value of the nominal problem is $\phi_N(\Pi, \tau) = q^Tv_0$, where q is the distribution of the initial state, and the value function $(v_t)_{t \in T}$ is the solution to the dynamic programming recursion:

$$v_t(i) = \min_{a \in A} \left(c_t(i, a) + \gamma(p_i^a)^T v_{t+1} \right), \quad i \in \mathcal{X}, \ t \in T,$$

where p_i^a is the i-th row of P^a.

- An optimal policy $\pi^* = (a_0^*, \ldots, a_{N-1}^*)$ is obtained by setting:

$$a_t^*(i) \in \arg \min_{a \in A} \left(c_t(i, a) + \gamma(p_i^a)^T v_{t+1} \right), \quad i \in \mathcal{X}, \ t \in T.$$
Computational complexity for computing an ϵ-suboptimal policy:

- Finite horizon case: $O(mn^2N)$. (N: horizon length.)

- Infinite horizon: $O \left(mn^2 \log \frac{\gamma}{(1-\gamma)\epsilon} \right)$. ($\gamma$: discount factor.)
Complexity of Bellman’s recursion

Computational complexity for computing an ϵ-suboptimal policy:

- Finite horizon case: $O(mn^2N)$. (N: horizon length.)

 By exhaustive search: $O(mn^N)!$

- Infinite horizon: $O\left(\frac{mn^2 \log \frac{\gamma}{(1-\gamma)\epsilon}}{1-\gamma} \right)$. ($\gamma$: discount factor.)
The curse of uncertainty

- In real-world problems, transition probabilities are very often inaccurate, due to estimation errors.

- The optimal solution may be very sensitive w.r.t. these probabilities.
The curse of uncertainty

- In real-world problems, transition probabilities are very often inaccurate, due to estimation errors.

- The optimal solution may be very sensitive w.r.t. these probabilities.

- We need to find robust policies: policies that perform well even in the presence of estimation errors.

- We want to obtain robustness at low extra computational cost.
Previous work

Many authors have recognized the need for taking into account uncertainty in transition matrix, including (but not limited to!):

- White & Eldeib, Satia & Lave, Givan, Leach & Dean Bagnell, Ng & Schneider (robot path planning), Abbad & Filar (control problems), Kalyanasundaram & Chong (call admission in a network), Epstein & Schneider (dynamic portfolio choice model), Madanat & Kuhn (infrastructure management), …

- Most models assume component-wise uncertainty, i.e. the transition matrix is an interval matrix:
 - such models lead to overly conservative policies;
 - they do not capture possible asymmetries in the confidence of estimates.
Previous work (follow’d)

- More recently, Iyengar has built on an initial report of ours and gave an independent proof of the "robust recursion".

- Previous results do not provide complexity estimates and most of them rely on heuristics.
Contributions

- Formulating uncertain MDP problem as a robust control problem;
Contributions

- Formulating uncertain MDP problem as a robust control problem;
- Proving a robust Bellman recursion for both finite and infinite horizon problems;
Contributions

• **Formulating** uncertain MDP problem as a robust control problem;

• **Proving** a robust Bellman recursion for both finite and infinite horizon problems;

• Identifying a class of **statistically accurate** uncertainty models for the transition matrices . . .
Contributions

- Formulating uncertain MDP problem as a robust control problem;
- Proving a robust Bellman recursion for both finite and infinite horizon problems;
- Identifying a class of statistically accurate uncertainty models for the transition matrices . . .
- . . . for which the robust recursion can be implemented via a simple bisection algorithm, at no extra computational cost w.r.t. the classical recursion.
Overview

- The curse of uncertainty in Markov Decision Processes
- *Robust control formulation*
- Robust dynamic programming recursion
- Entropy-based uncertainty models
- Application: air traffic routing
Describing uncertainty on transition matrices

- We will assume that transition matrices are unknown-but-bounded:

\[\forall a \in \mathcal{A}, \quad P^a \in \mathcal{P}^a, \]

where \(\mathcal{P}^a \) is a given subset of the set of transition matrices of \(\mathbb{R}^{n \times n} \).
Describing uncertainty on transition matrices

- We will assume that transition matrices are unknown-but-bounded:

 \[\forall a \in \mathcal{A}, \; P^a \in \mathcal{P}^a, \]

 where \(\mathcal{P}^a \) is a given subset of the set of transition matrices of \(\mathbb{R}^{n \times n} \).

- We can assume two kinds of behavior for nature:
 - **Time-varying uncertainty model**: nature picks the transition matrices once and for all time periods.
 - **Stationary uncertainty model**: nature picks a new set of transition matrices at each time period.
Two robust control problems

\[\phi_N(\Pi, U) := \min_{\pi \in \Pi} \max_{\tau \in U} C_N(\pi, \tau), \]

where the set \(U \) represents nature's policy space:

- **Time-varying uncertainty model:** \(U = \mathcal{T} \), where
 \[\mathcal{T} := (\bigotimes_{a \in \mathcal{A}} \mathcal{P}^a)^N. \]

- **Stationary uncertainty model:** \(U = \mathcal{T}_s \), where
 \[\mathcal{T}_s := \{ \tau \in \mathcal{T} : P_t^a = P_\tau^a \text{ for every } t, \tau \in T, a \in \mathcal{A} \}. \]
Between a rock and a hard place

- The stationary model is attractive for statistical reasons, as it is much easier to develop statistically accurate sets of confidence when the underlying process is time-invariant.
Between a rock and a hard place

- The **stationary** model is attractive for statistical reasons, as it is much easier to develop statistically accurate sets of confidence when the underlying process is time-invariant.

Difficulty: solving the corresponding robust control problem.
Between a rock and a hard place

- The **stationary** model is attractive for statistical reasons, as it is much easier to develop statistically accurate sets of confidence when the underlying process is time-invariant.

 Difficulty: solving the corresponding robust control problem.

- The **time-varying** model is attractive, as one can solve the corresponding game using the robust Bellman recursion seen later.
Between a rock and a hard place

- The stationary model is attractive for statistical reasons, as it is much easier to develop statistically accurate sets of confidence when the underlying process is time-invariant.

 Difficulty: solving the corresponding robust control problem.

- The time-varying model is attractive, as one can solve the corresponding game using the robust Bellman recursion seen later.

 Difficulty: estimating a meaningful set of confidence for time-varying transition matrices P_t^a.
Our approach

We’ll start with a stationary model, but approximate the control problem using a time-varying model—this will incur some degree of suboptimality.
Our approach

We’ll start with a stationary model, but approximate the control problem using a time-varying model—this will incur some degree of suboptimality.

Theorem: With a γ-discounted cost function, the gap between the optimal values of the finite-horizon problems under stationary and time-varying uncertainty models goes to zero as the horizon length N goes to infinity, at a geometric rate γ:

$$0 \leq \phi_N(\Pi, T) - \phi_N(\Pi, T_s) \leq \text{Constant} \cdot \frac{\gamma^N}{1 - \gamma}.$$

Thus, there is no gap in infinite-horizon problems.
Overview

- The curse of uncertainty in Markov Decision Processes
- Robust control formulation
- *Robust dynamic programming recursion*
- Entropy-based uncertainty models
- Application: air traffic routing
Robust Bellman recursion

(Finite-horizon case; set $\gamma = 1$.)

Theorem: With a time-varying uncertainty model, perfect duality holds:

$$\phi_N(\Pi, T) := \min_{\pi \in \Pi} \max_{\tau \in T} C_N(\pi, \tau) = \max_{\tau \in T} \min_{\pi \in \Pi} C_N(\pi, \tau).$$

The problem can be solved via the recursion

$$v_t(i) = \min_{a \in A} \left(c_t(i, a) + \max_{p \in P_i^a} p^T v_{t+1} \right), \quad i \in \mathcal{X}, \ t \in T, \quad (1)$$

where P_i^a is the projection of P^a onto the i-th state coordinates.
Worst-case value

Theorem (followed): The worst-case expected cost with a given policy $\pi = (a_0, \ldots, a_{N-1})$:

$$\phi_N(\pi, T) := \max_{\tau \in T} C_N(\pi, \tau),$$

can be evaluated by the following recursion

$$v^\pi_t(i) = c_t(i, a_t(i)) + \max_{p \in P_{a_t(i)}^i} p^T v^\pi_{t+1}, \quad i \in \mathcal{X}, \; t \in T,$$

(2) which provides the worst-case value function v^π for the policy π.
Optimal policy

Theorem (end): A worst-case optimal control policy $\pi^* = (a_0^*, \ldots, a_{N-1}^*)$ is obtained by setting

$$a_t^*(i) \in \arg\min_{a \in A} \left(c_t(i, a) + \max_{p \in P^{a}_{i}} p^T v_{t+1} \right), \quad i \in \mathcal{X}, \quad t \in T.$$

(A similar theorem holds in the infinite-horizon case.)
Sketch of proof (I)

• By weak duality, obtain a lower bound

\[\phi_N(\Pi, T) = \min_{\pi \in \Pi} \max_{\tau \in T} C_N(\pi, \tau) \geq \max_{\tau \in T} \min_{\pi \in \Pi} C_N(\pi, \tau). \]

• Linear program representation of nominal problem (Puterman, 1994):

\[\min_{\pi \in \Pi} C_N(\pi, \tau) = \max_q q^T v_0 : v_t \leq c_t^a + P_t^a v_{t+1}, \quad a \in A, \quad t \in T, \]

where \(q \) is the distribution of the initial state, and \(c_t^a(i) := c_t(i, a) \).

• Hence the lower bound can be formulated as a nonlinear program:

\[\max_{\tau \in T} \min_{\pi \in \Pi} C_N(\pi, \tau) = \max_{q, \tau \in T} q^T v_0 : v_t \leq c_t^a + P_t^a v_{t+1}, \quad a \in A, \quad t \in T. \]
Sketch of proof (II)

• Likewise, the expected cost for a given controller policy \(\pi = (a_t)_{t \in T} \) is given by the LP

\[
C_N(\pi, \tau) = \max_v q^T v_0 : v_t \leq c^{a_t} + P^{a_t} v_{t+1}, \quad t \in T,
\]

where \(c^{a_t}(i) := c_t(i, a_t(i)), \ P^{a_t}(i, j) := P^{a_t}(i)(i, j) \).

• Hence, the worst-case cost for a given policy \(\pi \) is given by the nonlinear program

\[
\max_{\tau \in T} C_N(\pi, \tau) = \max_{v, \tau \in T} q^T v_0 : v_t \leq c^{a_t} + P^{a_t} v_{t+1}, \quad t \in T.
\]
Sketch of proof (III)

• By a monotonicity argument, the two previous nonlinear problems can be solved by the recursions (1) and (2), respectively.

• The robust Bellman recursion (1) provides an optimal value function v^* and via (3), a deterministic policy π^*; since v^* satisfies the recursion (2) for $\pi = \pi^*$, we have

$$\max_{\tau \in \mathcal{T}} \min_{\pi \in \Pi} C_N(\pi, \tau) = \max_{\tau \in \mathcal{T}} C_N(\pi^*, \tau).$$

• Since π^* is an admissible (that is, a deterministic) policy:

$$\max_{\tau \in \mathcal{T}} C_N(\pi^*, \tau) \geq \min_{\pi \in \Pi} \max_{\tau \in \mathcal{T}} C_N(\pi, \tau) = \phi_N(\Pi, \mathcal{T}),$$

from which perfect duality follows. ■
Overview

- The curse of uncertainty in Markov Decision Processes
- Robust control formulation
- Robust dynamic programming recursion
- *Entropy-based uncertainty models*
- Application: air traffic routing
Solving the inner problem

We now consider the inner problem:

$$\max_{p \in \mathcal{P}} p^T v,$$

where \(v \) is given, and \(\mathcal{P} \) is a given subset of the probability simplex.

- The inner problem is convex, no matter what \(\mathcal{P} \) is!
- We need to solve it fast—complexity depends heavily on the structure of \(\mathcal{P} \).
- \(\mathcal{P} \) must represent a statistically accurate model of uncertainty on the state transition probabilities.
Accuracy issues

What is the accuracy at which we must solve the inner problem, so as to produce an ϵ-suboptimal controller?
Accuracy issues

What is the accuracy at which we must solve the inner problem, so as to produce an ϵ-suboptimal controller?

Theorem: To compute an ϵ-suboptimal controller, we need to compute the optimal value of each inner problem with an absolute accuracy of at most δ, where

- $\delta = \epsilon/N$ in the finite-horizon case;
- $\delta = (1 - \gamma)\epsilon/2\gamma$ in the infinite-horizon case.
Likelihood models

Consider the likelihood model

\[P = \left\{ p \in \mathbb{R}^n, \ p \geq 0, \ p^T 1 = 1, \ \sum_j f(j) \log p(j) \geq \beta \right\}, \]

where \(\beta \) is given (such that \(P \neq \emptyset \)), and \(f \) contains the empirical probabilities.

- A very natural model of uncertainty, motivated by maximum likelihood methods.
- Such models are typically used to derive intervals or ellipsoids of confidence—they are much more accurate than intervals or ellipsoids.
Complexity

Theorem: In the likelihood model, the optimal value of the inner problem can be computed with absolute accuracy δ by bisection in $O(n) \log(1/\delta)$ time.

With respect to the nominal case, this represents a relative increase in computational complexity of $O(1)$ only!
Sketch of proof

(Assume $f > 0$ WLOG)

- The log-likelihood acts as a barrier for the probability simplex, hence we can safely drop the sign constraint on p.

- The dual problem then involves only two scalar variables, and we can reduce the dual to a one-dimensional problem.

- The 1-D problem can be solved by bisection—each step requires $O(n)$ time.

- Care must be taken to make sure we compute the optimal value of the problem with the required absolute accuracy δ, as opposed to merely locating a (dual) optimal variable with that accuracy.
Relative entropy models

Similar results hold for models based on relative entropy bounds:

\[\mathcal{P} = \{ p \in \mathbb{R}^n, \ p \geq 0, \ p^T \mathbf{1} = 1, : \ D(p\|f) \leq \gamma \} , \]

where \(\gamma > 0 \) is fixed, \(f > 0 \) is a given distribution, and \(D(p\|f) \) denotes the Kullback-Leibler divergence from \(f \) to \(p \):

\[D(p\|f) := \sum_j p(j) \log \frac{p(j)}{f(j)} \]

(Likelihood models involve \(D(f\|p) \) instead of \(D(p\|f) \).)
The best of both worlds

Entropy models take the best of both worlds:

- Solving the inner problem incurs a computational overhead of $O(1)$ with respect to the case with no uncertainty.
- They represent statistically natural ways to capture measurement uncertainty on the transition probabilities.
Complexity vs. uncertainty models

<table>
<thead>
<tr>
<th>Uncertainty model</th>
<th>Computational overhead (relative to nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Entropy</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MAP</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Interval</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Ellipsoid \cap simplex</td>
<td>$O(n^{0.5})$</td>
</tr>
<tr>
<td>L Scenarios</td>
<td>$O(L)$</td>
</tr>
</tbody>
</table>
Overview

- The curse of uncertainty in Markov Decision Processes
- Robust control formulation
- Robust dynamic programming recursion
- Entropy-based uncertainty models
- Application: air traffic routing
Application: air traffic routing

Worst-case delay vs. uncertainty level β (lower bound on the log-likelihood function), for a conservative policy (red), the classical Bellman recursion (dotted blue), and its robust counterpart (solid blue). $1 - U_L$ is a confidence level derived from β using an asymptotically large sample approximation.
Uncertainty on uncertainty level

Worst-case delay vs. uncertainty level β, for the classical Bellman recursion (dotted blue) and its robust counterpart, with correct (solid blue) and incorrect predictions (green) for the uncertainty level β.

$U_L^{\text{true}} = 15\%$
$U_L^{\text{true}} = 55\%$
Concluding remarks

- We gave a rigorous framework for addressing parameter uncertainty in MDPs.
- We proved the corresponding robust recursion that enables a polynomial time algorithm.
- Uncertainty models based on entropy bounds are not only statistically natural—they result in a very small computational overhead.
- An air traffic routing example demonstrated that robustness is greatly improved at very little expense in optimality, even if the uncertainty level is only crudely guessed.
- Method applies whenever Bellman recursion is practical—larger-scale problems remain a challenge.