Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

by Phillip Krahenbuhl and Vladlen Koltun

Presented by Adam Stambler

Multi-class image segmentation

Assign a class label to each pixel in the image

Super pixels are hard to make

Don't make super pixels

Operate On Pixels Directly

(d) Fully connected CRF, MCMC inference, 36 hrs

Pixel wise classification - texture/local shape features

Consistency with MRF/CRF

(a) Image

(b) Unary classifiers

(c) Robust P^n CRF

(d) Fully connected CRF, MCMC inference, 36 hrs

hours!

Efficient CRF's results:

Figure 1: Pixel-level classification with a fully connected CRF. (a) Input image from the MSRC-21 dataset. (b)

Solving MRFs and CRFs

- Each Clique Modeled as Gibbs Distribution
- $\Pr(\mathbf{x}|\mathbf{D}) = \frac{1}{Z} \exp\left(-\sum_{c \in C} \psi_c(\mathbf{x}_c)\right),\,$
- Unary Potentials and Pairwise potential

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \sum_{j \in \mathcal{N}_{i}} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}} + \text{(optional higher order terms)}$$

- Maximum-a-posteriori solutions are NP-Hard
 - Message Passing algorithms: belief propagation
 - Move Making Algorithms: α-expansion, αβ-swap

Graph connections

- 1. Adjacent pixels are connected
 - Textonboost CRF approach
- 2.Adjacent pixels are connected + super-pixels consistent
 - Robust Pn CRF
- 3.All pixels are fully connected
 - Efficient CRF (this paper)

Unary Potential: Texton Boost

7

Responsible for most of the accuracy in all of the papers

Texton Boosting

- TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation
 - Each pixel is only connected to its adjacent neighbors
 - Jointly model the texture and shape a single feature

Adjacency CRF models

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i} \sum_{j \in \mathcal{N}_{i}} \psi_{p}(x_{i}, x_{j})$$
unary term
$$\psi_{p}(x_{i}, x_{j})$$
pairwise term

- Efficient inference
 - ▶ 1 second for 50′000 variables
- Limited expressive power
- Only local interactions
- Excessive smoothing of object boundaries
 - Shrinking bias

Adjacency CRF models

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i} \sum_{j \in \mathcal{N}_{i}} \psi_{p}(x_{i}, x_{j})$$
unary term
$$\psi_{u}(x_{i}) + \sum_{i} \sum_{j \in \mathcal{N}_{i}} \psi_{p}(x_{i}, x_{j})$$

- Efficient inference
 - ▶ 1 second for 50′000 variables
- Limited expressive power
- Only local interactions
- Excessive smoothing of object boundaries
 - Shrinking bias

Adjacency CRF models

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \underbrace{\sum_{j \in \mathcal{N}_{i}}}_{j \in \mathcal{N}_{i}} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}}$$

- Efficient inference
 - ▶ 1 second for 50′000 variables
- Limited expressive power
- Only local interactions
- Excessive smoothing of object boundaries
 - Shrinking bias

Operate On Pixels + Super-pixels

• "Robust Higher Order Potentials for Enforcing Label Consistency"- Koli et al.

Operate on Super-pixels + Pixels

- higher order potentials defined on super pixels to enforce regional consistency
 - soft label constraints using super-pixel consistency potentials

$$\begin{split} E(\mathbf{x}) &= \sum_{i \in \mathcal{V}} \psi_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \psi_{ij}(x_i,x_j) + \sum_{c \in \mathcal{S}} \psi_c(\mathbf{x}_c), \\ \text{unary} & \text{pairwise} \end{split}$$

Super pixel term also models consistency within super pixel

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \underbrace{\sum_{j>i}}_{j>i} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}}$$

Gaussian edge potentials

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^K w^{(m)} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j)$$

- ullet Label compatibility function μ
- Linear combination of Gaussian kernels

$$k^{(m)}(\mathbf{f}_i, \mathbf{f}_j) = \exp(-\frac{1}{2}(\mathbf{f}_i - \mathbf{f}_j)\Sigma^{(m)}(\mathbf{f}_i - \mathbf{f}_j))$$

Arbitrary feature space f;

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i} \sum_{j>i} \psi_{p}(x_{i}, x_{j})$$
unary term
$$\psi_{p}(x_{i}, x_{j})$$
pairwise term

Gaussian edge potentials

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^K w^{(m)} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j)$$

- ullet Label compatibility function μ
- Linear combination of Gaussian kernels

$$k^{(m)}(\mathbf{f}_i, \mathbf{f}_j) = \exp(-\frac{1}{2}(\mathbf{f}_i - \mathbf{f}_j)\Sigma^{(m)}(\mathbf{f}_i - \mathbf{f}_j))$$

Arbitrary feature space f;

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \underbrace{\sum_{j>i}}_{j>i} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}}$$

Gaussian edge potentials

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^K w^{(m)} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j)$$

- Label compatibility function μ
- Linear combination of Gaussian kernels

$$k^{(m)}(\mathbf{f}_i,\mathbf{f}_j) = \exp(-\frac{1}{2}(\mathbf{f}_i-\mathbf{f}_j)\Sigma^{(m)}(\mathbf{f}_i-\mathbf{f}_j))$$

Arbitrary feature space f;

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \underbrace{\sum_{j>i}}_{j>i} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}}$$

Gaussian edge potentials

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^K w^{(m)} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j)$$

- ullet Label compatibility function μ
- Linear combination of Gaussian kernels

$$k^{(m)}(\mathbf{f}_i,\mathbf{f}_j) = \exp(-\frac{1}{2}(\mathbf{f}_i-\mathbf{f}_j)\Sigma^{(m)}(\mathbf{f}_i-\mathbf{f}_j))$$

Arbitrary feature space f_i

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i} \sum_{j>i} \psi_{p}(x_{i}, x_{j})$$
unary term
$$\psi_{p}(x_{i}, x_{j})$$
pairwise term

Gaussian edge potentials

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^K w^{(m)} k^{(m)}$$
Convolution is key to officional

- Label compatibility function μ
- Linear combination of Gaussian kernels

$$k^{(m)}(\mathbf{f}_i, \mathbf{f}_j) = \exp(-\frac{1}{2}(\mathbf{f}_i - \mathbf{f}_j)\Sigma^{(m)}(\mathbf{f}_i - \mathbf{f}_j))$$

Arbitrary feature space f;

efficiency

Detailed model definition

$$k(\mathbf{f}_i, \mathbf{f}_j) = w^{(1)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_{\alpha}^2} - \frac{|I_i - I_j|^2}{2\theta_{\beta}^2}\right) + w^{(2)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_{\gamma}^2}\right)$$
appearance kernel

- Label compatibility
 - Potts model: $\mu(x_i, x_j) = 1_{[x_i \neq x_j]}$
 - Semi-metric model: $\mu(x_i, x_j)$ learned from data
- Appearance kernel
 - Color-sensitive model
- Local smoothness
 - Discourages pixel level noise

$$k(\mathbf{f}_i, \mathbf{f}_j) = w^{(1)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_{\alpha}^2} - \frac{|I_i - I_j|^2}{2\theta_{\beta}^2}\right) - w^{(2)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_{\alpha}^2} - \frac{|I_i - I_j|^2}{2\theta_{\beta}^2}\right)$$

appearance kernel

smoothness kernel

Message Passing

- Uses Mean Field Approximation to minimize KL-divergence
- Efficiency through signal theory low pass filtering
- Separable low-pass Gaussian filters propagate information over permutohedral lattice

Message Passing by high dimensional filtering

- Initialize graph with Unary potentials
- While not converged
 - Pass messages from each node to all other nodes
 - Messages consist of the pairwise blur weighting
 - Update node using compatibility transform

- Downsample input signal $Q_j(I)$
- Blur the sampled signal
- Upsample to reconstruct the filtered signal $\overline{Q}_i(I)$

- Downsample input signal $Q_j(I)$
- Blur the sampled signal
- Upsample to reconstruct the filtered signal $\overline{Q}_i(I)$

- Downsample input signal $Q_j(I)$
- Blur the sampled signal
- Upsample to reconstruct the filtered signal $\overline{Q}_i(I)$

- Downsample input signal $Q_j(I)$
- Blur the sampled signal
- Upsample to reconstruct the filtered signal $\overline{Q}_i(I)$

Permutohedral Lattice

Message Passing

Learned Parameters

- Unary Potentials learned using Joint Boost
 - Allows classes to share boundaries and improves generalization
- Weights for pairwise filtering found via L-BGFS using expectation maximization
- Kernel Bandwidths hard to learn;
 - Grid search used to pick best value

Results: MSRC

MSRC dataset

- 591 images
- 21 classes

	Time	Global	Avg
Unary	-	84.0	76.6
Grid CRF	1s	84.6	77.2
FC CRF	0.2s	86.0	78.3

Results: PASCAL VOC 2010

PASCAL VOC 2010 dataset

- 1928 images
- 20 classes + background

	Time	Acc
Unary	-	27.6
Grid CRF	2.5s	28.3
FC Potts	0.5s	29.1
FC label comp	0.5s	30.2

Really Cool

•Fine feature segmentation in 0.2 seconds

Reported Failures

Image

Our approach

Ground truth

Image

Our approach

Ground truth

Replicating Results

Replicating Results: overlay

Replicating Results

gt

crf