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Abstract

The classical condition number is a very rough measure of the effect of perturbations on
the inverse of a square matrix. First, it assumes that the perturbation is infinitesimally small.
Second, it does not take into account the perturbation structure (e.g., Vandermonde). Similarly,
the classical notion of the inverse of a matrix neglects the possibility of large, structured
perturbations. We define a new quantity, the structured maximal inversion error, that takes
into account both structure and non-necessarily small perturbation size. When the perturba-
tion is infinitesimal, we obtain a “structured condition number”. We introduce the notion of
approximate inverse, as a matrix that best approximates the inverse of a matrix with structured
perturbations, when the perturbation varies in a given range.

For a wide class of perturbation structures, we show how to use (convex) semidefinite
programming to compute bounds on the structured maximal inversion error and structured
condition number, and compute an approximate inverse. The results are exact when the pertur-
bation is “unstructured”—we then obtain an analytic expression for the approximate inverse.
When the perturbation is unstructured and additive, we recover the classical condition num-
ber; the approximate inverse is the operator related to the Total Least Squares (orthogonal
regression) problem. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Structured matrix; Condition number; Linear fractional representation; Semidefinite pro-
gramming; Vandermonde system; Total least squares

Notation
For a matrixX, ‖X‖ denotes the largest singular value. IfX is square,X � 0

(resp.X > 0) meansX is symmetric, and positive semidefinite (resp. definite). For
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a vectorx, maxi |xi | is denoted by‖x‖∞. The notationIp (resp. 0p×q ) denotes the
p × p identity (resp.p × q zero) matrix; sometimes the subscript is omitted when it
can be inferred from context. To a given linear set� ⊆ Rp×q , we associate the linear
subspaceB(�), defined by

B(�) = {(S, T ,G) | S� = �T , G� = −�TGT for every� ∈ �}. (0.1)

1. Introduction

1.1. Motivations

Let A ∈ Rn×n, detA /= 0. We consider the problem of measuring, and reducing,
the effect of errors when computing the inverse ofA.

When the error onA, �A, is infinitesimally small, and otherwise arbitrary, a clas-
sical result (see e.g. , [6]) states that

‖(A + �A)−1 − A−1‖
‖A−1‖ � κ(A)

‖�A‖
‖A‖ , (1.1)

whereκ(A) = ‖A‖ · ‖A−1‖. Thus, the classical condition numberκ(A) is a mea-
sure of (relative) errors in the inverse ofA when the latter is perturbed by an arbi-
trary, infinitesimally small matrix. (Note that the “absolute” condition number is then
‖A−1‖2.)

The classical condition number is a very rough measure of the effect of errors
when invertingA. First, the condition number above assumes that each coefficient
in A is independently perturbed, which is often unrealistic. For instance, ifA has
a Toeplitz or Vandermonde structure, the perturbation matrix�A inherits the same
structure. Therefore, the “structured condition number” is expected to be less than
κ(A) [13]. Second, the error bound (1.1) is only valid for (infinitesimally) small
perturbations.

The classical definition of the inverse of a matrix also neglects the possibility of
large perturbations. Consider the scalar equationax = 1, wherea is unknown-but-
bounded, say,a ∈ I = [a − ρ a + ρ], whereρ (0 < ρ < |a|) is given. The possi-
ble values of the solution lie in the intervalJ = [(a − ρ)−1 (a + ρ)−1]. Without
more information about the “distribution” ofa in the intervalI, the “best” value of
the inverse is nota−1 (the classical inverse). A more accurate value is thecenterof
the intervalJ, that is,a/(a2 − ρ2).

Perturbation structure is also neglected in the classical definition of a (matrix)
inverse. Consider again a scalar equationax = 1, wherea = c2, and the “Cholesky
factor” c is unknown-but-bounded (say,c ∈ I = [c − ρ c + ρ]). As before, we
may define an “approximate inverse” as the center of the set of possible values of
c−2, which is (a + ρ2)/(a − ρ2)2. Note that this value is in general different from
its “unstructured” counterpart.
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1.2. Framework

The above remarks call for a precise study of the effect of non-necessarily small,
possibly nonlinear, structured perturbations, on the inverse ofA. For this we intro-
duce a very general model for the perturbation structure. We assume that the pertur-
bation is ap × q matrix � that is restricted to a given linear subspace� ⊆ Rp×q .
We then assume that the perturbed value ofA can be written in the “linear-fractional
representation” (LFR)

A(�) = A + L� (I − D�)−1 R, (1.2)

whereA is the (square, invertible) “nominal” value, andL,R,D are given matrices
of appropriate size (the above expression is not always well defined; we return to this
issue soon). The norm used to measure the perturbation size is the largest singular
value norm,‖�‖. For a givenρ � 0, we define theperturbationset by

�ρ = {� ∈ � | ‖�‖ � ρ} .

The above model seems very specialized, but it can be used for a very wide variety
of perturbation structures (see Section 2). In particular, our framework includes the
case when parameters perturb each coefficient of the data matrices linearly, and in
addition, the parameters are bounded componentwise.

Our subject is the study of the following notions.
The invertibility radius, denotedρ inv(A,�), is the largest value ofρ such that

A(�) is well-posed (in the sense that det(I − D�) /= 0) and invertible for every
� ∈ �ρ .

For 0< ρ < ρ inv(A,�), we define thestructured maximal inversion erroras

λ(A,�, ρ) = 1

ρ
max

{
‖A(�)−1 − A−1‖ : � ∈ �ρ

}
. (1.3)

We define thestructured absolute condition numberby

κ(A,�) = lim sup
ρ→0

λ(A,�, ρ).

Finally, we say thatX is anapproximate inverse over�ρ for the structured matrixA
if it minimizes themaximal inversion error at X, defined as

λ(A,�, ρ,X) = 1

ρ
max

�

{
‖A(�)−1 − X‖ : � ∈ �ρ

}
. (1.4)

The approximate inverse is defined as the center of a ball that contains the
possible values of the inverseA(�)−1, when� varies over the perturbation set�ρ .
In this sense, the approximate inverse generalizes the scalar case mentioned in
Section 1.1.

The problems addressed in this paper are in general NP-complete. Our purpose is
to compute bounds for these problems, viasemidefinite programming. A (general-
ized) semidefinite program (SDP) is a problem of the form
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minimizeλ subject toλB(x) − A(x) � 0, B(x) � 0, C(x) � 0, (1.5)

whereA(·), B(·) andC(·) are affine functions taking values in the space of sym-
metric matrices, andx ∈ Rm is the variable. SDPs are (quasi-) convex optimization
problems and can be solved in polynomial-time with e.g. , primal–dual interior-point
methods [3,18,19,27]. Our approach thus leads to polynomial-time algorithms for
computing bounds for our problems. In some cases, we obtain analytic expressions
involving no iterative algorithms.

In this paper, we compute quantities associated to the matrix-valued functionA
via the LFR (1.2). Thus, we make no distinction between the matrix functionA
and its LFR (1.2), although in principle different LFRs of the same matrix-valued
function A might give different numbers. It turns out, however, that the quantities
we compute are independent, in some sense, of the LFR chosen to describeA. We
make this sense precise in Appendix A.

1.3. Previous work

A complete bibliography on structured perturbations in linear algebra is clearly
out of scope here. Many chapters of the excellent book by Higham [14] are rele-
vant, especially the parts on error bounds for linear systems (pp. 143–145), condi-
tion number estimation (Chapter 14) and automatic error analysis (Chapter 24). The
present paper is also related to interval arithmetic computations, which is a large
field of study, since its introduction by Moore [15,16]. We briefly comment on this
connection in Section 8.

The invertibility radius is related to the notion of nonsingularity radius (or dis-
tance to the nearest singular matrix). Most authors concentrated on the case when the
perturbation enters affinely inA(�). Even in this case, computing this quantity is NP-
hard, see [17,20]. Demmel [6] and Rump [24] discuss bounds for the nonsingularity
radius in this case. The bound proposed here is a variant of that given by Fan et al.
in [9].

The maximal inversion error is closely related to systems of linear interval equa-
tions (which are covered by LFR models). Exact (NP-hard) bounds on (interval)
solutions to such systems are discussed by Rohn in [21–23]. Alternative norms for
measuring the error can be used, as pointed out by Hagher [12].

The structured condition number problem is addressed by Bartels and Higham [2]
and by Gohberg and Koltracht [11]. The approach is based on the differentiation of a
mapping describing the perturbation structure, which gives information on the effect
of infinitesimal perturbations.

Matrix structures are described by a variety of tools. The displacement-rank
model is one, see [5,10]. The LFR models used here are classical in robust control
(see e.g. [4]). These models are used in the context of least squares problems with
uncertain data by the authors in [7]. The results presented here can be viewed as
extensions of the results proposed in [7].
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2. Examples of LFR models

Before addressing the problems defined in Section 1, we first illustrate how the
LFR model can be used in a variety of situations.

2.1. Additive perturbations with norm bound

The additive perturbations case is when

A(�) = A + �,

and� is norm-bounded and otherwise arbitrary. This structure, the simplest of all we
consider, corresponds to the matrix defined in (1.2), withL = In, R = In, D = 0n

and� = Rn×n. The setB(�) associated with�, as defined in (0.1), takes the form

B(�) = {(S, T ,G) | S = T = τIn, G = 0n, τ ∈ R} . (2.1)

The additive model will be useful to recover classical results such as the standard
condition number.

2.2. Unstructured perturbations with norm bound

The case when� = Rp×q is referred to as the “unstructured perturbations case”.
This is a generalization of the additive model, that is useful to model perturbations
that occur e.g. in only some columns (or rows) ofA, but are otherwise arbitrary. The
setB(�) associated with� = Rp×q , as defined in (0.1), takes the form

B(�) = {
(S, T ,G)

∣∣ S = τIp, T = τIq, G = 0, τ ∈ R
}
. (2.2)

Consider for example the case whenA can be partitioned as

A(�) =
[
A1 + �

A2

]
,

whereA1 ∈ R(n−r)×n, A2 ∈ Rr×n are given, the perturbation matrix� is norm-
bounded, and otherwise arbitrary. This case happens when we assume additive per-
turbations on some rows ofA only. We may model this perturbation structure by
(1.2), with

A =
[
A1

A2

]
, L =

[
In−r

0r×(n−r)

]
, R = In, D = 0.

2.3. Affine perturbation with componentwise bound

As said before, our framework includes the case when parameters perturb each
coefficient of the data matrices linearly, and in addition, the parameters are
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bounded componentwise. Consider a matrix-valued functionsA(δ) that is affine in
δ ∈ Rm:

A(δ)
�=A0 +

m∑
i=1

δiAi,

whereA0, . . . , Ap ∈ Rn×n, are given. We can writeA(δ) in the LFR format, as
follows.

For everyi, i = 1, . . . , m, decomposeAi asAi = LiRi , with Li ∈ Rn×ri , Ri ∈
Rri×n, whereri = Rank(Ai). With

L = [L1 . . . Lm] , R = [
RT

1 . . . RT
m

]T
,

we have

A(δ) = A + L�R,

where� = diag
(
δ1Ir1, . . . , δmIrm

)
. Componentwise bounds of the form‖δ‖∞ � ρ

can be written‖�‖ � ρ.
In this case, the set� we work with is of the form

� = {
� = diag

(
δ1Ir1, . . . , δmIrm

)
, δ ∈ Rm

}
, (2.3)

and the subspaceB(�) associated to� is

B(�) =

(S, T ,G)

∣∣∣∣∣∣
S = T = diag(S1, . . . , Sm), Si ∈ Rri×ri ,

G = diag(G1, . . . ,Gm),

Gi ∈ Rri×ri , G = −GT


 . (2.4)

2.4. Rational perturbations with componentwise bound

Our framework includes the case when parameters perturb each coefficient of the
data matrices in a (polynomial or) rational manner. This is thanks to the representa-
tion lemma given below.

Lemma 2.1. For any rational matrix functionM : Rm → Rn×c, with no singular-
ities at the origin, there exist nonnegative integersr1, . . . , rm, and matricesM ∈
Rn×c, L ∈ Rn×N, R ∈ RN×c, D ∈ RN×N, with N = r1 + · · · + rm, such thatM
has the following linear-fractional representation(LFR):

M(δ) = M + L� (I − D�)−1 R,

where � = diag
(
δ1Ir1, . . . , δmIrm

)
,

(2.5)

valid for everyδ such thatdet(I − D�) /= 0.

A linear-fractional representation (LFR) is thus a matrix-based way to describe a
multivariable rational matrix-valued function. It is a generalization, to the multivari-
able case, of the well-known state-space representation of transfer functions.
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In [28], a constructive proof of the above result is given. The proof is based on
a simple idea: first devise LFRs for simple (e.g. linear) functions, then use
combination rules (such as multiplication, addition, etc.), to devise LFRs for arbi-
trary rational functions. Note that such a construction of the LFR can be done in
polynomial-time.

The implication of the lemma for the study of structured condition numbers
is far-reaching. If we consider a matrix-valued functionA(δ) that is (arbitrary)
rational functions of a parameter vectorδ ∈ Rm, it is possible to form the LFR of
the functionA(δ), as in done in lemma 2.1. In this case, the set� we work with is
of the form (2.3) wherer is the integerm-vector appearing in the LFR (2.5). The
subspaceB(�) associated to� is given by (2.4). Finally, note that the bound
‖�‖ � ρ is equivalent to componentwise bounds on the perturbation vector
δ: ‖δ‖∞ � ρ.

As an example, consider the square Vandermonde matrix

A(a) =



1 a1 · · · an−1
1

...
...

...

1 an · · · an−1
n


 , (2.6)

wherea = (a1, . . . , an)
T ∈ Rn is a given vector. We assume thata is subject to com-

ponentwise, unstructured perturbation. That is, the perturbed value ofa is a + δ,
where‖δ‖∞ � ρ. The perturbed matrixA(a + δ) can be expressed with the LFR
(1.2), whereA = A(a), and

L = diagn
i=1

[
1 ai · · · an−2

i

]
, R =



R1
...

Rn


 ,

D = diagn
i=1Di, � = diagn

i=1δiIn−1,

(2.7)

and, for eachi, i = 1, . . . , n,

Ri =




0 1 ai · · · an−2
i

...
. ..

. ..
.. .

...
...

. ..
.. . ai

0 . . . . . . 0 1


 ∈ R(n−1)×n,

Di =




0 1 ai · · · an−3
i

...
. ..

.. .
. . .

...
...

.. .
. . . ai

...
. . . 1

0 · · · · · · · · · 0




∈ R(n−1)×(n−1).

(2.8)
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3. Invertibility radius

3.1. Well-posedness lemma

We are given a linear-fractional function of a matrix variable� ∈ �

M(�) = M + L� (I − D�)−1 R. (3.1)

We say that the LFR (3.1) is well-posed over�ρ if

det(I − D�) /= 0 for every� ∈ �ρ.

Thewell-posedness radiusof M is the largestρ such that the LFR (3.1) is well-posed
over�ρ . The following lemma is a variant of a result first given in [9].

Lemma 3.1. The LFR ofM is well-posed over�ρ if there exists a triple(S, T ,G)

such that

(S, T ,G) ∈ B(�), S > 0, T > 0,[
D

I

]T [
ρ2T G

GT −S

] [
D

I

]
< 0.

(3.2)

A lower bound on the well-posedness radius can be computed by solving the(genera-
lized) semidefinite programming problem

ρwp(M,�) = supρ subject to(3.2). (3.3)

Condition (3.2) is also necessary in the unstructured case(� = Rp×q), in which
case the well-posedness radius isρwp(M,�) = ρwp(M,�) = ‖D‖−1 if D /= 0, and
infinite otherwise.

Proof . See Appendix B. �

3.2. Lower bound on invertibility radius

The matrix functionM(�) = A(�)−1 admits the LFR

M(�) = A(�)−1 = M̃ + L̃�(I − D̃�)−1R̃, (3.4)

where[
M̃ L̃

R̃ D̃

]
=

[
A−1 −A−1L

RA−1 D − RA−1L

]
. (3.5)

We seek a sufficient condition ensuring thatA(�) is well-posed and invertible for
every� ∈ �ρ . Invertibility of A(�) for every� ∈ �ρ is guaranteed if the LFR of
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A(�)−1 given above is well-posed over�ρ . According to Lemma 3.1, the LFR of
A(�)−1 is well-posed over�ρ if there existS,G, T such that

(S, T ,G) ∈ B(�), S > 0, T > 0,[
D − RA−1L

I

]T [
ρ2S G

GT −T

] [
D − RA−1L

I

]
< 0.

(3.6)

A lower bound on the well-posedness radius of the LFR ofA(�)−1 is given by the
solution of the (generalized) semidefinite programming problem

ρwp(A−1,�) = supρ subject to(3.6). (3.7)

Corollary 3.2. A lower bound on the invertibility radius ofA(�) given in(1.2) is
given by

ρ inv(A,�) = min
(
ρwp(A,�), ρwp(A−1,�)

)
,

whereρwp(A,�) is defined in(3.3) andρwp(A−1,�) in (3.7). In the unstructured
case(� = Rp×q), the bound is exact, and given by

ρ inv(A,Rp×q) = min
(
‖D‖−1, ‖D − RA−1L‖−1

)
,

with the convention that‖M‖−1 = ∞ if the matrix M is zero.

4. Structured maximal inversion error

In this section, we seek an upper bound on the structured absolute error defined
in (1.3). We assume that 0< ρ < ρ inv(A,�).

4.1. Robustness lemma

We seek to guarantee a certain property for a given rational matrix-valued func-
tion, using the LFR and semidefinite programming.

Precisely, we consider again the linear-fractional function of a matrix variable
� ∈ Rp×q given in (3.1). For a given real, symmetric matrix of appropriate sizeW,
we seek a sufficient condition ensuring that the LFR above is well-posed, and in
addition[

M(�)T I
]
W

[
M(�)

I

]
< 0 (4.1)

for every� ∈ �ρ , whereρ > 0 is given. (Here,M(�) is a linear-fractional function
as given in (3.1).) The motivation for studying this kind of condition is that the upper
boundλ(A,�, ρ) < λ holds if and only if
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‖A(�)−1 − X‖ � λ for every� ∈ �ρ,

which in turn can be expressed as (4.1) withM(�) = A(�)−1 − A−1 and W =
diag(I,−λ2ρ2I ).

We have the following result.

Lemma 4.1. We havedet(I − D�) /= 0 and (4.1) for every� ∈ �ρ, if there exists
a triple (S, T ,G) such that(3.2)and[

M L

I 0

]T

W

[
M L

I 0

]
+

[
R D

0 I

]T [
ρ2S G

GT −T

] [
R D

0 I

]
< 0. (4.2)

The condition is also necessary in the unstructured case(� = Rp×q), in which case
it can be expressed as‖D‖ < ρ−1, and there existsτ � 0 such that[

M L

I 0

]T

W

[
M L

I 0

]
+

[
R D

0 I

]T [
ρ2τI 0

0 −τI

] [
R D

0 I

]
< 0.

Proof . See Appendix C. �

The main implication of the above two lemmas is that a sufficient condition for
both well-posedness and bound (4.1) can be checked using (generalized) semidefi-
nite programming.

4.2. Upper bound on maximal inversion error

Applying Lemma 4.1, withM(�) = A−1(�) − A−1 andW = diag(I,−λ2ρ2I ),
we obtain that the boundλ(A,�, ρ) < λ holds if there exists a triple(S, T ,G) ∈
B(�) such thatS > 0, T > 0, and[

ρ2λ2I 0
0 0

]
>

[
0
L̃T

] [
0
L̃T

]T

+
[
R̃ D̃

0 I

]T [
ρ2S G

GT −T

] [
R̃ D̃

0 I

]
. (4.3)

The above inequality implies that the LFR ofA(�)−1 is well-posed. Indeed, looking
at the lower right corner of the above four-block inequality, we obtain

0 > L̃TL̃ +
[
D̃

I

]T [
ρ2S G

GT −T

] [
D̃

I

]
, (4.4)

which implies (3.6).
Further, noting that[

R̃ D̃

0 I

]
=

[
RA−1 D − RA−1L

0 I

]
=

[
R D

0 I

]
N−1,

whereN =
[
A L

0 I

]
,
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and multiplying inequality (4.3) on the left byNT and on the right byN, we obtain a
condition equivalent to (4.3):[

ρ2λ2ATA ρ2λ2ATL

ρ2λ2LTA LT(ρ2λ2I − A−TA−1)L

]

>

[
R D

0 I

]T [
ρ2S G

GT −T

] [
R D

0 I

]
.

(4.5)

(Note that, using Schur complements, it is possible to rewrite the above inequality in
such a way that the computation ofA−1 is not required.)

When� = Rp×q , our condition is also necessary, and can be expressed as: there
existsτ � 0 such that[

ρ2λ2ATA ρ2λ2ATL

ρ2λ2LTA LT(ρ2λ2I − A−TA−1)L

]

>

[
R D

0 I

]T [
ρ2τI 0

0 −τI

] [
R D

0 I

]
.

(4.6)

To find the maximal inversion error in the unstructured case, it suffices to do a line
search over the parameterτ over the range[τlb ∞], where

τlb = ‖L̃(I − ρ2D̃TD̃)−1/2‖2.

For each value ofτ in the interval[τlb ∞], the corresponding minimal value ofλ is
given by the convex function

λ(τ)2 = τλmax

(
R̃TK(τ)R̃

)
,

whereK(τ) = I + ρ2τD̃
(
τ(I − ρ2D̃TD̃) − L̃TL̃

)
D̃T.

(4.7)

We summarize the result as follows.

Theorem 4.2. The maximal error bound is bounded above by

λ̄(A, ρ) = inf λ subject to (4.5) and(3.2).

When� = Rp×q, the bound is exact, and can be expressed as the smallest value of
the convex functionλ(τ) given in(4.7), over the interval[‖L̃(I−ρ2D̃TD̃)−1/2‖2 ∞].

5. Structured condition number

5.1. Upper bound

For every� such that the LFR (1.2) is well-posed, we have

A(�) − A−1 = ρL̃�̃(I − ρD̃�̃)−1R̃,

where�̃ = �/ρ, andL̃, R̃, D̃ are defined in (3.4). The above shows that
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κ(A,�) = lim sup
ρ→0

1

ρ
max
�∈�ρ

‖A(�)−1 − A−1‖ = max
�̃∈�1

‖L̃�̃R̃‖.

Redoing the derivation made in Section 4.2, withρ = 1 andD̃ = 0, we obtain that
κ is an upper bound on the structured condition number if there exist(S, T ,G) such
that

(S, T ,G) ∈ B(�), S > 0, T > 0,[
κ2I 0
0 0

]
�

[
0
L̃T

] [
0
L̃T

]T

+
[
R̃ 0
0 I

]T [
S G

GT −T

] [
R̃ 0
0 I

]
.

(5.1)

The above condition can be written
(S, T ,G) ∈ B(�), S > 0, T > 0,[
κ2ATA − RTSR RTGT

GR T − LTA−TA−1L

]
� 0.

(5.2)

In the unstructured case (� = Rp×q ), our condition is also necessary, and is equiv-
alent to the existence of a scalarτ such that

κ2ATA � τRTR, τI � LTA−TA−1L.

It is easy to show that the smallest value ofκ2 is obtained forτopt = ‖A−1L‖2, and
is equal to‖RA−1‖2τopt.

Theorem 5.1. The structured condition number is bounded above byκ̄(A,�), where

κ̄(A,�) = inf κ2 subject toS > 0, T > 0, and(5.2)

When� = Rp×q, the bound is exact, and writes

κ̄(A,�) = ‖A−1L‖ · ‖RA−1‖. (5.3)

In the additive case (L = R = I , � = Rp×q ), we recover the value of the absolute
condition number, obtained from the classical result (1.1), namely,‖A−1‖2.

6. Approximate inverses

In this section, we again assume thatρ < ρ inv(A,�). Let X ∈ Rn×n. Applying

Lemma 4.1, withM(�) = A−1(�) − X andW = diag(I,−λ2ρ2I ), we obtain that
the bound

‖A(�)−1 − X‖ < λρ

holds for every� ∈ �ρ if there exists a triple(S, T ,G) ∈ B(�) such thatS > 0,
T > 0, and[

ρ2λ2I 0
0 0

]
>

[
(A−1 − X)T

L̃T

] [
(A−1 − X)T

L̃T

]T
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+
[
R̃ D̃

0 I

]T [
ρ2S G

GT −T

] [
R̃ D̃

0 I

]
.

The above condition can be written, using Schur complements, as
 %̃

A−T − XT

L̃T

A−1 − X L̃ I


 > 0,

where

�̃ =
[
ρ2λ2I 0

0 0

]
−

[
R̃ D̃

0 I

]T [
ρ2S G

GT −T

] [
R̃ D̃

0 I

]
.

We now invoke the following lemma.

Lemma 6.1 (Elimination).LetA11 = AT
11, A12, A22 = AT

22, A23, A33 = AT
33 be real

matrices of appropriate size. There exists a matrix Y of appropriate size, such that
A11 A12 Y

AT
12 A22 A23

Y AT
23 A33


 > 0 (6.1)

if and only if[
A11 A12

AT
12 A22

]
> 0, and

[
A22 A23

AT
23 A33

]
> 0. (6.2)

If condition(6.2)holds, the set of Y’s that satisfy(6.1) is parametrized by

Y = A12A
−1
22 A23 + (A33 − AT

23A
−1
22 A23)

1/2Z(A11 − AT
12A

−1
22 A12)

1/2,

‖Z‖ < 1.

Proof . See Appendix D. �

Apply the elimination lemma to get an equivalent condition, namely (4.4) and
�̃ > 0, that is,

0 > L̃TL̃ +
[
D̃

I

]T [
ρ2S G

GT −T

] [
D̃

I

]
,

and [
ρ2λ2I 0

0 0

]
>

[
R̃ D̃

0 I

]T [
ρ2S G

GT −T

] [
R̃ D̃

0 I

]
.

The above condition can be written

ρ2λ2
[
AT

LT

] [
AT

LT

]T

>

[
R D

0 I

]T [
ρ2S G

GT −T

] [
R D

0 I

]
and(4.4). (6.3)

(The last inequality in the above implies that the LFR ofA(�)−1 is well-posed over
�ρ .) If S,G, T satisfy the above inequalities strictly, then a feasibleX is given by
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X = A−1 + A−1L(ρ2D̃TSD̃ + D̃TG + GTD̃ − S)−1

×(ρ2D̃TS + GT)RA−1.
(6.4)

In the unstructured case (� = Rp×q ), our condition is also necessary. The variables
S, T are then proportional toτIp and τIq , respectively, whereτ is a scalar. The
approximate inverse, computed by specializing the expression above, turns out to be
independent of the optimization variableτ :

X = A−1 + ρ2A−1L(ρ2D̃TD̃ − I )−1D̃TRA−1,

whereD̃ = D − RA−1L.
(6.5)

(We stress that the above analytic expression can be computed without any optimi-
zation.) In fact, it is easy to compute the expression for the optimal values ofτ and
λ in the unstructured case:

τopt = ‖L̃(I − ρ2D̃T D̃)−1/2‖2,

λopt = ‖L̃(I − ρ2D̃T D̃)−1/2‖ · ‖(I − ρ2D̃D̃T )−1/2R̃‖.
Whenρ = 0, we recover—as expected—the expressions for the structured condition
number (5.3).

Theorem 6.2. A matrix X that minimizes the upper bound on the maximum error
with respect to inversion is obtained by solving the SDP(in variablesλ2, S,G, T

and X):
minimizeλ subject to(6.3), (S, T ,G) ∈ B(�), S > 0, T > 0.

In the unstructured case(� = Rp×q), the approximate inverse is given by the ana-
lytic expression(6.5).

7. The additive case

Assume that the perturbation is additive, that is, the pertubed matrixA is of the
form A(�) = A + �, where� ∈ Rn×n satisfies‖�‖ � ρ, but is otherwise arbitrary.
As said in Section 2, this kind of perturbation structure is a special case of the above,
with L = In, R = In, D = 0. We will recover classical results in this case.

Introduce the SVD ofA: A = U�V T, where� = diag(σ1, . . . , σn), andσ1 �
· · · � σn > 0.

7.1. Invertibility radius

By application of Corollary 3.2, the invertibility radius is equal toρ = ‖A−1‖−1

= σn, whereσn is the smallest singular value ofA. This is consistent with the fact
thatA + � is always well-posed, and invertible iffρ < σn.
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7.2. Maximal inversion error

We assumeρ < σn. In the additive perturbation case, the linear matrix inequality
(4.6) writes[

λ2ATA − τρ2I λ2AT

λ2A (λ2 + τ)I − A−TA−1

]
� 0, τ � 0,

or, equivalently,

τ � 0,

[
λ2σ 2

i − τρ2 λ2σi

λ2σi λ2 + τ − σ−2
i

]
� 0, i = 1, . . . , n. (7.1)

Condition (7.1) implies thatλ2 + τ − σ−2
i > 0 (otherwise,λσi = 0). We obtain that

condition (7.1) is equivalent to

(λ2σ 2
i − τρ2)(λ2 + τ − σ−2

i ) � λ4σ 2
i ,

τ � 0, λ2 + τ − σ 2
i > 0, i = 1, . . . , n.

The first inequality is equivalent to

λ2((σ 2
i − ρ2)τ − 1) � τρ2(τ − σ 2

i ), i = 1, . . . , n.

Sinceτ(σ 2
i − ρ2) − 1 = 0 for somei would implyλ = ∞ (which is ruled out by the

invertibility of A + � whenever� ∈ �ρ), we finally obtain that the optimal value of
λ satisfies

λ2 = max
τ�0

max
1�i�n

1

σ 2
i

τ (σ 2
i τ − 1)

(σ 2
i − ρ2)τ − 1

.

It is straightforward to show that the optimal value ofτ is

τ = 1

σn(σn − ρ)
,

and the corresponding optimal value ofλ is

λ(A,Rp×q, ρ) = 1

σn(σn − ρ)
. (7.2)

7.3. Link with the classical condition number

In the limit whenρ → 0, we recover the classical absolute error bound:

lim sup
ρ→0

λ(A,Rp×q, ρ) = 1

σ 2
n

= ‖A−1‖2.

We note that theabsolutecondition number, derived from the bound (1.1), is‖A−1‖2.
Thus, we have recovered the classical condition number in this case.
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7.4. Approximate inverse

In the additive case, we obtain a unique approximate inverse, given by

X(ρ) = (ATA − ρ2I )−1AT,

for which the maximal inversion error (as defined in (1.4)) is

1

(σ 2
n − ρ2)

.

Comparing the above expression with that of the maximal inversion error (atA−1), as
given in (7.2), we conclude that choosingX(ρ) instead ofA−1 improves the maximal
error bound by a relative amount ofρ/(σn + ρ). This improvement increases when
σn decreases (that is, asA becomes singular), and also whenρ increases.

The approximate inverse above comes up in the total least squares (TLS) problem.
Precisely, the solution of the TLS problem

minimize‖[�A �b]‖ subject to(A + �A)x = b + �b,

whereb ∈ Rn is given, is (except in degenerate cases):

xTLS = (ATA − ρ2
TLS)

−1ATb = X(ρTLS)b,

whereρTLS = σmin([A b]).
The solution of the standard least squares (LS) problem, minx ‖Ax − b‖, in-

volves the classical inverse:xLS = A−1b. The solution to the TLS problem isxTLS =
X(ρTLS)b, whereX(ρTLS) is the approximate inverse ofA. The TLS method amounts
to first compute the smallest perturbation level necessary to make the linear system
Ax = b cosistent,ρTLS. Then, the TLS solution is computed via the approximate
inverse (with levelρTLS), while the LS solution uses the standard inverse. This is
coherent with the observation that “the TLS solution is more optimal than the LS
one from a statiscal point of view” [1] when the matrixA is noisy. Indeed, the TLS
solution works with an inverse matrix that best approximates the possible values of
(A + �A)−1, over the smallest perturbation range making the system consistent.

8. Extensions

Our approach can be generalized to a number of related problems. Possible ex-
tensions are as follows.

8.1. Componentwise error bounds

In some applications, one may be interested in componentwise error bounds, in-
stead of global (norm) bounds on the inversion error. We define the inversion error
matrix�(A,�, ρ) = (λij (A,�, ρ))1�i,j�n, where, for everyi, j (1 � i, j � n),
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λij (A,�, ρ) = 1

ρ
max

{∣∣∣(A(�)−1)ij − (A−1)ij

∣∣∣ : � ∈ �ρ

}
.

(In the above definition, the notation(M−1)ij stands for the(i, j) element ofM−1.)
We may define similarly a componentwise condition matrix. Finally, we may define
an approximate inverse, as a matrixX which minimizes, e.g., thel1 norm on the
matrix whosei, j element is

1

ρ
max

{∣∣∣(A(�)−1)ij − Xij

∣∣∣ : � ∈ �ρ

}
.

(Note that the above matrix can be used as an approximation in interval arithmetic
computations.)

It is straightforward to extend the previous approach to the above problem, once
it is noted that an LFR of the matrix function(A(�)−1)ij is given by

(A(�)−1)ij = eT
i A

−1ej + eT
i L̃�(I − D̃�)−1R̃ej ,

whereL̃, R̃, D̃ are given in (3.5).

8.2. Adding constraints on inverse and perturbation

Another possible extension is to add structure constraints on the approximate in-
verse if it is a priori known. Indeed, it may be judicious to impose additional (linear)
constraints on the matrixX in the semidefinite program (6.4). For example, if the
nominal matrixA is symmetric, we might want the approximate inverse to be sym-
metric as well. (It turns out that if the perturbed matrixA(�) is always symmetric,
then so is the approximate inverse defined in (6.4). Therefore adding such linear con-
straints only makes sense when the perturbation changes the structure of the nominal
matrixA.)

Another extension is to adapt the same methods to other kinds of bounds on the
perturbation matrix�, such as� + �T � 0, instead of the norm bound‖�‖ � ρ.

9. Example: the Vandermonde case

The following numerical experiment was performed using the SDP codeSP [26]
and a preprocessor calledlmitool [8].

We consider the problem of inverting a matrixA(a) with Vandermonde structure,
as defined in (2.6). The nominal value of the vectora is chosen to be

a = [1 1.2 2.5 3.1].
The perturbed matrixA(a + δ) can be expressed with the LFR (1.2), whereA =

A(a), andL,R,D and � given in Section 2.4. This LFR is always well-posed:
det(I − D�) /= 0 for every diagonal�, sinceD is stricly upper triangular. For Van-
dermonde matrices, the invertibility radius is easy to compute, and is given by(1/2)
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Fig. 1. Comparison of unstructured maximal inversion error (top curve) and optimized unstructured max-
imal inversion error (curve below top), with their structured counterparts (next-to-bottom and bottom
curves, respectively), as functions of the perturbation levelρ. The right and left vertical lines correspond
to the unstructured and structured invertibility radiuses, respectively.

mini /=j |ai − aj |. We have computed a lower bound on this exact value by finding
the largestρ such that condition (3.6) is feasible. Our estimate is 0.0995, whereas the
exact value is 0.1. We note that if we neglect the structure information, we obtain the
(exact value of) the unstructured invertibility radius, which is considerably smaller
than the structured counterpart: 0.0026. (Our results are hard to compare with a
purely classical analysis, where the perturbation size is measured in terms of additive
errors in the matrixA; our analysis is based on errors described by the perturbation
matrix� only.)

In Fig.1, we show the maximal inversion error as a function of the perturbation
levelρ. In order to illustrate the importance of structure in the inversion problem, we
show two pairs of curves. The top curves unstructured maximal inversion error and to
the optimized unstructured maximal inversion error, respectively. The bottom curves
refer to the structured couterpart. The plot also shows two vertical lines. The right
line corresponds to the unstructured invertibility radius, the left one to its structured
counterpart.

The plot shows clearly that neglecting structure leads to the conclusion that the
Vandermonde matrix at hand is very ill-conditioned (note the logarithmic scale). The
structured analysis is more consistent with the actual conditioning of the system,
which much better than its unstructured counterpart. Another interesting point to
observe is the improvement brought by using approximate inverses instead of the
classical inverse; the improvement grows withρ. Thus, using an approximate inverse
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instead of the classical one makes more and more sense as the perturbation level
grows.

10. Concluding remarks

In this paper we have proposed an approach to rigorously measure, and reduce the
effect, of possibly large, structured perturbations in the computation of an inverse
matrix. In a future paper we will investigate a similar approach for the solution of a
general structured linear system.
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Appendix A. Invariance with respect to LFR model

In this section, we show that the sufficient conditions obtained in this paper are, in
some sense, independent of the LFR model used to describe the perturbation struc-
ture.

First, note that our results are based on an LFR of a function taking values in the
set of symmetric matricesF(�) having an LFR such as

F(�) = F + L�(I − D�)−1R + (L�(I − D�)−1R)T. (A.1)

(For example, the condition‖A(�)−1 − X‖ � λ can be writtenF(�) � 0 for appro-
priateF.)

Now, consider a function taking values in the set of symmetric matrices having
an LFR such as (A.1). This function can be written in a more symmetric form

F(�) = F + L̃�̃(I − D�̃)−1L̃T, (A.2)

where

L̃ = [
L RT

]
, D̃ =

[
0 DT

D 0

]
, �̃ =

[
0 �

�T 0

]
.

It is easy to check that, if an invertible matrixZ satisfies the relationZ�̃ZT = �̃ for
every� ∈ �, then

F(�) = F + (L̃Z)�̃(I − (ZTD̃Z)�̃)−1(L̃Z)T.

In other words, the “scaled” triple(F, (L̃Z), (ZTD̃Z)) can be used to representF
instead ofF, L̃, D̃ in (A.2).

A valid scaling matrixZ can be constructed as follows. Let(S, T ,G) ∈ B(�),
and define



190 L. El Ghaoui / Linear Algebra and its Applications 343–344 (2002) 171–193

Z =
[
T −1/2 0

0 S1/2

] [
I G

0 I

]
.

It turns out that such anZ satisfies the relationZ�̃ZT = �̃ for every� ∈ �. It turns
out that the conditions we obtained (e.g. , in Lemma 4.1) amount to a search over
the scaling matrixZ. In this sense, our conditions are independent of the LFR used
to represent the perturbation structure.

Appendix B. Proof of Lemma 3.1

We first recall a well-known lemma. A proof can be found e.g. in [4, p. 24]. This
lemma is widely used, e.g. in control theory, and in connection with trust region
methods in optimization [25].

Lemma B.1 (S-procedure).Let F0, F1 be quadratic functions of the variable
ξ ∈ Rm:

Fi(ξ)
�= ξTTiξ + 2uT

i ξ + vi, i = 0, 1,

whereTi = T T
i . The following condition onF0, F1:

F0(ξ) � 0 for all ξ such thatF1(ξ) � 0

holds if

there existτ � 0 such that

[
T0 u0

uT
0 v0

]
� τ

[
T1 u1

uT
1 v1

]
.

The converse holds, provided that there is someξ0 such thatF1(ξ0) > 0.

We will also use the fact that if a triple(S, T ,G) belongs toB(�), with S > 0
andT > 0, then for everyξ, ζ such thatξ = �ζ for some� ∈ �, ‖�‖ � ρ, we have
ρ2ζTT ζ � ξTSξ andζTGξ = 0. The latter can be written compactly as[

ζ

ξ

]T [
ρ2S G

GT −T

] [
ζ

ξ

]
� 0. (B.1)

The above outer approximation is exact in the unstructured case (� = Rξ×q ).
We proceed to prove Lemma 3.1. Note that det(I − �D) /= 0 for every� ∈ �,

‖�‖ � ρ, if and only if ξ = 0 wheneverζ = Dξ , ξ = �ζ , � ∈ �, ‖�‖ � ρ. This
property is equivalent to

‖ξ‖2 � 0 wheneverξ = �ζ , � ∈ �, ‖�‖ � ρ, and ζ = Dξ.

The above is true if‖ξ‖2 � 0 whenever (B.1). We now apply theS-procedure above,
with
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F0(ξ) = −‖ξ‖2, F1(ξ) =
[
Dξ

ξ

] [
ρ2T G

GT −S

] [
Dξ

ξ

]
.

We obtain a sufficient condition for well-posedness: there exists a scalarτ � 0 such
that

for everyξ, F0(ξ) � τF1(ξ).

We absorb the scalar in the matricesS,G, T and obtain that (3.2) is a sufficient
condition for well-posedness.

To check that condition (3.2) is also necessary in the unstructured case� = Rp×q ,
it suffices to recall the structure of the setB(�) in this case (given in (2.2)). Condition
(3.2) is equivalent toρ2DTD < I , which is indeed equivalent to the invertibility of
I − D� for every�, ‖�‖ � ρ.

Appendix C. Proof of Lemma 4.1

To prove Lemma 4.1, assume the LFR ofM is well-posed over�ρ . Constraint
(4.1) holds for every� ∈ �ρ if and only if[

u

ξ

]T [
M L

I 0

]T

W

[
M L

I 0

] [
u

ξ

]
� 0

for everyu, ξ such thatξ = �(Ru + Dξ) for some� ∈ �, ‖�‖ � ρ. As seen in Ap-
pendix B, the latter condition implies that for every every triple(S, T ,G) ∈ B(�),
we have[

u

ξ

]T [
R D

0 I

]T [
ρ2S G

GT −T

] [
R D

0 I

] [
u

ξ

]
� 0.

The conclusions of the lemma follow by a straightforward application of theS-
procedure lemma. In the unstructured case, we recover a necessary and sufficient
condition, as in Appendix B.

Appendix D. Proof of Lemma 6.1

The condition is obviously necessary. Now if (6.2) holds, thenA22 is invertible.
Using Schur complements, we rewrite (6.1) as[

A11 Y

Y A33

]
−

[
A12

AT
23

]
A−1

22

[
AT

12 A23
]
> 0,

or, equivalently,[
Ã11 Y − Y0

(Y − Y0)
T Ã33

]
> 0, (D.1)
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whereY0 = A12A
−1
22 A23, Ã11 = A11 − A12A

−1
22 AT

12, Ã33 = A33 − AT
23A

−1
22 A23. (We

note thatÃ11 andÃ33 are both invertible when (6.2) holds.) To conclude, it suffices
to introduce the variableZ = Ã

−1/2
11 (Y − Y0)Ã

−1/2
33 , and express (D.1) equivalently

as‖Z‖ < 1.
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