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Abstract We introduce novel relaxations for cardinality-constrained learning prob-
lems, including least-squares regression as a special but important case. Our approach
is based on reformulating a cardinality-constrained problem exactly as a Boolean pro-
gram, to which standard convex relaxations such as the Lasserre and Sherali-Adams
hierarchies can be applied. We analyze the first-order relaxation in detail, deriving
necessary and sufficient conditions for exactness in a unified manner. In the special
case of least-squares regression, we show that these conditions are satisfied with high
probability for random ensembles satisfying suitable incoherence conditions, similar
to results on �1-relaxations. In contrast to known methods, our relaxations yield lower
bounds on the objective, and it can be verified whether or not the relaxation is exact.
If it is not, we show that randomization based on the relaxed solution offers a prin-
cipled way to generate provably good feasible solutions. This property enables us to
obtain high quality estimates even if incoherence conditions are not met, as might be
expected in real datasets. We numerically illustrate the performance of the relaxation-
randomization strategy in both synthetic and real high-dimensional datasets, revealing
substantial improvements relative to �1-based methods and greedy selection heuristics.
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1 Introduction

Over the past several decades, the rapid increase of data dimensionality and complex-
ity has led a tremendous surge of interest of models for high-dimensional data that
incorporate some type of low-dimensional structure. Sparsity is a canonical way of
imposing low-dimensional structure, and has received considerable attention in many
fields, including statistics, signal processing, machine learning and applied mathemat-
ics [12,30,34]. Sparse models often typically more interpretable from the scientific
standpoint, and they are also desirable from a computational perspective.

The most direct approach to enforcing sparsity in a learning problem is by con-
trolling the �0-“norm” of the solution, which counts the number of non-zero entries
in a vector. Unfortunately, at least in general, optimization problems involving such
an �0-constraint are known to be computationally intractable. The classical approach
of circumventing this difficulty while still promoting sparsity in the solution is to
replace the �0-constraint with an �1-constraint, or alternatively to augment the objec-
tive function with an �1-penalty. This approach is well-known and analyzed under
various assumptions on the data generating mechanisms (e.g., [5,6,12,34]). However,
in a typical statistical setting, these mechanisms are not under the user’s control,
and it is difficult to verify post hoc that an �1-based solution is of suitably high
quality.

The main contribution of this paper is to provide a novel framework for obtain-
ing approximate solutions to cardinality-constrained problems, and one in which the
quality can be easily verified. Our approach is based on showing a broad class of
cardinality-constrained (or penalized) problems can be expressed equivalently as con-
vex programs involving Boolean variables. This reformulation allows us to apply
various standard hierarchies of relaxations for Boolean programs, among them Sherali-
Adams or Lasserre hierarchies [16,17,29,35]. When the solution of any such relaxation
is integral—i.e., belongs to the Boolean hypercube—then it must be an optimal solu-
tion to the original problem. Otherwise, any non-integral solution still provides a lower
bound on the minimum over all Boolean solutions.

The simplest relaxation is the first-order one, based on relaxing each Boolean vari-
able to the unit interval [0, 1]. We provide an in-depth analysis of the necessary and
sufficient conditions for this first-order relaxation to have an integral solution. In
the case of least-squares regression, and for a random ensemble of problems of the
compressed sensing type [6,12], we show that the relaxed solution is integral with
high probability once the sample size exceeds a critical threshold. In this regime, like
�1-relaxations, our first-order method recovers the support of sparse vector exactly,
but unlike �1-relaxations, the integral solution also certifies that it has recovered the
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Sparse learning via Boolean relaxations 65

sparest solution. Finally, there are many settings in which the first-order relaxation
might not be integral. For such cases, we study a form of randomized rounding for
generating feasible solutions, and we prove a result that controls the approximation
ratio. Our framework also allows to specify a target cardinality unlike methods based
on �1 regularization. This feature is desirable for many applications including portfolio
optimization [20], machine learning [11,27] and control theory [4].

The remainder of this paper is organized as follows. We begin in Sect. 2 by intro-
ducing the problem of sparse learning, and then showing how the constrained version
can be reformulated as a convex program in Boolean variables. In Sect. 3, we study
the first-order relaxation in some detail, including conditions for exactness as well
as analysis of randomized rounding procedures. Section 4 is devoted to discuss of
the penalized form of sparse learning problems, whereas Sect. 5 discusses numerical
issues and applications to real-world data sets. We conclude the main body with a
discussion in Sect. 6, with the majority of our proofs deferred to the Appendix.

2 General sparse learning as a Boolean problem

We consider a learning problem based on samples of the form (x, y) ∈ R
d × Y . This

set-up is flexible enough to model various problems, including regression problems
(output space Y = R), binary classification problems (output space Y = {−1,+1}),
and so on. Given a collection of n samples {(xi , yi )}ni=1, our goal is to learn a linear
function x �→ 〈x, w〉 that can be used to predict or classify future (unseen) outputs.
In order to learn the weight vector w ∈ R

d , we consider a cardinality-constrained
program of the form

P∗ := min
w∈Rd

‖w‖0≤k

{ n∑
i=1

f (〈xi , w〉; yi ) + 1

2
ρ‖w‖2

2

}

︸ ︷︷ ︸
F(w)

(1)

As will be clarified, the additional regularization term 1
2ρ‖w‖2

2 is useful for convex-
analytic reasons, in particular in ensuring strong convexity and coercivity of the
objective, and thereby the existence of a unique optimal solution w∗ ∈ R

d . Our results
also involve the Legendre-Fenchel conjugate of the function t �→ f (t; y), given by
(for each fixed y ∈ Y)

f ∗(s; y) : = sup
t∈R

{
s t − f (t; y)}. (2)

Let us consider some examples to illustrate.

Example 1 (Least-squares regression) In the problem of least-squares regression, the
outputs are real-valued (see e.g., [4]). Adopting the cost function f (t, y) = 1

2

(
t − y

)2

leads to �0-constrained problem

P∗ := min
w∈Rd

‖w‖0≤k

{1

2

n∑
i=1

(〈xi , w〉 − yi
)2 + 1

2
ρ‖w‖2

2

}

︸ ︷︷ ︸
FLS(w)

(3)
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This formulation, while close in spirit to elastic net [39], is based on imposing the
cardinality constraint exactly, as opposed to in a relaxed form via �1-regularization.
However, in contrast to the elastic net, it is a nonconvex problem, so that we need to
study relaxations of it. A straightforward calculation yields the conjugate dual function

f ∗(s; y) = s2

2
+ s y, (4)

which will play a role in our relaxations of the nonconvex problem (3).

The preceding example has a natural extension in terms of generalized linear models:

Example 2 (Generalized linear models) In a generalized linear model, the output
y ∈ Y is related to the covariate x ∈ R

d via a conditional distribution in the exponential
form (see e.g. [21,24])

Pw(y | x) = h(y) exp
(
y 〈x, w〉 − ψ(〈x, w〉)). (5)

Here h : R
d → R+ is some fixed function, and ψ : R → R is the cumulant

generating function, given by ψ(t) = log
∫
Y etyh(y)dy. Letting f (〈x, w〉; y) be the

negative log-likelihood associated with this family, we obtain the general family of
cardinality-constrained likelihood estimates

min
w∈Rd

‖w‖0≤k

{ n∑
i=1

{
ψ(〈xi , w〉)− yi 〈xi , w〉}+ 1

2
ρ‖w‖2

2

}

︸ ︷︷ ︸
FGR(w)

(6)

Specifically, least-squares regression is a particular case of the problem (6), corre-
sponding to the choice ψ(t) = t2/2. Similarly, logistic regression for binary responses
y ∈ {0, 1} can be obtained by setting ψ(t) = log(1 + et ).

In the likelihood formulation (6), we have f (t; y) = ψ(t) − yt , whence conjugate
dual takes the form

f ∗(s; y) = sup
t∈R

{
st − ψ(t) + yt

} = ψ∗(s + y), (7)

where ψ∗ denotes the conjugate dual of ψ . As particular examples, in the case of
logistic regression, the dual of the logistic function ψ(t) = log(1 + et ) takes the
form ψ∗(s) = s log s + (1 − s) log(1 − s) for s ∈ [0, 1], and takes the value infinity
otherwise.

As a final example, let us consider a cardinality-constrained version of the support
vector machine:

Example 3 (Support vector machine classification) In this case, the outputs are binary
y ∈ {−1, 1}, and our goal is to learn a linear classifier x �→ sign(〈x, w〉) ∈ {−1, 1} [7].
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The cardinality-constrained version of the support vector machine (SVM) is based on
minimizing the objective function

min
w∈Rd

‖w‖0≤k

{ n∑
i=1

φ
(
yi 〈xi , w〉)+ 1

2
ρ‖w‖2

2

}

︸ ︷︷ ︸
FSVM(w)

, (8)

where φ(t) = max{1 − t, 0} is known as the hinge loss function. The conjugate dual
of the hinge loss takes the form

φ∗(s) =
{
s if s ∈ [−1, 0]
∞ otherwise.

Having considered various examples of sparse learning, we now turn to developing
an exact Boolean representation that is amenable to various relaxations.

2.1 Exact representation as a Boolean convex program

Let us now show how the cardinality-constrained program (1) can be represented
exactly as a convex program in Boolean variables. This representation, while still
nonconvex, is useful because it immediately leads to a hierarchy of relaxations. Given
the collection of covariates {xi }ni=1, we let X ∈ R

n×d denote the design matrix with
xTi ∈ R

d as its i th row.

Theorem 1 (Exact representation) Suppose that for each y ∈ Y , the function
t �→ f (t; y) is closed and convex. Then for any ρ > 0, the cardinality-constrained
program (1) can be represented exactly as the Boolean convex program

P∗ = min
u∈{0,1}d∑d
j=1 u j≤k

max
v∈Rn

{
− 1

2ρ
vT XD(u)XT v −

n∑
i=1

f ∗(vi ; yi )
}

︸ ︷︷ ︸
G(u)

, (9)

where D(u) : = diag(u) ∈ R
d×d is a diagonal matrix.

The function u �→ G(u)—in particular, defined by maximizing over v ∈ R
n—is a

maximum of a family of functions that are linear in the vector u, and hence is convex.
Thus, apart from the Boolean constraint, all other quantities in the program (9) are
relatively simple: a linear constraint and a convex objective function. Consequently, we
can obtain tractable approximations by relaxing the Boolean constraint. The simplest
such approach is to replace the Boolean hypercube {0, 1}d with the unit hypercube
[0, 1]d . Doing so leads the interval relaxation of the exact Boolean representation,
namely the convex relaxation
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PIR = min
u∈[0,1]d∑d
j=1 u j≤k

max
v∈Rn

{
− 1

2ρ
vT XD(u)XT v −

n∑
i=1

f ∗(vi ; yi )
}

︸ ︷︷ ︸
G(u)

. (10)

Note that this is a convex program, and so can be solved by standard methods. In
particular the sub-gradient descent method (e.g., see [25]) can be applied directly if
a closed form solution, or a solver for the inner maximization problem is available.
In Sect. 3, we return to analyze when the interval relaxation is tight—that is, when
PIR = P∗.

In the case of least-squares regression, Theorem 1 and the interval relaxation take
an especially simple form, which we state as a corollary.

Corollary 1 The cardinality constrained problem is equivalent to the Boolean SDP

P∗ = min
(u,t)∈{0,1}d×R+∑d

j=1 u j≤k

t such that

[
In + 1

ρ
XD(u)XT y
yT t

]
� 0. (11)

Thus, the interval relaxation (10) is an ordinary SDP in variables (u, t) ∈ [0, 1]d×R+.

Proof As discussed in Example 1, the conjugate dual of the least-squares loss t �→
f (t; y) = 1

2 (t − y)2 is given by f ∗(s; y) = s2

2 + sy. Substituting this dual function
into Eq. (9), we find that

G(u) = max
v∈Rn

{
− 1

2
vT

(
XD(u)XT

ρ
+ I

)
v − 〈v, y〉

}
,

where we have defined the diagonal matrix D(u) : = diag(u) ∈ R
d×d . Taking deriv-

atives shows that the optimum is achieved at

v̂ = −
(
XD(u)XT

ρ
+ I

)−1

y, (12)

and substituting back into Eq. (9) and applying Theorem 1 yield the representation

P∗ = min
u∈{0,1}d∑d
j=1 u j≤k

{
yT

(
1

ρ
XD(u)XT + In

)−1

y
}
. (13)

By introducing a slack variable t ∈ R+ and using the Schur complement formula (see
e.g. [4]), some further calculation shows that this Boolean problem (13) is equivalent
to the Boolean SDP (11), as claimed. �
We now present the proof of Theorem 1.
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Proof Recalling that D(u) : = diag(u) is a diagonal matrix, for each fixed u ∈ {0, 1}d ,
consider the change of variable w �→ D(u)w. With this notation, the original prob-
lem (1) is equivalent to

P∗ = min‖D(u)w‖0≤k

{ n∑
i=1

f (〈D(u)xi , w〉; yi ) + 1

2
ρ‖D(u)w‖2

2

}
. (14)

Noting that we can take wi = 0 when ui = 0 and vice-versa, the original prob-
lem (1) becomes

P∗ = min
u∈{0,1}d∑d
j=1 u j≤k

min
w∈Rd

{ n∑
i=1

f (〈D(u)xi , w〉; yi ) + 1

2
ρ‖w‖2

2

}
. (15)

It remains to prove that, for each fixed Boolean vector u ∈ {0, 1}d , we have

min
w∈Rd

{ n∑
i=1

f (〈D(u)xi , w〉; yi ) + 1

2
ρ‖w‖2

2

}

= max
v∈Rn

{
− 1

2ρ
‖D(u)XT v‖2

2 −
n∑

i=1

f ∗(vi ; yi )
}
. (16)

From the conjugate representation of f , we find that

min
w∈Rd

max
v∈Rn

{ n∑
i=1

vi 〈D(u)xi , w〉 − f ∗(vi ; yi ) + 1

2
ρ‖w‖2

2

}
.

Under the stated assumptions, strong duality must hold, so that it is permissible to
exchange the order of the minimum and maximum. Doing so yields

max
v∈Rn

min
w∈Rd

{ n∑
i=1

vi 〈D(u)xi , w〉 − f ∗(vi ; yi ) + 1

2
ρ‖w‖2

2

}
.

Finally, strong convexity ensures that the minimum over w is unique: more specif-
ically, it is given by w∗ = 1

ρ

∑n
i=1 D(u)xivi . Substituting this optimum yields the

claimed equality (16). �

3 Convex-analytic conditions for IR exactness

We now turn to analysis of the interval relaxation (10), and in particular, determining
when it is exact. Note that by strong convexity, the original cardinality-constrained
problem (1) has a unique solution, say w∗ ∈ R

d . Let S denote the support set of w∗,
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and let u∗ be a Boolean indicator vector for membership in S—that is, u∗
j = 1 if j ∈ S

and zero otherwise.
An attractive feature of the IR relaxation is that integrality of an optimal solution

û to the relaxed problem provides a certificate of exactness—that is, if the interval
relaxation (10) has an optimal solution û ∈ {0, 1}d , then it must be the case that
û = u∗ (so that we recover the support set of w∗), and moreover that

PIR = P∗. (17)

In this case, we are guaranteed to recover the optimal solution w∗ of the original
problem (1) by solving the constrained problem with w j = 0 for all j /∈ S.

In contrast, methods based on �1-relaxations do not provide such certificates of
exactness. In the least-squares regression, the use of �1-relaxation is known as the
Lasso [30], and there is an extensive literature devoted to conditions on the design
matrix X ∈ R

n×d under which the �1-relaxation provides a “good” solution. Unfortu-
nately, these conditions are either computationally infeasible to check (e.g., restricted
eigenvalue, isometry and nullspace conditions [3,9] and the related irrepresentabil-
ity conditions for support recovery [14,22,38]). Although polynomial-time checkable
conditions do exist (such as pairwise incoherence conditions [13,14,31]), they provide
weak guarantees, only holding for sample sizes much larger than the threshold at which
the �1-relaxation begins to work. In addition, most of the previous work on analyz-
ing �1 relaxations considered a statistical data model where there exists a true sparse
coefficient generating the response. However in many applications such assumptions
do not necessarily hold and it is unclear whether �1 regularization provides a good
optimization heuristic for an arbitrary input data.

It is thus of interest to investigate conditions under which the relaxation (IR) is
guaranteed to have an integer solution and hence be tight. The following result provides
an if-and-only if characterization.

Proposition 1 The interval relaxation is tight—that is, PIR = P∗—if and only if there
exist a pair (λ, v̂) ∈ R+ × R

n such that

v̂ ∈ arg max
v∈Rn

{
− 1

2ρ
vT XS X

T
S v −

n∑
i=1

f ∗(vi ; yi )
}
, and (18a)

|〈X j , v̂〉| > λ for all j ∈ S, and |〈X j , v̂〉| < λ for all j /∈ S, (18b)

where X j ∈ R
n denotes the j th column of the design matrix, S denotes the support of

the unique optimal solution w∗ to the original problem (1).

Proof Beginning with the saddle-point representation from Eq. (10), we apply the
first-order convex optimality condition for constrained minimization. More precisely,
the relaxed solution û is optimal if and only if the following inclusion holds:

0 ∈
{

∂u max
v∈Rn

{
− 1

2ρ
vT XD(u)XT v −

n∑
i=1

f ∗(vi ; yi )
}

+ N

}
,
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where N denotes the normal cone of the constraint set
{
u ∈ [0, 1]d | ∑d

j=1 u j ≤ k
}

.

Note that the subgradient with respect to u j is given by −(〈X j , v̂〉)2, where the vector
v̂ was defined in Eq. (18a). Using representation of the normal cone at the integral
point u∗ and associating λ ≥ 0 as the dual parameter corresponding to constraint∑d

j=1 u j , we arrive at the stated condition (18b). �
In the case of least-squares regression, the conditions of Proposition 1 can be sim-

plified substantially. Recall that interval relaxation for least-squares regression is given
by

PI R = min
u∈[0,1]d∑d
j=1 u j≤k

{
yT (

1

ρ
XD(u)XT + In)

−1y
}
. (19)

Let S denote the support of the unique optimal solution w∗ to the original least-squares
problem (3), say of cardinality k, and define the n × n matrix

M : = (
In + ρ−1XSX

T
S

)−1 (20)

With this notation, we have:

Corollary 2 The interval relaxation of cardinality-constrained least-squares is exact
(PIR = P∗) if and only there exists a scalar λ ∈ R+ such that

∣∣XT
j My

∣∣ > λ for all j ∈ S, and (21a)
∣∣XT

j My
∣∣ ≤ λ for all j /∈ S, (21b)

where X j ∈ R
n denotes the j th column of X.

Proof From the proof of Corollary 1, recall the Boolean convex program (13). As
shown in Eq. (12), its optimum is achieved at v̂ = −(In + XD(u∗)XT )y, where u∗ is
a Boolean indicator for membership in S. Applying Proposition 1 with this choice of
v̂ yields the necessary and sufficient conditions

∣∣yT (ρ In + XD(u∗)XT )−1X j
∣∣ > λ for all j ∈ S, and∣∣yT (ρ In + XD(u∗)XT )−1X j
∣∣ ≤ λ for all j ∈ Sc,

and completes the proof. �
In order to gain an understanding of the above corollary consider an example where

the rows of XS are orthonormal and n = k, hence M = (In + ρ( − 1)In)−1 =
ρ/(1 + ρ)In . Then the conditions for integrality reduce to checking whether there
exists λ′ ∈ R+ such that

∣∣XT
j y
∣∣ > λ′ for all j ∈ S, and

∣∣XT
j y
∣∣ ≤ λ′ for all j /∈ S.
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Intuitively the above condition basically checks if the columns in the correct
support are more aligned to the response y compared to the columns outside the
support.

Also note that by the matrix inversion formula, we have the alternative representa-
tion,

M = (
In + ρ−1XSX

T
S

)−1 = In − XS
(
ρ Id + XT

S XS)
−1XT

S ,

For random ensembles, Corollary 2 allows the use of a primal witness method to
certify exactness of the IR method. In particular, if we can construct a scalar λ for
which the two bounds (21a) and (21b) hold with high probability, then we can certify
exactness of the relaxation. We illustrate this approach in the following subsection.

3.1 Sufficient conditions for random ensembles

In order to assess the performance of the interval relaxation (10), we performed some
simple experiments for the least squares case, first generating a design matrix X ∈
R
n×d with i.i.d. N (0, 1) entries, and then forming the response vector y = Xw∗ + ε,

where the noise vector ε ∈ R
n has i.i.d. N (0, γ 2) entries. The unknown regression

vector w∗ was k-sparse, with absolute entries of the order 1/
√
k on its support. Each

such problem can be characterized by the triple (n, d, k) of sample size, dimension and
sparsity, and the question of interest is to understand how large the sample size should
be in order to ensure exactness of a method. For instance, for this random ensemble,
the Lasso is known [33] to perform exact support recovery once n >∼k log(d − k), and
this scaling is information-theoretically optimal [32]. Does the interval relaxation also
satisfy this same scaling?

In order to test the IR relaxation, we performed simulations with sample size n =
αk log d for a control parameter α ∈ [2, 8], for three different problem sizes d ∈
{64, 128, 256} and sparsity k = �√d�. Figure 1 shows the probability of successful
recovery versus the control parameter α for these different problem sizes, for both the
Lasso and the IR method. Note that both methods undergo a phase transition once the
sample size n is larger than some constant multiple of k log(d − k).
The following result provides theoretical justification for the phase transition behavior
exhibited in Fig. 1:

Theorem 2 Suppose that we are given a sample size n > c0
γ 2+‖w∗

S‖2
2

w2
min

log d, and that

we solve the interval relaxationwithρ = √
n. Thenwith probability at least 1−2e−c1n,

the interval relaxation is integral, so that PIR = P∗.

For a typical k-sparse vector, we have
‖w∗‖2

2
w2

min
≈ k, so that Theorem 2 predicts that

the interval relaxation should succeed with n ≥ k log(d − k) samples, as confirmed
by the plots in Fig. 1.
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Fig. 1 Problem of exact support recovery for the Lasso and the interval relaxation for different problem
sizes d ∈ {64, 128, 256}. As predicted by theory, both methods undergo a phase transition from failure to
success once the control parameter α : = n

k log(d−k) is sufficiently large. This behavior is confirmed for the
interval relaxation in Theorem 2

3.2 Analysis of randomized rounding

In this section, we describe a method to improve the interval relaxation scheme intro-
duced earlier. The convex relaxation of the Boolean hypercube constraint u ∈ {0, 1}d
to the standard hypercube constraint u ∈ [0, 1]d might produce an integral solution—
in particular, when the conditions in Proposition 1 are not satisfied. In this case, it
is natural to consider how to use the fractional solution û ∈ [0, 1]d to produce a
feasible Boolean solution ũ ∈ {0, 1}d . By construction, the objective function values
(G (̂u),G (̃u)) defined by this pair will sandwich the optimal value—viz

G (̂u) ≤ P∗ ≤ G (̃u).

Here G is the objective function from the original Boolean problem (9).
Randomized rounding is a classical technique for converting fractional solutions

into integer solutions with provable approximation guarantees [23]. Here we consider
the simplest possible form of randomized rounding in application to our relaxation.
Given the fractional solution û ∈ [0, 1]d , suppose that we generate a feasible Boolean
solution ũ ∈ {0, 1}d as follows

P[̃ui = 1] = ûi and P[̃ui = 0] = 1 − ûi . (22)

By construction, this random Boolean vector matches the fractional solution in
expectation—that is, E[̃u] = û, and moreover its expected �0-norm is given by
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E[‖ũ‖0] =
d∑

i=1

P[̃ui = 1] =
d∑

i=1

ûi ≤ k,

where the final inequality uses the feasibility of the fractional solution û. The random
Boolean solution ũ can be used to define a randomized solution w̃ ∈ R

d of the original
problem via

w̃ = arg min
w∈Rd

F
(
D(̃u)w

)
, (23)

where the function F was defined in Eq. (1).
Without loss of generality, consider the least squares problem and assume the

columns are normalized, i.e., ‖x j‖2 = 1 for j = 1, . . . , d and ‖y‖2 = 1, then
we have the following result. Let R ⊂ {1, . . . , d} be the subset of coordinates on
which û takes fractional values (i.e., û j ∈ (0, 1) for all j ∈ R) and let r = |R| be the
cardinality of this set.

Theorem 3 There are universal constants c j such that for any δ ∈ (0, 1), with proba-

bility at least 1−c1e−c2kδ2 − 1
min{r,n}c3 , the randomly rounded solution w̃ has �0-norm

at most (1 + δ)k, and has optimality gap at most

F(w̃) − P∗ ≤ c4

√
r log min{r, n}

ρ
. (24)

Note that the optimality gap in the preceding bound is negligible when the number
of fractional solutions are small enough, and vanishes when the solution is integral,
i.e., r = 0. The optimality gap also decreases when ρ gets larger in which case
the objective of the original problem is heavily regularized by ρ

2 ‖w‖2
2. The bound

in Theorem 3 uses concentration bounds from random matrix theory [1] which are
known to be sharp estimates of the statistical deviation in random sampling.

In our simulations, in order to be sure that we compare with a feasible integral
solution (i.e., with at most k entries), we generate T realizations—say {̃u1, . . . , ũT }
of the rounding procedure—and then pick the one ũ∗ that has smallest objective value
G (̃u) among the feasible solutions. (Note that ũ∗ will exist with high probability for
reasonable choices of T .) Finally, we define w̃∗ = arg minw F(D(̃u∗)). Denoting this
procedure as randomized rounding of order T , we study its empirical behavior in
Sect. 5 in the sequel.

The computational complexity of the randomized rounding procedure is dominated
by evaluating F

(
D(̃u)w

)
a total of T times. However since ũ are sparse vectors this

procedure is very efficient. For the least squares problem with target cardinality k the
complexity becomes O(T k2n) since evaluating

(
D(̃u)w

)
can be done in O(k2n) time

using QR decomposition.
We note that in some other applications there might be additional constraints

imposed on the vector u such as block sparsity or graphical structure. In such cases the
randomized rounding process needs to be altered accordingly, or variants of rejection
sampling can be used to generate vectors until constraints are satisfied.
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4 Penalized forms of cardinality

Up to this point, we have consider the cardinality-constrained versions of sparse learn-
ing problems. If we instead enforce sparsity by augmenting the objective with some
multiple of the �0-norm, this penalized objective can also be reformulated as Boolean
program with a convex objective.

4.1 Reformulation as Boolean program

More precisely, suppose that we begin with the cardinality-penalized program

P∗(λ) : = min
w∈Rd

{ n∑
i=1

f (〈xi , w〉; yi ) + 1

2
ρ‖w‖2

2 + λ‖w‖0

}
. (25)

As before, we suppose that for each y ∈ Y , the function t �→ f (t; y) is closed and
convex. Under this condition, the following result provides an equivalent formulation
as a convex program in Boolean variables:

Theorem 4 For any ρ > 0 and λ > 0, the cardinality-penalized program (25) can
be represented exactly as the Boolean convex program

P∗(λ) = min
u∈{0,1}d

max
v∈Rn

{
− 1

2ρ
vT XD(u)XT v −

n∑
i=1

f ∗(vi ; yi ) + λ

d∑
i=1

ui
}
, (26)

where D(u) : = diag(u) ∈ R
d×d is a diagonal matrix.

The proof is very similar to that of Theorem 1, and so we omit it.
As a consequence of the equivalent Boolean form (26), we can also obtain various

convex relaxations of the cardinality-penalized program. For instance, the first-order
relaxation takes the form

PIR(λ) = min
u∈[0,1]d

max
v∈Rn

{
− 1

2ρ
vT XD(u)XT v −

n∑
i=1

f ∗(vi ; yi ) + λ

d∑
i=1

ui
}
, (27)

which is the analogue of our first-order relaxation (13) for the constrained version of
sparse learning.

As with our previous analysis, it is possible to eliminate the minimization over
u from this saddle point expression. Strong duality holds, so that the maximum and
minimum may be exchanged. In order to evaluate the minimum over u, we observe
that 1

2ρ
vT XD(u)XT v = ∑d

i=1 ui
( 1

2ρ
(xTi v)2

)
, and moreover that

min
u∈[0,1]d

{
−

d∑
i=1

ui

(
1

2ρ
(xTi v)2 − λ

)}
= −

d∑
i=1

(
1

2ρ
(xTi v)2 − λ

)

+
,
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Putting together the pieces, we can write the interval relaxation in the penalized case
as the following convex (but non-differentiable) program

PIR(λ) = max
v∈Rn

{
−

d∑
i=1

(
1

2ρ
(xTi v)2 − λ

)

+
−

n∑
i=1

f ∗(vi ; yi )
}
. (28)

4.2 Least-squares regression

As before, the relaxation (28) takes an especially simple form for the special but
important case of least-squares regression. In particular, in the least-squares case, we
have f (t, y) = 1

2

(
t − y

)2, along with the corresponding conjugate dual function

f ∗(s; y) = s2

2 + s y. Consequently, the general relaxation (28) reduces to

PIR(λ) = max
v∈Rn

{
−

d∑
i=1

(
1

2ρ
(xTi v)2 − λ

)

+
− vT y − 1

2
‖v‖2

2

}
, (29)

As we now show, this convex program is equivalent to minimizing the least-squares
objective using a form of regularization that combines the �1 and �2-norms. In partic-
ular, let us define

B(t) = 1

2
min
z∈[0,1]

{
z + t2

z

}
=
{

|t | if |t | ≤ 1
t2+1

2 otherwise
. (30)

This function combines the �1 and �2 norms in the way that is the opposite Huber’s
robust penalty; consequently, we call it the reverse Huber penalty.

Corollary 3 The interval relaxation (29) for the cardinality-penalized least-squares
problem has the equivalent form

PIR(λ) = min
w∈Rd

{1

2
‖Xw − y‖2

2 + 2λ

d∑
i=1

B
(√

ρwi√
λ

)}
, (31)

where B denotes the reverse Huber penalty.

A plot of the reverse Huber penalty is displayed in Fig. 2 and compared with the
�1-norm t �→ λ|t |, as well as the �0-based penalty t �→ λ‖t‖0 + 1

2 t
2.

Proof Consider the representation (29) for the least-squares case. We can represent the
coordinatewise functions (·)+ function using a vector p ∈ R

d of auxiliary variables
as follows

PIR(λ) = max
v,p

{
− 1T p − 1

2
‖v‖2

2 − 〈v, y〉
}

subject to p ≥ 0, andpi ≥ 1

2ρ
(〈xi , v〉)2 − λ for i = 1, . . . , d.
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Fig. 2 Plots of three different penalty functions as a function of t ∈ R: reverse Huber (berhu) function

t �→ B(

√
ρt
λ

) �1-norm t �→ λ|t | and the �0-based penalty t �→ t2
2 + λ‖t‖0

Making use of rotated second order cone constraints, we have the equivalence

pi ≥ 1

2ρ

(〈xi , v〉)2 − λ ⇐⇒
∥∥∥∥
( 〈xi , v〉
pi + λ − 1

)∥∥∥∥ ≤ pi + λ + 1, for i = 1, . . . , d.

Thus, the relaxation (29) has the equivalent representation

PIR(λ) = max
v∈Rn

p∈Rd

{
− 〈1, p〉 − 1

2
‖v‖2

2 − 〈v, y〉
}

subject to p ≥ 0,

∥∥∥∥
(√

ρ−1〈xi , v〉
pi + λ − 1

)∥∥∥∥ ≤ pi + λ + 1, i = 1, . . . , d,

which is a second order cone program (SOCP) in variables (v, p) ∈ R
n × R

d .
Introducing Lagrange vectors for the constraints, we have

PIR(λ) = max
v,p

min
α,β,γ

{
− 〈1, p〉 − 1

2
‖v‖2

2 − 〈v, y〉 +
d∑

i=1

(γi (pi + λ − 1)

−
√

ρ−1αi 〈xi , v〉 − βi (pi + λ + 1)
) }

subject to p ≥ 0,

∥∥∥∥
(

αi

βi + λ − 1

)∥∥∥∥ ≤ γi , i = 1, . . . , d .
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Since λ > 0, strong duality holds by primal strict feasibility (see e.g., [4]), we may
exchange the order of the minimum and the maximum. Making the substitutions
w = α/ρ, u = γ + β, z = γ − β, and then eliminating v = y − Xw yields the
equivalent expression

PIR(λ) = min
w,u,z

max
p≥0

{1

2
‖Xw − y‖2

2 + 〈p, z − 1〉 + 〈1, λz + y〉
}

subject to

∥∥∥∥
( √

ρxi
yi − zi

)∥∥∥∥ ≤ yi + zi i = 1, . . . , n.

= min
w,u,z

{1

2
‖Xw − y‖2

2 + 〈p, λz + y〉
}

subject to 0 ≤ zi ≤ 1, yi ≥ 0, ρw2
i ≤ yi zi , i = 1, . . . , n

= min
w,z

{1

2
‖Xw − y‖2

2 +
d∑

i=1

(
λzi + ρw2

i

zi

)}
, 0 ≤ zi ≤ 1, i = 1, . . . , n ,

= min
w

{1

2
‖Xw − y‖2

2 + 2λ

d∑
i=1

B
(√

ρwi√
λ

)}
,

which completes the proof. �
We note that the alternative reverse Huber representation of the least squares prob-

lem can potentially be used to apply convex optimization toolboxes (e.g., [8,15]) where
the reverse Huber function is readily available.

5 Numerical results

In this section, we discuss some numerical aspects of solving the relaxations that we
have introduced, and illustrate their behavior on some real-world problems of sparse
learning.

5.1 Optimization techniques

Although efficient polynomial-time methods exist for solving semi-definite programs,
solving large-scale problems remains challenging using current computers and algo-
rithms. For the SDP problems of interest here, one attractive alternative is to instead
develop algorithms to solve the saddle-point problem in Eq. (10). For instance, in the
least-squares case, the gradients of the relaxed objective in Eq. (19) are given by

∂i G(u) = −
(
xTi (I + XD(u)XT /ρ)−1y

)2
.

Computing such a gradient requires the solution of a rank-‖u‖0 linear system of size
n, which can be done exactly in time O(‖u‖3

0) + O(nd) via the QR decomposition.
Therefore, the overall complexity of using first-order and quasi-Newton methods is
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Fig. 3 Objective value versus cardinality trade-off in a real dataset from cancer research. The proposed
randomized rounding method considerably outperforms other methods by achieving lower objective value
with smaller cardinality. a Colon cancer dataset. b Ovarian cancer dataset

comparable to the Lasso when the sparsity level k is relatively small. We then employ
a projected quasi-Newton method [28] to numerically optimize the convex objective.
The randomized rounding procedure requires T evaluations of function value, which
takes additional O(T ‖ũ‖3

0) time.

5.2 Experiments on real datasets

We consider two well known high-dimensional datasets studied in cancer research, the
62×2000 Colon cancer dataset1 and 216×4000 Ovarian cancer dataset2 which con-
tain ion intensity levels corresponding to related proteins and corresponding cancer or
normal output labels. We consider classical �2

2-regularized least lquares classification
using the mapping −1 for cancer label and +1 for normal label. We numerically
implemented the proposed randomized rounding procedure of T = 1000 trials based
on the relaxed solution. For other methods we identify their support and predict using
regularized least squares solution constrained to that support where regularization
parameter is optimized for each method on the training set. Figure 3 depicts optimiza-
tion error (training error) as a function of the cardinality of the solution for both of the
datasets. It is observed that the randomized rounding approach provides a considerable
improvement in the optimal value for any fixed cardinality. In order to assess the learn-
ing and generalization performance of the trained model, we then split the dataset into
two halves for training and testing. We present the plots of the test error as a function
of cardinality over 1000 realizations of data splits and show the corresponding error-
bars calculated for 1.5σ in Fig. 4. The proposed algorithm also shows a considerable

1 Taken from the Princeton University Gene Expression Project; for original source and further details
please see the references therein.
2 Taken from FDA-NCI Clinical Proteomics Program Databank; for original source and further details
please see the references therein.
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Fig. 4 Classification accuracy versus cardinality in a real dataset from cancer research. The proposed
method has considerably higher classification accuracy for a fixed cardinality. a Colon cancer dataset.
b Ovarian cancer dataset

improvement in both training and test error compared to the other methods, as can be
seen from the figures. We observed that choosing T ∈ [100, 1000] gave satisfactory
results however T can be chosen larger for higher dimensional problems without any
computational difficulty.

We also note that in many applications choosing a target cardinality k with good
predictive accuracy is an important problem. For a range of cardinality values the
proposed approach can be combined with cross-validation and other model selection
methodologies such as the Bayesian information criterion (BIC) or Akaike information
criterion (AIC) [2,36]. However there are also machine learning applications where
the target cardinality is specified due to computational complexity requirements at
runtime (see e.g. [11]). In these applications the cardinality directly effects the number
of features that needs to be checked for classifying a new sample.

6 Discussion

In this paper, we first showed how a broad class of cardinality-constrained (or penal-
ized) sparse learning problems can be reformulated exactly as Boolean programs
involving convex objective functions. The utility of this reformulation is in permitting
the application of various types of relaxation hierarchies, such as the Sherali-Adams
and Lasserre hierarchies for Boolean programs. The simplest such relaxation is the
first-order interval relaxation, and we analyzed the conditions for its exactness in detail.
In contrast to the classical �1 heuristic, the presented method provides a lower bound
on the solution value, and moreover a certificate of optimality when the solution is
integral. We provided sufficient conditions for the solution to be integral for linear
regression problems with random Gaussian design matrices. For problems in which
the solution is not integral, we proposed an efficient randomized rounding procedure,
and showed that its approximation accuracy can be controlled in terms of the number of
fractional entries, and a regularization parameter in the algorithm, In our experiments
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with real data sets, the output of this randomized rounding procedure provided con-
siderably better solutions than standard competitors such as the Lasso or orthogonal
matching pursuit.

There are a range of interesting open problem suggested by this paper. In particular,
we have studied only the most naive first-order relaxation for the problem: it would be
interesting to see whether one quantify how quickly the performance improves (relative
to the exact cardinality-constrained solution) as the level of relaxation—say in one of
the standard hierarchies for Boolean problems [16,17,19,29,35]—is increased. This
question is particularly interesting in light of recent work [37] showing that, under a
standard conjecture in computational complexity, there are fundamental gaps between
the performance of cardinality-constrained estimators and polynomial-time methods
for the prediction error in sparse regression.

Acknowledgments Authors MP and MJW were partially supported by Office of Naval Research MURI
grant N00014-11-1-0688, and National Science Foundation Grants CIF-31712-23800 and DMS-1107000.
In addition, MP was supported by a Microsoft Research Fellowship.

7 Appendix: Proofs

In this appendix, we provide the proofs of Theorems 2 and 3.

7.1 Proof of Theorem 2

Recalling the Definition (20) of the matrix M , for each j ∈ {1, . . . , d}, define the

rescaled random variable Uj : = XT
j My

ρn . In terms of this notation, it suffices to find a
scalar λ such that

min
j∈S |Uj | > λ and max

j∈Sc |Uj | < λ. (32)

By definition, we have y = XSw
∗
S + ε, whence

Uj = XT
j MXSw

∗
S

ρn︸ ︷︷ ︸
A j

+ XT
j Mε

ρn︸ ︷︷ ︸
Bj

.

Based on this decomposition, we then make the following claims:

Lemma 1 There are numerical constants c1, c2 such that

P
[

max
j=1,...,d

|Bj | ≥ t
] ≤ c1e

−c2
n t2

γ 2 +log d
. (33)
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Lemma 2 There are numerical constants c1, c2 such that

P
[

min
j∈S |A j | <

wmin

4

] ≤ c1e
−c2n

w2
min

‖w∗
S‖2

2
+log(2k)

and (34a)

P
[

max
j∈Sc |A j | ≥ wmin

16

] ≤ c3e
−c4n

w2
min

‖w∗
S‖2

2
+log(d−k)

, (34b)

Using these two lemmas, we can now complete the proof. Recall that Theorem 2

assumes a lower bound of the form n > c0
γ 2+‖w∗

S‖2
2

w2
min

log d, where c0 is a sufficiently

large constant. Thus, setting t = wmin
16 in Lemma 1 ensures that max j=1,...,d |Bj | ≤

wmin
16 with high probability. Combined with the bound (34a) from Lemma 2, we are

guaranteed that

min
j∈S |Uj | ≥ wmin

4
− wmin

16
= 3wmin

16
with high probability.

Similarly, the bound (34b) guarantees that

max
j∈Sc |Uj | ≤ wmin

16
+ wmin

16
= 2wmin

16
also with high probability.

Thus, setting λ = 5wmin
32 ensures that the condition (32) holds.

The only remaining detail is to prove the two lemmas.

Proof of Lemma 1 Define the event E j = {‖X j‖2/
√
n ≤ 2}, and observe that

P
[|Bj | > t

] ≤ P[|Bj | > t | E] + P[Ec].

Since the variable ‖X j‖2
2 follows a χ2-distribution with n degrees of freedom, we have

P
[Ec

] ≤ 2e−c2n . Recalling the Definition (20) of the matrix M , note that σmax

(
M
) ≤

ρ−1, whence conditioned on E , we have ‖MX j‖2 ≤ ‖X j‖2 ≤ 2
√
n. Consequently,

conditioned on E , the variable
XT

j Mε

ρ
is a Gaussian random vector with variance at

most 4γ 2/ρ2, and hence P[|Bj | > t | E] ≤ 2e
− ρ2 t2

32γ 2 .
Finally, by union bound, we have

P
[

max
j=1,...,d

|Bj | > t
]≤d P

[|Bj | > t
] ≤ d

{
2e

− ρ2 t2

32γ 2 + 2e−c2ρn
}

≤ c1e
−c2

ρ2 t2

γ 2 +log d
,

as claimed. �
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Proof of Lemma 2 We split the proof into two parts.

(1) Proof of the bound (34a):
Note that

1

ρ
XT
S MXS = XT

S (ρ In + XSX
T
S )−1XS

We now write XS = UDV T for singular value decomposition of 1√
n
XS in compact

form. We thus have

1

ρ
XT
S MXS = V

(
ρ In + nD2)−1

D2V T .

We will prove that for a fixed vector z, the following holds with high probability

‖
(

1
ρ
XT
S MXS − I

)
z‖∞

‖z‖∞
≤ ε. (35)

Applying the above bound to w∗
S , which is a fixed vector we obtain

‖
(

1

ρ
XT
S MXS − I

)
w∗
s ‖∞ ≤ ε‖w∗

s ‖∞ (36)

Then by triangle inequality the above statement implies that

min
i∈S | 1

ρ
XT
S MXSw

∗
i | > (1 − ε) min

i∈S |w∗
i |.

and setting ε = 3/4 yields the claim.
Next we let 1

ρ
XT
S MXS− I = V D̃V where we defined D̃ : =(

(ρ In+D2)−1D2− I
)
.

By standard results on operator norm of Gaussian random matrices (e.g., see Davidson
and Szarek [10]), the minimum singular valyue

σmin

(
1√
n

XS

)
= min

i=1,...,k
Dii

of the matrix XS/
√
n can be bounded as

P

[
1√
n

min
i=1,...,k

|Dii | ≤ 1 −
√
k

n
− t

]
≤ 2e−c1nt2 , (37)

where c1 is a numerical constant (independent of (n, k)).
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Now define Yi := eTi V D̃V T z = zivi D̃vi + vTi D̃
∑

l �=i zlvl . Then note that,

|Y1| ≤ ‖D̃‖2|z1| + vT1 D̃
∑
l �=i

zlvl = ρ

ρ + mini=1,...,k |Dii |2 |z1| + F(v1)

where we defined F(v1) : = vT1 D̃
∑

l �=i zlvl and v1 is uniformly distributed over a
sphere in k−1 dimensions and hence EF(v1) = 0. Observe that F is a Lipschitz map
satisfying

|F(v1) − F(v′
1)| ≤ ‖D̃‖∞

√∑
l �=i

|z2
l |v1 − v′

1‖2

= ρ

ρ + mini |Dii |2 |√k − 1‖z‖∞‖v1 − v′
1‖2

Applying concentration of measure for Lipschitz functions on the sphere (e.g., see
[18]) the function F(v1) we get that for all t > 0 we have,

P
[
F(v1) > t‖z‖∞

] ≤ 2e

−c4(k−1) t2(
ρ

ρ+mini |Dii |2
)2

(k−1)

. (38)

Conditioning on the high probability event {mini |Dii |2 ≤ n
2 } and then applying the

tail bound (37) yields

P
[
F(v1) > t‖z‖∞

] ≤ 2 exp

(
−c4

n2t2

ρ2

)
+ 2e

−c2
nt2

ρ2

≤ 4e
−c5

n2 t2

ρ2 . (39)

Combining the pieces in (39) and (38), we take a union bound over 2k coordinates,

P

[
min
j∈S |Y j | > t‖z‖∞

]
≤ 2k 3 exp

(
−c5n

2t2/ρ2
)

≤ 2k 3 exp
(
−c5nt

2
)

.

where the final line follows from our choice ρ = √
n. Finally setting t = ε we obtain

the statement in (35) and hence complete the proof.

Proof of the bound (34b): A similar calculation yields

A j = 1

ρ
XT
Sc MXSw

∗
S = XT

Sc
(
ρ In + XSX

T
S

)−1
Xsw

∗
S ,

for each j ∈ Sc.
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Defining the event E = {σmax

(
XS
)
/ ≤ 2

√
n}, standard bounds in random matrix

theory [10] imply that P[Ec] ≤ 2e−c2n . Conditioned on E , we have

‖(ρ In + XSX
T
S

)−1
Xsw

∗
S‖2 ≤ 2

ρ
‖w∗

S‖2,

so that the variable A j is conditionally Gaussian with variance at most 4
ρ2 ‖w∗

S‖2
2.

Consequently, we have

P[|A j | ≥ t] ≤ P[|A j | ≥ t | E] + P[Ec] = 2e
− ρ2 t2

32‖w∗
S‖2

2 + 2e−c2 ≤ c1e
−c2

ρ2 t2

‖w∗
S‖2

2 ,

Setting t = wmin
8 , ρ = √

n and taking union bound over all d − k indices in Sc yields
the claim (34b). �

7.2 Proof of Theorem 3

The vector ũ ∈ {0, 1}d consists of independent Bernoulli trials, and we have
E[∑d

j=1 ũ j ] ≤ k. Consequently, by the Chernoff bound for Bernoulli sums, we have

P

[ d∑
j=1

ũ j ≥ (1 + δ)k
]

≤ c1e
−c2kδ2

.

as claimed.
It remains to establish the high-probability bound on the optimal value. As shown

previously, the Boolean problem admits the saddle point representation

P∗ = min
u∈{0,1}d ,

∑d
i=1 ui≤k

{
max
α∈Rn

− 1

ρ
αT XD(u)XTα − ‖α‖2

2 − 2αT y
︸ ︷︷ ︸

G(u)

}
. (40)

Since the optimal value is non-negative, the optimal dual parameter α ∈ R
n must have

its �2-norm bounded as ‖α‖2 ≤ 2‖y‖2 ≤ 2. Using this fact, we have

G (̂u) − G (̃u) = max‖α‖2≤2

{
− 1

ρ
αT XD(̂u)XTα − ‖α‖2

2 − 2αT y
}

− max‖α‖2≤2

{
− 1

ρ
αT XD(̃u)XTα − ‖α‖2

2 − 2αT y
}

≤ max‖α‖2≤2

{
− 1

ρ
αT X(D(̂u) − D(̃u))XTα

}

≤ 2

ρ
σmax

(
X(D(̂u) − D(̃u))XT ),

where σmax

( · ) denotes the maximum eigenvalue of a symmetric matrix.
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It remains to establish a high probability bound on this maximum eigenvalue. Recall
that R is the subset of indices associated with fractional elements of û, and moreover
that E[̃u j ] = û j . Using these facts, we can write

X(D(̃u) − D(̂u))XT =
∑
j∈R

(̃
u j − E[̃u j ]

)
X j X

T
j︸ ︷︷ ︸

A j

where X j ∈ R
n denotes the j th column of X. Since ‖X j‖2 ≤ 1 by assumption

and ũ j is Bernoulli, the matrix A j has operator norm at most 1, and is zero mean.
Consequently, by the Ahlswede-Winter matrix bound [1,26], we have

P

[
σmax

(∑
j∈R

A j
) ≥ √

r t
]

≤ 2 min{n, r}e−t2/16,

where r = |R| is the number of fractional components. Setting t2 = c log min{n, r}
for a sufficiently large constant c yields the claim.
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