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A Cone Complementarity Linearization Algorithm
for Static Output-Feedback and Related Problems

Laurent El Ghaoui, Francois Oustry, and Mustapha AitRami

Abstract—This paper describes a linear matrix inequality (LMI)-based
algorithm for the static and reduced-order output-feedback synthesis
problems of nth-order linear time-invariant (LTI) systems with n,
(respectively, n,) independent inputs (respectively, outputs). The algo-
rithm is based on a “cone complementarity” formulation of the problem
and is guaranteed to produce a stabilizing controller of orderm <
n — max(n.,n,), Matching a generic stabilizability result of Davison
and Chatterjee [7]. Extensive numerical experiments indicate that the
algorithm finds a controller with order less than or equal to that predicted
by Kimura's generic stabilizability result (i < n—n,—ny,+1). A similar
algorithm can be applied to a variety of control problems, including
robust control synthesis.

Index Terms—Complementarity problem, linear matrix inequality,
reduced-order stabilization, static output feedback.

|I. INTRODUCTION

We consider theeduced-order output-feedba(ROF) stabilization
problem. We are given an integer > 0 and a linear time-invariant
(LTI) system

# = Ax + Bu, y=Cx (2)

wherez € R",u € R"+, andy € R"v, (A, B) is stabilizable,
(C, A) detectable,B,C are full rank, andm < n. We seek to
determine a dynamic output-feedback control law

)-of

@)

where K € R(mtmu)x(miny) js g constant matrix such that

the resulting closed-loop system is stable. When = 0, the
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such problems.) The LMI-based methods include the D-K iteration
method mentioned in [20], the alternating projections method [12], the
projection method of [18], the min—max algorithm [10], the potential
reduction method [6], and th& Y -centering algorithm [14]. This
paper describes yet another LMI-based method for the problem. One
of the strong points of the proposed algorithm is that it is guaranteed
to find a controller with order less than or equabite- max(n., ny)

and seems to consistently improve this number in practice.

The remainder of this paper is organized as follows. Section Il
describes a cone complementarity linearization algorithm. Section I
shows how some robust control synthesis problems are amenable to
the same method. Finally, Section IV provides extensive numerical
results.

Notation: I,, denotes them x m identity matrix; the size is
omitted when it can be determined from conteXt. (respectively,

B, ) denotes the matrix with maximal rank such tH@C, = 0
(respectively B, B = 0). For a real matrixX, || X|| denotes the norm
(largest singular value) of the matriX, and X > 0 (respectively,
X > 0) meansX is symmetric and positive-definite (respectively,
positive semidefinite).

II. AN LMI-B ASED ALGORITHM

A. LMI-Based Formulation
As seen in [8], there exists anth-order state-feedback stabilizing

controller if and only if there exist matrice¥, S, and scalars > 0
such that

B (AX +XA" +248X)Bf <0
CT(A"S +SA+235)CL <0

X [}zo 3

K(X.5) = {I S

corresponding problem is referred to as #tatic output-feedback and Rankk(X,S) < n + m. We first seek to solve the above
(SOF) stabilization problem. Note that the ROF problem is readilyoblem form = 0 and for fixed3 > 0. That is, we seek to obtain
transformed into an SOF problem, using a well-known systean SOF controller such that the closed-loop eigenvalues have a real
augmentation technique (see Section II-D). part that is less than or equal te3.

Despite its apparent simplicity, the ROF problem is still open.
The complexity analysis of the problem is not quite complete Y&t A Cone Complementarity Problem

Andersonet al. have shown in [1] that the problem is decidable. A , . ., .
nice result of Blondel and Tsitsiklis [3] shows that the problem of FOr Solving the problem above, we need to “saturate” the constraint

finding an SOF controller with prespecified bounds on the controli&(X+5) = 0in (3). The idea is to associate to the SOF problem

matrix K is NP-hard. Of course, this does not prove that the SOF
problem is NP-hard, since repriori bounds on the controller matrix
K are imposed. . . . .

A number of numerical procedures have been proposed for solviﬁgen_e exists aﬂ-stak_)ll_lzmg static-output fee_dback controller if and
the problem. A survey was done by Syrmeisal. [22], and recent offly if the global minimum of problem (4) is.

progress has been made for the related problem of pole placem?eggblem.t(_d') cantbe .Ca";.ad a “conel com[tJIeE[nentatr)llty” prﬁggrln
see [25], [19], and the references therein. ), as it is an extension linear complementarity problems ( S)

Among the recent approaches that have been proposed t:gs%'le cone of positive semidefinite matrices; see, e.g., [26], [16], and
' 7].

based on linear matrix inequalities (LMI's) are promising since t . o -
same framework can be used for related problems such as robust® solve such a problem, a linearization method (originally pro-

control (see Section Ill). (The book [21] describes a large humber B?Sed by Frane anq Wolfe and dgscrlbed n [1.6] fgr LCP s)-can be
used. At a given pointXo, So), a linear approximation oTrX S
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min TrX S subject to(3). 4)

i (X, S) = constant+ Tr(So X + X0 5).

The linearization algorithm is conceptually described as follows.
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Algorithm 1: We obtainRankZ = RankR = RankZ > max(n,,n,). From
1) Find a feasible poink,. So. If there are none, exit. Sét= 0. (5), we deduce

2) SetVi = S, Wi = X4, and find X411, Sr+: that solve the X I S
LMI problem Rank ’}H S < 2n — RankZ < 2n — max(n.,ny).

P : minimize Tr(Viy X + W3.S) subject to (3) U
) o L ) ) Remark 2.1: Algorithm 1 is based on the function(X,S) =
3) Ifa stopping criterion is satisfied, exit. Otherwise, ket k+1 v x 5. |t turns out that a whole class of algorithms can be devised
and go to Step 2). with other choices fow. For instance, we may work with the concave
The first step of the algorithm and every Step 2) are simple LMlinction 012(X.Y) = 2T‘1‘(Y1/2XY1/2)1/2 by replacingV, W in
problems. There are many algorithms that are available for thisigorithm 1 by
especially interior-point methods, e.g., [24], [4], and [17]. In the V= X,,W(YI/QYYI/Z)W x-1/2
sequel, we count each Step 2) as one outer iteration to make a - “ “ “ .
distinction with the inner steps required to solve the LMI problems W=vT'=y 2y Xy ) Py
Pr.
The following theorem shows that the algorithm converges.
Theorem 2.1: The sequencs, £ Tr(Xi 1Sk +Ski1Xk), k> 0
is bounded below by2n» and decreasing. Thus, the sequefite)
converges to some valug,, > 2n. Equality holds if and only if

In our experiments, we have found that this modified algorithm
behaves similarly. For details, see [11].

C. System Augmentation

XS = I at the optimum. As stated in the introduction, the ROF problem can be addressed
Proof: Let k > 0. Since Xi_1,Ss_: are feasible, and @S an SOF problem for an augmented system. Define
(Xkt1, Skt+1) are optimal for problen{?;), we have i {A 0 } B [0 B} oo {0 I,,,} ©)
. TTH0 0 | T In 0 CT|C 0
te < Tr(Xp—1Sk+ Se—1Xk) = th—1. ) )
) _ It can be shown that the ROF problem has a solution of ondéf
Now #, is bounded below byn, since and only if the triple( A, B, C') is SOF stabilizable. We may thus use
th = Te(Xpp1 Sk 4+ S Xx) > inf  Tr(VXy + WS) the previous algo_rlthm with the tnpl(ﬂ,B_,C). _ _
K(V,W)>0 It is also possible to apply the algorithm directly to the triple
— QTI'(JYi/QSkX,\l,/Q)1/2 > on. (A, B,C). Wg conjecture that this direct approach yi(_alds the_ same
answer (that is, the same controller order). If the conjecture is true,
The last inequality implies that if,,. = 2n, thenX S = I. O the direct approach is to be preferred, since it is less numerically

The next theorem shows that from the first step of the algorithrdemanding (it involves fewer variables and LMI's of smaller size).
the method finds a controller of order that is less than or equal to
the order predicted by the generic stabilizability results of Davisqy. Controller Reconstruction
and Chatterjee [7].

Theorem 2.2: At every stepk, we have

X I
I S

Most LMI solvers require the boundness for the feasible set. For
this, ana priori large bound on the variables can be imposed, e.g.,
Tr(X +5) < M.

The following theorem can be used as a (heuristic) stopping
Fiterion and provides details on how to construct the controller.
ts proof is in Appendix A.) In this theorem, the parameteris
interpreted as the desired stability degree of the closed-loop system,
andj > « is a parameter needed to guarantee this stability degree
Dy, :maximize2Tr N subject toQ > 0, P > 0, strictly (if « > 0, one may seff = 2«).

7= AT (BEQBL) + (BEQBL)A + QIQ(BEQBL) +V, Theorem 2.3:SupposeX, S satisfy conditions (3) and'r(X +

, , } S) < M. Leta, 0 < o < 3. If there aren — m eigenvalues of
_ T T 4T B Ye T 1 = ’ >~ £
R= A(CLPOL) + (CLPOL)A + 2*3(CLPCL) + Wi X — §7! that are less than or equal to

z=|% R]z0 ror = A= @
: T M|[A + o]

Pre- (respectively, post-) multiplying the first equality constraint ighen there exists amth-order, dynamic output-feedback controller
Dy by B* (respectively,3), we obtain that every feasiblé satisfies gych that every eigenvalue of the closed-loop system has a real part
B”7ZB = B” S, B. that is less than or equal te«. The controller can be constructed

. as follows. Decompos& — S~' as
Since B is full ra_nk_ andS; > 0, we haveB' Sy B > 0 and thus X_S5'—RRT4+E ®)
RankZ > n,. Similarly, RankR > n, for every feasibleR.
Both 7, andD,, are strictly feasible (foDy, set@Q = eI, P =¢I where0 < FE < €I, and R € R"f"’N is_either empty (when
for e small enough, andV = 0). This guarantees the existence ofn = 0) or satisfiesR” R > e..+I. Set(A, B, C) as in (6) and

Rank|: :| < 2n — max(ng, ny).
Thus, the algorithm finds a controller of order that is less than Eél
equal ton — max(n.,n,) at every step.

Proof: Let k& > 0. The dual to problenP;. is (see [24])

optimal primal and dual points. At the optimum, we have (see [24]) . X R
[
X, R I
Z{)&/}-H SI } — 0 5) )
k1 Then, X > 0 and the LMI problem ink’
which implies (A+ BKC)X + X(A+ BEC)" 420X <0 (9)
T T
7 = { I }Z{ I } — {_SkJrl}R[_SkH} . has a solution. Alternatively, the analytic formulas of [13] can be
— Xkt — Xkt 1 1 used to reconstruck’.
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Ill. RoBUST OUTPUT-FEEDBACK CONTROL TABLE |

A similar algorithm can be applied for solving a number of otheP*PERIMENTS WITH RaNDOM A, I, C'. . = G, ny = 4.7y = 3. ALGORITHM 1
ALWAYS FINDS A STATIC CONTROLLER, AS PREDICTED BY KIMURA'S RESULT

control problems. Here is a simple instance. Consider the parameter-

dependent system outer iterations | number of experiments Rate
&= Av+ Byp+ Buu 1 12756 63.78 %
y=Cyx 2 4392 21.96 %
' Y (10) 3 1680 8.40 %
¢ = Cqe + Dguu 4 692 3.46 %
p=A(t)q, ||A]| <1, A diagonal 5 271 1.35 %

where A, B., B,, C4, Cy, and Dy, are constant matrices of 6 110 0.55 %

appropriate size. ThéV x N time-varying matrixA, referred to 714 99 0.50 %

as the perturbation, is bounded and structured (diagonal). total 20000 100 %

We seek a full-order controller of the form (2) such that the closed-
loop system is stable for every admissible variatiom\ofWe use the TABLE 11

approach of quadratic sta_blllty combined with scaling (see, e.g., [5]). EXPERIMENTS WITH AUGMENTED MATRICES A, B, C', WHERE A I8
Theorem 3.1: There exists a controller of the form (2), where 5,y 2, Formep witH RanDOM A, B, C, 1 = 5,0y = 2,0y = 2.

K e RUru)x(n+my) is g constant matrix such that the closed- ALGormHM 1 Atways FINDS A STATIC CONTROLLER, AS PREDICTED BY THE

loop system is stable for every admissible variationqf if there GENERIC STABILIZABILITY (BY A FULL-ORDER CONTROLLER) OF (4, B, C)

exist matricesX, 5, D, T §uch_th?t e outer iterations | number of experiments | Rate
Mt [AX +)‘é ,}LBPDBP }‘% M <0 1 304 304 %
B _

vir[ATS+sA+CiTe, SB] . 2 271 27.1 %
J BES 7V 3 115 11.5 %

X I D I 4 82 82%

{1 s 2% |7 7 20 5 47 47 %

D, T diagonal, DT =1 6 41 4.1 %

whereM = [BI DL, N’ = diag(C, 1. T). 7 15 L5 %
The problem of finding matrice, S, D, T feasible for the above 8 9 0.9 %
constraints can be addressed using a similar approach by applying 9 13 1.3 %
a linearization algorithm to minimize, e.gTrDT, over diagonal 10 5 0.5 %
matricesD, T'. It is also possible to search for reduced-order robust 10 <+ <20 52 52 %
controllers. Simply replac& andS by diag(X, D) anddiag(S,T) 20 < % < 30 36 3.6 %
in Algorithm 1. 30 < x < 37 10 1%
total 1000 100 %

IV. NUMERICAL EXPERIMENTS

For every run, we have chosen (unless otherwise stateed 10°,
a = 0.01, 3 = 2«. We have used the semidefinite programming cod®. ROF
SP[23] and a MATLAB interface toSP, LMITOOL [9]. The SP. |5 Tapie |1, we have sought to stabilize a mass-spring system
parameters for absolute and relative convergence were both setsisting of ¥ unit masses connected by linear springs of unit
10 . . .. spring constant. The input acts on the left mass, and the position
The random tests presented next are based on generic Stabl|lzab8ft¥he right mass is measured. Using Algorithm 1, we have sought a
results given by Kimura [15]. In the sequel, we say thdt B,C') o order stabilizing controller for this system such that the closed-
satisfies thenth-order Kimura property iin > n —nu —ny. ThiS 1565 gigenvalues have a negative real part greater than0. For

property guarantees the existence of an output-feedback Stabilizfﬂgtance the three-mass system has the plant matrices
controller of orderm. '

01 00 00 0 0

A. SOF -10 10 00 1 0
In Table I, we have generated 20000 random triglds B, C') 00 01 00 0 |0
satisfying the Oth order Kimura property. The algorithm ve&says A= 1 0 =2 0 1 0/ B= 0 ¢ = 0
successfufinding an SOF controller. In a large majority of cases 00 00 01 0 1
(86%), at most two outer iterations were needed, and except for a 00 10 =1 0 0 0

few cases this number is less than the order of the plant. The mean

CPU time for solving each one of these problems (on an HP-710 . -

Workstation) was less than 3 s. In order to guarantee the closed-loop e!genve}lues to be sufficiently
Next, we have generated 1000 random triples B, C') and stabl.e, we have set = 0.1. The resulting third-order controller

formed the augmented matriced, B, C') defined in (), withe = MaIrX 1S

n. We then know that the augmented triple is (generically) stabilizable

by an SOF controller. Table Il shows that the algorithm was again

successful. The average number of outer iterations is (for about 90% - —

of cases) less than the order of the (augmented) plant, as with the

“direct” approach of the previous experiments.

0.5283 —0.4405 -1.8749  0.7618
0.4405 0.0170  0.3971 -0.1767
1.8750  0.3971 —1.4453 1.3969
—0.7618 —0.1767 1.3969 —1.1984
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TABLE 111 TABLE IV
REDUCED-ORDERQ-STABILIZING CONTROLLERS FORMASS/SPRING EXPERIMENTS WITH RanDOM A, B, C' (n = 6, ny = 3.0y = 3).
SysTEMS. As THE REQUIRED CLOSED-LoorP DECAY RATE ALGORITHM 1 FNDS A CONTROLLER OF ORDER O IN MORE
GRows, THEATTAINABLE CONTROLLER ORDER INCREASES THAN 99% OF THE CASES AND OF ORDER 1 AT MOST
ljumber of masses | controller order | controller order | Number of experiments I Rate
[ a=.1|a=.001 0 19887 99.43 %
1 1 1 1 113 0.57 %
2 2 2 total 20000 100%
3 3 3
4 5 5
5 6 6 using the linearization Algorithm 1. For a required decay rate of
6 7 7 a = 0.1, we have found a robust, stabilizing order controller of
7 9 8 zeroth-order after two outer iterations. The result is
8 13 9 0.8902 —0.2499 —-0.4479 —0.4212
9 15 11 g = —0.2499 1.5753 0.7388 0.4740
10 17 11 —0.4479 0.7388 1.3595 0.7208

—0.4212 0.4740 0.7208 1.5059
0.9985
The closed-loop eigenvalues of the augmented three-mass system are 1 = diag [1.5145

~0.1000 & 1.7870 0-9997
—0.1000 & 1.4753 4 1.4033  —0.0084  0.3449  0.2300
s= | —0.1000 % 0.9072; | . Y — —0.0084 0.8564 —0.4342 —0.0641
—0.1000 =+ 0.46901 7| 0.3449  —0.4342 1.2886 —0.3837
—0.1000 0.2300 —0.0641 —0.3837  0.932
Table IV presents 20000 experiments, with rand¢rm B, C') ‘ . 10015
. . . - . T = diag | 0.6603
satisfying the first-order Kimura condition. Our numerical results 1.0003
match the fact that every system is generically stabilizable with a )
first-order controller. We can check thaD7T = I and thatXS = I. The static robust
controller, which stabilizes this above system, can be computed by
C. Robust Output Feedback solving a solutionk” to LMI's that express quadratic stability of the

Consider a more ‘“realistic’ model taken from [2]. The planleosed-loop system. We obtained a feasihle

matrices are given by e {—0.4357}

[—.0366 .0271 .0188 —.4555 9.5652
0482 —-1.01 .0024 —4.0208
Alprp2) = | 02 b =0T D. Comparison with Other Algorithms
| O 0 1 0 In Table V, we compared the behavior of our algorithm with
4492 1761 other existing algorithms: the D-K iteration method [20] and the
, p3 —7.5999 min—max algorithm [10] (labeled in Table V by GSS). One-thousand
Bulps) = | 559 449 (A, B, C)’s satisfying the Oth-order Kimura condition were chosen
0 0 randomly. Our algorithm always finds a static controller in less than
C= [('] 10 0] eight outer iterations. In more than 70% of the cases, the algorithm is

successful after only one outer iteration. The D-K iteration algorithm
The three uncertain parameteps, p2,ps are within the bounds fails in the vast majority of cases. The GSS algorithm behaves much
|p1r —0.3681] < .05, |p2 — 1.4200| < .01, and|ps — 3.5446| < .04. better than the D-K iteration algorithm, but it fails sometimes or
We setA, B, to be the nominal values and write the above modéhkes many more iterations than our algorithm. Note that all three

as (10) with the following matrices: algorithms require approximately the same amount of work at each

T 0 0 0 (outer) iteration.

b0 0| D

27 10.05 001 o | L 00 00 V. CONCLUDING REMARKS

| 0 0 0 This paper describes an algorithm for the ROF problem. The
[0 0 0 algorithm is guaranteed to generate a controller of order that is

ol = 1 p —1lo o less than or equal ta — max(n.,,ny,). Although the algorithm

v’ e 10 ) may not be able to find the smallest-order controller in all cases,
10 numerical experiments indicate a very satisfactory behavior, matching

We seek a robust, low-order controller for the system above, Wirplpartlcular Kimura’'s generic stabilizability result. The approach can

A replaced byA + al. We apply our algorithm to the CCP with e appllgd to a Iz_;\rge_ number of other rank-minimization problems
. - over LMI's that arise in control theory (see [21] for many examples).

diag(X, D) and diag(S,T’). In other words, we have sought to - . S .
minimize The behavior of the algorithm can be intuitively understood in

parallel to primal-dual interior-point methods for LMI problems, as
TrXD + TrST follows. Our algorithm is a natural extension of a classical algorithm,

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 31, 2008 at 18:59 from IEEE Xplore. Restrictions apply.
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TABLE V
COMPARISON WITH OTHER ALGORITHMS WITH Ranbom A, B, C' (n = 5,
ny =3, ny = 3). THE TABLE SHOWS THE NUMBER OF SUCCESSESVERSUS
THE NUMBER OF ITERATIONS. FOR THE GSS A.GORITHM, FAlL MEANS
THAT T GENERATES THE UNBOUNDED SEQUENCE ( || X%|| > 10°) AnD
ProVIDES NO SoOLUTION. FOR THE D-K ALGORITHM, FAIL MEANS THAT
THE STATIONARY POINT OBTAINED FAILED TO STABILIZE THE SYSTEM

Outer Iterations || Algorithm 1 || GSS || D-K
1 717 129 [ 168
2 161 126 [ 4
3 74 31 2
4 28 47 0
5 11 44 0
6 6 49 0
7 2 81 0
8 1 89 0
9 0 97 0
10 < x <50 0 260 || 0
Fail 0 47 ] 826 |
total 1000 ]11000 [ 1000 |

originally devised for linear complementarity problems to CCP’s.
The CCP’s arise in particular in primal-dual formulations of LMI

1175

From (12), we havdiT.(H)|| < 2[|A+oI||||H||. Thus, the criterion

(B = @) Amin (BLXBT)
4+ ol

2
15| <

guarantees that

Bi(AST'+S7"A" +2a87M)B] <0
CL(A"S + 5S4 +2a8)C1 <.

From the elimination lemma (see, e.g., [5]), we obtain that problem
(9) is feasible. The proof of the theorem for = 0 then follows from
the fact that(X, S) > 0 together withTr(X + S) < M implies
Amin(BLXBY) > M™%

Now consider the general case > 0. Let X be defined as in
(8) and define

N {X—E R}l

& I 01[s 0][I =R
| BT I —RT Illo Illo I |’

It is easily seen that botf, 5 are positive definite. Moreover, for
everya,0 < a < 8

B (AX + XA" +2aX)B}
=B, (AX + XA" +2aX)B] <0
CT(ATS + 5A+2a8)Cy
=C(ATS + 54+ 2a5)C. <0.

problems, as seen in, e.g., [24]. In a CCP constructed from Bmally

LMI problem, we have a pair of symmetric matrix variabl&s S,

. . . . = & E 0
each subject to equality and LMI constraints. By construction, the X-5"'= >0
; - PR : 0 0
constraints onX and those orf are “dual” so that the primal-dual
gapTrX S is actuallylinear in X, S on the feasible set. The mostwhich implies | X — S7!|| = ||E|| < e.r. We obtain thatX, S

efficient algorithms for LMI problems to date use the above fact arghtisfy the conditions of the theorem with = 0, for the augmented
work with the CCP formulation, using both primal and dual variablesystem(A, B, C'). This achieves the proof.

simultaneously. Our algorithm is an adaptation of this idea to a
problem where the LMI constraints o, S are not necessarily “dual”
to each other. As in LMI problems, working with both primal and
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dual variables simultaneously seems to be comparatively efficient;The authors would like to thank the anonymous reviewers for their

this was illustrated in Table V.
Note that the LMI constraints (3) of the ROF problem can also
be viewed as “dual’ to each other, in the sense given to duality in
control theory. The first constraint is related to stabilizability, and th%l]
second is related to detectability. The connection between convex
duality and control duality may play an important role in the answer
to the ROF problem. [2]

(3]

(4]
We first prove the theorem for. = 0 in which case the triple

(A, B, C) defined in (6) coincides witliA, B, C).
For 3 > 0, introduce a linear operatdr defined on the set of
n X n symmetric matrices by

APPPENDIX A
PrROOF OF THEOREM 2.3

(5]

(6]

Ts(H)=Bi(AH + HA" + 23H)B]. (11)
Since B, is orthogonal, a bound on the norm B is [7]
max [|Tz(H)| < 2|4 + 8I]|. (12) (e

[IH =1

Assume thatX, S are feasible for the LMI constraints (3). Let [9]
H=5"1—X and0 < a < 3. With T defined by (11), we have

[10]

To(S™") =Ta(X)+To(H)

< -2(8-«a)B.XB} +T.(H).

very helpful comments.
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Il. NOTATION AND TECHNICAL BACKGROUND

Given a complex valued matrixjZ, M7 is the transpose ofif
andoma.x (M) denotes its maximum singular value. Theg element
of M is given bym,;.

Consider block diagonal complex-valued matrices with the size of
the blocks specified by a set of integeks, - -, k.. The set of all
such block diagonal matrices will be denoted Ay More formally

A = {diag (A1,---, An)|A; € Ckiin}.

More general block structures are possible, and the reader is referred
to Packard and Doyle [5] for further discussion.

For an illustration of the distinction between the structured singular
value and its upper bound, it is sufficient to consider scalar valued
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