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LMI Optimization for Nonstandard Riccati 
Equations Arising in Stochastic Control 

Mustapha Ait Rami and Laurent El Ghaoui 

A b s t F “  We consider coupled Riccati equations that arise in the 
optimal control of jump linear systems. We show how to reliably solve 
these equations using convex optimization over linear matrix inequalities 
(LMI’s). The results extend to other nonstandard Riccati equations that 
arise, e.g., in the optimal control of linear systems subject to state- 
dependent multiplicative noise. Some nonstandard Riccati equations (such 
as those connected to linear systems subject to both state- and control- 
dependent multiplicative noise) are not amenable to the method. We show 
that we can still use LMI optimization to compute the optimal control law 
for the underlying control problem without solving the Riccati equation. 

NOTATION 
For a real matrix A; A > 0 (respectively, A 2 0) means -4 is 

symmetric and positive definite (respectively, positive semidefinite). 
S, denotes the set of real symmetric matrices of order 1 1 .  
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I INTRODUCTION 

We consider the problem of finding positive semidefinite solutions 
to the following set of coupled Riccati equations: 

R,(X~.....X~~) A A T x ,  + X , A  -x ,B,R,  I B T X ~  

’V 

i = l ; . . : -V.  (1) 

In the above, B,, Qz,  and R; are real matrices of dimensions 
n x n, 71 x nu. 71 x n, and U,,  x n,,; respectively. For every i, 
i = I, ’ ’  , N, QZ is symmetric positive semidefinite and R, is 
symmetric positive definite. 

Equation (1) arises in the optimal control of jump linear systems 
defined by 

where 4 ( r ( t ) )  = A,. B ( r ( t ) )  = L I ,  when ~ ( t )  = i .  The process 
‘r: R+ + { 1, . . . , N }  is Markovian with transition probabilities 
given by 

irtJA + .(A) 
1 + r , , A  + o(A) 

if i # j ,  
else. 

Prob{y(t + A )  = j 1 r ( t )  = L} = 

Here irLi  2 0 for i # . j  and -T,, = xtg, ir,]. 

minimize the quadratic cost 
In the so-called jump linear-quadratic (JLQ) problem, one seeks to 

subject to (2). The cost matrices Q ( r ( t ) )  and R(r ( t ) )  are defined by 

&(7*(t)) = Q L .  R ( r ( t ) )  = R, when r ( t )  = i .  

Under certain assumptions detailed below, Ji and Chizeck [9] have 
shown that there exists a unique stabilizing optimal control law. This 
control law is given by 

u ( t )  = l<,s(t) when ~ ( t )  = i (4) 

where ICt = -R,‘B,S,, and S,; i = 1,. . . . are the (unique) 
positive-definite solutions of the set of coupled Riccati equations 

Thus, solving the optimal control problem (3) amounts to solving 
the nonstandard Riccati (1). As opposed to the deterministic case, 
there i s  no theory which connects the solutions of the equation to the 
eigenvectors of a Hamiltonian matrix [lo],  [15]. This is due to the 
coupling between the variables via the transition probability rates i r z J .  

As a consequence, an alternate numerical procedure has to be used. 
Several numerical methods have been proposed for solving the 

problcm. Wonham [ 181 proposed a quasilinearization method, rem- 
iniscent of early methods used for standard Riccati equations. To 
prove convergence of this scheme a hypothesis is required, and this 
hypothesis is only sufficient and difficult to check. Later, Mariton 
and Bertrand [13] proposed a homotopy algorithm for solving the 
problem. Recently, Abou-Khandil et al. [ I ]  proposed two numerical 
methods based on the solution of uncoupled Riccati equations. For 
initializing these algorithms (and also, proving convergence), it is 
required to  find a solution of related coupled Riccati inequalities 
which in some cases is difficult, or even impossible (see Section VI 

‘RZ(S1;...S ,\I) 0. i = l:...-V. 
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for a numerical example). For the discrete-time equivalent to this 
problem, we mention the dynamic programming approach of Chizeck 
et ul. [7] and the algorithm of [2]. Also, note that the paper by Yan et 
ul. [I91 deals with a related (but different) nonlinear matrix equation. 

In this paper, we present a method to solve ( I ) .  The method is 
based on convex optimization over linear matrix inequalities (LMI’s). 
A consequence of our formulation is that the problem can he solved 
in polynomial time 1141, using currently available software [16], [6]. 

We show that provided the system is stabilizable (in the mean- 
square sense), our algorithm always yields the “maximal” positive 
semidefinite solution to the Riccati equation (1). If we further assume 
that each mode (CJ:’2.  .%) is observable, the results of [9] imply that 
mean-square stabilizability is necessary and sufficient for the optimal 
control problem (3) to have a stabilizing solution. In this case, our 
algorithm provides this (unique) optimal control law. 

Important features of our approach are the following. The hypothe- 
sis required for our algorithm to work (the mean-square stabilizability 
condition) is a) natural from a control point of view and b) reliably 
checked using LMI optimization. Finally, a similar algorithm can be 
applied to other nonstandard Riccati equations, such as those that 
arise in H,-optimal control (see [3]).  

The paper is organized as follows. We define the notion of mean- 
square stability in Section 11. We give our main result in Section 111. 
In Section IV, we list some other optimal control problems that can 
be solved using the approach, including discrete-time systems and 
H, state-feedback control for jump linear systems. In Section V, 
we consider a problem where the proposed algorithm approach 
cannot be applied to solve the Riccati equation. We show that the 
corresponding optimal control problem can still be solved using LMI 
optimization (that is, we are able to solve for the optimal control law 
without solving the Riccati equation). In Section VI, we provide three 
numerical examples. The first is taken from [ I ] .  The second example 
shows that sometimes the hypothesis required in [ l ]  for initializing the 
algorithm is difficult to check. We show that our algorithm behaves 
equally well in this case. The last example illustrates the results in 
Section V. All our proofs are given in the Appendix. 

11. PRELIMINARIES 

Dejnition 2.1: System (2)  is mean-square stabilizable if there 
exists a control law of the form (4) such that the closed-loop system is 
stable in the mean-square sense, that is, if for every initial condition 
.r ( 0 )  

lirri E.r(t) ~ ( t ) ’  = 0. 
t-c-c 

In this paper, we make the following hypothesis: 
H )  System (2) is mean-square stabilizable. 
The following theorem shows in particular that mean-square stabi- 

lizability can be reliably checked via LMI optimization. (For a proof, 
see [5] . )  

Theorem 2.1: The following properties are equivalent. 

I )  System (2) is mean-square stabilizable. 
2) There exist IC,. . . . . li,v and PI.. . . ~ P,Y > 0 such that 

(-4z + B , I ~ , ) ~ P ,  + P , ( A  + BLIit) + C T ~ ~ P ~  < 0 .  
’V 

7 -  I 

3) There exist I<*. . . . such that, for all matrices TI, . . . , TAT, 
there exist unique matrices SI. . . , Sn- such that 

v 
(A + B L 1 i J T S Z  + S , ( A  + BLli1)  + - p t 7 S J  + T, = 0 .  

,=I 

<R 1996 1661 

If, for every i ,  T, > 0 (respectively, T, 2 0 )  then S,  > 0 
(respectively, S, 2 0 ) .  

4) There exist YI j .  . . , YAT and & I . .  . . , Q N  such that the follow- 
ing LMI holds: 

N 

AiQ; + RYi + QiJC + x’’r;iT + C T ~ ~ Q ~  < 0, 
j=1 

Qc = Q,’ > 0; i = 1,. . . N .  ( 5 )  

Remark: The above theorem yields a numerically efficient way of 
checking mean-square stabilizability using convex optimization over 
LMI’s [16], [6].  If the LMI ( 5 )  holds, then a stabilizing control law 
is given by (4) with lit = yZQF1. 

111. MAIN RESULT 
Consider the following optimization problem: 

maximize Tr XI i- . . . + Tr X,y 

X ; = X , T ,  i = l , . . . , s  . (6) 

We define the optimal set, and denote by P O p t ,  the set N-tuples 
(XI, .  . . , X,) of maximizers of problem (6). (We note that ‘ P O p t  is 
not empty, since the constraints are always feasible.) 

Theorem 3.1: If hypothesis H) holds, then we have the following. 
The optimal set is a singleton, P O p L  = { (P:pt. . . . , PA:?‘))>. 
For every i .  P y t  2 0. 
For every i, R,(P~pt;~~.,Pl~?t) = 0. 
The solution is maximal. That is, for every symmetric matrix 
X i ~ , . . . , X , y r  s u c h t h a t R , ( X 1 ; . . , X  , ~ ~ )  2 0, i = l,...,il‘, 
we have Ptopi 2 Xi; .  

The theorem shows that by solving an LMI problem, we obtain a 
(unique) optimal solution of (3), provided H) holds. 

It can be shown that if H) holds, then the control law 

(7) 1 i : p P t  - - - ~ ; ’ ~ ; p : p ~ ,  i = 1,. . . , N 

minimizes the quadratic cost (3). However, this solution is not 
necessary stabilizing. The following result is due to Ji and Chizeck 
PI. 

Theorem 3.2: If hypothesis H) holds, and if in addition, each mode 
(Q:/2.  A,) is observable, then the optimal control law given by (7) 
is stabilizing in the mean-square sense. 

As seen from the purely deterministic case (x iJ  = 0), the above 
observability hypothesis of each mode is not necessary for the 
maximal solution to yield a stabilizing control law. 

IV. OTHER NONSTANDARD RICCATI EQUATIONS 
Our result, and the proof given in the Appendix, can be easily 

extended to other types of nonstandard Riccati equations arising in 
the optimal control of several classes of linear systems. These other 
problems include the following. 

Discrete-Time Jump Linear Systems: The discrete-time jump lin- 
ear systems are described by (see [7] and [SI) 

zk+l = A ( r k ) z k  + B(rk.)uk 

where A ( r k )  = i l , . B ( r k )  = B,  when r k  = i ,  i = l?....N. The 
process r k  is a finite-state discrete-time Markov chain with transition 
probabilities 

Prob{rk+l = j I rk = i }  = 1 5 i , . j  5 IV. 
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In the optimal control of this type of system, one obtains a Riccati 
equation of the form 

A?S,A, - X, - ATB,Sz [R, + B ~ S , B , ] - ' @  &A, + Qz = 0 
CY' 

S ,  = ~ P ~ , ~ ~ Y , , ,  X, 2 0. i = l;", N 
] = I  

(8) 
where 4% 2 0, R, > 0 are the state and control weighting matrices, 
respectively. 

Linear Systems with Both Jumps and Multiplicative Noise on the 
State: These systems are described in [12]. The corresponding 
Riccati equations have the form 

where A, 's  are some linear matrix functions from S, to S,, that are 
positive (that is, X 2 0 implies A,(X') 2 I)). 

Linear Systems with Both Jumps and Random State Discontinuities: 
These systems are described in [l I ] .  In this case, the Riccati equations 
have the form 

where the T,,'s are linear matrix functions from S,, to S, that are 
positive. 

For all the above kinds of nonstandard Riccati equations, the 
maximal solution can be obtained by maximizing Tr(X1 +. . . + X x )  
subject to the corresponding Riccati inequalities (in which the equality 
sign i s  replaced by a 2 sign). 

H, -Optimal Control of Jump Linear Systems: In [3] ,  de Souza 
and Fragoso have shown that a class of H,-optimal control problems 
for jump linear systems could be solved via a set of coupled Riccati 
equations of the form 

where y > 1) is a prescribed level of disturbance attenuation. We 
assume that the system i s  mean-square stabilizable and ( C c , A z )  is 
observable for all i = 1.. . . N .  The mean-square stabilizing solution 
can be computed by minimizing y2 subject to 

3=1 

x-, > 0, 2 = 1,. ' ' , L V .  (12) 

The above constraints are easily transformed into a LMI's by intro- 
ducing variables Y, = X,' and rewriting (12) as 

The above constraint can be expressed by the following LMI's: 

1668 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 41, NO 11, NOVEMBER 1996 

.. . 

Ii, > 0 ,  2 = l , . . ' ,Av .  Moreover, the corresponding control law [as given by (7)]  15 not 

where 

v. PROBLEMS NOT AMENABLE TO THE METHOD 
Some nonstandard Riccati equations arising in optimal control of 

stochastic systems cannot be solved using the proposed approach. 
The corresponding optimal control problem (that is, the optimal state- 
feedback control law) can still be computed using LMI optimization. 

One instance of such a problem i s  the following. Consider a system 
with multiplicative noise on both state and input matrices [18]. The 
system satisfies the It6 differential equation 

where U i s  the command input and p i  are independent, Brownian 
motions with variance ot. i = 1.. . . , L. 

The optimal control problem under consideration is to minimize 
m 

J ( u )  a E{ 1 ( r ( t ) ' Q s ( f )  + u( t j2  Ru(t))rZt 1 .c(0)} (14) 

where Q 2 0. R > 0 are the state and control weighting matrices, 
respectively 

The Riccati equation associated with the optimal control problem 
IC I181 

In the next section, we provide an example showing that the 
solution of such equations might not be obtained using our approach 
(that is,  by maximizing TrS subject to (lS), where equality sign i s  
replaced with 2 sign). This i s  due to the fact that there is no maximal 
solution in this case. (As we pointed out before, the approach can be 
proven to work when there is no control-dependent noise, B, = 0. 

Although we are not able to solve the Riccati equation, we can 
still solve for the optimal control law using LMI optimization via a 
stochastic Lyapunov function approach (see [4]). Indeed, the optimal 
control law i s  given by U = 1 i A Y - ' ~ ,  where U ,  X are solutions to 
the followiiig LMI problem: 

i = l . . " . L ) .  

L 
+ a%(A,X + BtU)X-1 ( i l ,X  + B , L y  < 0. 

z=I 

(Note that, as in the deterministic case (at = I ) ) ,  the optimal control 
law does not depend on the choice of ~ ( 0 )  # 0.) 

To sum up, we have now two LMI-based methods for solving 
optimal control problems for stochastic linear systems. The first 
is based on Theorem 3.1 and does not apply to some problems. 
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necessarily stabilizing. The second method consists of solving the 
optimal control problem "directly" (without solving the Riccati 
equation). The second method is more demanding numerically (the 
LMI problem has more variables and involves bigger matrices), but 
the resulting control law is always stabilizing. 

VI. NUMERICAL EXPERIMENTS 

We first consider the example given in [ I ]  consisting of a third- 
order system having three modes 

-2.5 0.3  0.8 -2.5 1.2 0.3 

0.25 1.2 
1.5 -0.4 

1.1 0.9 -2 
BI = Br = BI = diag(0.707 1 I)  

- 3  0.5 2.3 
11 = [ 1 -2 

0.7 0.3  
C), = d i a g ( 2 5  1 11) 

(22 = d i a g ( 3 i  70 34).  Q j  = d i a g ( l 0  16 21)  
RI  = Rr = RJ = I .  

Solving problem (6) directly yields 

0.3639 
5.3256 

2""' = 0.2985 
0.3192 
9.6982 

0 .2  102 

The corresponding residual is 

I 
1.0087 0.3839 
2.5138 0.3520 
0.3520 3.0135 

0.2985 0.5192 
13.9462 0.i28G 
0.7286 19.8938 

8.2382 0.6635 . 
3.7658 0.2102 

0.6635 3.4688 1 
(/RI((  = 2.2 x lo-'. I('R2(( = 3 4  x lo-' 

II'R,T~\ = 1.78 x lo-''. 

The solution took about 3 x 10' flops and 9 seconds on an HP- 
7 10 workstation using the general-purpose LMI solver SP [ 161 and 
its Matlab interface LMITOOL [6].  In this example, there is no 
feasibility phase, since (2, > 0 implies that X ,  = 0 is strictly 
feasible. It took 23 iterations for SP to find the optimal point. We 
have used a very small tolerance for the convergence test (see [ 161): 
the parameters abstol and reltol were both set to IO-'". 

The second example is one where the search for an initial guess 
for the algorithm of [ I ]  is not trivial. Consider 

1 D l  = & = [l"O]- " = [ 1.0 -1.0 
-1.0 1.0 

The above system is mean-square stabilizable. To prove it, we have 
found a feasible point to the LMI's (5). One such point is 

4.7592 -7.8029 
Q1 = [-7.8929 21.4985 1' "' = [ 0 9.6135 
Y 1  = [-29 -371681. Yz = [2  -372271. 

In this case, finding an initial point for the algorithm of [ l ]  is 
not trivial. We have to find a positive semidefinite solution to the 
nonconvex matrix inequalities 

i = I:..,LY. (17) 

In 11, Remark 3-ii)], it is recommended to take, whenever possible, 
IC, = 01, where n > 0 is large enough. It turns out that no such 
c i  exist in this case. The difficulty here is due to the fact that the 
quadratic term ICT B,R,lI?lfIiL might be rank-deficient. (We note 
that finding a solution to (17), or proving there is none, can be 
formulated as an LMI feasibility problem in ICL-'.) 

Solving problem (6) directly yields (in 6012 flops and 3 seconds) 

7.3'21 2.7307 

The corresponding residual is llRlII = 5.3 x IO-'. IlRzIl = 
4.3 x 

Finally, we give an example showing that the approach might not 
give a solution for Riccati equations of the type (15). Consider (13) 
with 

0.9089 0.8GO9 0.5060 
4 = [0.2501 0.4713s]' I [0.GOO4] 

[CI PJ] = [O.87GG 0.44001 

0.7358 0.9514 0.4393 0.6890 
0.8176 0.1622 0.6327 [A, -421 = 

p.2893 0.51441 
[Bi L32]  = 0.5374 0.1031 

and with the cost (14), with C) = I ,  I? = I .  (As said in Section V, 
the value of the initial condition is arbitrary as long as it is not zero.) 

The above system is mean-square stabilizable in the sense of the 
definition in Section 11. To prove this claim, one has to check whether 
the inequalities 

A() + Q-4"' + BY + Y T  B' 
L 

+ xo:(=l,C) + B,Y)Q- ' (d ,Q + B,I')' < 0 
L=l 

have a solution Q > 0 .  I* (see [4]). This is an LMI feasibility 
problem which we have solved using LMITOOL. We have obtained 
a feasible solution as 

However, when we solved the optimization problem 

maximize Tr I' subject to (15) 

(with equality sign replaced with 2 sign) 

we obtained 

1 3930.8 -1775.3 
-1773.3 3387.5 

The coli-esponding residual is 7.853 x 10'". This shows that in this 
example, there exists no maximal solution to the equation. (Note that 
when we set B,  = 0, we do obtain a solution 

1 - 20.3843 -3.9343 
- [-5.9345 9.8843 

with residual 5.4318 x IO-'..) 
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Although we were not able to solve the Riccati equation in the 
case B, # 0, we could solve for the optimal control law by solving 
(16). This resulted in the control law 

I< = CXpl = [-3.2130 -1.76381 

VII. CONCLUSION 

We have devised a reliable method for solving some nonstandard 
Riccati equation arising in the optimal control of various stochastic 
systems. The method is based on convex optimization only. This 
avoids problems of convergence and/or initial guess search. In fact, 
this formulation shows that the problem considered is tractable, both 
theoretically (solvable in polynomial time) and practically. General- 
purpose codes are now available to solve LMI problems. With no 
doubt, the computational work needed to solve the problem could be 
greatly improved using a special code taking into account the structure 
of the LMI problem at hand (see [17] for a discussion on this topic). 

In some cases (as for linear systems subject to both state- and 
control-dependent multiplicative noise), the proposed approach 
breaks down. Although we cannot solve the corresponding Riccati 
equation, we can still compute the optimal state-feedback law 
using LMI optimization. This alternate method is more demanding 
numerically. Its advantage is to be very general and to always 
provide a stabilizing control law whenever the system is mean-square 
stabilizable. 

APPENDIX 
PROOF OF THEOREM 3.1 

We begin by proving that under hypothesis H), the coupled Riccati 
equations in (I) have a "maximal" solution, as defined in Theorem 
3.1. This will immediately imply Theorem 3.1. 

Case When 62, > 0 ,  i = 1. ' . , N: Since R, (0. . , 0) = Qt > 
0, the set of symmetric matrices satisfying R, (XI, .  . . , X N )  2 0 is 
not empty. By H), (2) is mean-square stabilizable. Thus, by the result 
of Theorem 2.1, there exist Ii(O), and X(0) ,  ( i  = 1.. . . . LV) such 
that the matrices A ( O ) ,  = A; - &11'(0)~ satisfy 

A' 

]=I 

= - L ~ ( 0 ) T R ~ ~ ~ z ( O j  - R,(X, , . . . ,X\ r )  5 0. 

The result of Theorem 2 1 then implies that X,(O) 2 s,, for 
1 = I. ' ,  1.. 

Suppose that we can define sequences IC1 (in).  . . . , A N  (m) ,  
A1 ( T I L ) .  ' . , AN ( T I L ) ,  and X1 (m) ,  . . . , X,v(m) by the following 
recursion 

X,j0) 2 X,(1) 2 . "  >_ XZ(l) 2 2, 
A,(??%) = -47 - B,I<,(7lL); ICt(m) = R-lB,TX,(Tn - 1) 

4 z ( m ) T X , ( m )  + X,(m)A,(m) + 7rL3X3(m) 
= -I<,(7)2)TR,ICil(7n) - Q1. 

1 = l , . ' . ,  v. ,n= l,"..Z. 
(18) 

Using the fact that Q, > 0 and Theorem 2. I ,  we have that X ,  (m)  > 
0 for every m.  7 n  = 1.. . . ,1. 

Suppose that the matrices (A,(0).ICi,(O),X,(O)),. . , (Az[/) ,  
I ic(/) ,Xt(l))  are defined as before We now show that we can 
define A , ( /  + I). Ii,(l + l).Xz(Z + 1) with the above recursion 

Def ine I r , ( /+ l )  = R;'B,?X,(Z)and 4,(1+1) = A,-B,h , (Z+ 
1) which yatisfy the tollowing equalities 

2 

+ l ) T X , ( [ )  + Xz(Z)-4c(Z + 1) + CrZ3X3(Z)  
J=1 

= -(ICt(/  + 1) - IL( l ) )TBz( I \ t ( l  + 1) - h , ( l ) )  
- Iit(Z + I)' R ~ I c ~ ( /  + I)  - Q ~ .  

Recalling that X,(Z) > 0, we can apply Theorem 2 1 to conclude 
that (21, with the feedback control law with gains Ii,(Z + l), i? 

mean-square stabilizable Thus, there exist X,(Z + 1) solutions of 

~ 4 ~ ( / + 1 ) T X ~ ( / + l ) + ~ ~ ~ ( l + 1 j A ~ ( Z + l )  
'L 

+ C.ir,,X,(I + 1) = -L(Z + 1 ) ~ R J z ( Z +  1) - Qz 
)=1 

Now define A , ( /  + I)  = Ii,(l+ 1) - R T ' B T x z  We obtain that 

A z ( ~ +  l ) T ( X z ( l  + I)  - 2,) + (X,(I  + 1) - k t ) A t ( l  + 1) 
\T 

= -xxtJ(~j(l+~) -X3) - R , ( X ~ ; . . . X , ~ )  
,=1 

- Ii,(Z + l ) T B L k A ( /  + I) 5 0. 

Using (18) we also have 

A(/  + l ) T G w  - X, ( I  + 1)) + (X,(Z) - X,(I + l))Az(Z+ 1) 
\ 

= - - j 3 3 ( A Y l l ( z )  - X l l ( l +  1)) 
]=1 

- ( I i z ( l j  - A,( /  + l))TBz(Ii ,( /)  - A,(Z + I ) )  5 0 

Again applylng Theorem 2 1, we conclude from the above equalities 
that 

U,(O) 2 x , ( I )  2 2 ~ ~ ( 1 )  2 2, 
The sequences defined above are nonincreasing and bounded 

below Thuy, there exist V matrices X:. z = 1.. . . . Iv such that 
X , ( I )  converges to X,+. z = I. . , -\ 

for every I 2 o 

By passing to the limit in the equalities 

'\' 

-4"4l) + XL(l)-4z(Z) + Cr7i23Xy1(z) 
3=1 

= -ICl(l) '~RzIC7(Z) - Qz 

it follows that R;(S$ ,  . . . , X & )  = 0 ,  i = 1. ' .  . . L1.-. 0 
Cuse When QZ 2 0 ,  i = 1:. . . , N :  Let XI.. . . , X,yr be any sym- 

metric matrix satisfying R ,  (21. . . . , %,v) 2 0. Define for t > 0 

R:(X, ~. . . , X,v) = R,(X1, ' ' ' . Xnr) + d 
Noticing that Q h  + €1 > 0 we can apply the previous result to 
obtain matrices XT ( E ) ,  the solution of R:(,Yl, . . X,) = 0, and 

Now, the solutions X:(t) are nonincreasing with E .  That is, 
if €1 > € 2 ,  then R:l(X,f(~a);.. ,X$(ez) )  2 0 which implies 
X:(el) 2 XT(t2) 2 %,. In the sequence X:(c), being non- 
increasing and bounded below by gz, there exists X: such that 
X: = lirn,-o X ( E ) ,  and X ;  2 2?,. 

X,+(E) 2 2 , ; i  = 1.. . . ~ N .  
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Passing to the limit in the equations Rj-(XT(t), ’ .  . . X:(t)) = 0, 
we obtain 

Finally, the matrices .YT are positive semidefinite since RL(O, 
. ’ ’ . 0) = Qz 2 0. 
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A Gradient Algorithm for Stereo Matching Without 
Correspondence 

J. Zhou and B. IC. Ghosh 

AbstructAn this paper we study the problem of feature point matching 
via a technique well known in geometry, leading to a new gradient 
algorithm in machine vision. The procedure does not require one to solve 
explicit correspondences between feature points but relies on a specific 
form of “spatial averaging.” In this sense the estimation procedure is 
robust. In this paper we describe the allgorithm and report simulation 
results. 

I. INTRODUCTION 

In this paper we propose a new gradient algorithm for stereo 
correspondence o f  a set of points on a plane, the points being observed 
by a pair of CCD cameras. Our goal is to compute the position of 
the plane on which the point lies without explicitly computing the 
exact three-dimensional (3-D) coordinates of the points individually. 
Thus if an unknown surface is observed via a pair o f  cameras, the 
procedure would generate a local description of the “shape” o f  the 
surface without explicitly identifying the locations of the features 
in space. Of course, once the surface has been identified, points in 
each of the two images can be corresponded easily. The proposed 
algorithm relies heavily on a new gradient algorithm on a Lie group 
described in the two papers by Brockett [l],  [2]. We would also like 
to recommend a recent monograph written by Helmke and Moore [6] 
on gradient flows. 

To motivate the proposed algorithm of this paper, we shall re- 
call first of all the “matching problem” from [l]. Let us con- 
sider an unordered collection of a set of points in W3 denoted by 
{ . I , , .  xz, . . .  . . r ? } ,  where rt E R3. i = 1;’. , s .  Furthermore, we 
assume that the points undergo a rigid transformation via a rotation 
matrix. Specifically, we define the map 

R: R3 --i RJ 
x ,  H R x ,  = y L  

where R is a rotation matrix, i.e., R is an element of SO(3) ,  where 

S O ( 3 ) e  {REIW3X’~:Tn=I .de tR=1} .  (2) 

The group of matrices SO(3)  is known as the special orthogonal 
group. We assume that under the above map (1) the set of points 

s, b {xi,12:..‘.xs} (3) 

is mapped to the set of points 

(4) 
a sz = { Y l .  ,Yz. ’ ’ ’ , y 5 } .  

Thuseach.r ; . i  t (1 :... s} i s m a p p e d t o s 0 m e r j . j  E { l ; . ’ . , s }  
under the map (1). The matching problem analyzed by Brockett [l] 
can be described as follows. 
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