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Abstract

In this paper, we discuss semidefinite relaxation techniques for computing minimal size
ellipsoids that bound the solution set of a system of uncertain linear equations. The proposed
technique is based on the combination of a quadratic embedding of the uncertainty, and the
S-procedure. This formulation leads to convex optimization problems that can be essentially
solved in O(n3) — n being the size of unknown vector — by means of suitable interior point
barrier methods, as well as to closed form results in some particular cases. We further show
that the uncertain linear equations paradigm can be directly applied to various state-bounding
problems for dynamical systems subject to set-valued noise and model uncertainty.

Keywords: Uncertain linear equations, set-valued filtering, interior-point methods.

1 Introduction

This paper discusses a technique for computing deterministic confidence bounds on the solutions of
systems of linear equations whose coefficients are imprecisely known, and presents an application of
this technique to the problem of set-valued prediction and filtering for uncertain dynamical systems.

Uncertain linear equations (ULE) arise in many engineering endeavors, when the actual data
are imprecisely known and reliable bounds on the possible solutions need to be determined. For
instance, in many problems of system identification one must solve a linear system of normal equa-
tions arising from minimization of a least-squares criterion. When the regression data are subject to
bounded uncertainty, this gives rise to a system of uncertain linear equations of the type examined
in this paper. Similarly, ULEs arise in Vandermonde systems for polynomial interpolation, when
the abscissae of the interpolation points are assumed uncertain, as well as in Toeplitz systems for
finite impulse response estimation (see an example in Section 2.4.2). Also, in solid and structural
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mechanics, uncertain linear equations are used to determine bounds on the system dynamic re-
sponse for many scenarios of load and stiffness terms, [19, 23]. Specific applications in the context
of set-valued prediction and filtering for uncertain dynamical systems are discussed in Section 3 of
this paper.

A basic version of the problem we deal with is well-known in the context of interval linear algebra,
where one is given matrices A ∈ R

n,n and y ∈ R
n, the elements of which are only known within

intervals, and seeks to compute intervals of confidence for the set of solutions, if any, to the equation
Ax = y, see e.g. [15, 27]. Obtaining exact estimates on the confidence intervals for the elements of
x in the above context is known to be an NP-hard problem, [33, 34].

Here, we consider a more general situation in which the data matrix [A y] belongs to an uncer-
tainty set U described by means of a linear fractional representation (LFR), and use semidefinite
relaxation techniques [13] to determine efficiently computable minimal ellipsoidal bounds for the
set of solutions. In particular, we develop a special decoupled formulation of the problem which
leads to very efficient interior-point algorithms that scale with problem size essentially as O(n3), see
Section 2.1 and Section 2.2. Besides, we discuss special situations in which semidefinite relaxations
are lossless, and show how we can recover explicit closed-form solutions in these cases. Semidefinite
relaxation techniques for uncertain linear equations have been originally introduced by the authors
in [7].

In a subsequent part of the paper, we show the versatility of the ULE model by applying it
to the solution of set-valued prediction and filtering problems relative to uncertain, discrete-time
dynamical systems. The problem of determining a set that is guaranteed to contain the state of the
system, despite the action of unknown-but-bounded additive noise, has a long history in the control
literature. Early references on this topic include [3, 10, 35, 36], while more recent contributions are
found in [6, 20, 28, 37], to mention but a few. A fundamental point to remark is that in all the
above mentioned references the system description is assumed to be exactly known, while the main
contribution of this paper is to derive efficiently computable bounds on the system states when,
in addition to unknown-but-bounded additive noise, structured deterministic uncertainty affects
the system description in a possibly non-linear fashion. Semidefinite relaxation techniques in this
context have been first introduced by the authors in [8] for set-valued simulation, and in [12] for
set-valued filtering. In the present paper, we derive similar results for predictor/corrector filter
recursions, using the unifying theoretical framework provided by the ULE paradigm.

This paper is organized as follows. Section 2 introduces the ULE model, and contains all the
relative fundamental results. Section 2.2 provides a detailed discussion on the numerical complexity
of computing bounds on ULEs, while Section 2.3 presents closed form results in the special case
of unstructured uncertainty. Numerical examples are discussed in Section 2.4. Finally, Section 3
discusses the application of the ULE model in set-valued prediction and filtering for uncertain
dynamical systems. A numerical example related to set-valued filtering is presented in Section 3.3,
while conclusions are drawn in Section 4. To improve readability, several useful technical results
have been collected in the appendices.

2



1.1 Notation and preliminaries

For a square matrix X, X � 0 (resp. X � 0) means X is symmetric, and positive-definite (resp.
semidefinite). For a matrix X ∈ R

n,m, R(X) denotes the space generated by the columns of X,
and N (X) denotes the kernel of X. An orthogonal complement of X is denoted by X⊥, which is a
matrix containing by columns a basis for N (X), i.e. a matrix of maximal rank such that XX⊥ = 0.
X† denotes the (Moore-Penrose) pseudo-inverse of X. ‖X‖ denotes the spectral (maximum singular
value) norm of X, or the standard Euclidean norm, in case of vectors. In, 0n,m, and 1n,m denote
respectively the identity matrix of dimension n × n, the zero matrix, and the matrix of ones of
dimension n×m; dimensions are sometimes omitted when they can be easily inferred from context.

Ellipsoids. Ellipsoids will be described as

E = {x : x = x̂ + Ez, ‖z‖ ≤ 1},
where x̂ ∈ R

n is the center, and E ∈ R
n,m, Rank(E) = m ≤ n is the shape matrix of the ellipsoid.

This representation can handle all bounded ellipsoids, including ‘flat’ ellipsoids, such as points or
intervals. An alternative description involves the squared shape matrix P = EET

E(P, x̂) =

{
x :

[
P (x − x̂)

(x − x̂)T 1

]
� 0

}
.

When P � 0, the previous expression is also equivalent to

E(P, x̂) =
{
x : (x − x̂)T P−1(x − x̂) ≤ 1

}
.

The ‘size’ of an ellipsoid is a function of the squared shape matrix P , and will be denoted f(P ).
Throughout this paper, f(P ) will be either trace (P ), which corresponds to the sum of squares of
the semi-axes lengths, or log det(P ), which is related to the volume of the ellipsoid.

Uncertainty description. Structured uncertainty is described as follows: ∆ is a subspace of
R

np,nq , called the structure subspace (for instance, the space of matrices with certain block-diagonal
structure). Then, the uncertain matrix ∆ is restricted to

∆ ∈ ∆1
.= {∆ ∈ ∆ : ‖∆‖ ≤ 1} .

Associated to the structure subspace, we introduce the scaling subspace B(∆)

B(∆) =
{
(S, T, G) : ∀∆ ∈ ∆, S∆ = ∆T, G∆ = −∆T GT

}
. (1.1)

A structure that frequently arises in practice is the independent block-diagonal structure

∆ = {∆ : ∆ = diag (∆1, . . . ,∆�), ∆i ∈ R
npi,nqi} . (1.2)

For this structure, the scaling subspace is constituted of all triples S, T, G with S = diag (λ1Inp1 ,

. . . , λ�Inp�
), T = diag (λ1Inq1 , . . . , λ�Inq�

), G = 0. A particular case of this situation arises for � = 1,
and it is denoted as the unstructured uncertainty case.

Independent scalar uncertain parameters δ1, . . . , δ� with bounded magnitude |δi| ≤ 1 are repre-
sented in our framework via the structure subspace

∆ =
{
∆ : ∆ = diag (δ1Inp1 , . . . , δ�Inp�

), δi ∈ R
}

, (1.3)
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and the corresponding scaling subspace, constituted of all triples S, T, G with S = T = diag (S1 . . . , S�),
Si = ST

i ∈ R
npi,npi , G = diag (G1, . . . , G�), Gi = −GT

i ∈ R
npi,npi .

More general uncertainty structures, together with their corresponding scaling spaces, are detailed
for instance in [11, 13].

2 Uncertain Linear Equations

Let the uncertain data be described as

[A(∆) y(∆)] = [A y] + L∆(I − H∆)−1[RA Ry], (2.4)

where A ∈ R
m,n, y ∈ R

m, L ∈ R
m,np , RA ∈ R

nq ,n, Ry ∈ R
nq , H ∈ R

nq ,np , and ∆ ∈ ∆1 ⊂ R
np,nq ,

and let this linear fractional representation (LFR) be well-posed over ∆1, meaning that det(I −
H∆) 	= 0, ∀∆ ∈ ∆1. Lemma A.2 reported in the Appendix provides a well-known and readily
checkable sufficient condition for the well-posedness of the above linear fractional representation.

The representation (2.4) includes as special cases, for instance, interval matrices discussed in many
references [15, 27, 33, 34], as well as additive uncertainty of the form [A + ∆A y + ∆y]. In this
latter case, the linear fractional representation is simply given by L = [Im Im], [RA Ry] = In+1,
H = 0n+1,2m, and ∆ = diag (∆A, ∆y). The description (2.4) also allows for representation of
general rational matrix functions of a vector of uncertain parameters δ1, . . . , δ�, see [11, 13] for
further details and constructive procedure for building the LFR in this general case.

Define now the set X of all the possible solutions to the linear equations A(∆)x = y(∆), i.e.

X .= {x : A(∆)x = y(∆), for some ∆ ∈ ∆1}.

In the sequel, we provide conditions under which the set X is contained in a bounded ellipsoid E ,
and we exploit these conditions to determine a minimal (in the sense of the selected size measure
f(·)) ellipsoid containing the solution set X .

We first state a key lemma.

Lemma 2.1. Let

Ψ .= [A L y], (2.5)

Υ .=

[
RA H Ry

0np,n Inp 0np,1

]
, (2.6)

Ω(S, T, G) .= ΥT

[
T G

GT −S

]
Υ. (2.7)

Let further the orthogonal complement Ψ⊥ be chosen as

Ψ⊥
.=

[
Ψ⊥1 ψ⊥2

0 · · · 0 −1

]
, (2.8)

where Ψ⊥1 is an orthogonal complement of [A L], and ψ⊥2 is any vector such that [A L]ψ⊥2 = y.
(If no such ψ⊥2 exists, then the solution set X is empty).
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Then, for any triple (S, T, G) ∈ B(∆), with S � 0 and T � 0, the set

X S,T,G
.=

{
x = [In 0 0]Ψ⊥

[
ν

1

]
, ν : [νT 1]ΨT

⊥Ω(S, T, G)Ψ⊥[νT 1]T ≥ 0

}
, (2.9)

is an outer approximation for the solution set X , i.e. X ⊆ X S,T,G.
Furthermore, when ∆ is a full block (unstructured uncertainty) the approximation is exact, i.e.

X S,T,G ≡ X . In this latter case, the solution set is the quadratic set

X =

{
x = [In 0 0]Ψ⊥

[
ν

1

]
, ν : [νT 1]ΨT

⊥Ω(I, I, 0)Ψ⊥[νT 1]T ≥ 0

}
. (2.10)

�

Proof. Consider the linear fractional description (2.4), and rewrite equation A(∆)x = y(∆) as

Ax − y + L∆(I − H∆)−1(RAx − Ry) = 0,

which in turn can be expressed using a slack vector p in the form

Ax − y + Lp = 0 (2.11)

RAx + Hp − Ry = q (2.12)

p = ∆q. (2.13)

Let Ψ be as defined in (2.5), and let

ξ
.= [xT pT − 1]T , (2.14)

then all vectors ξ compatible with (2.11) must be orthogonal to Ψ, and can be expressed as

ξ = Ψ⊥η, with η
.=

[
ν

1

]
, Ψ⊥

.=

[
Ψ⊥1 ψ⊥2

0 · · · 0 −1

]
, (2.15)

where Ψ⊥1 is an orthogonal complement of [A L], and ψ⊥2 is any vector such that [A L]ψ⊥2 = y.
Notice that if no such ψ⊥2 exists, then (2.11) is not solvable, and hence the solution set X is clearly
empty. All feasible ξ must therefore lie on the flat

F .=
{

ξ : ξ = Ψ⊥η, with η =
[

νT 1
]T}

,

and the corresponding feasible x on the projection Fx
.= {x = [In 0n,np 0n,1]ξ : ξ ∈ F}. The

feasible ξ are further constrained by (2.12)–(2.13): By the Quadratic Embedding Lemma A.5 (in
the Appendix), for any triple (S, T, G) ∈ B(∆), S � 0, T � 0, the set of all pairs (q, p) such that
p = ∆q for some ∆ ∈ ∆1, is bounded by the set

QS,T,G
.=



[

q

p

]
:

[
q

p

]T [
T G

GT −S

][
q

p

]
≥ 0


 . (2.16)
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Therefore, the set of ξ compatible with (2.12)–(2.13) is bounded by the set

HS,T,G
.= {ξ : ξT Ω(S, T, G)ξ ≥ 0}, (2.17)

where Ω(S, T, G) is defined in (2.7). To conclude, the set of ξ compatible with all conditions (2.11)–
(2.13) is bounded by the intersection F ∩ HS,T,G, and therefore X ⊆ X S,T,G, where X S,T,G is the
projection

X S,T,G =
{
x = [In 0 0]Ψ⊥η : ηT ΨT

⊥Ω(S, T, G)Ψ⊥η ≥ 0
}

, (2.18)

with η and Ψ⊥ defined in (2.15).
When ∆ is unstructured, the embedding in Lemma A.5 is tight, and the approximation is exact,

i.e. X S,T,G = X . Moreover, in this case the scalings are S = λI, T = λI, G = 0, and hence (2.10)
follows.

The next theorem provides a characterization of a bounding ellipsoid for the solution set X .

Theorem 2.1. Let all symbols be defined as in Lemma 2.1. If there exist (S, T, G) ∈ B(∆), S � 0,
T � 0 such that [

P [I 0 x̂]Ψ⊥
ΨT

⊥[I 0 x̂]T ΨT
⊥ (diag (0, 0, 1) − Ω(S, T, G)) Ψ⊥

]
� 0 (2.19)

is feasible, then the ellipsoid E(P, x̂) contains the solution set X . �

Proof. From Lemma 2.1, we have that for any triple (S, T, G) ∈ B(∆), S � 0, T � 0, the condition
E(P, x̂) ⊇ X S,T,G implies E(P, x̂) ⊇ X . Consider then the following points.

1. The family of ellipsoids E(P, x̂) that lie in Fx satisfy the flatness condition (I − P †P )(x −
x̂) = 0, ∀x ∈ Fx, which can be expressed using the notation introduced previously, as
(I − P †P )[In 0 x̂]Ψ⊥η = 0, ∀η, i.e.

(I − P †P )[In 0 x̂]Ψ⊥ = 0. (2.20)

2. An ellipsoid E(P, x̂) ⊂ Fx contains the point x = [In 0 0]Ψ⊥η ∈ Fx if and only if (notice that
x − x̂ = [In 0 x̂]Ψ⊥η) [

P [In 0 x̂]Ψ⊥η

∗ 1

]
� 0. (2.21)

Using Schur complements (Lemma A.6 in the Appendix), this is rewritten as

1 − ηT ΨT
⊥[In 0 x̂]T P †[In 0 x̂]Ψ⊥η ≥ 0 (2.22)

(I − P †P )[In 0 x̂]Ψ⊥η = 0. (2.23)

Since (2.20) holds for all ellipsoids that lie entirely in Fx, condition (2.23) is always satisfied,
therefore the ellipsoid E(P, x̂) ⊂ Fx contains the point x = [In 0 0]Ψ⊥η ∈ Fx if and only if
(2.22) is satisfied.
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3. The ellipsoid E(P, x̂) lies in Fx and contains X S,T,G if and only if (2.20) holds, and (2.22) is
satisfied for all η such that ηT ΨT

⊥Ω(S, T, G)Ψ⊥η ≥ 0. By the S-procedure and homogenization
(see Lemma A.3 and Lemma A.4), the above happens if (2.20) holds, and there exist τ ≥ 0
such that

ΨT
⊥
(
diag (0, 0, 1) − [I 0 x̂]T P †[I 0 x̂]

)
Ψ⊥ � τΨT

⊥Ω(S, T, G)Ψ⊥.

Using the Schur complement rule, the two previous conditions are written in the equivalent
matrix inequality form as[

P [I 0 x̂]Ψ⊥
ΨT

⊥[I 0 x̂]T ΨT
⊥ (diag (0, 0, 1) − τΩ(S, T, G)) Ψ⊥

]
� 0. (2.24)

Further, from Lemma A.4, we have that (2.24) is also a necessary condition for the inclusion,
provided that there exist η0: ηT

0 ΨT
⊥Ω(S, T, G)Ψ⊥η0 > 0.

In synthesis, if there exist (S, T, G) ∈ B(∆), S � 0, T � 0, such that (2.24) is satisfied (notice
that τ can be absorbed in the S, T, G variables and then eliminated from the condition), then the
ellipsoid E(P, x̂) lies in Fx and contains X . Moreover, if there exist η0: ηT

0 ΨT
⊥Ω(S, T, G)Ψ⊥η0 > 0,

(2.24) is also necessary for an ellipsoid E(P, x̂) ⊂ Fx to include X S,T,G.

Remark 2.1. Based on the condition (2.19), we can subsequently minimize a (convex) size measure
f(P ) of the bounding ellipsoid, subject to this inclusion constraint. Solving the convex optimization
problem in the variables P, x̂, S, T, G

minimize f(P ) subject to (2.25)

(S, T, G) ∈ B(∆), S � 0, T � 0, (2.19) (2.26)

hence yields an outer ellipsoidal approximation of X , that is optimal in the sense of the sufficient
condition (2.19). Notice that this optimization problem is a semidefinite program (SDP), if f(P ) =
trace (P ), and a MAXDET problem, if f(P ) = log det(P ). In both cases the problem can be
efficiently solved in polynomial-time by interior point methods for convex programming, [39, 40].

We also remark that Lemma 2.1 can be used for directly determining optimized bounds on
individual elements of the solution vector x. In this case, one is not interested in determining a
bounding ellipsoid for the entire solution vector, but rather a minimal width interval containing a
specific entry of x. This is basically a special case of the problem considered in Theorem 2.1, and
we leave this easy modification to the reader. �

In the particular case of unstructured uncertainty, the condition expressed in the Theorem 2.1
becomes necessary and sufficient, as detailed in the following corollary.

Corollary 2.1. Let ∆ = R
np,nq , and assume there exists η0 such that

ηT
0 ΨT

⊥ΥT

[
I 0
0 −I

]
ΥΨ⊥η0 > 0. (2.27)

7



Then the ellipsoid E(P, x̂) lies in Fx and contains the solution set X if and only if there exists
τ ≥ 0 such that


P [I 0 x̂]Ψ⊥

ΨT
⊥[I 0 x̂]T ΨT

⊥

(
diag (0, 0, 1) − τΥT

[
I 0
0 −I

]
Υ

)
Ψ⊥


 � 0. (2.28)

�

The proof of this corollary follows immediately from the tightness of the embedding in Lemma A.5
in the unstructured case, and from the losslessness of the S-procedure, under the assumption
(2.27); see discussions following formulas (2.18) and (2.24). Minimizing the ellipsoid size f(P )
under constraint (2.28) then yields the globally optimal ellipsoid containing X . We also notice
that condition (2.27) is satisfied if and only if the kernel matrix has at least one (strictly) positive
eigenvalue, and it is therefore easy to check.

2.1 Decoupled ellipsoid equations

We now build upon the LMI condition given in Theorem 2.1, in order to derive decoupled con-
ditions for the optimal ellipsoid in terms of its shape matrix P and center x̂ separately. These
decoupled conditions are based on a variable elimination technique and permit to obtain explicit
closed form results in the case of unstructured uncertainty. More fundamentally, they lead to a
convex optimization problem of reduced numerical complexity with respect to the one given in
Theorem 2.1, as it is discussed in detail in Section 2.2.

A first result is stated in the following corollary.

Corollary 2.2. Let all symbols be defined as in Lemma 2.1, and define the partition

Q(S, T, G) =

[
Q11 q12

qT
12 1 − q22

]
.= ΨT

⊥ (diag (0, 0, 1) − Ω(S, T, G)) Ψ⊥, (2.29)

B
.= [In 0]Ψ⊥1. (2.30)

Consider the optimization problem in the variables (S, T, G) ∈ B(∆)

minimize f(BQ†
11B

T ) subject to: (2.31)

S � 0, T � 0, (2.32)

Q(S, T, G) � 0, (2.33)

(I − Q†
11Q11)BT = 0. (2.34)

If the above problem is feasible, then there exist a bounded ellipsoid that contains X . In this case,
calling Sopt, Topt, Gopt the optimal values of the problem variables, the ellipsoid E(Popt, x̂opt) with

Popt = BQ†
11(Sopt, Topt, Gopt)BT (2.35)

x̂opt = [In 0]ψ⊥2 − BQ†
11(Sopt, Topt, Gopt)Q12 (2.36)

is an outer ellipsoidal approximation of X , that is optimal in the sense of the sufficient condition
(2.19). This solution is equivalent to the one obtained minimizing f(P ) subject to the conditions
in Theorem 2.1. �
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Proof. See Appendix B.

Remark 2.2 (Boundedness). From Corollary 2.2 we immediately obtain a readily checkable
sufficient condition for the solution set of uncertain linear equations to be bounded: If there exist
(S, T, G) ∈ B(∆) such that (2.32)–(2.34) are satisfied, then the solution set X is bounded. These
conditions become also necessary, under the hypotheses of Corollary 2.1.

Remark 2.3 (Emptiness and uniqueness). A preliminary analysis of (2.11) through (2.15)
shows that a necessary condition in order to have (at least) one solution is that y ∈ R([A L]).
Notice also that if N ([A L]) is empty, then the uncertain linear equations may have at most one
solution. In this case, the solution of the optimization problems in Theorem 2.1 and Corollary 2.2
would yield an ellipsoid reduced to a point, i.e. Popt = 0.

Without need to solve any optimization problem, we may therefore conclude that:

if y 	∈ R([A L]) ⇒ X is empty;

if N ([A L]) = 0 ⇒ X is either empty or reduced to a point.

In the latter case, if y 	∈ R([A L] then X is certainly empty, otherwise the only candidate solution
is of the form x̂ = [In 0]ψ⊥2, with ψ⊥2

.= [x̂T p̂T ]T . To check if this is actually a solution, we can
in some cases proceed by direct inspection. For instance, let q̂ = RAx̂ + Hp̂−Ry, then in the case
of unstructured uncertainty x̂ is the unique solution if and only if p̂T p̂ ≤ q̂T q̂.

2.2 Analysis of numerical complexity

We next provide estimates of the numerical complexity of solving the ULE bounding problem, in
both the coupled form of Theorem 2.1 and the decoupled form of Corollary 2.2. This analysis shows
in particular that the formulation in Corollary 2.2 provides a drastic improvement in numerical
efficiency with respect to the one in Theorem 2.1.

For the sake of clarity in the presentation, we here limit ourselves to the case of structured
block-diagonal uncertainties of the type

∆ =
{

∆ : ∆ = diag (∆1, . . . ,∆�), ∆i ∈ R
d,d
}

(all blocks of the same size), for which the scaling subspace is constituted of all triples S, T, G with
S = T = diag (λ1Id, . . . , λ�Id), G = 0. Besides, within this section we shall assume the trace as the
ellipsoid optimality criterion. Results similar to the ones reported below can also be determined if
the log-determinant criterion is used instead of the trace.

Under the above hypotheses, the optimization problem (2.25), (2.19) derived from Theorem 2.1
is a convex semidefinite programming problem (SDP) involving a constraint matrix of dimension
M = n + (n − m + d� + 1) + �,1 and N = n(n + 1)/2 + n + � decision variables (the elements of
P, x̂ and λ1, . . . , λ�). Therefore, using a general-purpose primal-dual interior-point SDP solver (i.e.
we are in a sense considering a worst-case situation of a solver that does not exploit any possible
structure in the problem) the complexity grows with problem size as

O(
√

M)O(M2N2),
1We assumed Ψ full-rank, in order to fix the dimension of the orthogonal complement Ψ⊥.
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where the first factor denotes the number of outer iterations of the algorithm, and the second factor
denotes the cost per iteration, see [39]. It is also observed in [39], Section 5.7 that in practice these
algorithms behave much better that predicted by the above bound and that, in particular, the
first factor can be assumed almost constant, so that the practical complexity is O(M2N2). Notice
however that in our context this gives O(n6 +n5d�+d2(�4 +n4�2 +n2�3)), i.e. an O(n6) dependence
on the dimension of x, and O(d2�4) dependence on the size and number of uncertainty blocks.

Consider now the decoupled problem in Corollary 2.2, which is here rewritten in the equivalent
form (all the previous hypotheses still holding)

inf α subject to: (2.37)

α − trace (BQ−1
11 (λ1, . . . , λ�)BT ) ≥ 0

λi ≥ 0, i = 1, . . . , �

Q(λ1, . . . , λ�) � 0,

where Q(λ1, . . . , λ�) is affine in λ1, . . . , λ�, see (2.29).
A basic idea for solving (2.37) is to associate a barrier for the feasible set, and solve a sequence

of unconstrained minimization problems, involving a weighted combination of the barrier and the
(linear) objective. The complexity of a path-following interior-point method as described in [25,
p.93] depends on our ability of finding a ‘self-concordant barrier’ associated with the constraints.
When such a barrier is known, the number of outer iterations grows as O(

√
θ), where θ is the

‘parameter of the barrier’. The cost of each iteration is proportional to that of computing the
gradient g and Hessian H of the barrier, and solving the linear system Hv = g, where the unknown
v is the search direction. We note again that in practice, the number of outer iterations is almost
independent of problem size.

We can indeed find a self-concordant for problem (2.37), and find its parameter. To do this, we
apply the addition rule [25, Prop. 5.1.3], which says that to find the barrier for multiple constraints,
we simply add barriers and their respective parameters. The following is a direct consequence of
the result [25, Prop. 5.1.8]: The function

F (α, λ1, . . . , λ�) = − log
(
α − trace (BQ−1

11 (λ1, . . . , λ�)BT )
)− log detQ(λ1, . . . , λ�) −

�∑
i=1

log λi

(2.38)
is a self-concordant barrier for problem (2.37), with parameter θ = 1+(ω+1)+� = ω+�+2, where
ω

.= n−m+d� (note that B has size n×ω, and Q11 has size ω×ω). A tedious but straightforward
calculation shows that the cost of computing the gradient and Hessian of the barrier and solving
for direction v is O(�ω3 + �2ω2), hence the total complexity estimate is

O(
√

θ)O(�ω3 + �2ω2).

As noted above, the number of outer iterations is almost constant in practice, so the practical
complexity can be assumed to be O(�ω3 + �2ω2). From this, it results that the complexity of the
decoupled problem is O(n3� + n2d�2 + nd2�3 + d3�4), which implies an O(n3) dependence on the
dimension of x, and O(d3�4) dependence on the size and number of uncertainty blocks. Hence,
for fixed number and size of the uncertainty blocks, the decoupled problems improves upon the
coupled one by a factor of O(n3).
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2.3 Special case: unstructured uncertainty

In this section, we analyze in further detail the case when the uncertainty affecting the system of
linear equations is unstructured, i.e. when ∆ is a full matrix block.

For unstructured uncertainty the multipliers S, T, G simplify to S = λI, T = λI, G = 0. The
matrices Q11(λ), q12(λ), q22(λ) defined in Corollary 2.2 are linear in λ, and it is convenient to express
them as Q11(λ) = λQ̄11, q12(λ) = λq̄12, q22(λ) = λq̄22, with

Q̄11
.= ΨT

⊥1([0 I]T [0 I] − [RA H]T [RA H])Ψ⊥1, (2.39)

q̄12
.= ΨT

⊥1[RA H]T Ry + ΨT
⊥1([0 I]T [0 I] − [RA H]T [RA H])ψ⊥2, (2.40)

q̄22
.= RT

y Ry − 2ψT
⊥2[RA H]T Ry − ψT

⊥2([0 I]T [0 I] − [RA H]T [RA H])ψ⊥2. (2.41)

The optimal ellipsoid containing the solution set is in this case computable in closed form, as
detailed in the following corollary.

Corollary 2.3. Let ∆ = R
np,nq , B

.= [In 0]Ψ⊥1, and assume that y ∈ R([A L]), (if this condition
is not satisfied, the solution set is empty).

Then, the solution set X is bounded if

Q̄11 � 0, (2.42)

(I − Q̄†
11Q̄11)B = 0, (2.43)

(I − Q̄†
11Q̄11)q̄12 = 0. (2.44)

The above conditions are also necessary, if there exists η0 such that

ηT
0

[
−Q̄11 q̄12

q̄T
12 q̄22

]
η0 > 0. (2.45)

When (2.42)–(2.44) are satisfied, the optimal ellipsoid containing X is given by

Popt =
1

λopt
BQ̄†

11B
T (2.46)

x̂opt = [In 0]ψ⊥2 − BQ̄†
11q̄12, (2.47)

with
1

λopt
= max{q̄22 + q̄T

12Q̄
†
11q̄12, 0}.

When Popt = 0 then the solution set contains at most one point. In particular, if q̄22 ≥ 0, then
X = {[In 0]ψ⊥2}, otherwise X is empty. �

Proof. With the current scalings S = λI, T = λI, G = 0, problem (2.31)–(2.34) is easily restated
as

minimize f(BQ†
11(λ)BT ) s.t.:

λ ≥ 0, Q11(λ) � 0,

1 − q22(λ) − qT
12(λ)Q†

11(λ)q12(λ) ≥ 0,

(I − Q†
11(λ)Q11(λ))q12(λ) = 0,

(I − Q†
11(λ)Q11(λ))B = 0.

11



Since all dependencies are linear in λ (and since λ = 0 cannot be optimal), the problem is equivalent
to

minimize f( 1
λBQ̄†

11B
T ) s.t.:

λ > 0, Q̄11 � 0,

1 − λq̄22 − λq̄T
12Q

†
11q̄12 ≥ 0,

(I − Q̄†
11Q̄11)q̄12 = 0,

(I − Q̄†
11Q̄11)B = 0.

Since f(·) is non-increasing in λ, if the problem is feasible the optimum is attained by the largest
possible value of λ, i.e. for

1
λopt

= max{q̄22 + q̄T
12Q̄

†
11q̄12, 0}.

The statements of the corollary then follow easily from the above considerations.
The necessity of conditions for boundedness of the solution set follows from the S-procedure, see

Lemma A.4. The last statement of the corollary follows from the discussion in Remark 2.3, noticing
that p̂T p̂ ≤ q̂T q̂ if and only if q̄22 ≥ 0.

Remark 2.4. Notice that, according to Lemma 2.1, in the unstructured case the actual solution
set is the quadratic set

X =


x = Bν + [In 0]ψ⊥2, ν :

[
ν

1

]T [
Q̄11 q̄12

q̄T
12 −q̄22

][
ν

1

]
≤ 0


 .

This set is indeed an ellipsoid, whenever Q̄11 � 0 and q̄22 + q̄T
12Q̄

−1
11 q̄12 > 0, and hence Corollary 2.3

returns the exact solution set in this case. �

2.3.1 Additive unstructured uncertainty

An even more specialized case of the unstructured uncertainty situation above arises when the data
A, y are affected by additive uncertainty, i.e.

[A(∆) y(∆)] = [A y] + L∆[RA Ry],

with L = ρIm, ρ > 0, [RA Ry] = In+1, H = 0, ∆ ∈ R
m,n+1, and ‖∆‖ ≤ 1.

In this case, we may choose the orthogonal complements as

Ψ⊥1 =

[
ρIn

−A

]
; ψ⊥2 =

[
0

y/ρ

]
,

and therefore Q̄11 = AT A − ρ2I, q̄12 = −AT y/ρ, q̄22 = 1 − yT y/ρ2. The solution set is hence the
quadratic set

X =


x :

[
x

1

]T [ 1
ρ2 AT A − I − 1

ρ2 AT y

− 1
ρ2 yT A 1

ρ2 yT y − 1

][
x

1

]
≤ 0


 . (2.48)

In this simple situation, the set X could be analyzed directly, but we check what it is predicted
by Corollary 2.3: Condition (2.45) is satisfied if and only if ρ2 > λmin{[A y]T [A y]}. In this case,
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the solution set is bounded if and only if Q̄11 � 0, i.e. for ρ2 < λmin{AT A}. On the other hand,
if ρ2 < λmin{[A y]T [A y]} then ρ2 < λmin{AT A} and q̄22 < 0,2 therefore the solution set is empty.
Lastly, we consider the situation when ρ2 = λmin{[A y]T [A y]} and ρ2 < λmin{AT A}. In this case
we have that the kernel matrix in (2.48) is positive semi-definite, hence the only points in X are
those who annihilate the quadric

g(x) .= xT (AT A − ρ2I)x − 2yT Ax + (yT y − ρ2).

Since g(x) is strictly convex, it has the unique minimizer x̂ = (AT A − ρ2I)−1AT y. Substituting x̂

back into g(x), we have that x̂ is in the solution set if and only if ρ2(yT (ρ2I − AAT )−1y − 1) = 0;
notice however that in the current situation, this latter condition is always satisfied.3

We may resume these results as follows.

• If λmin{[A y]T [A y]} < ρ2 < λmin{AT A}, then X is an ellipsoid with

Popt = α(AT A − ρ2I)−1

x̂opt = (AT A − ρ2I)−1AT y,

where α
.= ρ2(1 − yT (ρ2I − AAT )−1y).

• If ρ2 < λmin{[A y]T [A y]}, then the solution set is empty.

• If ρ2 > λmin{AT A}, then the solution set is unbounded.

• If ρ2 = λmin{[A y]T [A y]} < λmin{AT A}, then the solution set is the singleton X = {x̂opt}.

It is worth to remark that ρ2 = λmin{[A y]T [A y]} is the minimal perturbation size for which X is
non-empty and that, in this case, the central solution x̂opt coincides with the Total Least Squares

solution (see for instance [18]) of the system of equations ([A y] + ∆)

[
x

−1

]
= 0.

The case when only the matrix A is uncertain (i.e. y is given and fixed) can be analyzed similarly,
setting the LFR

[(A + ρ∆) y] = [A y] + L∆[RA 0n],

with L = ρIm, RA = In. In this case we have Q̄11, q12 as before, and q̄22 = − 1
ρ2 yT y. The solution

set is therefore the quadratic set

X =


x :

[
x

1

]T [ 1
ρ2 AT A − I − 1

ρ2 AT y

− 1
ρ2 yT A 1

ρ2 yT y

][
x

1

]
≤ 0


 . (2.49)

2This is since λmin{[A y]T [A y]} ≤ λmin{AT A}, and

[
−Q̄11 q̄12

q̄T
12 q̄22

]
� 0 if and only if ρ2 ≤ λmin{[A y]T [A y]}.

3This fact can be proved as follows: ρ2 = λmin{[A y]T [A y]} implies that det(ρ2I − [A y]T [A y]) = 0, but since

ρ2 < λmin{AT A}, this is equivalent (by the Schur determinant rule) to yT (I −A(AT A− ρ2I)−1AT )y− ρ2 = 0, which

in turn, by application of matrix inversion lemma is equivalent to ρ2(yT (ρ2I − AAT )−1y − 1) = 0.
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2.4 Numerical examples

2.4.1 Example 1

Consider the data

A(∆) = I2 + 0.2δ1

[
1 0
0 −1

]
+ 0.5δ2

[
0 1
−1 0

]
; y =

[
1
1

]
,

with |δ1| ≤ 1, |δ2| ≤ 1. Here, the matrix A(∆) is the identity, plus two additive perturbations. The
uncertain data can be expressed in LFR format as

[A(∆) | y(∆)] =

[
1 0 1
0 1 1

]
+ L∆[RA | Ry], (2.50)

L =

[
0.2 0 0 0.5
0 −0.2 −0.5 0

]
, RA = [I2 I2]T , Ry = 0, (2.51)

∆ = diag (δ1I2, δ2I2), with |δ1| ≤ 1, |δ2| ≤ 1. The scaling subspace is in this case given by the set
of triples (S, T, G) with S = T = diag (S1, S2), S1, S2 ∈ R

2,2 symmetric, and G = diag (G1, G2),
with G1, G2 ∈ R

2,2 skew-symmetric.
To have an approximate idea of the shape of the solution set X , we randomly generated a number

of samples of δ1, δ2, and solved the corresponding linear equations. The points obtained are shown
in Figure 1 (notice that the solution set of this ULE is not convex), together with the optimal
bounding ellipsoid, determined by the solution of the convex problem in Theorem 2.1, having
parameters

x̂ =

[
0.859
0.859

]
; P =

[
0.462 −0.246
−0.246 0.462

]
.

We next considered a modification of the previous example, in which H 	= 0. In particular, the
ULE is now described by the LFR

[A(∆) | y(∆)] =

[
1 0 1
0 1 1

]
+ L∆(I − H∆)−1[RA | Ry], (2.52)

with

L =

[
0.2 0 0 0.5
0 −0.2 −0.5 0

]
, RA = [I2 I2]T , Ry = 0, H = 0.5I4 (2.53)

and ∆ = diag (δ1I2, δ2I2), |δ1| ≤ 1, |δ2| ≤ 1. The scaling subspace is the same as in the previous
version of the example, and the application of Theorem 2.1 yields an optimal bounding ellipsoid
with parameters

x̂ =

[
0.5687
1.0549

]
; P =

[
0.8092 −0.1759
−0.1759 0.6578

]
.

This optimal ellipsoid is depicted in Figure 2, together with randomly generated points in the
interior of the solution set.
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Figure 1: Solution set and bounding ellipsoid for the ULE resulting from the data in (2.50), (2.51)
and structured uncertainty ∆ = diag (δ1I2, δ2I2).
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Figure 2: Solution set and bounding ellipsoid for the ULE resulting from the data in (2.52), (2.53)
and structured uncertainty ∆ = diag (δ1I2, δ2I2).

2.4.2 Example 2: FIR estimation

We next address the problem of estimating intervals of confidence for the coefficients of a discrete-
time impulse response vector x, from uncertain input and output measurement. Specifically, the
uncertain linear equation we consider has the form A(∆)x = y(∆), where A is a lower-triangular
Toeplitz matrix whose first column is the input vector u, and y is the system output. Both the
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input u and output y are unknown-but-bounded componentwise, that is

|ui − unom
i | ≤ ρ, i = 1, . . . , n,

|yi − ynom
i | ≤ ρ, i = 1, . . . , n,

where unom is the nominal input vector, ynom is the measured output vector, and ρ ≥ 0 is a given
scalar. It is easy to derive a linear fractional representation for the uncertain system in this case.
The uncertainty matrix has the following structure:

∆ = diag (δu1In, δu2In−1, . . . , δun, δy1, δy2, . . . , δyn),

where δui (resp. δyi) are the componentwise absolute errors in u (resp. y), normalized so that the
uncertainty matrix is bounded in maximum singular value norm by one. The parameters of the
linear fractional representation of the system are in this case

L = ρ

[
In

[
01,n−1

In−1

] [
02,n−2

In−2

]
· · ·

[
0n−1,1

1

]
In

]
∈ R

n,n(n+1)/2+n,

RA =




In[
In−1 0n−1,1

]
[

In−2 0n−2,2

]
...[

1 01,n−1

]
0n,n



∈ R

n(n+1)/2+n,n, Ry =




0n(n+1)/2,1

1
1
...
1



∈ R

1,n(n+1)/2+n,

and H = 0n(n+1)/2+n,n(n+1)/2+n. Taking ρ = 0.1, and unom = sin(i), vector y is generated by
feeding this input to an FIR filter with coefficients hnom = cos(i). For n = 5, the optimal result is

P =




0.1879 −0.2669 0.1369 −0.0700 0.1400
−0.2669 0.6201 −0.5059 0.2987 −0.2961
0.1369 −0.5059 1.0446 −0.8017 0.6084
−0.0700 0.2987 −0.8017 1.4154 −1.2740
0.1400 −0.2961 0.6084 −1.2740 2.4356


 , x̂ =




0.6270
−0.5851
−0.8145
−0.8395
0.5467


 .

This results in intervals of confidence for the coefficients of the FIR filter, obtained by projecting
the ellipsoid of confidence on the coordinate axes:




0.1935
−1.3726
−1.8365
−2.0292
−1.0140


 ≤ x ≤




1.0606
0.2024
0.2076
0.3502
2.1073


 .
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3 Set-valued prediction and filtering for uncertain systems

In this section, we study the problem of recursive ellipsoidal state bounding for uncertain discrete-
time linear dynamical systems. First, we consider the set-valued prediction problem, i.e. given an
ellipsoid Ek containing the state of the system at time k, we wish to determine an ellipsoid that
contains the set of states that the system can achieve at time k + 1, under a norm-bounded input
and model uncertainty. Then, we discuss how this information can be recursively updated using
uncertain measurement information. The objective of this section is to show that robust ellipsoidal
prediction and filtering problems are just particular instances of the ULE problem discussed in the
previous section and, as such, they are amenable to efficient numerical solution.

The approach taken here is derived from the deterministic interpretation of the discrete-time
Kalman filter given in [3]. The deterministic filter in [3] was shown to give a state estimate in
the form of an ellipsoidal set of all possible states consistent with the given measurements and a
deterministic additive description of the noise. The idea of propagating ellipsoids of confidence for
systems with ellipsoidal noise has been studied by several authors. Early contributions in this field
are due to Schweppe [36], whose ideas were later developed by [5, 6, 20, 22, 29, 37], among many
others. However, these authors consider the case with additive noise, assuming that the state-space
process matrices are exactly known, in parallel to standard Kalman filtering.

The main contribution of this section is to extend the above mentioned set-valued approach to the
model uncertainty case, i.e. when structured uncertainty affects every system matrix. Semidefinite
relaxation techniques for this purpose have been first introduced by the authors in [8] for set-
valued simulation, and in [12] for set-valued filtering. A particular case in which the system matrix
uncertainty is jointly ellipsoidal-constrained with the process noises is also discussed in [32].

In the sequel, we derive general results for predictor/corrector filter recursions, using a unifying
theoretical framework based on the uncertain linear equations paradigm discussed in the previous
section. The proposed recursive filter has the classical predictor/corrector structure, therefore we
first discuss ellipsoidal prediction, and then show how to update the predicted information with an
upcoming measurement.

3.1 Prediction step

Consider the uncertain discrete-time linear system

xk+1 = Ak(∆̃k)xk + Bk(∆̃k)uk, k = 0, 1, . . . (3.54)

At a given time instant k, denote for ease of notation xk = x, uk = u, Ak = A, Bk = B, ∆̃k = ∆̃,
and xk+1 = x+. Assume that x ∈ E = E(P, x̂), P = EET , and ‖u‖ ≤ 1, and let the system
uncertainty be described in LFR form as

[A(∆̃) B(∆̃)] = [A B] + L̃∆̃(I − H̃∆̃)−1[R̃A R̃B], (3.55)

where A ∈ R
n,n, B ∈ R

n,nu , L̃ ∈ R
n,np , R̃A ∈ R

nq ,n, R̃B ∈ R
nq ,nu , H̃ ∈ R

nq ,np , and ∆̃ ∈ ∆1 ⊂
R

np,nq , and let this LFR be well-posed over ∆1. Let X+ denote the set of all one-step reachable
states x+, for x ∈ E , u : ‖u‖ ≤ 1, and ∆̃ ∈ ∆1. Our objective is to determine a minimal ellipsoid
E+(P+, x̂+) that is guaranteed to contain X+. To this end, a key observation is given in the following
proposition.
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Proposition 3.1. The set X+ of states reachable (in one step) by system (3.54), for x ∈ E(P, x̂),
P = EET , u : ‖u‖ ≤ 1, and ∆̃ ∈ ∆1, coincides with the solution set of the ULEs

A(∆)x = y(∆),

with
[A(∆) y(∆)] .= [In Ax̂] + L∆(I − H∆)−1[0nq+2,n Ry], (3.56)

where

L =
[

L̃ AE B
]

H =

[
H̃ R̃AE R̃B

02,np 02,n 02,nu

]

Ry =


 R̃Ax̂

1
1


 ,

and ∆ = diag (∆̃, δx, δu), δx ∈ R
n, δu ∈ R

nu, and ‖∆‖ ≤ 1. �

Proof. Observe first that the set of x ∈ E and u : ‖u‖ ≤ 1 can be described in LFR format as[
x(δx)
u(δu)

]
=

[
x̂

0

]
+ diag (E, Inu)diag (δx, δu)

[
1
1

]
,

where δx ∈ R
n, δu ∈ R

nu , and ‖δx‖, ‖δu‖ ≤ 1. Hence, it is clear from (3.54) that the reachable
states coincide with the solution set of the uncertain linear equations Inx+ = y(∆), where y(∆) is
the product of LFRs

y(∆) .= [Ak(∆̃k) Bk(∆̃k)]

[
x(δx)
u(δu)

]
,

∆ = diag (∆̃, δx, δu). The LFR representation of y(∆) is constructed by using a standard rule for
multiplication of LFRs (see for instance [41]), from which the proposition statement immediately
follows.

An immediate consequence of the above proposition is that a sub-optimal bounding ellipsoid for
the reachable set X+ can be obtained applying Theorem 2.1 or Corollary 2.2 to the ULEs in (3.56).

Remark 3.1. If we specialize the ULEs above to the case when no model uncertainty is present,
but only additive noise is acting on the system, then straightforward (but tedious) manipulations
show that, if the trace criterion is chosen, this specific instance of the optimization problem in
Corollary 2.2 can be solved in closed form and yields an optimal ellipsoid with center in x̂+ = Ax̂

and shape matrix

P+ =
1
τx

APAT +
1
τu

BBT ,

with

τx =

√
traceAPAT

√
traceAPAT +

√
traceBBT

, τu =

√
traceBBT

√
traceAPAT +

√
traceBBT

.
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It can also be observed that in this case the semidefinite relaxation scheme searches the optimum
over a parameterized family of ellipsoids that coincides with the classical Schweppe ellipsoidal
family, [35]. The same parameterized family is used in [6] (Theorem 4.2) for approximating the
sum of k given ellipsoids.

We also remark that, in the considered particular case, a recent result of Ben-Tal and Nemirovski
[1] provides an assessment on the tightness of the approximation. In particular, they proved that
the ratio between the volume of the volume-optimal ellipsoid obtained by the semidefinite relaxation
method and the volume of the best possible bounding ellipsoid is less than (π/2)n/2, where n is the
dimension of the state vector x. Using a technique similar to that of [1, 26], it can be proved that
if E∗ is the minimum trace ellipsoid obtained via the semidefinite relaxation method and E∗ is the
minimum trace ellipsoid among all possible ellipsoids, then√

trace P ∗
+√

trace P+∗
≤
√

π

2
� 1.253.

Notice further that the above bound states that the size of the sub-optimal bounding ellipsoid is
at most 25.3% larger that the actual optimal size, and that this figure holds independently of the
state dimension. The interested reader is also addressed to [16, 21, 24] for further discussion of
semidefinite relaxations of non-convex quadratic problems. �

3.2 Measurement update step

Suppose that at time instant k + 1 we are given the information coming from the prediction step:

x+ ∈ E+(P+, x̂+). (3.57)

Now, an observation (measurement) z+ of the state x+ becomes available, where

z+ = C(∆̃)x+ + D(∆̃)v, (3.58)

with
[C(∆̃) D(∆̃)] = [C D] + L̃∆̃(I − H̃∆̃)−1[R̃C R̃D],

where C ∈ R
nz ,n, D ∈ R

nz ,nv , L̃ ∈ R
nz ,np , R̃C ∈ R

nq ,n, R̃D ∈ R
nq ,nv , H̃ ∈ R

nq ,np , ∆̃ ∈ ∆1 ⊂ R
np,nq ,

v ∈ R
nv , ‖v‖ ≤ 1 is a measurement noise term, and we assume that the above LFR is well-posed

over ∆1.
As in a standard filtering problem, we want to update the predicted state estimate E+ with the

information carried by the measurement, and determine a minimal filtered ellipsoid E+|+(P+|+, x̂+|+)
which contains the states that are consistent with both the prediction and the measurement.

The reasoning is similar to the previous one: Let P+ = E+ET
+, then it is known from the

prediction step that x+ = x̂+ + E+δx, for some ‖δx‖ ≤ 1. Considering also the measurement
equation (3.58), we see that the admissible states x+ (i.e. those which are consistent with both the
prediction and measurement) are the solutions of the uncertain linear equations

Inx+ = x̂+ + E+δx

C(∆̃)x+ = z+ −D(∆̃)v.
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Applying standard rules of LFR algebra, we can construct an explicit linear fractional representation
for these equations, and hence apply the results in Theorem 2.1 or Corollary 2.2 to numerically
compute the filtered ellipsoid. The following proposition explicitly reports the representation for
the ULEs to be used in the measurement update step.

Proposition 3.2. The set X+|+ of states consistent with set-valued prediction (3.57) and measure-
ment model (3.58), coincides with the solution set of the ULEs

A(∆)x = y(∆),

with

[A(∆) y(∆)] .=

[
C z+

In x̂+

]
+ L∆(I − H∆)−1[RA Ry], (3.59)

where

L =

[
L̃ −D 0nz ,n

0n,np 0n,nv E+

]

H =

[
H̃ −R̃D 0nq ,n

02,np 02,nv 02,n

]

RA =

[
R̃C
02,n

]
; Ry =

[
0nq ,1

12,1

]
,

∆ = diag (∆̃, δv, δx), δx ∈ R
n, δv ∈ R

nv , and ‖∆‖ ≤ 1. �

Remark 3.2. In the case when there is no model uncertainty, but only additive noise v is present
in the measurement equation, then the update problem reduces to the classical one of bounding
the intersection of two ellipsoids, see for instance [6], Section 5. Observe that in this case ∆ =
diag (δv, δx), and the scalings are S = diag (λvInu , λxIn), T = diag (λv, λx), G = 0. Therefore, the
convex optimization problem in Corollary 2.2 involves only the two scalar variables λv, λx. �

3.3 Numerical example

In the following example, we illustrate the mechanism of the robust ellipsoidal bounding algorithms
for one-step-ahead prediction, and the successive measurement update.

Consider first the setup of Section 3.1, with

[A(∆̃) B(∆̃)] =[
0.2 1 0
−0.5 0.3 0.01

]
+ L̃∆̃[R̃A | R̃B] =

[
0.2 1 0

−0.5 + 0.4δ1 0.3 0.03

]
,

L̃ =

[
0

0.5

]
, R̃A = [1 0], R̃B = 0,

∆̃ = δ1, and |δ1| ≤ 1. Let xk belong to the ellipsoid E having center x̂ = [0 0]T and shape

matrix P =

[
0.01 0
0 0

]
. Applying Proposition 3.1 and successively Corollary 2.2 (using the trace
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criterion) on the resulting ULEs, we determined the optimal bounding ellipsoid E+ for the states

at time k + 1, having center x̂+ = [0 0]T and P+ =

[
0.0008 −0.0021
−0.0021 0.0121

]
. In order to give a

pictorial idea of the reachable set at time k +1, Figure 3 shows the predicted ellipsoid E+, together
with random points in X+.

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x
1
(k+1)

x 2(k
+

1)

Figure 3: Optimal predicted ellipsoid E+ and random points in X+.

Consider now the setup of Section 3.2, and assume that the measurement z+ = 0.018 becomes
available, according to the model (3.58), with

[C̃(∆̃) D̃(∆̃)] =
[

1 0 0.005
]

+ L̃∆̃[R̃C | R̃D] =
[

1 + 0.01δ2 0 0.005
]
,

∆̃ = δ2, |δ2| ≤ 1, and L̃ = 0.01, R̃C = [1 0], R̃D = 0. Then, we update the prediction information
with this new measurement, constructing the ULEs according to Proposition 3.2 and solving the
relative optimization problem in Corollary 2.2 (using the trace criterion). The updated ellipsoid

E+|+ has center in x̂+|+ = [0.0149 − 0.0373]T and shape matrix P+|+ =

[
0.0001 −0.0003
−0.0003 0.0064

]
.

Figure 4 shows the shrunk updated ellipsoid in comparison with the predicted one. In a dynamic
setting, the process is then iteratively repeated predicting forward in time E+|+ through the uncer-
tain dynamic equations (3.54), etc...
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Figure 4: Predicted ellipsoid E+ (light line) and updated ellipsoid E+|+ (bold line).

4 Conclusions

In this paper, we presented a comprehensive discussion of semidefinite relaxation methods for
approximation problems that arise in the context of systems affected by unknown-but-bounded
uncertainties. A main points of the paper is to introduce the uncertain linear equations paradigm
and to show that bounds on the solution set can be obtained efficiently via convex optimization.
Besides being of interest in its own right from a theoretical point of view, the ULE model has
direct application in many engineering problems, and in particular in system identification and
set-membership prediction and filtering.

In this latter respect, the results in Section 3 extend the existing literature on set-membership
filtering to the case when uncertainty is present in the system description. When there is no
uncertainty in the system description, but only unknown-but-bounded additive noise is present, we
recover classical ellipsoidal filtering results.

Some comments are in order regarding the employed methodology. We remark that all the
discussed problems are numerically hard to solve exactly. From a practical point of view, the
standard semidefinite relaxation that we use provides a viable methodology for computing a sub-
optimal solution, at a provably low computational cost (basically O(n3), see Section 2.2). In some
special cases, we pointed out that the approximation is actually exact (Corollary 2.1), or a precise
bound on the conservatism can be assessed, see Remark 3.1. However, no result on the sharpness of
the approximation is to date available for the general case, and this issue is currently a hot research
topic, see e.g. [2, 14, 21, 26]. In principle, the sharpness of the approximation can be improved
using higher order semidefinite relaxations, at the expense of increased computational burden, see
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[30], Chapter 6, and [21] for further results along this line.
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Appendix

A LMI technical lemmas

For easier reference of the reader, this section gathers several technical results on LMI manipulation.
Most of these results can be found in standard texts such as [4, 38].

Lemma A.1 (Projection). Let F = F T . The inequality ξT Fξ ≤ 0 holds for all ξ: Qξ = 0, if
and only if QT

⊥FQ⊥ � 0.

Lemma A.2 (Well-posedness). The LFR M(∆) = M +L∆(I −H∆)−1R is well-posed over ∆1

if and only if det(I − H∆) 	= 0 for all ∆ ∈ ∆1. A sufficient condition for well-posedness is: there
exist a triple (S, T, G) ∈ B(∆), S � 0, T � 0 such that[

H

I

]T [
T G

GT −S

][
H

I

]
� 0.

The above condition is also necessary in the unstructured case, i.e. when ∆ = R
np,nq .

This lemma was first derived in the context of µ-analysis in [9]. A proof of the results in the
form given here may be found in [13].

Lemma A.3 (Homogenization). Let T = T T . The following two conditions are equivalent.

(a)

[
ξ

1

]T [
T u

uT v

][
ξ

1

]
≥ 0 for all ξ;

(b)

[
T u

uT v

]
� 0.

Proof. The implication from (b) to (a) is trivial. We show that (a) implies (b) by contradiction.

Suppose ∃ ξ̄, α such that
[

ξ̄T α
] [ T u

uT v

] [
ξ̄T α

]T
< 0. Then, if α 	= 0, dividing both sides

by α2, we get
[

1
α ξ̄T 1

] [ T u

uT v

] [
1
α ξ̄T 1

]T
< 0, which clearly contradicts the hypothesis (a).

On the other hand, α = 0 would imply that ξ̄T T ξ̄ < 0. Choosing then ξ = βξ̄ and substituting in
(a) we have

β2(ξ̄T T ξ̄) + 2βuT ξ̄ + v, (A.60)

which is a concave parabola in β, since ξ̄T T ξ̄ < 0. Therefore, there will exist a value of β such that
(A.60) is negative, which contradicts the hypothesis.
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Lemma A.4 (S-procedure). Let F0(ξ), F1(ξ), . . . , Fp(ξ) be quadratic functions in the variable
ξ ∈ R

n

Fi(ξ) = ξT Tiξ + 2uT
i ξ + vi, i = 0, . . . , p,

with Ti = T T
i . Then, the implication

F1(ξ) ≥ 0, . . . , Fp(ξ) ≥ 0 ⇒ F0(ξ) ≥ 0 (A.61)

holds if there exist τ1, . . . , τp ≥ 0 such that

F0(ξ) −
p∑

i=1

τiFi(ξ) ≥ 0, ∀ξ. (A.62)

When p = 1, condition (A.62) is also necessary for (A.61), provided there exist some ξ0 such that
F1(ξ0) > 0. An extension of this result to the case of p = 2 can be found in [31]. Notice also that,
by homogenization, condition (A.62) is equivalent to

∃τ1, . . . , τp ≥ 0 such that

[
T0 u0

uT
0 v0

]
−

p∑
i=1

τi

[
Ti ui

uT
i vi

]
� 0. (A.63)

Lemma A.5 (Quadratic embedding). Let Q .=
{[

qT pT
]T

: p = ∆q for some ∆ ∈ ∆1

}
,

and B(∆) =
{
(S, T, G) : ∀∆ ∈ ∆, S∆ = ∆T, G∆ = −∆T GT

}
. For any triple (S, T, G) ∈ B(∆),

S � 0, T � 0, define the set

QS,T,G
.=



[

q

p

]
:

[
q

p

]T [
T G

GT −S

][
q

p

]
≥ 0


 . (A.64)

Then Q ⊆ QS,T,G.
In the case of unstructured uncertainty ∆ ≡ R

np,nq we have in particular that Q ≡ QS,T,G, for
S = λInp, T = λInq , λ ∈ R, and G = 0, λ > 0.

Proof. Let [qT pT ]T ∈ Q, then for any (S, T, G) ∈ B(∆), S � 0, T � 0 we have that qT Gp =
qT G∆q = 0, by the skew-symmetry of G∆. In addition, we have

qT Tq − pT Sp = qT (T − ∆T S∆)q
= qT (T − ∆T ∆T )q � 0.

In the above, we have used the fact that, since S∆ = ∆T , the matrix ∆T ∆T is symmetric,
then T commutes in the product with ∆T ∆, and therefore these two matrices are simultaneously
diagonalizable ([17], Corollary 4.5.18), i.e. we may write the factorizations T = V JT V T , ∆T ∆ =
V J∆V T , where JT , J∆ are diagonal, and V is orthogonal. It then follows that the eigenvalues of
T − ∆T ∆T are the diagonal terms of (I − J∆)JT , which are non-negative, if T � 0. The previous
conditions are written compactly as[

q

p

]T [
T G

GT −S

][
q

p

]
≥ 0, (A.65)
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which proves the first part of the lemma.
To prove the second part of the lemma, we consider the case of unstructured uncertainty, i.e.

∆ = R
np,nq (only one full block). In this case the set B(∆) reduces to the set of triples (S, T, G),

with S = λInp , T = λInq , λ ∈ R, and G = 0. Clearly, p = ∆q for some ∆ : ‖∆‖ ≤ 1 if and only if
pT p ≤ qT q, which is equivalent to (A.65), for any λ > 0.

Lemma A.6 (Schur complements). The condition[
A B

BT D

]
� 0

is equivalent to
D � 0, A − BD†BT � 0, (I − D†D)BT = 0

and also to
A � 0, D − BT A†B � 0, (I − A†A)B = 0,

where A†, D† denote the Moore-Penrose pseudoinverse of A and D, respectively. Notice that the
condition (I − A†A)B = 0 means that R(B) ⊆ R(A). Similarly, the condition (I − D†D)BT = 0
means that N (D) ⊆ N (B) or, equivalently, that R(BT ) ⊆ R(D).

Lemma A.7 (Block elimination). Let Q11 = QT
11, Q22 = QT

22. There exist matrices X = XT

and Z such that 
 X Z B

ZT Q11 Q12

BT QT
12 Q22


 � 0 (A.66)

if and only if [
Q11 Q12

QT
12 Q22

]
� 0, and (A.67)

∃X = XT :

[
X B

BT Q22

]
� 0. (A.68)

Proof. This result is closely related to the variable elimination lemma well-known in LMI
literature (see for instance [38], Theorem 2.3.12). We next report a proof for our specific formulation
of the lemma.

The implication from (A.66) to (A.67)–(A.68) is straightforward, since if a matrix is positive
semi-definite, so are all principal sub-matrices. For the converse, notice that, by Lemma A.6,
condition (A.66) is equivalent to

Q22 � 0 (A.69)[
X Z

ZT Q11

]
−
[

B

Q12

]
Q†

22

[
B

Q12

]T

� 0 (A.70)

(I − Q†
22Q22)

[
B

Q12

]T

= 0. (A.71)
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Clearly, (A.67) implies (I − Q†
22Q22)QT

12 = 0, and (A.68) implies (I − Q†
22Q22)BT = 0, therefore

(A.67)–(A.68) imply (A.71). Define now

X̄
.= BQ†

22B
T (A.72)

Z̄
.= BQ†

22Q
T
12 (A.73)

Q̄11
.= Q11 − Q12Q

†
22Q

T
12, (A.74)

then (A.70) writes [
X − X̄ (Z − Z̄)

(Z − Z̄)T Q̄11

]
� 0. (A.75)

From (A.67) it follows that Q̄11 � 0, therefore (A.75) is feasible for X = X̄, Z = Z̄, which concludes
the proof.

Corollary A.1 (Decoupling). Let all symbols be defined as in Lemma A.7, and let

[
Q11 Q12

QT
12 Q22

]
� 0.

Then the problem

min
X,Z

f(X) subject to (A.66) (A.76)

is equivalent to

min
X

f(X) subject to (A.68). (A.77)

Moreover, if problem (A.77) is feasible and f(·) is either the trace function f(X) = trace (X), or
the log-det function f(X) = log det(X), then problem (A.76) has a unique optimal solution given
by

X̄
.= BQ†

22B
T (A.78)

Z̄
.= BQ†

22Q
T
12 (A.79)

Proof. When (A.67) holds, we know from Lemma A.7 that (A.66) is feasible if and only if (A.68)
is feasible, which immediately proves the equivalence between problems (A.76) and (A.77).

If the latter is feasible, then (A.66) is also feasible, and therefore (A.75) holds (with the symbols
defined in (A.72)–(A.74)), which means that

X � X̄ + (Z − Z̄)Q̄†
11(Z − Z̄)T

(I − Q̄†
11Q̄11)(Z − Z̄)T = 0.

Now, since f(X1) ≥ f(X2) whenever X1 � X2 (both in the case of trace and log-determinant) the
minimum of f(X) is achieved for X = X̄, Z = Z̄.
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B Proof of Corollary 2.2

With the position (2.15), let us define the following partitions[
[In 0] x̂

]
Ψ⊥

.=
[

B z
]

ΨT
⊥ (diag (0, 0, 1) − Ω(S, T, G)) Ψ⊥

.= Q =

[
Q11 q12

qT
12 1 − q22

]
,

where B = [In 0]Ψ⊥1, z = [In 0]ψ⊥2 − x̂. Notice that ΨT
⊥diag (0, 0, 1)Ψ⊥ = diag (0, 0, 1). Then,

condition (2.19) is equivalent to the following condition, obtained by simple reordering of the blocks
(dependence on S, T, G is sometimes omitted to avoid clutter)

 P z B

zT 1 − q22 qT
12

BT q12 Q11


 � 0.

Now, by Lemma A.7, the above matrix inequality is feasible for some P, z if and only if

Q(S, T, G) � 0,

[
P B

BT Q11

]
� 0 (B.80)

is feasible for some P . Therefore problem (2.25) is equivalent to

min
S,T,G

min
P

f(P ) subject to (B.80),

(S, T, G) ∈ B(∆), S � 0, T � 0,

which, by Corollary A.1, is equivalent to

min
S,T,G

f(X̄(S, T, G)) subject to

(S, T, G) ∈ B(∆), S � 0, T � 0,

Q(S, T, G) � 0,

(I − Q†
11Q11)BT = 0,

where X̄(S, T, G) = BQ†
11(S, T, G)BT .

If Sopt, Topt, Gopt are the optimal values of the above optimization problem, then (again by Corol-
lary A.1) the optimal ellipsoid is given by

Popt = BQ†
11(Sopt, Topt, Gopt)BT

zopt = BQ†
11(Sopt, Topt, Gopt)Q12.

From the latter we then retrieve the ellipsoid center as

x̂opt = [In 0]ψ⊥2 − zopt.
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