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Robust Filtering for Discrete-Time Systems with
Bounded Noise and Parametric Uncertainty

Laurent El Ghaoui and Giuseppe Calafiore

Abstract— This paper presents a new approach to finite-horizon
guaranteed state prediction for discrete-time systems affected
by bounded noise and unknown-but-bounded parameter uncer-
tainty. Our framework handles possibly nonlinear dependence of
the state-space matrices on the uncertain parameters. The main
result is that a minimal confidence ellipsoid for the state, con-
sistent with the measured output and the uncertainty descrip-
tion, may be recursively computed in polynomial time, using
interior-point methods for convex optimization. With n states, [
uncertain parameters appearing linearly in the state-space matri-
ces, with rank-one matrix coefficients, the worst-case complexity
grows as O(I(n+1)%-®). With unstructured uncertainty in all sys-
tem matrices, the worst-case complexity reduces to O(n3'5).

Keywords— Set-membership filtering, Unknown-but-bounded
uncertainty, LMIs, Convex optimization, Kalman filtering.

I. INTRODUCTION

This paper is concerned with the problem of state estimation
and filtering for discrete-time systems subject to unknown-but-
bounded noise and parameter uncertainty affecting possibly ev-
ery system matrix. The problem of state estimation for systems
with uncertainty goes back to the early days of automatic con-
trol and signal processing, and several approaches exist in the
literature up to this date, e.g. the stochastic approach (Kalman
filtering theory), the Ho, filtering theory, and the deterministic,
or set-membership, approach.

It is now well known that the standard Kalman filter [1] re-
quires an accurate model of the process under consideration,
and assumes only additive uncertainty on the process and mea-
surement equations, in the form of Gaussian noise. If these
requirements are not met, the Kalman filter may lead to poor
performance, see for instance [26]. This fact motivated further
research in the direction of robustness in the stochastic setting,
see e.g. [4], [14], [23], [28].

Robust filtering has also been extensively studied in an He
framework. In this setting, the exogenous input signal is as-
sumed to be energy bounded rather than Gaussian. An H
filter is designed such that the worst-case “gain” of the system
is minimized, [15], [19].

The approach taken in this paper is derived from the deter-
ministic interpretation of the discrete-time Kalman filter given
in [3]. The deterministic filter in [3] was shown to give a
state estimate in the form of an ellipsoidal set of all possible
states consistent with the given measurements and a determin-
istic additive description of the noise. The idea of propagat-
ing ellipsoids of confidence for systems with ellipsoidal noise
goes back a long way; precursors in this field include Kurzhan-
ski [16], Schweppe [25], whose ideas were later developed by
Chernousko [6], Maskarov and Norton [18] and Ovseevich [22].
These authors consider the case with additive noise, assuming
that the state-space process matrices are exactly known, in par-
allel to Kalman filtering; see [17] for a study of this parallel.

The main contribution of this paper is to extend the above
mentioned set-membership approach to the case when struc-
tured uncertainty affects every system matrix. A similar ap-
proach has been considered in [24], where unstructured uncer-
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tainty described by a “Sum Quadratic Constraint” is assumed
on the system.

The key result presented is that ellipsoids of confidence of
minimal “size” (sum of semi-axis lengths or volume) can be re-
cursively computed in polynomial time, via interior-point meth-
ods for convex optimization [21]. A similar problem, stated in
the context of static systems, is explored in [9], while pure state
prediction (without measurement information) is studied in [10].

A. Notation

For a square matrix X, X > 0 (resp. X > 0) means X is sym-
metric, and positive-definite (resp. semidefinite). For a matrix
U, U, denotes any orthogonal complement of U, i.e. a matrix of
maximal rank such that UU, = 0, and U' denotes the (Moore-
Penrose) pseudo-inverse of U.

Ellipsoids will be described as £(E,2) = {z : ¢ = & +
Ez,||z|| < 1}, where & € R™ is the center, and E € R™" is
the shape matriz of the ellipsoid. This representation can han-
dle “flat” ellipsoids, such as points or intervals. An alternative
description involves the squared shape matrix P = EET, P > 0:
E={z: P> (z—&)(x—%£)T}. When P > 0, the previous expres-
sion is also equivalent to £ = {z : (z —&)" P '(z — &) < 1}.

The “size” of an ellipsoid is a function of the squared shape
matrix P, and will be denoted f(P). Throughout this paper,
f(P) is either Tr(P), which corresponds to the sum of squares
of the semi-axes lengths, or logdet(P), which is related to the
volume.

II. PRELIMINARIES AND SETUP

We consider the following class of uncertain discrete-time sys-
tems

[ 7| =M 3 , 0

where it is assumed that the initial state zo belongs to a given
ellipsoid &£ (Fo, £0), and wy € R™, v, € R™ are unknown-but-
bounded noise signals, which are assumed to belong to a unit
sphere, i.e. [|[wg|| <1, ||lvk]| < 1, Vk. This formalism allows us to
consider the case when independent and norm-bounded signals
affect the state dynamics and the sensor equations separately,
as in the deterministic version of the classical Kalman filtering
setup, see e.g. [3], [25]. The case of noise signals bounded in
ellipsoids is of course a trivial extension of this setup.

The uncertainty on the system matrices is assumed to be
represented in Linear Fractional Representation (LFR) form,
i.e. for any given A,

L _
M(A) = M + [ L; ]A(I—HA) 'R R: Rs], (2
A B
where M = C 0 -g :| ’a'nd A7B105D7 L17L27R17R27R3’

and H € R"®"? are given matrices. The uncertainty matrix A
is in general time-varying and structured, and satisfies a given
norm bound A € A; = {A € A: ||A|| £ 1}, where A is a sub-
space of R"? "¢ called the structure subspace. We also intro-
duce the linear subspace B(A), constructed from the subspace
A, and referred to as the scaling subspace

B(A) = {(s, T,G) : VA € A, SA = AT, GA = —ATGT}.
®3)
The above linear fractional representation of the uncertainty has
great generality and is widely used in control theory, see for in-
stance [13]. This framework includes the case when parameters
perturb each coefficient of the data matrices in a polynomial or
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rational manner, as seen in the representation lemma given in
[8], as well as more classical uncertainty models, such as norm-
bounded unstructured uncertainty, and additive perturbations
on the state and measurement equations.

Well-posedness assumption. We will make the standing
assumption that the representation (2) is well-posed over Aj,
meaning that det(I — HA) # 0 for all A € A;. A well-known
sufficient condition for well-posedness, which also arises in pu
analysis problems [13], is given by

38,T,G: H'TH+ H'G+GTH < S, (4)
(S, T,G) € B(A), S>=0, T > 0.

If the system is well-posed, we can rewrite the system equations
equivalently as

Tr+1 = Axg + Bwg + Lipg,
yr = Czp + Dvg + Lops, )
g = Rizk + Rowg + R3vy + Hpg,
bk = AQk, Ae Ala

where pi, gr are perturbation signals.

Quadratic Embedding of LFRs. The main advantage
of LFRs is that it enables to approximate an uncertain input-
output relation by a set of quadratic constraints. This fact
is stated in the following lemma, whose proof is omitted for
brevity.

Lemma 1: For arbitrary vectors p, g, the property

p = Agq, for some A € Ay (6)

implies that the following quadratic inequalities in (p,g) hold:
For every (S,T,G) € B(A), with S >0, T > 0,

[g]T[gT SllE]=e (™)

Moreover, when A = R™?°"¢ (unstructured uncertainty) the
above quadratic embedding is non-conservative, meaning that
property (7) implies (6). A
Using the above result, we can devise a quadratic outer ap-
proximation for the system equations (5), valid for every triple
(S,T,G) € B(A), with S >0, T > 0:

ZTp+1 = Azp+ Bwg + Lipg,
yr = Czp + Dvg + Lapg,
g = Rizg + Rowy + Ravg + Hpy, (8)
T
0 < qk TT G qk
- Pk G- =S P |’

The above (outer) quadratic approximations for LFRs, when
used in conjunction with the S-procedure (see for instance [5]) is
a key element in our approach. General results on the tightness
of this embedding are given in [2], [12].

III. RoBUST PREDICTIVE FILTER

The aim of the robust predictive filter is to determine a confi-
dence ellipsoid £(E4,%+) for the state at the next time instant
ZTk+1, given the measurement information at the time instant k,
and given that z; belongs to a current ellipsoid of confidence
E(E,%). Therefore, we look for Py, %4 such that

(@1 — &+) " PL (@1 — 84) <1, 9)

whenever a) (1) holds for some A, € Ay, b) zy is in E(E, z),
and c) the noise terms wy, v are bounded in unit spheres, i.e.
llwell < 1, Jlvell < 1.
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The following theorem contains our main result for the com-
putation of the one-step-ahead confidence ellipsoid.

Theorem 1: An ellipsoid of confidence £ = £(P4, %4+ ) can be
obtained by solving the optimization problem in the variables
P+ax+aT$:TwaTva‘97GaT:

minimize f(Py) subject to
(S,T,G) e B(A), S0, T>0, To,Tw,Tv >0,

Py | ®1(24)¥ ] -0
\PTQ?(£+) | \I’T (Y(TﬂhTw:Tv) _Q(S’Ta G))\II
(10)

where ®1(24) = [ Az —z4y AE B 0 L ],and

v = [C¢-yx CE 0 D L2],; (11)

Y(Tey Tw, Tw) = diag(l — 7o — Tw — To, Tod, 7w, 7 1,0§12)

asre = o & G le (13)
N Rit RiE R: Rs H

¢ = [ 0 0 0 0 I ] (14)

and f(Py4) measures the size of the ellipsoid, either f(P;) =
TrP4, or f(P+) = logdet Py. A
Proof. See Appendix A.

When the ellipsoid size is measured by the trace function,
the ellipsoid update reduces to a Semidefinite Programming
(SDP) problem. In this case, the update can be performed
in polynomial-time using recently developed interior-point al-
gorithms [21], [27] and related software [11]. However, the com-
plexity of the algorithm (using a general-purpose SDP code) is
still high, mainly due to the presence of O(n?) variables appear-
ing in Py, which makes the complexity of the problem grow as
O(n®®), where n is the number of states (see [27] for details on
complexity of SDPs). In the case of minimum-volume ellipsoids,
the above formulation is not even convex in Pj.

We remark that the previous result provides a set-valued (el-
lipsoidal) estimate for the state, which could be useful for in-
stance in robust optimization-based control, model validation
[24], and robust collision avoidance applications [7]. On the
other hand, if a noise-free estimate of the state is desired, then
the confidence-set information could be neglected, and the cen-
ters of the confidence ellipsoids could be taken as optimal esti-
mates of the system states.

Notice also that, in the case when no uncertainty is present
on the system matrices, and only the deterministic distur-
bances wg, v, act on the system, the results given by Theo-
rem 1 coincide with those provided by classical deterministic
ellipsoidal bounding algorithms, see for instance [18] and refer-
ences therein.

We next show how to eliminate the variable P, and trans-
form the problem into a convex optimization problem with much
better complexity properties. This alternative formulation will
handle both the trace and volume as objective functions.

A. Decoupled Filtering Recursions

In this section, we give explicit expressions for the shape and
center of £+, in terms of the optimal values of a certain convex
optimization problem. This results in decoupled equations that
are similar in spirit to the standard Kalman predictor equations.
This new formulation will be used later to obtain an algorithm
with better complexity properties than the general problem ob-
tained in Theorem 1. The following technical lemma will be
needed in the sequel.

Lemma 2: Let X;;, 1 <4 < j <3 be matrices of appropriate
size, with Xj; square and symmetric. The problem (in variables
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X, 2)
X Z X

minimize f(X) subject to | Z7 Xa2 Xaz | =0 (15)
Xis X% Xss
is feasible if and only if
X2z Xos
> 0. 16
[ Xsz X33 ] - (16)

In this case, problem (15) is equivalent to the the problem (in
variable X only)

X X3

17
X3 Xas (17)

minimize f(X) subject to [ ] >0,

and it admits unique optimal variables,
X3 X1, XH, Z = X3 X1, X5,
Proof. See Appendix B.

Now, we notice that one can always choose ¥ in such a way
that its first row is the (transpose of the) first unit vector. A
suitable matrix ¥ is therefore of the form

110
U = .
]
We introduce the following notation
Q(TE: Tws Tv, Sa T1 G) = \IIT (T(Tﬂﬂa Tw, TU) - Q(S’ T’ G)) v (19)
)

N qll(Tﬂ:vaaTvaS:TaG) qg(Tm,Tw,Tv,S,T,G
q12(T$7Tw:T’UaSaTJG) QZZ(TZaTw:TUaS:TaG) ’

fi=A2+[AE B 0 LiJth.

given by X =
A

(18)

The decoupled robust filtering equations are then given in the
following theorem.
Theorem 2: Consider the convex optimization problem in the
variables 7y, Ty, Ty, S, G, T
inf f(KQ% (Tey Tw, 7o, S, T, G)K ™) subject to

Q(be‘yTW7TU757T= G) >_ 07

(S,T,G) € B(A), S$»0, T =0,74,Tw, T >0,
where K = [ AE B 0 Li | V¥, If the above problem is

feasible, then the optimal ellipsoid is unique. At the optimum,
the optimal shape matrix satisfies

P+ = KQ;2(T931T1U7T'U7S) T7 G)KT7

(20)

(21)
while the optimal center of the ellipsoid is given by
Ty =f1 —KQ;2(T$,Tw,Tv,S, T,G)q12(T2, Tw, T, S, T, G). (22)

Proof. In view of the structure (18) of ¥, we can rewrite the
main LMI in (10) as

P+ | f1 — .’f}+ K
(fi —i)T Q1 ats =0, (23)
KT q12 Q22

where qi11, q12, @22, and f1 are defined in (19), and
K =[AE B 0 L,]¥,.

The statements of the theorem then easily follow applying
Lemma 2 to the LMI (23), with Z = f; — &4, and the other
matrices defined appropriately. O

We remark that the classical well-posedness condition re-
called in (4) implies that the ellipsoid of confidence computed
by means of Theorem 2 is bounded at each step. Moreover,
it is easily shown that the well-posedness condition (4) holds
if and only if problem (20) is strictly feasible. Well-posedness
therefore insures boundedness of the optimal ellipsoid at each
step.

B. Summary: filter recursion

The robust predictive filter can be implemented recursively
as follows.
1. Select a time horizon 7}. Form an LFR of the system, and
find a basis of the scaling subspace B(A).
2. Start with an initial ellipsoid of confidence & = &(&o, Eo).
Set k =0, E = Ep, & = &o.
3. Given E, %, and current measurement y, solve the convex
optimization problem (20), and find associated optimal scaling
variables S, T, G.
4. Form the matrix P, and center z as given by (21) and (22).
5. Find (using Cholesky factorization) a matrix Ey such that
Py =E,EY.
6. Set & = if?.:,_, E = E+.
k =k +1 and go to Step 3.

If & > Th, exit. Otherwise, set

C. Complezity analysis

In this section, we outline how the interior-point methods
described in [21] can be used to solve the optimization problem
(20). We here stress the fact that the result of Theorem 2
dramatically improves the complexity of the SDP formulation
obtained in Theorem 1. We begin by assuming that the size
function is given by the trace, f(P) = Tr(P).

A general problem. Problem (20) can be expressed as

inf o subject to a > Tr(KR(s) ' K7T), (24)
Q= 15 T -0 s =0,

where vector s contains the free variables, and Q(s), S(s) are
symmetric matrices affine in s; here g(s) is the scalar, lower-right
block in Q(s). The constraint S(s) > 0 reflects the original
constraints on the scaling variables S,T, and 7,7y, 7y. The
matrix S(s) is a block diagonal matrix, with £ diagonal blocks
of size p; X p; each, where p = [p1, . . ., pr] is a vector describing
the uncertainty structure. We first discuss in general terms the
complexity of this problem, as a function of the size of Q(s), NV;
the number of free variables, Ny; and the size and structure of
the matrix scalings, which is described by p.

A basic idea for solving a problem such as (24) is to associate
a barrier for the feasible set, and solve a sequence of uncon-
strained minimization problems, involving a weighted combina-
tion of the barrier and the (linear) objective. The complexity
of a path-following interior-point method as described in [21,
p-93] depends on our ability of finding a “self-concordant bar-
rier” associated with the constraints. When such a barrier is
known, the number of iterations grows as O(6'/?), where 6 is
the “parameter of the barrier”. The cost of each iteration is
proportional to that of computing the gradient g and Hessian
H of the barrier, and solving the linear system Hd = g, where
the unknown d is the search direction. We note that in practice,
the number of iterations is almost independent of problem size.

We can associate to problem (24) a self-concordant barrier,
and find its parameter. Indeed, a direct consequence of the
result [21, Prop. 5.1.8] is that the function

F(a,s) = (25)

—log (a - ’I‘r(KR(s)flKT)) — log det Q(s) — log det S(s)
is a self-concordant barrier for problem (24), with parameter § =
N4+143, pr- A tedious but straighforward calculation shows

that the gradient and Hessian of the barrier can be computed
in time O(v), where

k k
v=N+NJ(N® 4+ pd) + No(N°+ ) pd). (26)
i=1

i=1
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Complexity of robust filtering. Let us specialize the
above results to two specific instances of robust filtering. As-
sume first that the uncertainty matrix A comprises [ uncertain
scalar parameters, each appearing r times on the diagonal of A
(r is related to the degree to which each parameter appears in
the state-space representation of the system). We will express
the complexity of the algorithm in terms of n (the order of the
system), | (the number of uncertain scalar parameters), and r
(which measures the degree of nonlinearity).

Thus, in our notation, we have n, = ng = Ir. Also, S =T
is a symmetric, block-diagonal matrix, with [ blocks, each of
size r X r, while G is a skew-symmetric matrix with the same
structure. Therefore, pur = r, k = 1,...,[, and problem (20)
involves a total of Ny = O(Ir?) variables. The matrix Q(s) is
at most of row size N := n+ny +ny +np —1 = O(n +1r), the
precise number depending on the rank of the matrix appearing
in the right hand side of (18). The cost of each iteration is
therefore given by (26), with

v

Ir*)? + (1)’ (n + 1) + 1®) + 7 ((n + Ir)* + 1r°)
O(lr® (n+ 1r?) (n + Ir)*).

Since the parameter of the barrier (25) is § = O(n + Ir), the
total complexity estimate is O((n + Ir)%3v).

Assuming r = 1 (e.g., parameters appear linearly in the state-
space matrices, with rank-one matrix coefficients) results in a
total complexity of O(I(n +1)*). We note that, for fized num-
ber of uncertain parameters (precisely, for fixed ! and r), the
complexity estimate is O(n>%), which is comparable to the case
of standard Kalman filtering.

When wunstructured, additive uncertainty is present on
A, B,C,D, then p = [1,1,1,1], and § = O(n), from which it
can be easily verified that the total complexity in the unstruc-
tured case grows as O(n®®). As noted above, the number of
iterations is almost constant in practice, so the practical com-
plexity is O(n®).

Minimum-volume ellipsoids. The above results can be ex-
tended to the case when a minimum-volume ellipsoid is sought.
Indeed, when f(P) = log det P, we simply minimize the objec-
tive log det(K R(s)"*K™) under the constraints of problem (20),
which can be done using path-following interior-point methods
for self-concordant functions, as proved in [20]. Complexity es-
timates are similar to the trace case.

IV. EXAMPLE

To illustrate the results, we consider a simple numerical ex-
ample which has been used as a benchmark in [4], [14], [28], and
is therefore useful for comparison purposes. The numerical re-
sults were implemented using the SDP formulation of Theorem
1, with a general-purpose SDP code [11].

. _ 0 —05
b+l = 1 14 0.36

] T +0.02 [ B
—100 10 ] zk + 0.02vy,

6
1 Wk,

Yk

with |0x| < 1, |Jwe|| £ 1, ||ug|| £ 1, and assuming the initial state
belongs to the ellipsoid £(Eo, %), with Eo = 31, o = 0. The
signal to be estimated is z(k) = [1 0]z(k). The LFR uncertainty

representation specializes to H = 0, L; = (1) ] , Ly = 0,
Ri=[0 03], Ry =Rz =0. The scaling subspace is in this

case described by S =T = X (a scalar), G = 0. The system was
simulated using deterministic, boundary-visiting sequences for
the noise and the uncertainty. The results obtained with the
robust filter, using f(P) = Tr(P), are shown in Figure 1(a).
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The bounds on the signal z(k) are obtained projecting the state
ellipsoid along the output direction.

For illustration purposes, we also estimated the signal z(k)
using a standard Kalman filter, assuming a process noise vari-
ance g, = 0.333, measurement noise variance o, = 0.333, and
initial state covariance equal to the identity. The results ob-
tained with the Kalman filter are shown in Figure 1(b), where
the bounds indicate 3o confidence regions.

(a) Robust Filter (b) Kalman Filter

10 Time k 15 20 0 5

10 Time k15 20

Fig. 1. Estimation of z(k) using the robust deterministic filter (a) and
a standard Kalman filter (b). The thick lines represent z(k), the
dotted lines represent the central estimates, the solid lines represent
the bounds on the estimates (ellipsoidal projections for (a), and 3o
confidence regions, for (b)).

This example clearly illustrates that the Kalman filter (which
neglects the uncertainty on the system matrices) may provide
central estimates that are completely erroneous (bias). Also,
the (stochastic) confidence intervals provided by the Kalman
filter are indeed tighter than their deterministic counterparts
computed via the robust filter, but they do not guarantee the
containment of the true signal z(k).

V. CONCLUSIONS

The main contribution of this paper is a technique that is
able to handle (a) uncertainty in all the system matrices, and
(b) structure information about the uncertainty, in filtering
problems for uncertain discrete-time systems. The estimates
and their (deterministic) ellipsoids of confidence are computed
in polynomial-time using convex optimization, for both the
minimum-volume and minimum-trace cases. The numerical
complexity of the proposed filtering algorithms is comparable
to that of the standard Kalman filter. The presented results
are valid over a finite time horizon; infinite horizon and conver-
gence issues are subject of ongoing research.

The presented method seems to be mostly suitable to appli-
cations with non-stationary processes or signals. It is expected
that this technique, and the related approaches explored in [9],
[10], should be applicable in a variety of contexts, ranging from
robust failure detection to localization problems, and identifica-
tion of systems with structured uncertainty.
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APPENDIX
I. PROOF OF THEOREM 1

Applying the quadratic embedding lemma, condition (9) is
satisfied whenever conditions a), b), ¢) below it are satisfied,
if there exist (S,T,G) € B(A), with S > 0, T > 0, such that
(Tr41—34)"PL' (To41 — 24) < 1 whenever (8) holds, and zp =
&+ Ba, [2el] < 1, flunl] < 1, Jloel] < 1.

Eliminating the equality constraints for gx,Zr+1,%x, the
above conditions may be rewritten via a set of quadratic
inequalities in the vector &7 = [1 2z wf of pF]
namely: §T<1>1(§:+)TP;1<I>1(§,'+)§ < 1, whenever ¢7®7 ®2¢ <
0: £TQ(S, Ta G)£ Z 0: §Tdiag (_17 I, 07 0, 0)€ S 0,
¢"diag (—1,0,1,0,0)¢ < 0, and ¢"diag(—1,0,0,1,0)¢ < 0.
Here, Q is defined in (13), and

¢ (24)=[ Ai—2+ AE B 0 Ly |,
<I>2£[C.%—yk CE 0 D LQ].

A sufficient condition for the previous conditions to hold is
given by the S-procedure (see e.g. [5]): there exist non-negative
scalars Ty, Ty, Tw, Tv Such that

§TT (84)PL ' @1(84)€ — 18" @5 Bof—
§TT(T$77-UJ1TU)£ +£TQ(51 T7 G)§ < 01 (27)

where T is defined in (12). A necessary and sufficient condition
for (27) to hold for all £ is

@7 (24)P; ' ®1(24) — 7y @3 B2 — Y(Tu, Tw, 7o) + S, T, G) < 0.

Let now ¥ be an orthogonal complement of ®3, i.e. a ma-
trix of full rank such that ®2¥ = 0. Then, using the elim-
ination lemma (see [5]) we have that the above matrix in-
equality is satisfied for some value of 7, if and only if the
following inequality (where 7, does not appear) is satisfied:
U] (&4) P @1 (84) 0 — U (Y (70, Tw, 7o) — S, T, G)) ¥ < 0.
Using Schur complements, the previous condition is rewritten
in the form
Py | P1(24)T
VT (24) | (Y (72, w, 7o) — S, T, G))¥

>0, (28)

which is an LMI condition in the problem variables
Py %4, 7Tz, Tw, 7,5, G,T. The optimal ellipsoid of confidence
based on the above sufficient condition is then determined min-
imizing f(P4), which results in the optimization problem pre-
sented in Theorem 1. a

II. PROOF OF LEMMA 2

X13

By the Schur complement rule, the LMI constraint in (15)
X ] (I - X33XJ3) =0,

holds if and only if
=0 |
(29)

X —Xopt  Z— Zop
(Z - Zopt)T X22

where Xopt = X13X1; XT3, Zopt = X13X13 X%, Xo2 = Xo2 —
X323 X, X%;. Problem (15) is thus equivalent to the problem of
minimizing f(X) subject to the above constraints. The equality
in (29) is automatically enforced when (16) holds, and problem
(17) is feasible. When this is the case, problem (15) is equivalent
to problem (17). We further note that the inequality in (29) is
equivalent to

X = Xopt + (2 — Zovg))?;rg(z ~ Zopt) ",
(Z = Zopt)(I — X22X§2) =0

Both in the case of trace and log-determinant, the function f(X)
is concave on the cone of positive-definite matrices. This implies
that the optimal value of X,Z are X = Xopt, Z = Zopt, as
claimed. m|
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