—fficient Inference in Fully Connected CRFs with
Gaussian Edge Potentials

by Phillip Krahenbuhl and Vladlen Koltun

Presented by Adam Stambler




Multi-class image segmentation

Assign a class label to each pixel in the image

background




Super pixels are hard to make

meanshift

e Don’t make super pixels




Operate On Directly

(b) Unary classifiers (¢) Robust P™ CRF (d) Fully connected CREF,
MCMC inference, 36 hrs

e Pixel wise classification- texture/local shape features
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MCMC inference, 36 hrs
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(¢) Robust P™ CRF (d) Fully connected CREF,

(b) Unary classifiers
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—fficient CRF’s results:

(a) Image (b) Unary classifiers (¢) Robust P™ CRF (d) Fully connected CRE, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds

Figure 1: Pixel-level classification with a fully connected CRF. (a) Input image from the MSRC-21 dataset. (b)
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Solving MRFs and CRFs

e Each Cligue Modeled as Gibbs Distribution
’ Pr(x|D) = — exp( > wc<xc>)

ceC
e Unary Potentials and Pairwise potential

E(x) = Z uu(x, T Z Z Vp( x”xf + (optional higher order terms)

i Ije'r

unary term pairwise term

¢ Maximum-a-posteriori solutions are NP-Hard

® Message Passing algorithms :  belief propagation

e Move Making Algorithms :  «-expansion , «p-swap




Graph connections

1.Adjacent pixels are connected

e Textonboost CRF approach

2.Adjacent pixels are connected + super-pixels consistent

e Robust Pn CRF

3.All pixels are fully connected

e Efficient CRF (this paper)




Potential ; Texton

rectangle r texton t

(a) Input image (b) Texton map (c) Feature pair = (r,t) (d) Superimposed rectangles

¢ Responsible for most of the accuracy in all of the papers




Texton Boosting

(b) 69.6% (c) 70.3% (d) 72.2%

just pixel crf-no color cri-full

» TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class
Object Recognition and Segmentation

e Each pixel is only connected to its adjacent neighbors

e Jointly model the texture and shape a single feature




Adjacency CRF models

E(X)—Z ¢u(><:) + ) Yplxix)

]
unary term J€ palrW|se term

grid crf @ Efficient inference
» 1 second for 50’000 variables

@ Limited expressive power

@ Only local interactions

@ Excessive smoothing of object
boundaries

Shrinking bias

P. Krahenbiihl (Stanford) Efficient Inference in Fully Connected CRFs December 2011
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Adjacency CRF models

E() =" ulx)

] cJV; .
unary term ' pairwise term

grid crf @ Efficient inference
» 1 second for 50’000 variables

@ Limited expressive power

@ Only local interactions

@ Excessive smoothing of object
boundaries

» Shrinking bias

P. Krahenbiuihl (Stanford) Efficient Inference in Fully Connected CRFs December 2011



Operate On Pixels + Super-pixels

mearishifts \
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textonboost super pixel based higher order terms ground truth

* “Robust Higher Order Potentials for Enforcing Label
Consistency”- Kol1 et al.




Operate on Super-pixels + Pixels

e higher order potentials defined on super pixels to enforce regional
consistency

e soft label constraints using super-pixel consistency potentials

E(x) = Z‘/fi(xi) -}~ Z Vij(xi, xj) + Z‘lfc(xc),

ieV (i.j)e& ceS

unary pairwise super-pixel

e Super pixel term also models consistency within super pixel




Model definition

>
unary term pairwise term




Model definition

X)—Z Yy X/) ‘|‘> >j wp(XnXJ

] ]
unary term J> pairwise term

Gaussian edge potentials

(XHXJ) — XI7XJ Z W(m)k(m) fi f)
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Model definition

X)_Z ¢U(Xl "‘ _ wP(XHXJ)

I I
J> pairwise term

unary term

Gaussian edge potentials

K
o(x:5) = [ 1xi,9) |3 w8, )
m=1

@ Label compatibility function p




Model definition

Z 2pu(X/ ‘|‘> >1 wp XHXJ

unary term palrW|se term

Gaussian edge potentials

K

V(i) = ilxi, ) > wm k([ [ ])

m=1

@ Label compatibility function p

@ Linear combination of Gaussian kernels

1
K, 65) = exp(— 5 (F = H)Z(E; — 1)

@ Arbitrary feature space f;
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Model definition

Z %(X, ‘|'> >1 wp XHXJ

unary term palrW|se term

Gaussian edge potentials

K
¥p(Xi, xj) = M(Xi,Xj)Z w{m) k!
- Convolution is key to

@ Label compatibility function p efficiency

@ Linear combination of Gaussian kernels

1
K, 65) = exp(—5 (= §)Z(7(F; )

@ Arbitrary feature space f;

P. Krahenbuh!l (Stanford) Efficient Inference in Fully Connected CRFs December 2011 10 / 29



Detailed model definition

L — I (2) pi — pjl°
w03 )P 262

—_—¥ —

appearance kernel smoothness kernel

@ Label compatibility

> Potts model: (X, x;) = 1jx]
> Semi-metric model: pu(x;, x;) learned from data

@ Appearance kernel
» Color-sensitive model

@ Local smoothness
» Discourages pixel level noise

P. Krahenbiihl (Stanford) Efficient Inference in Fully Connected CRFs December 2011 11
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appearance kernel smoothness kernel
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Message Passing

e Uses Mean Field Approximation to minimize KL-divergence

e Efficiency through signal theory low pass filtering

e Separable low-pass Gaussian filters propagate information over
permutohedral lattice




Message Passing by high dimensional filtering

e Initialize graph with Unary potentials

¢ \While not converged

e Pass messages from each node to all other nodes

® Messages consist of the pairwise blur weighting

e Update node using compatibility transform




High-dimensional filtering [Paris & Durand 09]

Downsample input signal Q;(/)

2 |/

Blur the sampled signal o)
<l

Upsample to reconstruct the filtered
signal Q;(/)

P. Krahenbiihl (Stanford) Efficient Inference in Fully Connected CRFs December 2011 17 / 29



High-dimensional filtering [Paris & Durand 09]

Downsample input signal Q;(/)

Z N L

Blur the sampled signal )
P

Upsample to reconstruct the filtered
signal Q;(/)
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High-dimensional filtering [Paris & Durand 09]

@ Downsample input signal Q;(/)

@ Blur the sampled signal =
= -
@ Upsample to reconstruct the filtered *

signal Q;(/)
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High-dimensional filtering [Paris & Durand 09]

@ Downsample input signal Q;(/)
@ Blur the sampled signal

@ Upsample to reconstruct the filtered
signal Q;(/)




Permutohedral Lattice
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Number of iterations O iterations 1 iteration 2 iterations 10 iterations

(a) KL-divergence (b) Distributions Q (X ; = “bird”) (top) and Q(X; = “sky”) (bottom)
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| earned Parameters

e Unary Potentials learned using Joint Boost

* Allows classes to share boundaries and improves generalization

e \Weights for pairwise filtering found via L-BGFS using expectation
maximization

e Kernel Bandwidths hard to learn;

e Grid search used to pick best value




Results: MSRC

MSRC dataset Unary  Grid CRF
@ 591 images

@ 21 classes

building building building

car car car

Time | Global e road road road

Unary - 84.0
Grid CRF 1s 84.6
FC CRF 86.0

P. Krahenbuhl (Stanford) Efficient Inference in Fully Connected CRFs December 2011 21 / 29



Results: PASCAL VOC 2010

fully connected
PASCAL VOC 2010 dataset

@ 1928 images .

@ 20 classes + background
background

Time | Acc fully coamected
Unary - 27.6

Grid CRF || 255 | 2823 sheep
FC Potts || 0.5s | 29.1
FC label comp || 0.5s | 30.2

background baCkg "nou nd

. Krahenbiihl (Stanford) Efficient Inference in Fully Connected CRFs December 2011 25 / 29



Really Cool

Grid CRF Robust P" CRF Our approach Accurate grou

*[ine feature segmentation in 0.2 seconds




Reported Failures

background
bird

Our approach  Ground truth

road

void
Our approach Ground truth




Replicating

Results

ground truth

unary
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Replicating Results
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