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Abstract

The classical condition number is a very rough measure of the effect of perturbations on
the inverse of a square matrix. First, it assumes that the perturbation is infinitesimally small.
Second, it does not take into account the perturbation structure (e.g., Vandermonde). Similarly,
the classical notion of the inverse of a matrix neglects the possibility of large, structured
perturbations. We define a new quantity, the structured maximal inversion error, that takes
into account both structure and non-necessarily small perturbation size. When the perturba-
tion is infinitesimal, we obtain a “structured condition number”. We introduce the notion of
approximate inverse, as a matrix that best approximates the inverse of a matrix with structured
perturbations, when the perturbation varies in a given range.

For a wide class of perturbation structures, we show how to use (convex) semidefinite
programming to compute bounds on the structured maximal inversion error and structured
condition number, and compute an approximate inverse. The results are exact when the pertur-
bation is “unstructured”—we then obtain an analytic expression for the approximate inverse.
When the perturbation is unstructured and additive, we recover the classical condition nhum-
ber; the approximate inverse is the operator related to the Total Least Squares (orthogonal
regression) problem. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Structured matrix; Condition number; Linear fractional representation; Semidefinite pro-
gramming; Vandermonde system; Total least squares

Notation
For a matrixX, || X| denotes the largest singular value Xfis square, X > 0
(resp.X > 0) meansX is symmetric, and positive semidefinite (resp. definite). For
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a vectorx, max |x;| is denoted byl|x| . The notation/, (resp. Q,x,) denotes the

p X pidentity (resp.,p x g zero) matrix; sometimes the subscript is omitted when it
can be inferred from context. To a given linear 4et R?*7, we associate the linear
subspacez(4), defined by

B(A) ={(S,T,G)|SA=AT, GA = —ATG' for every4 € A}. (0.1)

1. Introduction

1.1. Motivations

Let A € R*™™", detA # 0. We consider the problem of measuring, and reducing,
the effect of errors when computing the inversé\of

When the error o\, 44, is infinitesimally small, and otherwise arbitrary, a clas-
sical result (see e.g. , [6]) states that

A+ 44141 AA
(A + )_1 I gK(A)II |I7
A= Al

wherex (A) = ||A| - |A~L||. Thus, the classical condition numbetA) is a mea-
sure of (relative) errors in the inverse Afwhen the latter is perturbed by an arbi-
traryl, igfinitesimally small matrix. (Note that the “absolute” condition number is then
1A=Y)2)

The classical condition number is a very rough measure of the effect of errors
when invertingA. First, the condition number above assumes that each coefficient
in A is independently perturbed, which is often unrealistic. For instanc& hids
a Toeplitz or Vandermonde structure, the perturbation matrxinherits the same
structure. Therefore, the “structured condition number” is expected to be less than
k(A) [13]. Second, the error bound (1.1) is only valid for (infinitesimally) small
perturbations.

The classical definition of the inverse of a matrix also neglects the possibility of
large perturbations. Consider the scalar equadios= 1, wherea is unknown-but-
bounded, saya € # =[a — p a + p], wherep (0 < p < |a|) is given. The possi-
ble values of the solution lie in the interval = [(a — p)~1  (a + p)~1]. Without
more information about the “distribution” @ in the interval.#, the “best” value of
the inverse is nat ! (the classical inverse). A more accurate value iscéaterof
the interval 7, that is,a/(a? — p?).

Perturbation structure is also neglected in the classical definition of a (matrix)
inverse. Consider again a scalar equation= 1, wherea = ¢, and the “Cholesky
factor” ¢ is unknown-but-bounded (sag,c .# =[c — p ¢+ p]). As before, we
may define an “approximate inverse” as the center of the set of possible values of
¢2, which is (a 4+ p?)/(a — p?)?. Note that this value is in general different from
its “unstructured” counterpart.

(1.1)
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1.2. Framework

The above remarks call for a precise study of the effect of non-necessarily small,
possibly nonlinear, structured perturbations, on the inverge &br this we intro-
duce a very general model for the perturbation structure. We assume that the pertur-
bation is ap x ¢ matrix 4 that is restricted to a given linear subspatg R”*9.
We then assume that the perturbed valué o&in be written in the “linear-fractional
representation” (LFR)

A(d)=A+ LA — DA IR, (1.2)

whereA is the (square, invertible) “nominal” value, aiid R, D are given matrices

of appropriate size (the above expression is not always well defined; we return to this
issue soon). The norm used to measure the perturbation size is the largest singular
value norm|| 4]|. For a givernp > 0, we define th@erturbationset by

A, ={4ed [|4] < p}.

The above model seems very specialized, but it can be used for a very wide variety
of perturbation structures (see Section 2). In particular, our framework includes the
case when parameters perturb each coefficient of the data matrices linearly, and in
addition, the parameters are bounded componentwise.

Our subject is the study of the following notions.

The invertibility radius denotedo™ (A, 4), is the largest value o such that
A(4) is well-posed (in the sense that det- DA) #+ 0) and invertible for every
Aded,. _

ForO< p < p'™ (A, 4), we define thestructured maximal inversion erras

WAL A p) =+ max{nA(A)—1 —AY 4e Ap} . (1.3)
0

We define thestructured absolute condition numbley

kK(A, A) = limsupi(A, 4, p).
p—0
Finally, we say thaX is anapproximate inverse ovet, for the structured matriR
if it minimizes themaximal inversion error at Xdefined as

1
AA A, p, X) = = mAax{nA(A)*l —X||: de Ap}. (1.4)
0

The approximate inverse is defined as the center of a ball that contains the
possible values of the inverge(4)~1, when 4 varies over the perturbation sdf,.
In this sense, the approximate inverse generalizes the scalar case mentioned in
Section 1.1.

The problems addressed in this paper are in general NP-complete. Our purpose is
to compute bounds for these problems, sg&mnidefinite programmingA (general-
ized) semidefinite program (SDP) is a problem of the form



174 L. El Ghaoui / Linear Algebra and its Applications 343—-344 (2002) 171-193
minimizeA subjecttorB(x) — A(x) >0, B(x) >0, C(x) >0, (1.5)

where A(-), B(-) and C(-) are affine functions taking values in the space of sym-
metric matrices, and € R™ is the variable. SDPs are (quasi-) convex optimization
problems and can be solved in polynomial-time with e.g. , primal—-dual interior-point
methods [3,18,19,27]. Our approach thus leads to polynomial-time algorithms for
computing bounds for our problems. In some cases, we obtain analytic expressions
involving no iterative algorithms.

In this paper, we compute quantities associated to the matrix-valued furction
via the LFR (1.2). Thus, we make no distinction between the matrix fundion
and its LFR (1.2), although in principle different LFRs of the same matrix-valued
function A might give different numbers. It turns out, however, that the quantities
we compute are independent, in some sense, of the LFR chosen to déscvilee
make this sense precise in Appendix A.

1.3. Previous work

A complete bibliography on structured perturbations in linear algebra is clearly
out of scope here. Many chapters of the excellent book by Higham [14] are rele-
vant, especially the parts on error bounds for linear systems (pp. 143-145), condi-
tion number estimation (Chapter 14) and automatic error analysis (Chapter 24). The
present paper is also related to interval arithmetic computations, which is a large
field of study, since its introduction by Moore [15,16]. We briefly comment on this
connection in Section 8.

The invertibility radius is related to the notion of nonsingularity radius (or dis-
tance to the nearest singular matrix). Most authors concentrated on the case when the
perturbation enters affinely i (4). Even in this case, computing this quantity is NP-
hard, see [17,20]. Demmel [6] and Rump [24] discuss bounds for the nonsingularity
radius in this case. The bound proposed here is a variant of that given by Fan et al.
in [9].

The maximal inversion error is closely related to systems of linear interval equa-
tions (which are covered by LFR models). Exact (NP-hard) bounds on (interval)
solutions to such systems are discussed by Rohn in [21-23]. Alternative norms for
measuring the error can be used, as pointed out by Hagher [12].

The structured condition number problem is addressed by Bartels and Higham [2]
and by Gohberg and Koltracht [11]. The approach is based on the differentiation of a
mapping describing the perturbation structure, which gives information on the effect
of infinitesimal perturbations.

Matrix structures are described by a variety of tools. The displacement-rank
model is one, see [5,10]. The LFR models used here are classical in robust control
(see e.g. [4]). These models are used in the context of least squares problems with
uncertain data by the authors in [7]. The results presented here can be viewed as
extensions of the results proposed in [7].
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2. Examplesof LFR models

Before addressing the problems defined in Section 1, we first illustrate how the
LFR model can be used in a variety of situations.

2.1. Additive perturbations with norm bound

The additive perturbations case is when
A(d) = A+ 4,

and4 is norm-bounded and otherwise arbitrary. This structure, the simplest of all we
consider, corresponds to the matrix defined in (1.2), @ite ,,, R =1,, D =0,
and4 = R"*". The set#(A) associated withl, as defined in (0.1), takes the form

BA)={S,T,G) |S=T=xl,, 6G=0,, T eR}. (2.1)

The additive model will be useful to recover classical results such as the standard
condition number.

2.2. Unstructured perturbations with norm bound

The case whed = RP*1 is referred to as the “unstructured perturbations case”.
This is a generalization of the additive model, that is useful to model perturbations
that occur e.g. in only some columns (or rows)yobut are otherwise arbitrary. The
set%(4) associated withl = R”*?, as defined in (0.1), takes the form

BA)={(S.T.G) |S=11,, T=1l;, G=0, t € R} . (2.2)
Consider for example the case whirtan be partitioned as
A1+ 4
Ald) = [ Ay } ;

where A1 € R A, € R™" are given, the perturbation matrik is norm-
bounded, and otherwise arbitrary. This case happens when we assume additive per-
turbations on some rows & only. We may model this perturbation structure by
(1.2), with

A Iy—r
A =|-—]1, L — N R = I s D = 0
I:A2i| |:Or><(n—r)i| "

2.3. Affine perturbation with componentwise bound

As said before, our framework includes the case when parameters perturb each
coefficient of the data matrices linearly, and in addition, the parameters are
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bounded componentwise. Consider a matrix-valued funct#gi@s that is affine in
5 e R™:

m
AB) 2 Ao+ 8iA;,
i=1

where Ao, ..., A, € R"™*", are given. We can writé(8) in the LFR format, as
follows.
For everyi,i =1,...,m, decompose; asA; = L;R;, with L; e R"i R; €

R *" wherer; = Rank(A;). With
L=[Li...L,, R=[R]...R]]",
we have
A(S) = A+ LAR,

whered = diag(811y,, ..., 8m 1, ). Componentwise bounds of the forif8lo < p
can be written| 4| < p.
In this case, the set we work with is of the form

A = {4 =diag(s1ly,....,8mly,). § € R"}, (2.3)
and the subspac#(4) associated td is

S =T =diag(S1, ..., Sy), Si € Ri*7i,
B(A)={(S,T,G) |G =diag(G1,...,Gn), ) (2.4)
G, e Ri¥i G =—-G'

2.4. Rational perturbations with componentwise bound

Our framework includes the case when parameters perturb each coefficient of the
data matrices in a (polynomial or) rational manner. This is thanks to the representa-
tion lemma given below.

Lemma?2.1. For any rational matrix functiorM : R — R"*, with no singular-
ities at the origin there exist nonnegative integers ..., r,, and matricesM <
R™¢ L e R™N, ReRV*, DeRV*N with N =r1+---+ry, such thatM
has the following linear-fractional representatighFR):
M(8) =M + LA(I — DA)"R,
where 4 = diag(811y,, ..., 8m1r,) .

valid for everys such thatdet/ — D A) + 0.

(2.5)

A linear-fractional representation (LFR) is thus a matrix-based way to describe a
multivariable rational matrix-valued function. It is a generalization, to the multivari-
able case, of the well-known state-space representation of transfer functions.
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In [28], a constructive proof of the above result is given. The proof is based on
a simple idea: first devise LFRs for simple (e.g. linear) functions, then use
combination rules (such as multiplication, addition, etc.), to devise LFRs for arbi-
trary rational functions. Note that such a construction of the LFR can be done in
polynomial-time.

The implication of the lemma for the study of structured condition nhumbers
is far-reaching. If we consider a matrix-valued functiémé) that is (arbitrary)
rational functions of a parameter vectbe R™, it is possible to form the LFR of
the functionA (), as in done in lemma 2.1. In this case, the 4#ete work with is
of the form (2.3) where is the integem-vector appearing in the LFR (2.5). The
subspace#(4) associated toAd is given by (2.4). Finally, note that the bound
4]l < p is equivalent to componentwise bounds on the perturbation vector
8 18lloo < p-

As an example, consider the square Vandermonde matrix

n—1

1 al “ee al
Al@=1|: : , (2.6)
1 an o a:’l_l
wherea = (a1, ..., a,)" € R"is a given vector. We assume tfas subject to com-

ponentwise, unstructured perturbation. That is, the perturbed valadsof + 3,
where ||8]lcc < p. The perturbed matri(a + §) can be expressed with the LFR
(1.2), whereA = A(a), and

Ry
. _2 .
L=diagii[1 a - %], R=|: |, @.7)
R,
D =diag’_,D;, A=diag'_;5il, 1.
and, foreach,i =1,...,n,
o 1 g --- al'-172
Ri _ : . c R(nfl)xn,
: - ai
0 0 1
0 1 a - al_"—?" (2.8)
D =|: a | € RO—Dx(=1)
1
0 0 |
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3. Invertibility radius
3.1. Well-posedness lemma

We are given a linear-fractional function of a matrix variaddle 4
M) =M+ LA — DA LR. (3.1)
We say that the LFR (3.1) is well-posed ovgy if
det(/ — DA4) 0 foreveryde 4,.
Thewell-posedness radiud M is the largesp such that the LFR (3.1) is well-posed
over4,. The following lemma is a variant of a result first given in [9].

Lemma3.1. The LFR ofM is well-posed oved,, if there exists a triplgS, T, G)
such that

S, 7T,G)e #4), S>>0, T=>Q0

1| |67 —s||1|~"
A lower bound on the well-posedness radius can be computed by solvigptiera-
lized) semidefinite programming problem

p"P(M, 4) = supp subject to(3.2). (3.3)
Condition (3.2) is also necessary in the unstructured cade= RP*?), in which
case the well-posedness radiup® (M, 4) = p"P(M, 4) = |D|I~Lif D + 0, and

infinite otherwise.

Proof . See Appendix B. O

3.2. Lower bound on invertibility radius

The matrix functiorM (4) = A(4)~1 admits the LFR

M(4) = A= M+ LA — DA7IR, (3-4)
where
M| L] _[at ] —ath (35)
R|DB| ™ |RA Y| D—RATL] '

We seek a sufficient condition ensuring tatd) is well-posed and invertible for
every 4 € 4,. Invertibility of A(4) for every4 € 4, is guaranteed if the LFR of
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A(4)~1 given above is well-posed ovet,. According to Lemma 3.1, the LFR of
AN Lis well-posed oved , if there existS, G, T such that

(S,T,G) e B(A), $>0, T >0,
D—RAM[p%S G |[D-RATL] _, (3.6)
1 G' -T 1 '

A lower bound on the well-posedness radius of the LFR6f)~1 is given by the
solution of the (generalized) semidefinite programming problem

p"P(A™1, 4) = supp subject to(3.6). (3.7)
Corollary 3.2. A lower bound on the invertibility radius &(4) given in(1.2)is
given by

P™(A, 4) = min (BW"(A, 4, p"P(A T, A)) ,

whereBWP(A, A) is defined in(3.3) andQWp(Afl, A) in (3.7). In the unstructured
case(4 = RP*?), the bound is exactand given by

Binv(A’ RP*7) = min (||D||‘1, D — RA—1L||_1> ;

with the convention thatM || 1 = o if the matrix M is zero.

4. Structured maximal inversion error

In this section, we seek an upper bound on the structured absolute error defined
in (1.3). We assume that@ p < p"™(A, 4).

4.1. Robustness lemma

We seek to guarantee a certain property for a given rational matrix-valued func-
tion, using the LFR and semidefinite programming.

Precisely, we consider again the linear-fractional function of a matrix variable
A € RP*1 given in (3.1). For a given real, symmetric matrix of appropriate ¥ize
we seek a sufficient condition ensuring that the LFR above is well-posed, and in
addition

[MHT 1w [M%')] <0 (4.1)

for every4 € 4, wherep > 0 is given. (HereM (4) is a linear-fractional function
as givenin (3.1).) The motivation for studying this kind of condition is that the upper
boundAi (A, 4, p) < A holds if and only if
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|A(4)"L = X|| <1 foreveryd e 4,,

which in turn can be expressed as (4.1) whh(4) = A(4) 1 — AL and W =
diag(l, —A2p%I).
We have the following result.

Lemma4.l. We havedet(/ — DA) # 0 and(4.1)for every4 € 4, if there exists
atriple (S, T, G) such that(3.2) and

[ Al T Sl o e

The condition is also necessary in the unstructured ¢ase R”*?), in which case
it can be expressed d9| < p~1, and there exists > 0 such that

T T 2
M L M L R D ptl 0 R D
[1 o] W[I o}r[o 1] [ 0 —rl][O 1]<0‘
Proof . See Appendix C. O

The main implication of the above two lemmas is that a sufficient condition for
both well-posedness and bound (4.1) can be checked using (generalized) semidefi-
nite programming.

4.2. Upper bound on maximal inversion error

Applying Lemma 4.1, withv (4) = A=1(4) — A=Y andW = diag(l, —A%p?1),
we obtain that the boungd(A, 4, p) < A holds if there exists a tripl€S, T, G) €
A(A) such thatS > 0, T > 0, and

p22 0] _TONFO0Y [R DY'[s%S GI[R D] (g

0 o |LT||LT o 7| |[G" -Tr]lO0 1] '
The above inequality implies that the LFRAA) ! is well-posed. Indeed, looking
at the lower right corner of the above four-block inequality, we obtain

~=T 2 ~
ST~ D oS G D
0~ 1L L+[l] [GT _T] [1] (4.4)
which implies (3.6).

Further, noting that

R D] _[RA™ D-RAT'L] _[R D],
o 1] [ O 1 |0 1 ’

A L
whereN:[o I]
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and multiplying inequality (4.3) on the left by T and on the right by, we obtain a
condition equivalent to (4.3):

0202AT A p2A2ATL

P2A2LTA LT (p2A21 — A TA YL

R D]'[p2s G1[R D
“lo 1] |6¢" -1|lo 1]
(Note that, using Schur complements, it is possible to rewrite the above inequality in
such a way that the computation 4f 1 is not required.)

When4 = RP>*4, our condition is also necessary, and can be expressed as: there
existst > 0 such that

p2A2ATA p2A2ATL
p22LTA  LT(p2A21 — A TA DL

R D|'[p*I 0 7[R D
“lo 1 0 —zIl|lo 1}
To find the maximal inversion error in the unstructured case, it suffices to do a line
search over the parametepver the rangér, oo], where
wp = [|IL(I — p*DT D) Y?)2.
For each value of in the interval[ 7, oc], the corresponding minimal value bfis
given by the convex function

(4.5)

(4.6)

A(T)2 = TAmax (RTK(r)R) , @
wherek (t) = I + p2tD (t(l — p2D"D) - ZTZ) T, '

We summarize the result as follows.

Theorem 4.2. The maximal error bound is bounded above by
(A, p) =infa subjectto (4.5) and(3.2).

When4 = RP*4, the bound is exactand can be expressed as the smallest value of
the convex functioh(r) given in(4.7), over the interval || L (I — p2 DT D)~1/2|12 o0].

5. Structured condition number
5.1. Upper bound

For every4 such that the LFR (1.2) is well-posed, we have
A — At = pLA(I — pDA)R,
whered = A/p, andL, R, D are defined in (3.4). The above shows that
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. 1 e
K (A, 4) = limsup= max||A(4)~t — A~Y| = max| LAR].
p—0 P 4€d, ZleAl

Redoing the derivation made in Section 4.2, wite= 1 andD = 0, we obtain that
Kk is an upper bound on the structured condition number if there €igt, G) such
that

S, T,G)e #(4), S>>0, T=>Q0Q

R I O N | A

The above condition can be written
(S, T,G) e #(4), S>0, T>0,

GR T—-LTATTATIL
In the unstructured casd (= R?*?), our condition is also necessary, and is equiv-
alent to the existence of a scatasuch that
kK2ATA>tRTR, I >LTA7TA7IL.

It is easy to show that the smallest valuecdfis obtained forr®' = |A~1L|2, and
is equal tof RA 1|27 OPt,

24T 4 _ pT TAT (5.2)
[KAA R'SR R'G ]20.

Theorem 5.1. The structured condition number is bounded above®y 4), where
K (A, 4) = infx? subjecttoS >0, 7 >0, and(5.2)

Whend = RP*4, the bound is exactnd writes
R(A, 4) = |ATTL] - [RATH. (5.3)

In the additive casel(= R = I, 4 = R”*?), we recover the value of the absolute
condition number, obtained from the classical result (1.1), narfaly}| 2.

6. Approximate inverses

In this section, we again assume thak B"“’(A, A4). Let X € R™™". Applying
Lemma 4.1, withM (4) = A=1(4) — X andW = diag(I, —A%p?I), we obtain that
the bound

IA™ = X < 2p

holds for every4 € 4, if there exists a tripleS, T, G) € #(4) such thatS > 0,
T > 0, and

0221 0] [A =T t-x)T]"
o o | 7 LT
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L[k D]'[e?s ][k D
o 1] |G" -T||0 1]
The above condition can be written, using Schur complements, as

AT —xT7]
LT > 0,

5_[r2 O] _[R D)'[e?S G[R D
~L o o |[o 1] |G -T]|0 1]

We now invoke the following lemma.

Lemma6.1 (Elimination).Let A1y = AJ;, A12, Azo = Al,, A3, Azz = Al;bereal
matrices of appropriate size. There exists a matrix Y of appropriate sidh that

[A11 A Y
A-{Z Ao Ax3| >0 (6.1)
Y Al Ass
if and only if
_A1;|_ A12 Axp A3
> 0, and > 0. 6.2
Al Azz} [f@s A33} ©2)

If condition(6.2) holds the set of ¥ that satisfy(6.1)is parametrized by

Y = A1245) Aoz + (Agz — AJaAST A29) Y2 Z(A11 — AL,A5y A1) Y2,
1Z] < 1.

Proof . See Appendix D. O

_ Apply the elimination lemma to get an equivalent condition, namely (4.4) and
O > 0, that is,

o ~
ST~ D oS G D
- I [ 5[0

p521 0] _[R P12 G1[R D
0 0 o 1| |G" -T||l0 I}
The above condition can be written
AT1TAT]" [R D1'[p2s GT[R D

2,2 Y

P2 H M >[O 1] [GT _T} [O 1} and(4.4).  (6.3)
(The last inequality in the above implies that the LFRAg#1) 1 is well-posed over
4,.) If S, G, T satisfy the above inequalities strictly, then a feaskle given by

and
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X=A14A1L(?D"SD+D'"G+G"™D—5)1 6.4
x(p2DTS + GTHYRAL. (6.4)
In the unstructured casd (= R”*?), our condition is also necessary. The variables

S, T are then proportional to, andz1,, respectively, where is a scalar. The
approximate inverse, computed by specializing the expression above, turns out to be
independent of the optimization varialle

X=A14p2A L p2D"D - H"IDTRAL,

- 6.5
whereD = D — RA™1L. (6.5)

(We stress that the above analytic expression can be computed without any optimi-
zation.) In fact, it is easy to compute the expression for the optimal valuesioé
A in the unstructured case:

P = ||L( - p?DT D) ?|?,
AP = ||L(I — p?DT D)~Y2| - ||(I — p>DDT)~V/2R||.

Whenp = 0, we recover—as expected—the expressions for the structured condition
number (5.3).

Theorem 6.2. A matrix X that minimizes the upper bound on the maximum error
with respect to inversion is obtained by solving the S@Pvariablesi?, S, G, T
and X:

minimizeX subjectto(6.3), (S, T, G) € #(4), S>0, T>0.

In the unstructured cased = R?*?), the approximate inverse is given by the ana-
lytic expressior{6.5).

7. Theadditive case

Assume that the perturbation is additive, that is, the pertubed maigxf the
form A(4) = A + 4, whered € R"*" satisfied|4|| < p, but is otherwise arbitrary.
As said in Section 2, this kind of perturbation structure is a special case of the above,
with L = I, R = I,,, D = 0. We will recover classical results in this case.
Introduce the SVD ofA: A = UXV', whereX = diag(o, ..., 0,), andoy >
cee 20, > 0.

7.1. Invertibility radius
By application of Corollary 3.2, the invertibility radius is equalde= ||A~1|~2

= o,, Whereo, is the smallest singular value éf This is consistent with the fact
thatA + 4 is always well-posed, and invertible i#f < o,,.
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7.2. Maximal inversion error

We assume < o,. In the additive perturbation case, the linear matrix inequality
(4.6) writes

AATA — 1021 22AT
> >
[ 224 0240y —ATa2|Z0 720
or, equivalently,
o2 — tpz kzai
>0, ! 2|20, i=1,...,n 7.1
t |: )»205 A2+r—0i2 ! " (7.1)

Condition (7.1) implies that? + 7 — Gi—z > 0 (otherwisejo; = 0). We obtain that
condition (7.1) is equivalent to

2.2 2\(1 2 -2 4_2
A0 —109)(A°+ 1T —0; 7)) = Aaf,
i e

T >0, /\2+r—oi2>0, n.

The first inequality is equivalent to
(02— pHTr -1 =102t —0?), i=1,....n

Sincet(ol.2 — p?) — 1 = 0 for some would implyx = oo (which is ruled out by the
invertibility of A + 4 wheneved € 4,), we finally obtain that the optimal value of
A satisfies

1 tcfr-1

)\2 = max max A TN
20 I<i<sn - of (0F — pHT —1

It is straightforward to show that the optimal valuerois

_ 1
on(on — p) '
and the corresponding optimal valueiois
1
LA, RP p) = ——. (7.2)
0n(on — )

7.3. Link with the classical condition number

In the limit whenp — 0, we recover the classical absolute error bound:

1
limsupi(A, RP*7, p) = = = [|A™ Y%
p—)o Gn
We note that thabsolutecondition number, derived from the bound (1.1)}is1||2.

Thus, we have recovered the classical condition number in this case.
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7.4. Approximate inverse

In the additive case, we obtain a unique approximate inverse, given by

X(p) = (ATA = p?)7 AT,

for which the maximal inversion error (as defined in (1.4)) is
1

(02— p?)’
Comparing the above expression with that of the maximal inversion errar{at as
givenin (7.2), we conclude that choosiigp) instead ofA~* improves the maximal
error bound by a relative amount pf (o, + p). This improvement increases when
o, decreases (that is, &sbecomes singular), and also wheimcreases.

The approximate inverse above comes up in the total least squares (TLS) problem.
Precisely, the solution of the TLS problem

minimize||[[4A 4b]|| subjectto(A + AA)x = b + 4b,
whereb € R" is given, is (except in degenerate cases):
x1Ls = (ATA — pf o) FATh = X (pTLS)D,

wherepris = omin([A b]).

The solution of the standard least squares (LS) problem, fmn — b||, in-
volves the classical inverse:s = A~1b. The solution to the TLS problemis s =
X (p1LS)b, WhereX (p7Ls) is the approximate inverse Af The TLS method amounts
to first compute the smallest perturbation level necessary to make the linear system
Ax = b cosistent,ot s. Then, the TLS solution is computed via the approximate
inverse (with levelpts), while the LS solution uses the standard inverse. This is
coherent with the observation that “the TLS solution is more optimal than the LS
one from a statiscal point of view” [1] when the matixs noisy. Indeed, the TLS
solution works with an inverse matrix that best approximates the possible values of
(A + 4A)~1, over the smallest perturbation range making the system consistent.

8. Extensions

Our approach can be generalized to a number of related problems. Possible ex-
tensions are as follows.

8.1. Componentwise error bounds
In some applications, one may be interested in componentwise error bounds, in-

stead of global (norm) bounds on the inversion error. We define the inversion error
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1
b8, 4, p) = - max{[ Ay — (a7

:AeAp}.

(In the above definition, the notatia®/ ~1);; stands for thei, j) element ofd ~1.)

We may define similarly a componentwise condition matrix. Finally, we may define
an approximate inverse, as a matdxwhich minimizes, e.g., thé norm on the
matrix whose, j element is

%max{‘(A(A)‘l),-j ~ X

:AeAp}.

(Note that the above matrix can be used as an approximation in interval arithmetic
computations.)

It is straightforward to extend the previous approach to the above problem, once
it is noted that an LFR of the matrix functic(A(A)‘l),-j is given by

AN ™Y =A™ e; +¢] LA — DAY Re;,

whereL, R, D are given in (3.5).
8.2. Adding constraints on inverse and perturbation

Another possible extension is to add structure constraints on the approximate in-
verse if it is a priori known. Indeed, it may be judicious to impose additional (linear)
constraints on the matriX in the semidefinite program (6.4). For example, if the
nominal matrixA is symmetric, we might want the approximate inverse to be sym-
metric as well. (It turns out that if the perturbed mat#ix4) is always symmetric,
then so is the approximate inverse defined in (6.4). Therefore adding such linear con-
straints only makes sense when the perturbation changes the structure of the nominal
matrix A.)

Another extension is to adapt the same methods to other kinds of bounds on the
perturbation matrix, such asd + 4" > 0, instead of the norm bourjd| < p.

9. Example: the Vander monde case

The following numerical experiment was performed using the SDP 8Bd26]
and a preprocessor calleditool [8].

We consider the problem of inverting a matAxa) with Vandermonde structure,
as defined in (2.6). The nominal value of the ve@ds chosen to be

a=[1122531].

The perturbed matriA (a + §) can be expressed with the LFR (1.2), whdre=
A(a), and L, R, D and 4 given in Section 2.4. This LFR is always well-posed:
det(/ — DA) + 0 for every diagonal, sinceD is stricly upper triangular. For Van-
dermonde matrices, the invertibility radius is easy to compute, and is givély By
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Fig. 1. Comparison of unstructured maximal inversion error (top curve) and optimized unstructured max-
imal inversion error (curve below top), with their structured counterparts (next-to-bottom and bottom
curves, respectively), as functions of the perturbation lpv@lhe right and left vertical lines correspond

to the unstructured and structured invertibility radiuses, respectively.

min;+; la; — aj|. We have computed a lower bound on this exact value by finding
the largesp such that condition (3.6) is feasible. Our estimate @05, whereas the
exact value is 1. We note that if we neglect the structure information, we obtain the
(exact value of) the unstructured invertibility radius, which is considerably smaller
than the structured counterpart: 0.0026. (Our results are hard to compare with a
purely classical analysis, where the perturbation size is measured in terms of additive
errors in the matri¥d; our analysis is based on errors described by the perturbation
matrix 4 only.)

In Fig.1, we show the maximal inversion error as a function of the perturbation
level p. In order to illustrate the importance of structure in the inversion problem, we
show two pairs of curves. The top curves unstructured maximal inversion error and to
the optimized unstructured maximal inversion error, respectively. The bottom curves
refer to the structured couterpart. The plot also shows two vertical lines. The right
line corresponds to the unstructured invertibility radius, the left one to its structured
counterpart.

The plot shows clearly that neglecting structure leads to the conclusion that the
Vandermonde matrix at hand is very ill-conditioned (note the logarithmic scale). The
structured analysis is more consistent with the actual conditioning of the system,
which much better than its unstructured counterpart. Another interesting point to
observe is the improvement brought by using approximate inverses instead of the
classical inverse; the improvement grows withThus, using an approximate inverse
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instead of the classical one makes more and more sense as the perturbation level
grows.

10. Concluding remarks

In this paper we have proposed an approach to rigorously measure, and reduce the
effect, of possibly large, structured perturbations in the computation of an inverse
matrix. In a future paper we will investigate a similar approach for the solution of a
general structured linear system.
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Appendix A. Invariance with respect to LFR model

In this section, we show that the sufficient conditions obtained in this paper are, in
some sense, independent of the LFR model used to describe the perturbation struc-
ture.

First, note that our results are based on an LFR of a function taking values in the
set of symmetric matricds(4) having an LFR such as

F(4) = F + LA(I — DAY R+ (LA — DA)™IR)T. (A1)

(For example, the conditiojA (4)~! — X|| < A can be writterF(4) > 0 for appro-
priateF.)

Now, consider a function taking values in the set of symmetric matrices having
an LFR such as (A.1). This function can be written in a more symmetric form

F(4) = F+ LA — DAL, (A.2)
where

: T ~ [0 DT - [0 4

L=[L R"], D_[D ol A=, ol

It is easy to check that, if an invertible matibsatisfies the relatiod 42T = A for
every4 € A, then

F(4)=F+ (LZ2)AU — (Z'DZ)AH)~NLZ)".
In other words, the “scaled” tripleF, (LZ), (2T DZ)) can be used to represeft
instead ofF, L, D in (A.2).
A valid scaling matrixZ can be constructed as follows. L&f, T, G) € #(A),
and define
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7 r=¥%2 01 G
L o s¥2||lo 1]
It turns out that such af satisfies the relatiod AZT = A for every 4 € A. It turns
out that the conditions we obtained (e.g. , in Lemma 4.1) amount to a search over

the scaling matriX. In this sense, our conditions are independent of the LFR used
to represent the perturbation structure.

Appendix B. Proof of Lemma 3.1

We first recall a well-known lemma. A proof can be found e.g. in [4, p. 24]. This
lemma is widely used, e.g. in control theory, and in connection with trust region
methods in optimization [25].

Lemma B.1 (<-procedure).Let Fp, F1 be quadratic functions of the variable
& eR™
F(&) 26 TE +2u]€ + v, i=0,1,
whereT; = Tl.T. The following condition orky, Fi:
Fo(¢§) > 0 forall & suchthatF1(¢§) > 0
holds if

) To uo o ou
there existt > 0 such that >1 .
ug vo MI v1

The converse holdgrovided that there is somiig such thatFy (&) > O.

We will also use the fact that if a tripléS, 7, G) belongs to%(4), with S > 0
andT > 0, then for every, ¢ such that = A¢ for somed € 4, || 4] < p, we have
p2cTTe > £7Sg andc TGe = 0. The latter can be written compactly as

HEEEEA|HE G

The above outer approximation is exact in the unstructured easeR® *9).

We proceed to prove Lemma 3.1. Note that(det 4D) #+ 0 for every4 € 4,
4] < p, if and only if ¢ = 0 whenevers = D&, & = Az, 4 € A, || 4| < p. This
property is equivalent to

IE12 <0 whenevet = 4¢, A € 4, |4] < p, and ¢ = DE.

The above is true if£ |2 < 0 whenever (B.1). We now apply thé-procedure above,
with
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2
R =it me =) oT S][F)

We obtain a sufficient condition for well-posedness: there exists a scatdd such
that

for every&, Fo(§) > tF1(8).

We absorb the scalar in the matric€sG, T and obtain that (3.2) is a sufficient
condition for well-posedness.

To check that condition (3.2) is also necessary in the unstructuredicasi” >4,
it suffices to recall the structure of the 9&¢4) in this case (given in (2.2)). Condition
(3.2) is equivalent tp2DTD < I, which is indeed equivalent to the invertibility of
I — DA for every4, || 4] < p.

Appendix C. Proof of Lemma4.1

To prove Lemma 4.1, assume the LFRMfis well-posed oved,. Constraint
(4.1) holds for everyl € 4, if and only if

RN AR

for everyu, &£ such that = A(Ru + D¢) for somed € 4, || 4] < p. As seen in Ap-
pendix B, the latter condition implies that for every every tripte 7, G) € %(A),
we have

AN A | A A

The conclusions of the lemma follow by a straightforward application ofdhe
procedure lemma. In the unstructured case, we recover a necessary and sufficient
condition, as in Appendix B.

Appendix D. Proof of Lemma 6.1

The condition is obviously necessary. Now if (6.2) holds, tHen is invertible.
Using Schur complements, we rewrite (6.1) as

[A11 Y A12
—| ¢ [A2[A] 4x]>0.
| Y Ass Ags

or, equivalently,

A1 Y—Yo]>0

N D.1
(Y —Yo)T  Ass ©-D
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whereYy = A12A2_21A23, A~11 = A11— A12A2_21A-:[2, A~33 = A3z3— A£3A2_21A23. (We
note thatA11 and Az3 are both invertible when (6.2) holds.) To conclude, it suffices
to introduce the variabl& = AIll/z(Y — Yo)Agsl/z, and express (D.1) equivalently
as||Z| < 1.
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