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A Cone Complementarity Linearization Algorithm
for Static Output-Feedback and Related Problems

Laurent El Ghaoui, Francois Oustry, and Mustapha AitRami

Abstract—This paper describes a linear matrix inequality (LMI)-based
algorithm for the static and reduced-order output-feedback synthesis
problems of nth-order linear time-invariant (LTI) systems with nu

(respectively, ny) independent inputs (respectively, outputs). The algo-
rithm is based on a “cone complementarity” formulation of the problem
and is guaranteed to produce a stabilizing controller of orderm �

n � max(nu; ny), matching a generic stabilizability result of Davison
and Chatterjee [7]. Extensive numerical experiments indicate that the
algorithm finds a controller with order less than or equal to that predicted
by Kimura’s generic stabilizability result (m � n�nu�ny+1). A similar
algorithm can be applied to a variety of control problems, including
robust control synthesis.

Index Terms—Complementarity problem, linear matrix inequality,
reduced-order stabilization, static output feedback.

I. INTRODUCTION

We consider thereduced-order output-feedback(ROF) stabilization
problem. We are given an integerm � 0 and a linear time-invariant
(LTI) system

_x = Ax +Bu; y = Cx (1)

where x 2 Rn; u 2 Rn ; and y 2 Rn ; (A;B) is stabilizable,
(C;A) detectable,B;C are full rank, andm � n. We seek to
determine a dynamic output-feedback control law

_xc
u

= K
xc

y
(2)

where K 2 R
(m+n )�(m+n ) is a constant matrix such that

the resulting closed-loop system is stable. Whenm = 0, the
corresponding problem is referred to as thestatic output-feedback
(SOF) stabilization problem. Note that the ROF problem is readily
transformed into an SOF problem, using a well-known system
augmentation technique (see Section II-D).

Despite its apparent simplicity, the ROF problem is still open.
The complexity analysis of the problem is not quite complete yet.
Andersonet al. have shown in [1] that the problem is decidable. A
nice result of Blondel and Tsitsiklis [3] shows that the problem of
finding an SOF controller with prespecified bounds on the controller
matrix K is NP-hard. Of course, this does not prove that the SOF
problem is NP-hard, since noa priori bounds on the controller matrix
K are imposed.

A number of numerical procedures have been proposed for solving
the problem. A survey was done by Syrmoset al. [22], and recent
progress has been made for the related problem of pole placement;
see [25], [19], and the references therein.

Among the recent approaches that have been proposed, those
based on linear matrix inequalities (LMI’s) are promising since the
same framework can be used for related problems such as robust
control (see Section III). (The book [21] describes a large number of
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such problems.) The LMI-based methods include the D-K iteration
method mentioned in [20], the alternating projections method [12], the
projection method of [18], the min–max algorithm [10], the potential
reduction method [6], and theXY -centering algorithm [14]. This
paper describes yet another LMI-based method for the problem. One
of the strong points of the proposed algorithm is that it is guaranteed
to find a controller with order less than or equal ton�max(nu; ny)

and seems to consistently improve this number in practice.
The remainder of this paper is organized as follows. Section II

describes a cone complementarity linearization algorithm. Section III
shows how some robust control synthesis problems are amenable to
the same method. Finally, Section IV provides extensive numerical
results.

Notation: Im denotes them � m identity matrix; the size is
omitted when it can be determined from context.C? (respectively,
B?) denotes the matrix with maximal rank such thatCC? = 0

(respectively,B?B = 0). For a real matrixX; kXk denotes the norm
(largest singular value) of the matrixX, andX > 0 (respectively,
X � 0) meansX is symmetric and positive-definite (respectively,
positive semidefinite).

II. A N LMI-B ASED ALGORITHM

A. LMI-Based Formulation

As seen in [8], there exists anmth-order state-feedback stabilizing
controller if and only if there exist matricesX; S; and scalar� > 0

such that

B?(AX +XA
T
+ 2�X)B

T
? � 0

C
T
?(A

T
S + SA+ 2�S)C? � 0

K(X;S) =
X I

I S
� 0 (3)

and RankK(X;S) � n + m. We first seek to solve the above
problem form = 0 and for fixed� > 0. That is, we seek to obtain
an SOF controller such that the closed-loop eigenvalues have a real
part that is less than or equal to��.

B. A Cone Complementarity Problem

For solving the problem above, we need to “saturate” the constraint
K(X;S) � 0 in (3). The idea is to associate to the SOF problem

minTrXS subject to(3): (4)

There exists a�-stabilizing static-output feedback controller if and
only if the global minimum of problem (4) isn.

Problem (4) can be called a “cone complementarity” problem
(CCP), as it is an extension linear complementarity problems (LCP’s)
to the cone of positive semidefinite matrices; see, e.g., [26], [16], and
[27].

To solve such a problem, a linearization method (originally pro-
posed by Franke and Wolfe and described in [16] for LCP’s) can be
used. At a given point(X0; S0), a linear approximation ofTrXS
takes the form

�lin(X;S) = constant+Tr(S0X +X0S):

The linearization algorithm is conceptually described as follows.
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Algorithm 1:

1) Find a feasible pointX0; S0. If there are none, exit. Setk = 0.
2) SetVk = Sk;Wk = Xk; and findXk+1; Sk+1 that solve the

LMI problem

Pk : minimizeTr(VkX +WkS) subject to (3):

3) If a stopping criterion is satisfied, exit. Otherwise, setk = k+1

and go to Step 2).

The first step of the algorithm and every Step 2) are simple LMI
problems. There are many algorithms that are available for this,
especially interior-point methods, e.g., [24], [4], and [17]. In the
sequel, we count each Step 2) as one outer iteration to make a
distinction with the inner steps required to solve the LMI problems
Pk.

The following theorem shows that the algorithm converges.
Theorem 2.1: The sequencetk Tr(Xk+1Sk+Sk+1Xk); k � 0

is bounded below by2n and decreasing. Thus, the sequence(tk)

converges to some valuetopt � 2n. Equality holds if and only if
XS = I at the optimum.

Proof: Let k > 0. Since Xk�1; Sk�1 are feasible, and
(Xk+1; Sk+1) are optimal for problem(Pk), we have

tk � Tr(Xk�1Sk + Sk�1Xk) = tk�1:

Now tk is bounded below by2n, since

tk = Tr(Xk+1Sk + Sk+1Xk) � inf
K(V;W )�0

Tr(V Xk +WSk)

= 2Tr X
1=2

k
SkX

1=2

k

1=2
� 2n:

The last inequality implies that iftopt = 2n, thenXS = I:

The next theorem shows that from the first step of the algorithm,
the method finds a controller of order that is less than or equal to
the order predicted by the generic stabilizability results of Davison
and Chatterjee [7].

Theorem 2.2: At every stepk, we have

Rank
Xk I

I Sk
� 2n�max(nu; ny):

Thus, the algorithm finds a controller of order that is less than or
equal ton � max(nu; ny) at every step.

Proof: Let k � 0. The dual to problemPk is (see [24])

Dk :maximize2TrN subject toQ � 0; P � 0;

Z = A
T
B
T

?QB? + B
T

?QB? A+ 2� B
T

?QB? + Vk

R = A C?PC
T

? + C?PC
T

? A
T
+ 2� C?PC

T

? +Wk

~Z =
Z N

NT R
� 0:

Pre- (respectively, post-) multiplying the first equality constraint in
Dk byBT (respectively,B), we obtain that every feasibleZ satisfies

B
T
ZB = B

T
SkB:

SinceB is full rank andSk > 0, we haveBTSkB > 0, and thus
RankZ � nu. Similarly, RankR � ny for every feasibleR.

BothPk andDk are strictly feasible (forDk, setQ = �I; P = �I

for � small enough, andN = 0). This guarantees the existence of
optimal primal and dual points. At the optimum, we have (see [24])

~Z
Xk+1 I

I Sk+1
= 0 (5)

which implies

~Z =
I

�Xk+1
Z

I

�Xk+1

T

=
�Sk+1

I
R
�Sk+1

I

T

:

We obtainRank ~Z = RankR = RankZ � max(nu; ny). From
(5), we deduce

Rank
Xk+1 I

I Sk+1
� 2n�Rank ~Z � 2n�max(nu; ny):

Remark 2.1: Algorithm 1 is based on the function�(X;S) =

TrXS. It turns out that a whole class of algorithms can be devised
with other choices for�. For instance, we may work with the concave
function�1=2(X;Y ) = 2Tr(Y 1=2XY 1=2

)
1=2 by replacingV;W in

Algorithm 1 by

V = X
�1=2

(X
1=2
YX

1=2
)
1=2
X
�1=2

W = V
�1

= Y
�1=2

(Y
1=2
XY

1=2
)
1=2
Y
�1=2

:

In our experiments, we have found that this modified algorithm
behaves similarly. For details, see [11].

C. System Augmentation

As stated in the introduction, the ROF problem can be addressed
as an SOF problem for an augmented system. Define

~A =
A 0

0 0m
; ~B =

0 B

Im 0
; ~C =

0 Im

C 0
: (6)

It can be shown that the ROF problem has a solution of orderm if
and only if the triple( ~A; ~B; ~C) is SOF stabilizable. We may thus use
the previous algorithm with the triple( ~A; ~B; ~C).

It is also possible to apply the algorithm directly to the triple
(A;B;C). We conjecture that this direct approach yields the same
answer (that is, the same controller order). If the conjecture is true,
the direct approach is to be preferred, since it is less numerically
demanding (it involves fewer variables and LMI’s of smaller size).

D. Controller Reconstruction

Most LMI solvers require the boundness for the feasible set. For
this, ana priori large bound on the variables can be imposed, e.g.,
Tr(X + S) � M .

The following theorem can be used as a (heuristic) stopping
criterion and provides details on how to construct the controller.
(Its proof is in Appendix A.) In this theorem, the parameter� is
interpreted as the desired stability degree of the closed-loop system,
and� > � is a parameter needed to guarantee this stability degree
strictly (if � > 0, one may set� = 2�).

Theorem 2.3: SupposeX;S satisfy conditions (3) andTr(X +

S) � M . Let �; 0 � � < �. If there aren � m eigenvalues of
X � S�1 that are less than or equal to

�rof =
(� � �)

MkA+ �Ik
(7)

then there exists anmth-order, dynamic output-feedback controller
such that every eigenvalue of the closed-loop system has a real part
that is less than or equal to��. The controller can be constructed
as follows. DecomposeX � S�1 as

X � S
�1

= RR
T
+E (8)

where 0 � E � �rofI, and R 2 R
n�m is either empty (when

m = 0) or satisfiesRTR > �rofI. Set( ~A; ~B; ~C) as in (6) and

~X =
X R

RT I
:

Then, ~X > 0 and the LMI problem inK

( ~A+ ~BK ~C) ~X + ~X( ~A+ ~BK ~C)
T
+ 2� ~X � 0 (9)

has a solution. Alternatively, the analytic formulas of [13] can be
used to reconstructK.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 31, 2008 at 18:59 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997 1173

III. ROBUST OUTPUT-FEEDBACK CONTROL

A similar algorithm can be applied for solving a number of other
control problems. Here is a simple instance. Consider the parameter-
dependent system

_x = Ax +Bpp+Buu

y = Cyx

q = Cqx+Dquu

p = �(t)q; k�k � 1; � diagonal

(10)

where A; Bu; Bp; Cq; Cy; and Dqu are constant matrices of
appropriate size. TheN � N time-varying matrix�, referred to
as the perturbation, is bounded and structured (diagonal).

We seek a full-order controller of the form (2) such that the closed-
loop system is stable for every admissible variation of�. We use the
approach of quadratic stability combined with scaling (see, e.g., [5]).

Theorem 3.1: There exists a controller of the form (2), where
K 2 R

(n+n )�(n+n ) is a constant matrix such that the closed-
loop system is stable for every admissible variation of�, if there
exist matricesX;S;D; T such that

MT
?

AX +XA
T +BpDB

T
p XC

T
q

CqX �D
M < 0

N T A
T
S + SA+ C

T
q TCq SBp

B
T
p S �T

N < 0

X I

I S
� 0;

D I

I T
� 0

D;T diagonal, DT = I

whereM = [BT
u D

T
qu]; N = diag(Cy?; I).

The problem of finding matricesX;S;D; T feasible for the above
constraints can be addressed using a similar approach by applying
a linearization algorithm to minimize, e.g.,TrDT , over diagonal
matricesD;T . It is also possible to search for reduced-order robust
controllers. Simply replaceX andS by diag(X;D) anddiag(S; T )
in Algorithm 1.

IV. NUMERICAL EXPERIMENTS

For every run, we have chosen (unless otherwise stated)M = 105;

� = 0:01; � = 2�. We have used the semidefinite programming code
SP [23] and a MATLAB interface toSP, LMITOOL [9]. The SP
parameters for absolute and relative convergence were both set to
10�10.

The random tests presented next are based on generic stabilizability
results given by Kimura [15]. In the sequel, we say that(A;B;C)

satisfies themth-order Kimura property ifm > n � nu � ny. This
property guarantees the existence of an output-feedback stabilizing
controller of orderm.

A. SOF

In Table I, we have generated 20 000 random triples(A;B;C)

satisfying the 0th order Kimura property. The algorithm wasalways
successfulfinding an SOF controller. In a large majority of cases
(86%), at most two outer iterations were needed, and except for a
few cases this number is less than the order of the plant. The mean
CPU time for solving each one of these problems (on an HP-710
Workstation) was less than 3 s.

Next, we have generated 1000 random triples(A;B;C) and
formed the augmented matrices( ~A; ~B; ~C) defined in (6), withm =

n. We then know that the augmented triple is (generically) stabilizable
by an SOF controller. Table II shows that the algorithm was again
successful. The average number of outer iterations is (for about 90%
of cases) less than the order of the (augmented) plant, as with the
“direct” approach of the previous experiments.

TABLE I
EXPERIMENTS WITH RANDOM A;B; C; n = 6; nu = 4; ny = 3. ALGORITHM 1

ALWAYS FINDS A STATIC CONTROLLER, AS PREDICTED BY KIMURA’S RESULT

TABLE II
EXPERIMENTS WITH AUGMENTED MATRICES ~A; ~B; ~C, WHERE ~A IS

2n� 2n, FORMED WITH RANDOM A;B;C; n = 5; nu = 2; ny = 2.
ALGORITHM 1 ALWAYS FINDS A STATIC CONTROLLER, AS PREDICTED BY THE

GENERIC STABILIZABILITY (BY A FULL-ORDER CONTROLLER) OF (A;B; C)

B. ROF

In Table III, we have sought to stabilize a mass-spring system
consisting ofN unit masses connected by linear springs of unit
spring constant. The input acts on the left mass, and the position
of the right mass is measured. Using Algorithm 1, we have sought a
low-order stabilizing controller for this system such that the closed-
loop eigenvalues have a negative real part greater than� > 0. For
instance, the three-mass system has the plant matrices

A=

0 1 0 0 0 0

�1 0 1 0 0 0

0 0 0 1 0 0

1 0 �2 0 1 0

0 0 0 0 0 1

0 0 1 0 �1 0

; B=

0

1

0

0

0

0

; C
T
=

0

0

0

0

1

0

:

In order to guarantee the closed-loop eigenvalues to be sufficiently
stable, we have set� = 0:1. The resulting third-order controller
matrix is

K =

0:5283 �0:4405 �1:8749 0:7618

0:4405 0:0170 0:3971 �0:1767

1:8750 0:3971 �1:4453 1:3969

�0:7618 �0:1767 1:3969 �1:1984

:
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TABLE III
REDUCED-ORDER�-STABILIZING CONTROLLERS FORMASS/SPRING

SYSTEMS. AS THE REQUIRED CLOSED-LOOP DECAY RATE

GROWS, THEATTAINABLE CONTROLLER ORDER INCREASES

The closed-loop eigenvalues of the augmented three-mass system are

s =

�0:1000� 1:7870 i

�0:1000� 1:4753 i

�0:1000� 0:9072 i

�0:1000� 0:4690 i

�0:1000

:

Table IV presents 20 000 experiments, with random(A;B;C)
satisfying the first-order Kimura condition. Our numerical results
match the fact that every system is generically stabilizable with a
first-order controller.

C. Robust Output Feedback

Consider a more “realistic” model taken from [2]. The plant
matrices are given by

A(p1; p2) =

�:0366 :0271 :0188 �:4555

:0482 �1:01 :0024 �4:0208

:1002 p1 �:707 p2

0 0 1 0

Bu(p3) =

:4422 :1761

p3 �7:5922

�5:52 4:49

0 0

C = [0 1 0 0 ]:

The three uncertain parametersp1; p2; p3 are within the bounds
jp1 � 0:3681j � :05; jp2 � 1:4200j � :01; and jp3 � 3:5446j � :04.
We setA;Bu to be the nominal values and write the above model
as (10) with the following matrices:

Bp =

0 0 0

0 0 0:04

0:05 0:01 0

0 0 0

; Cq =

0 1 0 0

0 0 0 1

0 0 0 0

C
T
y =

0

1

0

0

; Dqu =

0 0

0 0

1 0

:

We seek a robust, low-order controller for the system above, with
A replaced byA + �I. We apply our algorithm to the CCP with
diag(X;D) and diag(S; T ). In other words, we have sought to
minimize

TrXD +TrST

TABLE IV
EXPERIMENTS WITH RANDOM A;B; C (n = 6; nu = 3; ny = 3).

ALGORITHM 1 FINDS A CONTROLLER OF ORDER 0 IN MORE

THAN 99% OF THE CASES AND OF ORDER 1 AT MOST

using the linearization Algorithm 1. For a required decay rate of
� = 0:1, we have found a robust, stabilizing order controller of
zeroth-order after two outer iterations. The result is

S =

0:8902 �0:2499 �0:4479 �0:4212

�0:2499 1:5753 0:7388 0:4740

�0:4479 0:7388 1:3595 0:7208

�0:4212 0:4740 0:7208 1:5059

D = diag
0:9985

1:5145

0:9997

X =

1:4033 �0:0084 0:3449 0:2300

�0:0084 0:8564 �0:4342 �0:0641

0:3449 �0:4342 1:2886 �0:3837

0:2300 �0:0641 �0:3837 0:932

T = diag
1:0015

0:6603

1:0003

:

We can check thatDT = I and thatXS = I. The static robust
controller, which stabilizes this above system, can be computed by
solving a solutionK to LMI’s that express quadratic stability of the
closed-loop system. We obtained a feasibleK

K =
�0:4357

9:5652
:

D. Comparison with Other Algorithms

In Table V, we compared the behavior of our algorithm with
other existing algorithms: the D-K iteration method [20] and the
min–max algorithm [10] (labeled in Table V by GSS). One-thousand
(A;B;C)’s satisfying the 0th-order Kimura condition were chosen
randomly. Our algorithm always finds a static controller in less than
eight outer iterations. In more than 70% of the cases, the algorithm is
successful after only one outer iteration. The D-K iteration algorithm
fails in the vast majority of cases. The GSS algorithm behaves much
better than the D-K iteration algorithm, but it fails sometimes or
takes many more iterations than our algorithm. Note that all three
algorithms require approximately the same amount of work at each
(outer) iteration.

V. CONCLUDING REMARKS

This paper describes an algorithm for the ROF problem. The
algorithm is guaranteed to generate a controller of order that is
less than or equal ton � max(nu; ny). Although the algorithm
may not be able to find the smallest-order controller in all cases,
numerical experiments indicate a very satisfactory behavior, matching
in particular Kimura’s generic stabilizability result. The approach can
be applied to a large number of other rank-minimization problems
over LMI’s that arise in control theory (see [21] for many examples).

The behavior of the algorithm can be intuitively understood in
parallel to primal-dual interior-point methods for LMI problems, as
follows. Our algorithm is a natural extension of a classical algorithm,
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TABLE V
COMPARISON WITH OTHER ALGORITHMS WITH RANDOM A;B;C (n = 5;
nu = 3; ny = 3). THE TABLE SHOWS THE NUMBER OF SUCCESSESVERSUS

THE NUMBER OF ITERATIONS. FOR THE GSS ALGORITHM, FAIL MEANS

THAT IT GENERATES THEUNBOUNDED SEQUENCE ( kXkk > 106) AND

PROVIDES NO SOLUTION. FOR THE D-K A LGORITHM, FAIL MEANS THAT

THE STATIONARY POINT OBTAINED FAILED TO STABILIZE THE SYSTEM

originally devised for linear complementarity problems to CCP’s.
The CCP’s arise in particular in primal-dual formulations of LMI
problems, as seen in, e.g., [24]. In a CCP constructed from an
LMI problem, we have a pair of symmetric matrix variablesX;S;
each subject to equality and LMI constraints. By construction, the
constraints onX and those onS are “dual” so that the primal-dual
gapTrXS is actually linear in X;S on the feasible set. The most
efficient algorithms for LMI problems to date use the above fact and
work with the CCP formulation, using both primal and dual variables
simultaneously. Our algorithm is an adaptation of this idea to a
problem where the LMI constraints onX;S are not necessarily “dual”
to each other. As in LMI problems, working with both primal and
dual variables simultaneously seems to be comparatively efficient;
this was illustrated in Table V.

Note that the LMI constraints (3) of the ROF problem can also
be viewed as “dual” to each other, in the sense given to duality in
control theory. The first constraint is related to stabilizability, and the
second is related to detectability. The connection between convex
duality and control duality may play an important role in the answer
to the ROF problem.

APPPENDIX A
PROOF OF THEOREM 2.3

We first prove the theorem form = 0 in which case the triple
( ~A; ~B; ~C) defined in (6) coincides with(A;B;C).

For � > 0, introduce a linear operator� defined on the set of
n � n symmetric matrices by

��(H) = B?(AH +HA
T
+ 2�H)B

T
?: (11)

SinceB? is orthogonal, a bound on the norm of�� is

max
kHk=1

k��(H)k � 2kA+ �Ik: (12)

Assume thatX;S are feasible for the LMI constraints (3). Let
H = S�1 �X and0 � � < �. With � defined by (11), we have

��(S
�1

) = ��(X) + ��(H)

� �2(� � �)B?XB
T
?
+ ��(H):

From (12), we havek��(H)k � 2kA+�IkkHk. Thus, the criterion

kHk �
2(� � �)�min B?XB

T
?

kA+ �Ik

guarantees that

B?(AS
�1

+ S
�1

A
T
+ 2�S

�1

)B
T
? � 0

C
T
?
(A

T
S + SA+ 2�S)C? � 0:

From the elimination lemma (see, e.g., [5]), we obtain that problem
(9) is feasible. The proof of the theorem form = 0 then follows from
the fact thatK(X;S) � 0 together withTr(X + S) � M implies
�min(B?XB

T

?
) � M�1.

Now consider the general casem � 0. Let ~X be defined as in
(8) and define

~S =
X � E R

RT I

�1

=
I 0

�RT I

S 0

0 I

I �R

0 I
:

It is easily seen that both~X; ~S are positive definite. Moreover, for
every �; 0 � � � �

~B
?
( ~A ~X + ~X ~A

T
+ 2� ~X) ~B

T

?

= B
?
(AX +XA

T
+ 2�X)B

T

?
� 0

~C
T

?
( ~A

T ~S + ~S ~A+ 2� ~S) ~C
?

= C
T

?
(A

T
S + SA+ 2�S)C

?
� 0:

Finally

~X � ~S
�1

=
E 0

0 0
� 0

which implies k ~X � ~S�1k = kEk � �rof . We obtain that ~X; ~S
satisfy the conditions of the theorem withm = 0, for the augmented
system( ~A; ~B; ~C). This achieves the proof.
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A Study of the Gap Between the Structured Singular Value
and Its Convex Upper Bound for Low-Rank Matrices

Roy Smith

Abstract—The size of the smallest structured destabilizing perturbation
for a linear time-invariant system can be calculated via the structured
singular value (�). The function � can be bounded above by the solution
of a convex optimization problem, and in general there is a gap between
� and the convex bound. This paper gives an alternative characterization
of � which is used to study this gap for low-rank matrices. The low-rank
characterization provides an easily computed bound which can potentially
be significantly better than the standard convex bound. This is used to
find new examples with larger gaps than previously known.

Index Terms—Robust control, structured singular value.

I. INTRODUCTION

The structured singular value—commonly denoted by�—was
introduced by Doyle [1] as a means of analyzing the stability of
systems under structured perturbations. It gives the size of the
smallest destabilizing perturbation and is therefore a measure of the
robustness of a system.

In application, upper and lower bounds for� are calculated. The
upper bound is formulated as a convex optimization over scalings
for a singular value problem [1], [2]. This has an equivalent linear
matrix inequality (LMI) formulation (see for example, the work of
Beck and Doyle [3] and Boydet al. [4]). Lower bounds are typically
calculated via a power algorithm [5].

This paper provides a reformulation of� and uses it to study a
class of problems where there is a known gap between the standard
convex upper bound and�: The extent of this gap, and concomitant
conservativeness of the easily calculated convex bound, has remained
an open problem. In the case where some of the perturbations are
constrained to be real-valued, there are examples of the relative gap
being arbitrarily large [6]. Furthermore, the decision problem “is
�(M)< 1?” is known to be NP-hard, even for the purely complex�

problem [7]. In light of this result we cannot expect to provide a de-
finitive quantification of the gap in all cases. The results given here do
provide a bound which, in certain cases, gives a tighter answer to the
above decision problem than the convex bound. The quantification of
the possible extent of this gap has also been studied by Megretski [8].

II. NOTATION AND TECHNICAL BACKGROUND

Given a complex valued matrix,M;MT is the transpose ofM
and�max(M) denotes its maximum singular value. Thei; j element
of M is given bymij :

Consider block diagonal complex-valued matrices with the size of
the blocks specified by a set of integers,k1; � � � ; kn: The set of all
such block diagonal matrices will be denoted by���: More formally

��� = fdiag (�1; � � � ;�n)j�i 2 Ck �k g:

More general block structures are possible, and the reader is referred
to Packard and Doyle [5] for further discussion.

For an illustration of the distinction between the structured singular
value and its upper bound, it is sufficient to consider scalar valued
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