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Optimal solutions to Markov decision problems may be very sensitive with respect to the state transition probabilities. In
many practical problems, the estimation of these probabilities is far from accurate. Hence, estimation errors are limiting
factors in applying Markov decision processes to real-world problems.

We consider a robust control problem for a finite-state, finite-action Markov decision process, where uncertainty on the
transition matrices is described in terms of possibly nonconvex sets. We show that perfect duality holds for this problem,
and that as a consequence, it can be solved with a variant of the classical dynamic programming algorithm, the “robust
dynamic programming” algorithm. We show that a particular choice of the uncertainty sets, involving likelihood regions or
entropy bounds, leads to both a statistically accurate representation of uncertainty, and a complexity of the robust recursion
that is almost the same as that of the classical recursion. Hence, robustness can be added at practically no extra computing
cost. We derive similar results for other uncertainty sets, including one with a finite number of possible values for the

transition matrices.

We describe in a practical path planning example the benefits of using a robust strategy instead of the classical optimal
strategy; even if the uncertainty level is only crudely guessed, the robust strategy yields a much better worst-case expected

travel time.
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Notation

P >0 or P > 0 refers to the strict or nonstrict component-
wise inequality for matrices or vectors. For a vector p > 0,
log p refers to the componentwise operation. The notation 1
refers to the vector of ones, with size determined from con-
text. The probability simplex in R" is denoted A, = {p €
R”: p"1 =1}, while 0, is the set of n x n transition matri-
ces (componentwise nonnegative matrices with rows sum-
ming to one). We use o, to denote the support function of
a set P C R", with for v € R", 0,,(v) :=sup{pTv: p € 2}.

1. Introduction

Finite-state and finite-action Markov decision processes
(MDPs) capture several attractive features that are impor-
tant in decision making under uncertainty: they handle risk
in sequential decision making via a state transition prob-
ability matrix, while taking into account the possibility of
information gathering and using this information to apply
recourse during the multistage decision process (Putterman
1994, Berstsekas and Tsitsiklis 1996, Mine and Osaki 1970,
Feinberg and Shwartz 2002).

This paper addresses the issue of uncertainty at a higher
level: We consider a Markov decision problem in which the
transition probabilities themselves are uncertain, and seek
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a robust decision for it. Our work is motivated by the fact
that in many practical problems, the transition matrices
have to be estimated from data, and this may be a diffi-
cult task; see, for example, Kalyanasundaram et al. (2001),
Feinberg and Shwartz (2002), Abbad and Filar (1992), and
Abbad et al. (1992). It turns out that estimation errors may
have a huge impact on the solution, which is often quite
sensitive to changes in the transition probabilities. We will
provide an example of this phenomenon in §8.

A number of authors have addressed the issue of uncer-
tainty in the transition matrices of an MDP. A Bayesian
approach such as described by Shapiro and Kleywegt
(2002) requires a perfect knowledge of the whole prior
distribution on the transition matrix, making it difficult
to apply in practice. Other authors have considered the
transition matrix to lie in a given set, most typically a
polytope (Satia and Lave 1973, White and Eldeib 1994,
Givan et al. 1997). Although our approach allows one
to describe the uncertainty on the transition matrix by a
polytope, we will argue against choosing such a model
for the uncertainty. First, a general polytope is often not
a tractable way to address the robustness problem, as it
incurs a significant additional computational effort to han-
dle uncertainty. As we will show, an exception is when the
uncertainty is described by an interval matrix, intersected
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by the constraint that probabilities sum to one, as in Givan
et al. (1997) and Bagnell et al. (2001); or, when the poly-
tope is described by its vertices. Perhaps more importantly,
polytopic models, especially interval matrices, may be very
poor representations of statistical uncertainty and lead to
very conservative robust policies (Nilim and El Ghaoui
2002). In Bagnell et al. (2001), authors consider a prob-
lem dual to ours, and give without proof the “robust value
iteration,” which we derive here. Like us, they consider
relative entropy as a way to measure uncertainties in the
transition matrices; however, they do not propose any spe-
cific algorithm to solve the corresponding “inner problem,”
which has to be solved at each step of the robust value iter-
ation. They only provide a general statement according to
which the cost of solving the inner problem is polynomial
in problem size, provided the uncertainty on the transition
matrices is described by convex sets. In Iyengar (2003), the
author discusses a problem similar to ours, introducing two
versions of uncertainty (static and dynamic), and provides
an independent proof of the robust value iteration in the
case of compact uncertainty sets.

2. Problem Setup

2.1. Nominal Problem

We consider a finite-horizon MDP with finite decision hori-
zon T =1{0,1,2,...,N — 1}. At each stage, the system
occupies a state i € ¥, where n = |%| is finite, and a
decision maker is allowed to choose an action a deter-
ministically from a finite set of allowable actions o =
{a,,...,a,} (for notational simplicity we assume that &/
is not state dependent). The system starts in a given initial
state iy. The states make Markov transitions according to a
collection of (possibly time dependent) transition matrices
T:=(P{)4eu.ier» Where for every ae si, t € T, the n x n
transition matrix P/ contains the probabilities of transition
under action a at stage . We denote by m = (a,,...,ay_)
a generic controller policy, where a,(i) denotes the con-
troller action when the system is in state i € & at time
t€T. Let IT = 4"V be the corresponding strategy space.
Define by c,(i, @) the cost corresponding to state i € % and
action a € ${ at time ¢ € T, and by c, the cost function at
the terminal stage. We assume that c,(i, @) is nonnegative
and finite for every i € % and a € 9.

For a given set of transition matrices 7, we define the
finite-horizon nominal problem by

oy, 7) = mElH Cy(m, 1), (1)

where Cy (7, 7) denotes the expected total cost under con-
troller policy 7 and transitions 7:

Cylm,7) = E(NZ i) + i) @

t=0

A special case of interest is when the expected total cost
function bears the form (2), where the terminal cost is zero,

and c,(i,a) = v'c(i, a), with ¢(i,a) now a constant cost
function, which we assume nonnegative and finite every-
where, and v € (0, 1) is a discount factor. We refer to this
cost function as the discounted cost function, and denote by
C, (7, ) the limit of the discounted cost (2) as N — oo.

When the transition matrices are exactly known, the cor-
responding nominal problem can be solved via a dynamic
programming algorithm, which has total complexity of
mn?N flops in the finite-horizon case. In the infinite-
horizon case with a discounted cost function, the cost of
computing an e-suboptimal policy via the Bellman recur-
sion is O(mn*log(1/€)); see Putterman (1994) for more
details.

2.2. Robust Control Problems

First, we consider the finite-horizon case, and assume that
when for each action a and time ¢, the corresponding transi-
tion matrix P/ is only known to lie in some given subset ¢
of ©,. Loosely speaking, we can think of the sets 2“ as
sets of confidence for the transition matrices. We further
assume that the sets 9“ satisfy:

RECTANGULAR UNCERTAINTY PROPERTY. For every a € o,
%4 has the form 9 = P{ x --- x Py, where P{s are given
subsets of the probability simplex in R” that describe the
uncertainty on the ith row of P* (that is, on the state dis-
tribution given action a).

Note that our uncertainty model does not allow for cor-
relations between the uncertainties affecting the P“s across
different actions a, nor between different rows of each
matrix.

Two models for transition matrix uncertainty are possi-
ble, leading to two possible forms of finite-horizon robust
control problems. In a first model, referred to as the station-
ary uncertainty model, the transition matrices are chosen
by nature depending on the controller policy once and for
all, and remain fixed thereafter. In a second model, which
we refer to as the time-varying uncertainty model, the tran-
sition matrices can vary arbitrarily with time, within their
prescribed bounds. Each problem leads to a game between
the controller and nature, where the controller seeks to min-
imize the maximum expected cost, with nature being the
maximizing player.

Let us define our two problems more formally. A pol-
icy of nature refers to a specific collection of time-
dependent transition matrices 7 = (P/),c, oy chosen by
nature, and the set of admissible policies of nature is 7 :=
(et P)N, where @ denotes direct product. Denote by
J, the set of stationary admissible policies of nature:

gs = {T = (Pza)aesxl,teT €T
P =P/ forevery t,seT, ac &d}.
The stationary uncertainty model leads to the problem

¢y (I1, J,) ;== minmax Cy (7, 7). 3)
mell €Ty
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In contrast, the time-varying uncertainty model leads to a
relaxed version of the above:

oy (L T,) < &y (1L T) := minmax Cy (7, 7). 4)
mE TETS

The first model is attractive for statistical reasons, as
it is much easier to develop statistically accurate sets of
confidence when the underlying process is time invariant.
Unfortunately, the resulting game (3) seems to be hard to
solve. The second model is attractive as one can solve the
corresponding game (4) using a variant of the dynamic
programming algorithm seen later, but we are left with a
difficult task, that of estimating a meaningful set of confi-
dence for the time-varying matrices P/. In this paper, we
will use the first model of uncertainty to derive statistically
meaningful sets of confidence for the transition matrices,
based on likelihood or entropy bounds. Then, instead of
solving the corresponding difficult control problem (3), we
use an approximation that is common in robust control, and
solve the time-varying upper bound (4), using the uncer-
tainty sets 2 derived from a stationarity assumption about
the transition matrices.

We will also consider a variant of the finite-horizon time-
varying problem (4), where controller and nature play alter-
natively, leading to a sequential game

Vv (I, @) := min max min max - - - min max Cy (7, 7),

a, 1@ a; T €Q ay_| Ty_1€Q

®)

where the notation 7, = (P/),., denotes the collection of
transition matrices at a given time # € 7, and @ := Q) .., 7*
is the corresponding uncertainty set from which nature is
allowed to choose the transition matrices at every stage.

Finally, we will consider an infinite-horizon robust con-
trol problem, with the discounted cost function referred to
above, and where we restrict control and nature policies to
be stationary:

¢ (11, T,) := min max C (7, 7), 6)
melly

Iy 7€J;

where II; denotes the space of stationary control poli-
cies. We define ¢ (I1,9), ¢, (I1,9,), and ¢ (I1,T)
accordingly.

In the sequel, for a given control policy 7 € II and sub-
set & € J, the notation ¢y (7, F) := max,., Cy(7, T)
denotes the worst-case expected total cost for the finite-
horizon problem, and ¢ (7, &) is defined likewise.

2.3. Main Results and Outline

Our main contributions are as follows. First, we derive a
recursion, the “robust dynamic programming” algorithm,
which solves the finite-horizon robust control problem (4).
We provide a simple proof of the optimality of the recur-
sion, where the main ingredient is to show that perfect
duality holds in the game (4). (For completeness, another

proof, which requires a theorem from stochastic game the-
ory, is given in Appendix A.) As a corollary of this result,
we obtain that the sequential game (5) is equivalent to its
nonsequential counterpart (4). Second, we derive similar
results for the infinite-horizon problem with discounted cost
function, (6). Moreover, we obtain that if we consider a
finite-horizon problem with a discounted cost function, then
the gap between the optimal value of the stationary uncer-
tainty problem (3) and that of its time-varying counterpart
(4) goes to zero as the horizon length goes to infinity, at
a rate determined by the discount factor. Finally, we iden-
tify several classes of uncertainty models, which result in
an algorithm that is both statistically accurate and numer-
ically tractable. We derive precise complexity results that
imply that, with the proposed approach, robustness can be
handled at practically no extra computing cost.

Our paper is organized as follows. Section 3 deals with
the finite-horizon problem, including the “robust dynamic
programming” theorem (Theorem 1) and its proof, as well
as a detailed complexity analysis. Section 4 provides simi-
lar results for the infinite-horizon case. Sections 5 and 6 are
devoted to specific uncertainty models, involving likelihood
regions or entropy bounds, while §7 deals with finite sce-
nario, ellipsoidal, and interval matrix models. We describe
numerical results in the context of aircraft routing in §8.
Section 9 contains concluding remarks.

3. Finite-Horizon Problem

We consider the finite-horizon robust control problem
defined in §2.2. For a given state i € &, action a € «, and
P e ¢, we denote by p¢ the next-state distribution drawn
from P“ corresponding to state i € &; thus p{ is the ith row
of matrix P¢. We define % as the projection of the set %¢
onto the set of p{-variables; by the rectangular uncertainty
property, %¢ is the direct product of these sets. By assump-
tion, 9's are included in the probability simplex of R", A ;
no other property is assumed.

3.1. Robust Dynamic Programming

We provide below a self-contained proof of the following
theorem, based on linear programming duality. For com-
pleteness, we provide an alternate proof in Appendix A,
based on a stochastic game formulation. Yet another proof
of the robust Bellman recursion (7), (8) is also given by
Iyengar (2003), via an appropriately defined robust value
function and exploiting a certain “rectangularity property”
(Epstein and Schneider 2002), which is different from the
rectangular uncertainty property defined in §2.2.

THEOREM 1 (ROBUST DyNAMIC PROGRAMMING). For the
robust control problem (4), perfect duality holds:

¢y(I1,T) =minmax Cy(, 7)
mell 7€

=maxmin Cy (7, 7) := ¢y (11, T).
Ted mell
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The problem can be solved via the recursion
v, (i) = mig)(c,(i, a)+040(v,)), i€X,teT, (7)
aesl !

where a4 (v) :=sup{pTv: p € P} denotes the support func-
tion of a set P, and v,(i) is the worst-case optimal value
function in state i at stage t. A corresponding optimal con-

trol policy " = (ag, ..., ay_,) is obtained by setting
a; (i) argmin{c, (i, a) + 050 (v,y))}, i€, (8)
aesl

and a corresponding worst-case nature policy is obtained
by choosing the ith row of the transition matrix P{ as
pi(t) eargmax{p’v,,: pe P}, ie¥ aecsd, teT.
p

©
The effect of uncertainty on a given strategy T =
(ay, ..., ay) can be evaluated by the following recursion:
v (i) =c,(i,a,(i)) + O'W,?t(o(vg_l), ie®, (10)

which provides the worst-case value function v™ for the
strategy 1.

Proor. We begin with a simple technical lemma.

LEMMA 1. For given vy € R", consider the problem

n:= max q'v;:v,<gv,,), teT,ie¥, (11)

Vseees Uy_q
where inequalities are understood componentwise, q € RY,,
and the functions g,: R" — R" are given. If the functions g,
are componentwise nondecreasing for every t € T, meaning
that g,(u) < g,(v) for every u,v € R" with u < v, then the
optimal variables can be computed via the recursion

Uy =gt(vt+l)’ teT, (12)

and the optimal value is 1= q" (g, 0---0gy)(vy).

To prove Lemma 1, we note that recursion (12) yields
vy =5 := (g, 0--- 0 gy)(vy). In addition, this recursion
provides a feasible point for the problem, hence 1 > ¢”v;.
Because g > 0, and each g, is componentwise nondecreas-
ing, we also have 1 < ¢” v}, which shows that the recursion
provides the optimal value of problem (11). This proves the
lemma.

We proceed with a well-known linear programming rep-
resentation of the nominal problem (1) (Putterman 1994):

(11, 7)
= max ¢’ vy v,(i)<c,(i,a)+ ZP,"(i, N (),

Vgsees UN—]

acd,ie¥, teT, (13)

where ¢ is a componentwise nonnegative vector, precisely
q(i) =0 if i # iy, q(iy) = 1, where i, is the initial state. In
the above, we have denoted by 7 := (P/), ., ;o the (given)
collection of time-varying transition matrices. Likewise, the
expected cost for a given controller policy 7 = (a,),.; is
given by the linear program

bu(m,1)i= max gTu: v,() < c,,a,()

,,,,, Uy

+ P3G, v, (), i€, teT. (14)
j

By weak duality, ¢,(I1,9) > ¢y(1,T), where
Yy(II,T) is defined in the theorem. Let us prove that
perfect duality holds, that is, ¢, (I1,T) = ¢y (I1, T). The
lower bound ¢, (I1,J) can be expressed as the optimal
value of the following nonlinear problem (in variables v, 7):

Yy (IL,T)
= max qTUO: vr(i)<Ct(i’a)+ZP1a(i7j)vt+l(j)7
1 -

TET ,Vg,...., Uy ;
acd,ie¥, teT. (15)

The difference between the nominal problem (13) and (15)
is simply that the matrices P are fixed in (13), while they
are variables in problem (15).

Denote by ¢ (7, T) =max,.; Cy(7, T) the worst-case
expected total cost for a given policy #. This value is
obtained by letting the matrices P} " pecome variables
in (14), which results in

dy(m,T):= _max g vy v, (i) <c (i a,(0))
TET, Vg, U1

+ 3 PG v (), ie%, 1eT. (16)

J

Due to the rectangular uncertainty property ¢ =
P x .- x P2, the problem of computing i, (11, J), and
that of computing ¢ (7, 7) for a given policy 7, can both
be represented as problem (11) of Lemma 1, where we
define the functions g,, t € T, by their components, as fol-
lows for problem (15):

(8,); = min(c, (i, a) + 0, (0)). i€,
and as follows for problem (16):

(&()i:=c,(i,a,() + om0 (v), i€X.

Because the sets ¢ are all included in A", the above
functions are componentwise nondecreasing, and Lemma 1
applies. This shows that problems (15) and (16) can be
solved by the recursions (7) and (10), respectively, as given
in Theorem 1.

Recursion (7) provides a policy 7* = (aj, ..., ay_,), via
expression (8) as given in the theorem. We can express the
recursion exactly as in (10), with a, replaced with a¥, r € T
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This shows that (I, 7) = ¢y (7*, T). Because 7* is
an admissible (that is, deterministic) policy, we necessar-
ily have ¢, (7%, T) = ¢, (11, T). This shows that perfect
duality holds: ¢ (I1,T) = dy(7m*,T) = Yy (I1,T), and
that the policy 7* provided by expression (8) is optimal for
the robust control problem (4).

Finally, the expression for the optimal worst-case policy
of nature given in (9) is obtained by noting that it corre-
sponds to the solution of problem (15) when 77 is set to the
optimal control policy. This ends our proof. [

Note that our proof does not require convexity of the
uncertainty sets 9{; we only used the fact that these sets
are entirely included in the probability simplex of R”".

We are ready to examine the sequential game (5).

COROLLARY 1. The sequential game (5) is equivalent to
the game (4):
éy'(IL @) = ¢y (11, 7),

and the optimal strategies for ¢ (I1,T) given in Theo-
rem 1 are optimal for ¢\ (I1, @) as well.

PROOF. A repeated application of weak duality shows the
lower bound ¢y (I, @) < ¢ (11, T) (this is simply a con-
sequence of the fact that the sequential game gives less
power to nature). Because the optimal worst-case nature
strategy defined in Theorem 1 is feasible for problem (5),
the result follows. [

3.2. Solving the Inner Problem

Each step of the robust dynamic programming algorithm
involves the solution of an optimization problem, referred
to as the “inner problem,” of the form

0 (v) = maxv'p, (17)
pEP

where the variable p corresponds to a particular row of a
specific transition matrix, 9 = % is the set that describes
the uncertainty on this row, and v contains the elements
of the value function at some given stage. Note that we
can safely replace & in (17) by its convex hull, so that
convexity of the sets 2 is not required; the algorithm only
requires the knowledge of their convex hulls. The shape of
the convex hulls conv(%) for each i € % and a € « is
a key component in the computational complexity of the
robust dynamic programming algorithm.

Beyond numerical tractability, an additional criteria for
the choice of a specific uncertainty model is that the sets %¢
should represent accurate (nonconservative) descriptions of
the statistical uncertainty on the transition matrices. Per-
haps surprisingly, there are statistical models of uncertainty
that are good on both counts; specific examples of such
models are described in §§5 and 6. Precisely, the uncer-
tainty models considered in §§5 and 6 all result in inner
problems (17) that can be solved in worst-case time of

O(nlog(v,,,/8)) via a simple bisection algorithm, where n
is the size of the state space, v,,, is a global upper bound
on the value function, and & > O specifies the accuracy at
which the optimal value of the inner problem (17) is com-
puted. We defer the proof of this complexity result to the
appropriate sections. The bisection algorithm can be inter-
preted as a function & such that for every v € R”, there
exists 0, (v) such that

05(v) =05 (v) +8;5(v), 0<8,(v) <8. (18)

3.3. Complexity Analysis

In this section, we discuss the complexity of computing
an e-suboptimal policy 77, which is a policy such that
the worst-case expected total cost under policy 77, namely
¢y (7, T) = max, g Cy(7, 7), satisfies ¢y (7,T) — € <
¢y (I, T) < ¢y (7, T). Here, € > 0 is given. We assume
that we use the specific uncertainty models considered
in §8§5 and 6, and that we solve the resulting inner problem
with the bisection algorithm with an accuracy 6 :=€/N.

THEOREM 2. For the finite-horizon problem, if we solve
the inner problem (17) with the bisection algorithm accu-
racy parameter 0 ‘= €/N, our algorithm will guarantee an
e-suboptimal policy, with an additional computational cost
of log(N /€) with respect to the classical dynamic program-
ming algorithm.

ProOF. When we apply the bisection algorithm within the
robust dynamic programming algorithm given in §3.1, we
generate vectors v, by recursion (7), with o« replaced by
04a, as defined by (18). The corresponding’Equation (8)
yields a policy 7. We can express the recursion that pro-
vides ¥ as
0,(i) = rgleiil(ct(i, a)+8,(i,a) + 044(0,,,)), i€%¥, teT,
where 6,(i, a) := 84(v,;,). The policy 7 is obtained by
looking at a minimizi'ng index in the above. Thus, 7 is opti-
mal for the robust control problem (4), but with a modified
cost function: ¢,(i, a) = c,(i, a) + 8,(i, a). The bounds 0 <
8,(i,a) < €/N then imply that the corresponding expected
total cost function CN satisfies CN(7T T)E [CN(7T T)—
C N(7T 7)] for every 7 € Il and 7 € J. Maximizing over 7
for m = 7 yields ¢y(7,T) € [qﬁ — €, qb] where qS =
min,,_; max,.; Cy(7, 7) is the optimal value of the mod-
ified control problem, and ¢N(7T J) is the worst-case
expected total cost under policy 7 for the original problem.
Likewise, minimizing over 7 the maximum over 7 yields
Sy(ILT) € [6 — €, Bl. Because ¢y (I, T) < ¢y (7, )
because 7 is deterministic, we conclude that ¢, (I1,T) €
[on (T, T) — €, by (7, T)]

We obtain that, to compute a suboptimal policy 7
that achieves the exact optimum with prescribed accu-
racy €, the number of flops required by the algorithm is

O(mn*N log(v,,, N/€)). The bound v, < NC,,, with
Croax =MAX e 4e ser € (i, @), then leads to the complexity
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bound of O(mn>N log(N /€)), which means that robustness
is obtained at a relative increase of computational cost of
only log(N/€) with respect to the classical dynamic pro-
gramming algorithm, which is small for moderate values
of N. O

If N is very large, we can turn instead to the infinite-
horizon problem examined in §4, and similar complexity
results hold.

3.4. Algorithm

Our analysis yields an algorithm to compute an e-sub-
optimal policy ¢ for problem (4) using the uncertainty
models described in §§5 and 6. The algorithm has com-
plexity O(mn*N log(N/¢€)).

Robust Finite-Horizon Dynamic
Programming Algorithm

Step 1. Set € > 0. Initialize the value function to its ter-
minal value 0y = cy.
Step 2. Repeat until r =0:
(a) For every state i € % and action a € 5, compute,
using the bisection algorithm described in SS5 or 6, a value
o such that

G4 —e/N < 0,(3,) <.

(b) Update the value
minae:ﬂ (Ct—l (l’ Cl) + 6\-ia)’ l € %
(c) Replace 7 by t—1 and go to Step 2.
Step 3. For every i € % and t € T, set @ = (a§, ...,
a5,_,), where

function by

6t—| (l) =

as(i) =argmax{c,_,(i,a) + G/}, (€%, acdl.

aesd

4. Infinite-Horizon Problem

In this section, we address a the infinite-horizon robust
control problem, with a discounted cost function of the
form (2), where the terminal cost is zero, and c,(i, a) =
v'c(i, a), where c(i,a) is now a constant cost function,
which we assume nonnegative and finite everywhere, and
v € (0, 1) is a discount factor.

4.1. Robust Bellman Recursion

We begin with the infinite-horizon problem involving sta-
tionary control and nature policies defined in (6). In Bagnell
et al. (2001), the authors consider the problem of comput-
ing the dual quantity ¢ (I1, J) defined below, and stated
without proof that it can be computed by the recursion
given in the theorem. The robust Bellman recursion for the
infinite-horizon case (19, 20) is also proved independently
in Iyengar (2003).

THEOREM 3 (ROBUST BELLMAN RECURSION). For the
infinite-horizon robust control problem (6) with stationary

uncertainty on the transition matrices, stationary control
policies, and a discounted cost function with discount fac-
tor v € [0, 1), perfect duality holds:

d)oo (HS’ g—s) = max mll_? Coo(qT’ T) = w‘oo (HS’ 91)
reT, mell;

The optimal value is given by ¢ (11, T,) = v(i,), where i,
is the initial state, and where the value function v satisfies
is the optimality conditions

v(i) = r;lei;l(c(i, a)+vog(v)), i€X. (19)

The value function is the unique limit value of the conver-
gent vector sequence defined by

Vet () =min(c(i, a) + vo,.(v,)), i€,
aes !

k=1,2,.... (20)

A stationary, optimal control policy 7w = (a*,a*,...) is
obtained as

a*(i) eargmin{c(i, a) + vo,.(v)}, i€, (21)

aed

and a stationary optimal nature policy is obtained by
choosing the ith row of the transition matrix P as

pl cargmax{p’v: pe P}, i€, aecd. (22)
p

The effect of uncertainty on a given stationary strategy m =
(a,a,...) can be evaluated by the following equation:
V(i) = c(i,a(i)) + voo(v7), i€, (23)
which provides the worst-case value function for the
strategy Tr.

ProOF. The proof follows identical lines as that of Theo-
rem 1. As before, we begin with a simple technical lemma,
which we state without proof.

LEMMA 2. For a given vector g € R’} and function g: R" —
R", consider the problem

max g v: v < g(v), (24)

where inequalities are understood componentwise. If the
above problem is feasible, and g is monotone nondecreas-
ing and contractive, then there is a unique optimizer v,
which is the unique solution to the fixed-point equation
v=2g(v).

We then express the nominal problem (without uncer-
tainty on the transition matrices) with the linear program

maxgq’v: v(i)<c(i,a)+vY_ P(i,j)v()),
! aesl,ie¥®, (25)
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where ¢ is a componentwise nonnegative vector, precisely
q(i) =0 if i #1i,, q(iy) = 1, where i, is the initial state.
Likewise, the expected cost for a given stationary controller
policy 77 = (a, a, ...) is given by the linear program

max q"v: v(i) < c(i,a(i))
+v Y POG, (i), i€ (26)

By weak duality, ¢ (I1;,T,) = ¢ (I1,, T,), where the
latter is defined in the theorem. We now prove that equality
holds. The lower bound ¢ (11, J,) can be expressed as
the solution to the nonlinear problem (in variables v, 7)
obtained by letting the P“s become variables in (25):

Yo (I, T,) = max ¢"v: v(i) < (i, a) +v ) P(i Hu(),
TeTg, v X
J

acd,ie. (27)

Likewise, if we denote by ¢ (7, T) :=max,; C, (7, )
the worst-case expected total cost for a given policy 7, then
this value is obtained by letting the matrices P> become
variables in (14), which results in

b (7,7,) := max q" v: v(i) < c(i,a(i))
T€T,V
+v> PO, j)v(j), ie¥.
J

(28)

Due to the rectangular uncertainty property P¢ =
P x -+ x Pa, the problem of computing i (II,, J,), and
that of computing ¢ (7, T,) for a given policy 7, can
both be represented as problem (24) of Lemma 2, where
we define the function g by their components, as follows
for problem (27):

(g(v)); := mi?(c(i, a)+vo,u.(v)), i€, (29)
aevl !

and as follows for problem (28):

(g(v); :=c(i, a(i)) +voe0 (v7),
Because the sets & are all included in A", the above func-
tions are componentwise nondecreasing; furthermore, these
functions are v-contractive, and Lemma 1 applies. This
shows that the optimal value of problems (15) and (16) are
characterized by the equations given in Theorem 3. The
contractive property of g defined by (29) can be established

by observing that for any pair u#,v € R", and for every
i€, we have

ie®. (30)

g:(u) =minmax(c(i, a) + vp v+ vp" (u—v))
aest pe%yf

<minmax(c(i, a) + vp"v) + vmax p” (u — v)
aest pe%yf pePf

<g+v max p(u—v)
pT1=1, p>0

< &) +vflu—vl.

The proof of the contractive property for g defined by (30)
is similar. The rest of the proof is similar to that of Theo-
rem 1. This ends our proof. [

Theorem (3) leads to the following theorem.

THEOREM 4. In the infinite-horizon problem, we can with-
out loss of generality assume that the control and nature
policies are stationary, that is,

b (ILT) = (11, T,) = o (11, T) = ¢ (I, F).  (31)

Furthermore, in the finite-horizon case, with a discounted
cost function, the gap between the optimal values of the
robust control problems under stationary and time-varying
uncertainty models, ¢(I1,T) — oy (11, T,), goes to zero
as the horizon length N goes to infinity, at a geometric
rate v.

PrOOF. The proof is in five steps. In Step (a), we prove
that ¢, (I, 7) converges to ¢ (I1,, T,). In Step (b), we
prove that @, (I1,J) converges geometrically at rate v,
to ¢, (I1, ), which also proves the first equality in (31).
Step (c) proves the second inequality, and Step (d) the
last. In Step (d), we prove ¢ (I1,T,) = ¢ (I1,,T,). In
Step (e), we prove that ¢ (I1, T) — ¢ (I1, T,) goes to zero
as N — oo, at a geometric rate v.

Step (a). First, we prove that ¢, (I1,T) converges to

¢ (I1;, T,). Denote by (v,) the iterates of the value func-
tion delivered by the infinite-horizon recursion (20), and
by v, its limit. We have ¢ (I1;,T,) = v, (i,), where i,
is the initial state. Fix € > 0; by convergence of recur-
sion (20), there exists a positive integer N, such that for
every N > N,
VieX, v.(i)—e<uy(i) <v,(i). (32)
Now fix N > N,, and define the sequence v, = v'vy_, for
t=0,..., N —1; it satisfies the finite-horizon recursion (7)
with the cost function c,(i, a) = v'c(i, a). Thus, (9,),cr is
the optimal value function for the problem of computing
¢y (I1,9), and in particular, v,(iy) = vy (iy) = oy 1L, T).
Specializing (32) to i = i,, we obtain

¢co (Hs’ g&) —€X ¢N (H’ g) < ¢oo(Hs’ Ojs)’ (33)

which proves the convergence result.

Step (b). Next, we prove that @, (II, 7) converges geo-
metrically at rate v, to ¢ (I, T); combining this with
Step (a) will then establish the first equality in (31). For
every N, the v-discounted cost function satisfies

Cy(m, 7)< Co(m, 7)< Cy(m, 7)+ €y, (34)
where ¢, = maX;.y .o, c(i,a) < co and where €y =

Ve, /(1 —v) converges geometrically to zero at rate v.
The above implies

oy(L T) < ¢ (II,T) <y (L T) + €y, (35)

which in turn proves that ¢, (I1, T) converges geometri-
cally at rate v, to ¢ (I1,T) = ¢ (I1,, T}).
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Step (c). To prove ¢ (I1;, T,) = ¢ (I1,, T) (the second
equality in (31)), we observe that the bounds (34) imply
that for every stationary policy 7 and every N,

Oy(m,T) < o (m,T) < by (7, T) + €y,

where ¢y (7, F) := max,; Cy(7,7) and ¢ (7,T) is
defined likewise. This shows that limy_ . ¢y(7,T) =
¢ (7,T) for every m € Il,. Following similar steps as
in Step (a), one can prove that for every stationary policy
mell, ¢py(m,T) converges to ¢ (m,T,). This ensures
that ¢ (7,7 ) = ¢ (7, T,) for every 7 € Il,, and hence,
G (1. T) = ¢ (T, 7).
Step (d). To prove the equality

¢ (11, 7)) = ¢ (11, T),

we note that standard results on the stationarity of optimal
policies for nominal problems (Putterman 1994) imply that
for every stationary nature policy 7 € J,, ¢ (Il, 7) con-
verges to ¢ (I1,, ) as N — co. The equality then follows
from the following bound, derived from (34): for every 7 €
gs’ ¢N(H7 T) < ¢00(H’ T) < ¢N(H7 T) + GN'

Step (e). Finally, from (34), we obtain

oy (L 7)) < (1L, T)) < by (11, 7)) + €y,

which shows that ¢, (I1, J,) converges geometrically at a
rate v to ¢ (I1,7,) = ¢ (I1,,T,) = ¢ (11, T). We know
from Step (b) that the same holds for ¢, (I1, T), thus the
gap (1, T) — ¢y (I1,F,) goes to zero as the horizon
length N goes to infinity, at a geometric rate v. O

4.2. Complexity Analysis

We now turn to the complexity analysis of the infinite-
horizon problem, assuming again that we use the specific
uncertainty models described in §§5 and 6. The robust
Bellman recursion (20) provides a sequence (v,) which
converges geometrically at rate v to the optimal value func-
tion v, of the problem. This means that to achieve a given
accuracy (say €/2) on that value, we need O(log(1/¢)) iter-
ations, with exact computation of the inner problem at each
step. Let us examine the complexity when inexact values
are used.

THEOREM 5. For the infinite-horizon problem, if we solve
the inner problem with the bisection algorithm accuracy
parameter 6 = (1 — v)e/2v, our algorithm will guarantee
an e-suboptimal policy, with an additional computational
cost of log(1/€) with respect to the classical dynamic pro-
gramming algorithm.

ProoF. We consider iterates (7,) of recursion (20), with the
same initial condition D, = v,, but where we use the bisec-
tion algorithm with accuracy & = (1 — v)e/2v, in effect
replacing the map Ty by its approximate counterpart &@;,,

as defined by (18). Let us prove that these approximate
values also converge in O(log(1/€)) time.

We now prove by induction that v, < 0, < v, + 61, where
0 =v8/(1 — v) = €/2. The initial condition is obtained
trivially, as v, = ¥, satisfies v, < U, < v, + 61. Assume that
the bounds are true for a given k > 1. Then, for every i, a,
we have

00 (V) < 050 (D) < 00 (v +01) <05 (V) + 050 (1)

=0ga (v)+9,

where we successively used the convexity, monotonicity,
and homogeneity of degree one of the function o,.. We
then obtain

Vit (1) K0 () SO () +v(84+0) =v, 1, () +0 VieX,
which proves our result. The above implies that
10 = Ve lloe SN0k = villoe + [0k = Ve[l SO+ €/2 =,

provided k = O(log(1/¢€)) is large enough. This proves that
we can achieve e-convergence of U, in k = O(log(1/¢)).

We finish by examining the cost of computing an
e-suboptimal policy. The iterates 7, obey to

Ve (1) = rjlei;l(c(i» a) + Va’fﬁj’(ﬁk) + Va-f%;’(ﬁk))s
where 0 < 84.(9,) < 8. We can express the above as

Vi1 (0) 21112()1@1(6’(1'7 a)+ V(waf' (V) +A?(k)) +TV0Og0 (ﬁk+1))’
(36)

where A(K) i= 00 (D) — 030 (§))- 18200 < [[5ps) —
U;|l, can be obtained by using the fact that, for any pair
of n-vectors (u, v), and subset & of the probability sim-
plex A,, we have

05 (u) — 0, (v) =maxmin(p’u — ¢g"v) < max p’ (u—v)
pPEP qeP peP

<maxp”(u—v) < |ju—1v,.
PEA

Let 6¢(k) := 844(V;) + AY(k). Choose k = N such that
[ws — Dull < (1 = v)e/2v, so that [8(N)| < & +
(1 —=v)e/2v = (1 — v)e/v. (By the convergence properties
proved above, we have N = O(log(1/¢€)).)

Relation (36) implies that U, and the corresponding
policy 7, is optimal for the infinite-horizon problem, but
with a different cost function ¢, defined by ¢(i,a) =
c(i, a) +vd8¢(N). (Note that N is a constant here, so we are
really defining a time-invariant cost.) The bound on 6¢(N)
then implies that the corresponding expected total dis-
counted cost function satisfies |C, (7, 7) — C.(, 7)| < €.
The rest of the proof follows that of the finite-horizon case,
with the only difference being that now we only have the
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two-sided inequality |C (7, 7) — 600(77, 7)| < € as opposed
to a one-sided inequality. But the result remains the same.

We established that to compute an e-suboptimal pol-
icy, we need to run O(log(1/€)) steps of the robust
Bellman recursion, using a bisection algorithm with accu-
racy 6 = O(e€). Each step of the Bellman recursion requires
O(mnlog(v,,,,/0)) flops, which needs to be computed for
all the states at each iteration. Hence, the total complex-
ity is O(mn*log(v,,,,/8)). The bound v, < c,./(1 — ),
where ¢, = MaX;.y .y c(i, a), brings the total complex-
ity to O(mn?(log(1/€))?). Thus, the extra computational
cost incurred by robustness in the infinite-horizon case is

O(log(1/€)). O

4.3. Algorithm

Our analysis yields the following algorithm to com-
pute an e-suboptimal policy 7€ for problem (6) in
O(mn*(log(1/€))?) flops, using the uncertainty models
described in §8§5 and 6.

Robust Infinite-Horizon Dynamic
Programming Algorithm

Step 1. Set € > 0, initialize the value function v, > 0,
and set k=1.

Step 2. (a) For all states i and controls a, compute, using
the bisection algorithm described in §§5 or 6, a value o7
such that

1

G0 — 8 < 0,(8,) <57,
1

where 6 = (1 —v)e/2v.
(b) For all states i and controls a, compute 3, (i) by

D (i) = min(c(i, @) + v57).
Step 3. If

(1-v)e

Vs — U] <
o~ il < 3

go to Step 4. Otherwise, replace k by k + 1 and go to
Step 2.
Step 4. For each i € %, set an 7€ = (a%, a%, ...), where

a(i) =argmax{c(i,a) +vo'}, ie€Z.
aesl

5. Likelihood Models

Our first model is based on a likelihood constraint
to describe uncertainty on each transition matrix. Our
uncertainty model is derived from a controlled experiment
starting from state i = 1, 2, ..., n and the count of the num-
ber of transitions to different states. We denote by F* the
matrix of empirical frequencies of transition with control a
in the experiment; denote by f its ith row. We have F* > 0

and F*1 =1, where 1 denotes the vector of ones. For sim-
plicity, we assume that F* > 0 for every a.

To simplify the notation, we will drop the superscript a
in this section, and refer to a generic transition matrix as P
and to its ith row as p;,. The same convention applies to
the empirical frequency matrix F and its rows f, as well
as to sets ¢ and 2¢. When the meaning is clear from
context, we will further drop the subscript i.

5.1. Model Description

The “plug-in” estimate P = F is the solution to the
maximum-likelihood problem

max L(P):=) F(i,j)logP(i, j): P>0, P1=1.  (37)

i,J

The optimal log-likelihood is
Bmax = ZF(l’ ]) IOgF(l’])
i»j

A classical description of uncertainty in a maximum-
likelihood setting is via the likelihood region (Lehmann and
Casella 1998, Poor 1988)

{PeRnxn: P}O, P1=1’ ZF([,])IOgP(l,])>B}5 (38)

iJ

where B <f .« IS a given number, which represents the
uncertainty level. In practice, the designer chose an uncer-
tainty level and B can be estimated using resampling meth-
ods, or a large sample Gaussian approximation, so as to
ensure that the set above achieves the desired level of con-
fidence (see Appendix D).

The above description is classical in the sense that log-
likelihood regions are the starting point for developing
ellipsoidal or interval models of confidence, hence, are
more statistically accurate (Lehmann and Casella 1998);
see §7.3 for further details. The above set is statistically
meaningful as it describes how informative the data is.
If this set is elongated along a direction, then the likeli-
hood function does not vary much in that direction, and the
data is not very informative in that direction. This set has
some interesting features. First, it does not result from a
(quadratic) approximation; it is a valid description of uncer-
tainty, even for B values that are far below ... Second,
this set might not be symmetric around the maximum-
likelihood point, reflecting the fact the statistical uncer-
tainty depends on the direction. Finally, by construction,
it excludes matrices that are not transition matrices; the
same cannot be said of the more classical ellipsoidal
approximations.

To apply the robust recursion, we need to assume that
the uncertainty set 2 possesses the rectangular uncertainty
property. The likelihood region defined in (38) does not
have this property, but we can overapproximate this region
by a set that does, by projecting the likelihood regions onto



Nilim and El Ghaoui: Robust Control of Markov Decision Processes with Uncertain Transition Matrices

Operations Research 53(5), pp. 780-798, © 2005 INFORMS

789

n-dimensional subspaces, corresponding to the rows of the
transition matrix. This overapproximation will result in an
upper bound on our optimal control problem, as we are
giving more power to nature. Note that this method yields
a tighter approximation than that obtained via an interval
matrix model, which would require a further overapproxi-
mation of the projected sets %;, by n-dimensional boxes.

Due to the separable nature of the log-likelihood func-
tion, the projection of the above set onto the p; (i.e., row)
variables of matrix P can be given explicitly, as

2.8)i={peas TG oen () > 6.
where

Bi:=B—2_ 2 F(k.j)logF(k.j).

k#i j

We are now ready to attack problem (17) under the
premise that the transition matrix is only known to lie in
the rectangular set &), %;(B;). The inner problem is to
solve an optimization problem of the form

ot = mjlxpTvi peA”, Zf(j) log p(j) > B, (39)

where we have dropped the subscript i in the empiri-
cal frequencies vector f; and in the lower bound S;. In
this section, 3., denotes the maximal value of the likeli-
hood function appearing in the above set, which is ., =
> f(j)log f(j). We assume that 8 < ,,,,, Which, together
with f > 0, ensures that the set above has nonempty inte-
rior. Without loss of generality, we can assume that v € RY}.

5.2. The Dual Problem

The Lagrangian &: R” x R” x R x R — R associated with
the inner problem can be written as

LW, ) =p v+ p+u(1—p 1)+ A(flogp—pB),

where {, u, and A are the Lagrange multipliers. The
Lagrange dual function d: R” x R x R — R is the max-
imum value of the Lagrangian over p, i.e., for { € R",
preR, and A eR,

d(,p, A)=supZ(v,{,u, )

—p" 1)+ A(f"logp—P)).
(40)

=sup(p’v+{" p+u(l
p

The optimal p* = argsup,Z(v,{, u,A) is readily be
obtained by solving d5%/dp = 0, which results in

Af ()

rO=h—

Plugging the value of p* in the equation for d(v, u, \)
yields, with some simplification, the following dual
problem:

5 min g — , AG)
7 := min (1+ﬁ))~+)\;f(1)log”_v(j)_v(j).
A=0, (>0, (+v<pul.

Because the above problem is convex, and has a feasible
set with nonempty interior, there is no duality gap, that is,
o* = 0. Moreover, by a monotonicity argument, we obtain
that the optimal dual variable { is zero, which reduces the
number of variables to two:

o' =minh(A, u),
A

where
w— (1+/3)A+/\Z f(j)log f(]())
h(A, ) := if A>0, o> v, :=maxv(1), (41)

+o00 otherwise.

For further reference, we note that 4 is twice differentiable
on its domain, and that its gradient is given by

X0 f(f()) B

Vh(A, w) = £0) . (42)
AL

5.3. A Bisection Algorithm

From the expression of the gradient obtained above, we
obtain that the optimal value of A for a fixed u, A(u), is
given analytically by

which further reduces the problem to a one-dimensional
problem:

0" = min o(w),
K2 Vmax

where v,,,, = max; v(j) and o(u) = h(A(p), u). By con-
struction, the function o (w) is convex in its (scalar) argu-
ment, because the function /i defined in (41) is jointly
convex in both its arguments (see Boyd and Vandenberghe
2004, p. 74). Hence, we may use bisection to minimize o.

To initialize the bisection algorithm, we need upper and
lower bounds u_ and w, on a minimizer of . When u —
Viaxs T(U) = Ve and o’() — —oo (see Appendix B).
Thus, we may set the lower bound to w_ =v

max*
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The upper bound w, must be chosen such that
o'(ny) > 0. We have

d/\(u)

a(p)= —()\(M) M)+—(/\(M) M) —— (44)

The first term is zero by construction, and dA(u)/du > 0
for w >v .. Hence, we only need a value of w for which

L (toe, 00 MfG) oo 4s)

oh
a(/\(ﬂ)’ M) = — ()

By convexity of the negative log function, and using the
fact that f71 =1, f >0, we obtain that

W) =B =B LG lex 0
> B B —log(zf<f> )
2 Bmax B + lOg ,LL(/J?)

where v = fTv denotes the average of v under f.
The above, combined with the bound on A(w): A(w) >
M — Vo yields a sufficient condition for (45) to hold:

vmax — eﬁ_ﬁmuxl_)

l — eB_.Bmax (46)

w>pl =

By construction, the interval [vy,,,u] is guaranteed to
contain a global minimizer of o over (v,,,, +00).

The bisection algorithm is as follows:

Step 1. Set u_ =v,,, and u, = u9 as in (46). Let 6 >0
be a small convergence parameter.

Step 2. While u, —p_ > 6(14+u_+ u_), repeat

(a) Set p=(py+p_)/2.

(b) Compute the gradient of ¢ at w.

(c) If o'(n) > 0, set w, = u; otherwise, set u_ = .
(d) go to 2a.

In practice, the function to minimize may be very “flat”
near the minimum. This means that the above bisection
algorithm may take a long time to converge to the global
minimizer. Because we are only interested in the value of
the minimum (and not of the minimizer), we may modify
the stopping criterion to

pop—p-<8(1+p_+p) or o'(u)—o'(n )<

The second condition in the criterion implies that
0" (s +1)/2)| <8

which is an approximate condition for global optimality.

5.4. Complexity

Let us analyze the number of iterations needed to achieve a
given accuracy on the optimal value o*. We denote by u* a
minimizer of the function and by u, u_ the final iterates
of the bisection algorithm, run with convergence parame-
ter 8. We then have p, —pu_ < 8(1+2u9), which implies

* 2vmax _
0<M+ —M </~L+_/~L— < 6<1+m) —0(v1nax8)'

The number of iterations needed to achieve the above
bound on the minimizer u* grows as log((u) — Ve )/8) =
O(log(v,,,/6)). Thus, to achieve an accuracy 6 in the min-
imizer, we need O(log(v,,,,/8)) iterations.

Here, we are not interested in the value of a mini-
mizer u*, but on the minimum value, o*. By construction,
py = p*, and we have 0 < o'(py) < lim,, 0'(p) =
Binax — B. Furthermore, we have 0 <, —u* <y —pu_ <
O(v,,,,0). By convexity,

max

Z0o(py) = (my —p)o'(ny)

O(y0x)-

o) >0
= 0'(/“"+) -

We obtain that, to achieve a given accuracy 6 on o*, we
need O(log(v,,,/6)) iterations of the bisection algorithm.
Because each iteration requires n flops, the total complexity
of the inner problem is O(nlog(v,,,/5))-

5.5. Maximum A Posteriori Models

We now consider a variation on the likelihood model, the
maximum a posteriori (MAP) model. The MAP estimation
framework provides a way of incorporating prior informa-
tion in the estimation process. This is particularly useful for
dealing with sparse training data, for which the maximum-
likelihood approach may provide inaccurate estimates. The
MAP estimator, denoted by pMAF, maximizes the “MAP
function” (Siouris 1995)

LMAP(p) = L(p) + log gprior(p)’

where L(p) is the log-likelihood function, and g, refers
to the a priori density function of the parameter vector p.

In our case, p is a row of the transition matrix, so a
prior distribution has support included in the n-dimensional
simplex {p: p >0, pT1=1}. It is customary to choose the
prior to be a Dirichlet distribution (Ferguson 1974, Wilks
1962), the density of which is of the form

a;—1
gprior(p):K'l_[pi ’

where the vector a > 1 is given and K is a normalizing
constant. Choosing a = 1, we recover the “noninfor-
mative prior,” which is the uniform distribution on the
n-dimensional simplex. In that case, the MAP estimation
converges to the maximum-likelihood estimation. Hence,
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the MAP estimation is a more general framework and the
maximum-likelihood estimation is a specialization of the
MAP when prior information is not available.

The resulting MAP estimation problem takes the form

max(f +a—1)"logp: p’1=1, p>0.
P

To this problem, we can associate a MAP region that
describes the uncertainty on the estimate, via a lower
bound B on the function Ly,p(p). The inner problem now
takes the form

o:=maxp’v:p=0, p'1=1,
p

2 (F() +a(j) = Dlogp(j) >«

where k depends on the normalizing constant K appearing
in the prior density function and on the chosen lower bound
on the MAP function, 3. We observe that this problem
has exactly the same form as in the case of the likelihood
function, provided we replace f by f + a — 1. Therefore,
the same results apply to the MAP case.

6. Entropy Models

6.1. Model Description

We consider problem (17), with the uncertainty on the
ith row of the transition matrix P¢ described by a set of
the form % = {p € A,: D(p|lq) < B}, where B > 0 is
fixed, g > 0 is a given distribution, and D(p||g) denotes the
Kullback-Leibler divergence from ¢ to p:

p(j)
q(j)’

Together with g > 0, the condition 8 > 0 ensures that %
has nonempty interior. (As before, we have dropped the
control and row indices a and i.)

Note that both the likelihood and entropy models can be
interpreted in terms of an upper bound on the Kullback-
Leibler divergence between two distributions. In the likeli-
hood setting, we impose an upper bound on the divergence
D(f||p), from the (unknown) distribution p to the observed
distribution f; in the entropy case, we use an upper bound
on the divergence from the reference distribution g to the
unknown distribution p. This parallel suggests a heuristic
to choose the uncertainty level 8 by following the same
guidelines used in the likelihood setting, as described in
Appendix D.

We now address the inner problem (17), with % given
above. We note that % actually equals the whole probability
simplex if B3 is too large, specifically if 8 > max;(—logg;),
because the latter quantity is the maximum of the rel-
ative entropy function over the simplex. Thus, if 8 >
max;(—logg,), the worst-case value of pTv for p € P is
equal to vy, :=max; v(j).

D(plq) := ZP(J)log

max

6.2. Dual Problem

By standard duality arguments (set 9 being of nonempty
interior), the inner problem is equivalent to its dual:

min ,LL+B)\+/\Zq(j)exp<v(j)T_M - l).

Setting the derivative with respect to u to zero, we obtain
the optimality condition

v(j) — p
Zq(J)CXP< )=t
from which we derive

p= Mog(th(J)eXp ()\J)> A.

The optimal distribution is

«__9()exp(u())/N)

Y@ exp(u(i)/A)

As before, we reduce the problem to a one-dimensional
problem

mino(A),
A>0 ( )
where o is the convex function

o) = Alog(Zq(])exp ()>+B/\. 47)

Perhaps not surprisingly, the above function is closely
linked to the moment-generating function of a random vari-
able v having the discrete distribution with mass g; at v,.

6.3. Bisection Algorithm

As proved in Appendix C, the convex function o in (47)
has the following properties:

VA20, ¢'v+BA<T(A) <vp, +BA (48)
and

T(A) = Uy + (B+102 Q(v))A 4 0(X), (49)
where

Q):= > q(j)=Prob{v=y,,]}.

J () =Vmax
Hence, 0(0) = v,,,, and o’(0) = B+ log Q(v). In addition,
at infinity the expansion of o is

a(A)=q"v+Br+o(1). (50)

The bisection algorithm can be started with the lower
bound A_ = 0. An upper bound can be computed by finding
a solution to the equations o (0) = g”v+ BA, which yields
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the initial upper bound A% = (v, —¢"v)/B. By convexity,
a minimizer exists in the interval [0 A%].

Note that if ¢/(0) > 0, then A =0 is optimal and the
optimal value of o is v,,,,. This means that if 3 is too high,
that is, if 8 > —log Q(v), enforcing robustness amounts to
disregard any prior information on the probability distribu-
tion p. We have observed in §6.1 a similar phenomenon
brought about by too large values of B8, which resulted in
a set & equal to the probability simplex. Here, the limit-
ing value —log Q(v) depends not only on ¢ but also on v,
because we are dealing with the optimization problem (17)
and not only with its feasible set 2.

6.4. Complexity

The complexity analysis for the entropy model follows the
same lines as that of the likelihood model, so we will
be brief here. First, we note that the number of iterations
needed to obtain a given accuracy & on the minimizer is
O(log(v,,/8)) iterations, because A} = O(vy,,). To obtain
a given accuracy on the minimum value, the important fea-
ture is to ensure that the derivative of the function o is
bounded uniformly and independent of problem size n, at
least on one side of the optimum. In the entropy case, we
have at each step of the bisection algorithm 0 < o’/ (u,) <
lim, .. 0'(n) = B. We obtain that, to achieve a given
accuracy 6 on o*, we need O(log(v,,,,/0)) iterations of the
bisection algorithm. Because each iteration requires n flops,
the total complexity of the inner problem in the entropy
case is again O(nlog(v,,,/96)).

max

7. Other Uncertainty Models

7.1. Finite Scenario Model

Perhaps the simplest uncertainty model involves a finite
collection of transition matrices, where for every a € o,
P ={pP*,. .., L}, with P“* € @, representing a pos-
sible value (scenario) of the transition matrix. As noted
earlier, the robust Bellman recursion applies to nonconvex
uncertainty sets %“, as long as they satisfy the rectangu-
lar uncertainty property, which is certainly the case here.
Note that the scenario model gives rise to the same optimal
robust policy as when the finite set 2“ above is replaced
by a product of convex hulls: @, conv{p{"', ..., pi-*},
where p®* denotes the ith row of matrix P**.

Under the scenario (or polytopic) model, the inner prob-
lem (17) bears a particularly simple form:

T ak

v p=max, v p-t.

04 (vV) = max
P max
pelpi,...p} Ly ISk<L

The worst-case complexity of each step of the robust
Bellman recursion is then O(mnL), where L is the num-
ber of vertices. For moderately large values of L, the
scenario model is attractive, due to its simplicity of
implementation.

7.2. Interval Matrix Model

The interval matrix model describes the uncertainty on the
rows of the transition matrices in the form

P={p:p<p<p p1=1},
where p, p are given componentwise nonnegative n-vectors
(whose elements do not necessarily sum to one), with
p = p. Note that for Theorem 1 to hold, we must ensure
that the set & is entirely included in the probability sim-
plex A,, which we did by assuming p > 0. This model is
motivated by statistical estimates of intervals of confidence
on the components of the transition matrix. Those intervals
can be obtained by resampling methods, or by projecting
an ellipsoidal uncertainty model on each component axis
(see §7.3). Because p > p, P is not empty.

Because the inner problem

a* :=m]§1Xva: pi1=1, PSPp<p

is a linear, feasible program, it is equivalent to its dual,
which can be reduced to

o =min(p - p)' (ul =v)" + 0" p+p(l - p'D),

where z* stands for the positive part of vector z. The
function to be minimized is a convex piecewise linear
function with break points v(0) := 0 and v(1),...,v(n).
Because the original problem is feasible, we have 17p < 1,
which implies that the function above goes to infinity when
u — oo. Thus, the minimum of the function is attained at
one of the break points v(i) (i=0, ..., n). The complexity
of this enumerative approach is O(n?), because each eval-
uation costs O(n). In fact, one does not need to enumerate
the function at all values v;; a bisection scheme over the
discrete set {v,,...,v,} suffices. This scheme will bring
the complexity down to O(nlogn).

7.3. Ellipsoidal Models

Ellipsoidal models arise when second-order approximations
are made to the log-likelihood function arising in the like-
lihood model. Specifically, we work with the following set
in lieu of (38):

P(B)={PeR™: P>0, P1=1, Q(P) > B}, (51)
where Q(P) is the second-order approximation to the

log-likelihood function L, around the maximum-likelihood
estimate F:

0Py L DI

The above set is an ellipsoid intersected by the polytope of
transition matrices. Again, to ensure the rectangular uncer-
tainty property, we first form the projections on the space
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of ith row variables. These assume a similar shape, that
of an ellipsoid intersected with the probability simplex,
specifically,

@i(B)Z{P:PZO, p'1=1, ng 2}’

where k% :=2(B,,,. — B). We refer to the above model as
the constrained ellipsoidal model.

In the constrained likelihood case, the inner problem
assumes the form

ORI
Gy

Using an interior-point method (Boyd and Vandenberghe
2004), the above problem can be solved with absolute accu-
racy € in worst-case time of O(n'®log(v,,,./€)), and with
a practical complexity of O(nlog(v,,./€))-

In statistics, it is a standard practice to further simplify
the description above, by relaxing the inequality constraints
P >0 in the definition of % (). This would bring down
the worst-case complexity to O(nlog(v,,,,/€)). However, if
sign constraints are omitted, Theorem 1 does not necessar-
ily hold, and we would only compute an upper bound on
the value of the problem.

maxv'p: p>0, p'1=1, )
p

8. Example: Robust Aircraft Routing

We consider the problem of routing an aircraft whose path
is obstructed by stochastic obstacles, representing storms.
In practice, the stochastic model must be estimated from
past weather data. This makes this particular application a
good illustration of our method.

8.1. The Nominal Problem

In Nilim et al. (2001), we introduce an MDP representation
of the problem, in which the evolution of the storms is
modelled as a perfectly known stationary Markov chain.
The term nominal here refers to the fact that the transition
matrix of the Markov process corresponding to the weather
is not subject to uncertainty. The goal is to minimize the
expected delay (flight time). The weather process is a fully
observable Markov chain: At each decision stage (every
15 minutes in our example), we learn the actual state of the
weather.

The air space is represented as a rectangular grid. The
state vector comprises the current position of the aircraft
on the grid, as well as the current states of each storm. The
action in the MDP corresponds to the choice of nodes to
fly towards, from any given node. There are k obstacles,
represented by a Markov chain with a 2% x 2% transition
matrix. The transition matrix for the routing problem is thus
of order N2¥, where N is the number of nodes in the grid.

We solved the MDP via the Bellman recursion (Nilim
et al. 2001). Our framework avoids the potential “curse
of dimensionality” inherent in generic Bellman recursions,

by considerable pruning of the state space and action sets.
This makes the method effective for up to a few storms,
which corresponds to realistic situations. For more details
on the nominal problem and its implementation, we refer
the reader to Nilim et al. (2001).

In the example below, the problem is two-dimensional
in the sense that the aircraft flies at a fixed altitude. In a
coordinate system where each unit is equal to 1 nautical
mile, the aircraft is initially positioned at (0,0) and the
destination point is at (360, 0). The velocity of the aircraft
is fixed at 480 n.mi/hour. The air space is described by a
rectangular grid with N =210 nodes, with edge length of
24 n.mi. There is a possibility that a storm might obstruct
the flight path. The storm zone is a rectangular space with
the corner points at (160, 192), (160, —192), (168, 192),
and (168, —192) (Figure 1).

Because there is only one potential storm in the
area, storm dynamics is described by a 2 x 2 transition
matrix P, ... Together with N =210 nodes, this results in
a state space of total dimension 420. By limiting the angular
changes in the heading of the aircraft, we can prune out the
action space and reduce its cardinality at each step to m = 4.
This implies that the transition matrices are very sparse; in
fact, they are sparse, affine functions of the transition matrix
P Sparsity implies that the nominal Bellman recursion

weather *
only involves 8 states at each step.

8.2. The Robust Version

In practice, the transition matrix P,.,. 1S estimated from
past weather data, and thus it is subject to estimation errors.

We assumed a likelihood model of uncertainty on this
transition matrix. This results in a likelihood model of
uncertainty on the state transition matrix, which is as sparse
as the nominal transition matrix. Thus, the effective state
pruning that takes place in the nominal model can also take

Figure 1. Aircraft path planning scenario.
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Figure 2. —fB (negative lower bound on the log-likeli-
hood function) vs. U, (uncertainty level in %

of the transition matrices).
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place in the robust counterpart. In our example, we chose
the numerical value

b _ (09 ol
weather — 0.1 0.9

for the maximum-likelihood estimate of P, .-

The likelihood model involves a lower bound 8 on the
likelihood function, which is a measure of the uncertainty
level. Its maximum value f3,,, corresponds to the case with
no uncertainty, and decreasing values of 8 correspond to a
higher uncertainty level. To B, we may associate a measure
of uncertainty that is perhaps more readable: The uncer-
tainty level, denoted by U, , is defined as a percentage and
its complement 1 — U, can be interpreted as a probabilistic
confidence level in the context of large samples. The one-
to-one correspondence of U, and B is precisely described
in Appendix D.

In Figure 2, we plot U, against decreasing values of the
lower bound on the log-likelihood function (8). We see that
U, =0, which refers to a complete certainty of the data, is
attained at 8 = f8,,,,, the maximum value of the likelihood
function. The value of U, decreases with 8 and reaches the
maximum value, which is 100%, at 8 = —oo (not drawn in
this plot). Point to be noted: The rate of increase of U, is
maximum at 3 = 3., and increases with (.

8.3. Comparing Robust and Nominal Strategies

In Figure 3, we compare various strategies: We plot the
relative delay, which is the relative increase (in percentage)
in flight time with respect to the flight time corresponding
to the most direct route (straight line), against the negative
of the lower bound on the likelihood function .

We compare three strategies. The conservative strategy
is to avoid the storm zone altogether. If we take 8= 3,

the uncertainty set becomes a singleton (U, = 0) and hence
we obtain the solution computed via the classical Bellman
recursion; this is referred to as the nominal strategy. The
robust strategy corresponds to solving our robust MDP with
the corresponding value of 3.

The plot in Figure 3 shows how the various strategies
fare, as we decrease the bound on the likelihood function .
For the nominal and the robust strategies, and a given
bound B, we can compute the worst-case delay using recur-
sion (10), which provides the worst-case value function.

The conservative strategy incurs a 51.5% delay with
respect to the flight time corresponding to the most direct
route. This strategy is independent of the transition matrix,
so it appears as a straight line in the plot. If we know
the value of the transition matrix exactly, then the nomi-
nal strategy is extremely efficient and results in a delay of
8.02% only. As B deviates from f3,,,, the uncertainty set
gets bigger. In the nominal strategy, the optimal value is
very sensitive in the range of values of S close to 3,,,,: the
delay jumps from 8% to 25% when ( changes by 7.71%
with respect to ., (the uncertainty level U; changes from
0% to 5%). In comparison, the relative delay jumps by only
6% with the robust strategy. In both strategies, the slope of
the optimal value with respect to the uncertainty is almost
infinite at B = 8,,,c, Which shows the high sensitivity of the
value function with respect to the uncertainty.

We observe that the robust solution performs better than
the nominal solution as the estimation error increases. The
plot shows an average of 19% decrease in delay with
respect to the nominal strategy when uncertainty is present.
Further, as the uncertainty level increases, the nominal
strategy very quickly reaches delay values comparable to
those obtained with the conservative strategy. In fact, the
conservative strategy even outperforms the nominal strategy
at B = —1.84, which corresponds to U, = 69.59%. In this
sense, even for moderate uncertainty levels, the nominal

Figure 3. Optimal value vs. uncertainty level (negative
lower bound on the log-likelihood function)
for the classical Bellman recursion and its

robust counterpart.
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Optimal value vs. uncertainty level (negative
lower bound on the log-likelihood function)
for the classical Bellman recursion and its
robust counterpart (with exact and inexact
predictions of the uncertainty level U,).

Figure 4.
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strategy defeats its purpose. In contrast, the robust strategy
outperforms the conservative strategy by 15% even if the
data is very uncertain (U, = 85%).

In summary, when there is no error in the estimation,
both nominal and robust algorithms provide a strategy that
produces 43.3% less delay than the conservative strategy.
However, with the presence of even a moderate estimation
error, the robust strategy performs much better than the
conservative strategy, whereas the nominal MDP strategy
cannot produce a much better result.

Nominal and robust strategies have similar computa-
tional requirements. In our example, with a simple Matlab
implementation on a standard PC, the running time for the
nominal algorithm was about four seconds, and the robust
version took on average four more seconds to solve.

8.4. Inaccuracy of Uncertainty Level

The previous comparison assumes that in the robust case,
we are able to estimate exactly the precise value of the
uncertainty level U, (or the bound on the likelihood func-
tion B). In practice, this parameter also has to be estimated.
Hence the question: How sensitive is the robust approach
with respect to inaccuracies in the uncertainty level U, ?

To answer this question in our particular example, we
have assumed that a guess U on the uncertainty level is
available, and examined how the corresponding robust solu-
tion would behave if it was subject to uncertainty with level
above or below the guess.

In Figure 4, we compare various strategies. In each strat-
egy, we guess a desired level of accuracy (U;) on the
data and calculate a corresponding likelihood bound 8°. We
choose the optimal action using our robust MDP algorithm
applied with this bound. Keeping the resulting policy fixed,
we then compute the relative delay with the various values
of B. In Figure 4, we plot the relative delays against —f3

for the strategies where the uncertainty levels were guessed
as 15% and 55%.

Not surprisingly, the relative delay of a strategy attains
its minimum value when B (U,) is accurately predicted.
For values of 3 above or below its guessed value, the delay
increases. We note that it is only for very small uncertainty
levels (within 0.995% of B,,.) that the nominal strategy
performs better than the robust strategy with imperfect pre-
diction of B (U,).

We define R;, as the range of the actual U, in per-
centage terms, where the robust strategy (with imperfect
prediction of U,) performs worse than nominal strategy.
In Figure 5, we show R, against the guessed value, Uy).
The plot clearly shows that R;, remains less than 1% with
varying predicted U).

Our example shows that if we predict the uncertainty
level inaccurately to obtain a robust strategy, the nomi-
nal strategy will outperform the robust strategy only if
the actual uncertainty level U, is less than 1%. For any
higher value of the uncertainty level, the robust strategies
outperform the nominal strategy by an average of 13%.
Thus, even if the uncertainty level is not accurately pre-
dicted, the robust solution outperforms the nominal solution
significantly.

9. Concluding Remarks

We have considered a robust Markov decision problem with
uncertainty models for the transition matrices that are statis-
tically accurate, yet give rise to very moderate extra compu-
tational effort for computing a robust solution, with respect
to a nominal solution, where uncertainty is ignored. Specif-
ically, the relative increase in computational cost is of order

Figure 5. Predicted uncertainty level U, 2 VS. RUL, which
is the range of the actual uncertainty level
U, over which the nominal strategy performs
better than a robust strategy computed with
the imperfect prediction U;.
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O(log(N/e)) in the finite-horizon case, and O(log(1/€))
in the infinite-horizon case, where € is the desired accu-
racy on the optimal expected total cost. As a result, the
robust algorithm has practically the same complexity as that
of the nominal problem. We have considered both station-
ary and time-varying assumptions about uncertainty, and
showed that as the decision horizon goes to infinity, the
gap between these two models vanishes. This justifies our
use of bounds based on stationarity assumptions, even if
we allow time-varying changes in the transition matrices.
The statistical accuracy of our uncertainty models is derived
from the fact that they use the Kullback-Leibler divergence,
which is a natural way to measure errors in the transition
matrices. The other models we have considered, from the
polytopic to the interval to the ellipsoidal model, do not
enjoy such properties, and moreover, give rise to larger
worst-case complexity estimates.

We have shown in a practical path planning example the
benefits of using a robust strategy instead of the classi-
cal optimal strategy; even if the uncertainty level is only
crudely guessed, the robust strategy yields a much better
worst-case expected flight delay.

Appendix A. Stochastic Game-Theoretic
Proof of the Robust Bellman Recursion

In this section, we prove that the stochastic game with per-
fect information (4) can be solved using the robust Bellman
recursion (7). Our proof is based on transforming the orig-
inal problem into a term-based zero-sum game, and apply-
ing a result by Nowak (Altman et al. 2000, Altman and
Hordijk 1994, Nowak 1984) that applies to such games.

We begin by augmenting the state space % with states
of the form (i, a), where i € % and a € $4. The augmented
state space is thus ¥*'¢ := % U (¥ x «{). We now define
a new two-player game on this augmented state space,
where decisions are taken not only at time ¢, t € T =
{0,1,..., N}, but also at intermediate times t+1/2,t € T.

In the first step, from ¢ to ¢+ 1/2, if the system is in a
state of the form i, a deterministic a, results in a transition
to the state (i, a,) with probability one, and the incurred
cost is the cost of the original problem, c,(i, a,). If the
system is in a state of the form (i, a,), then the controller
is not allowed to choose any action and the states stay the
same with probability one; the incurred cost in this case is
zero. Randomized actions of the controller can be described
by a probability measure q € A,, (the probability simplex
in R™). In the first step, the opponent is idle.

In the second step, from 7+ 1/2 to ¢ + 1, the controller
stands idle while the opponent acts as follows. The states
of the form (i, a) make a transition to states of the form j
with probability p?(j), where p{ is freely chosen by the
opponent from the set 2. If the system is at any state of
the form i at r + 1/2, it remains at the same state with
probability one. There is no cost incurred at this stage.

Clearly, starting at time ¢ in state i, and with a controller
action a, we end up in the state j at time (r + 1) with

probability p{(j). Because incurred costs are the same, our
new game is equivalent to the original game. In addition,
the new game is a term-based zero-sum game, because the
controller and the opponent act alternatively, in an indepen-
dent fashion at each time step. Note that the rectangular
uncertainty property is crucial here, as it ensures the fact
that the opponent is free to chose p{ in the set 2¢.

Nowak’s result provides a Bellman-type recursion to
solve the problem of minimizing the worst-case (maxi-
mum) expected cost of a term-based zero-sum game, when
both players follow randomized policies that are restricted
to given state-dependent compact subsets of the probabil-
ity simplex. In our new game, the opponent’s choice of a
vector p¢ within 2 at the second step, can be interpreted
as a choice of a randomized policy over the compact, con-
vex, state-dependent set JB((i, a)) := conv(Z}), the convex
hull of the set 9{. This ensures that the set of transition
measures is convex. (Here, the deterministic actions of the
opponent correspond to the vertices of the probability sim-
plex of R".) Hence, the results due to Nowak (1984) apply.

In the case when both of the players choose the ran-
domized, state-independent actions, the recursion for the
optimal value function v, in state s can be written for k =
0,1/2,1,...,N—1/2, as

v (s) = 5212 max Eg(cc(s, a, b) + vy n(5))

Vs ex™e, (52)

where the notation ¢, is the cost function, q refers to a
particular randomized action of the controller that is freely
chosen by the controller from A, b refers to a particular
randomized action that is freely chosen by the opponent
within the state-dependent compact set %3(s) = conv (%),
and E, is the corresponding expectation operator with
respect to the product measure q ® b. The boundary condi-
tion of the game is vy (s) =cy(s) Vs € X C X*¢. Due to
the sequential nature of the game, (52) can be rewritten as

0(s) = min By (e (s. a. b) + max By (v, (+))). (53)

Because, E; (v, ) is a linear function of the measure b, it
can be easily shown that

be%(sgr:lgﬁw(@ﬁ)Eb(vk“) - {)rg)’a( Ey (Vi) (54)

Let us detail how applying the above recursion to our
game yields our result.

We first update this value function by appropriately
choosing the value of k that corresponds to the time 7+ 1 to
t+ 1/2. The controller is idle, but the opponent is allowed
to chose a randomized policy from a state-dependent com-
pact set. If the state is (i, a), using (54), the set is %/, and
the value function is updated as

(i) =max( S piua () ), 3)
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where we make use of the fact that incurred costs are zero
in this step. To update the value function from #+1/2 to ¢,

we use the fact that the opponent is idle. For i =1, ..., n,
the value function is updated as
0, (i) = min Eq (€, @) + 0,120, ). (56)

The right-hand side of (56) is a linear program in vari-
able q. Thus, the optimal value is obtained at the vertices
of the feasible set A,,, which correspond to purely deter-
ministic actions. Hence,

v, (i) = min(c, (i, @) + v,,.2(( @), (57)

Combining (55) and (57) ends our proof.

Appendix B. Properties of Function o
of §5.3

Here, we prove two properties of the function o involved in
the bisection algorithm of §5.3. For simplicity of notation,
we assume that there is an unique index i* achieving the
maximum in v, that is, v(i*) = v,,,,.

max?

We first show that o (u) — v,,, as u — v,,,,. We have

p—v(i*) .

M) = ——— +o(u—v(")).
f@i)
We then express o(u) as
o) == 2 (14 B = B + 02 AW)
- ¥ floetu )
At

— A(w)f (%) log(p — v(i")).

The second term (first line) vanishes as p — v,,,,, because

A(p) — 0. In view of the expression of A(u) above, the last
term (second line) behaves as (u — v(i*))log(w — v(i*)),
which also vanishes.

Next, we prove that o'(u) - —oo as 0 — U, We
obtain easily

AW _ S/ (=vG)D)
dw (,(F)/(w—v())” FG)

when p — v(i*).

We then have

oh A(w) f(j)
oy Aw), 1) = Zlog —o0) -B
_ (M)f (i ) Aw)f(j)
=g T T gy P
= log(1+o0(1)) + (n—1)log A(w)
fG)
+ ;log 0 B

— —oo as u— v(i").

Also, by definition of A(w), we have dh/ou(A(w), w) =0.
The proof is achieved with the identity (44).

Appendix C. Properties of Function o
of §6.3

In this section, we prove that the function o defined in (47)
obeys properties (48), (49), and (50).

First, we prove (49). If v(j) = v
holds, with Q(v) =
exists j such that v(j) <v

max fOI every j, the result
O (V1) = 1. Assume now that there

We have
)) B

max*

o(A) = /\log<evmx/)L Z q(j) exp( v(j) —

=vmax+m+uog( Y 40)

70 (1) =Vmax

fX e M)

Jv(J) <Umax
= Upa + BA+ Alog(Q + O(e™"Y))
= Upu + (B+10g Q)A+ O(Ae™/?),

where t = v,,,, — v, > 0, where v, is the largest v(j) < v,
This proves (49).

From the expression of ¢ given in the second line above,
we immediately obtain the upper bound in (48).

The expansion of o at infinity provides

a(A)=Br+ Alog(%: q(j)(l + % —i—o()\)))

max*

=q"v+Br+o(1),

which proves (50). The lower bound in (48) is a direct
consequence of the concavity of the log function.

Appendix D. Calculation of 3 for
a Desired Confidence Level

In this section, we describe a one-to-one correspondence
between a lower bound on the log-likelihood function S3,
as used in §5, and a desired level of confidence (1 — U,)
on the transition matrix estimates, as used in §8. This cor-
respondence is valid for asymptotically large samples only
but can serve as a guideline to choose B. The following
material is standard; see, for instance, Lehmann (1986).
First, we define a vector 6 € R~V that contains the first
n—1 columns to be estimated in a n X n transition matrix P.
We order 6 so that P(i, j)=0((n—1)(i—1)+ ) for 1 <
i<n, 1<j<(n—1). Using the conditions P1 =1, we
can write P as an (affine) function of 6, and express the
log-likelihood function L(P) of (37) as a function /(6).
Let 6 be the vector corresponding to the matrix of empir-
ical frequencies F, that we assumed to be positive com-
ponentwise. Provided some regularity conditions hold, one
can show that for asymptotically large samples, 6 is nor-
mally distributed with mean given by 6, and inverse covari-
ance matrix H = —E,((V?1)(0)). Furthermore, we _can
approximate H by the observed information matrix H:=
—(Vzl)(O) In our case, the nonzero elements of this
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matrix are

H((n=DG=1D)+j,(n=1D)(i=1)+k)

1 1
if =k,
Fam (FGp
= . |
_— otherwise.
F(i,n)

If g denotes the quadratic approximation to / around §,
we have

4(0) =B — (0 —O)TH(O - 6),

where .. is the maximal log-likelihood defined in §5.1.
Then, the parameter B is chosen to be the smallest
such that, under the Gaussian probability distribution
N(6, H™"), the set {0: q(#) > B} has probability larger
than a given threshold (1 — U, ), where (say) U, = 15% to
obtain the 85% confidence level. It turns out that we can
solve for such a B explicitly:

(1 - UL) = F)(s(”il)(z(ﬁmax - B))’ (58)

where Fo is the cumulative density function of the
x2-distribution with d degrees of freedom. The latter can
be approximated as follows (Pitman 1993):

Fo(é) ~ ®(2) - %(zz ~1)é(2), (59)

where z = (¢ — d)/vd, ¢(z) = (1/v2m)e VD7 and
®(z) = /7 ¢(u) du is the standard normal cumulative den-
sity function.
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