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Multi-class image segmentation

Assign a class label to each pixel in the image
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Super pixels are hard to make

•Don’t make super pixels

meanshift ncut-10 ncut-30



Operate On Pixels Directly

• Pixel wise classification-  texture/local shape features



Consistency with MRF/CRF



36 
hours!



Efficient CRF’s   results:

0.2 s



Solving MRFs and CRFs

• Each Clique Modeled as Gibbs Distribution

• Unary Potentials  and Pairwise potential

•                                                                   + (optional higher order terms)

• Maximum-a-posteriori solutions are NP-Hard 

• Message Passing algorithms :   belief propagation

• Move Making Algorithms :    α-expansion ,  αβ-swap



Graph connections

1.Adjacent pixels are connected

• Textonboost CRF   approach

2.Adjacent pixels are connected + super-pixels consistent

• Robust Pn CRF  

3.All pixels are fully connected

• Efficient CRF (this paper) 



Unary Potential :  Texton Boost

• Responsible for most of the accuracy in all of the papers



Texton Boosting

• TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class 
Object Recognition and Segmentation

• Each pixel is only connected to its adjacent neighbors

• Jointly model the texture and shape a single feature

just pixel crf-no color crf-full



Adjacency CRF models

E (x) =
�

i

ψu(xi )� �� �
unary term

+

�

i

�

j∈Ni

ψp(xi , xj)� �� �
pairwise term

Efficient inference

� 1 second for 50�000 variables

Limited expressive power

Only local interactions

Excessive smoothing of object

boundaries

� Shrinking bias
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Operate On Pixels + Super-pixels

• “Robust Higher Order Potentials for Enforcing Label 
Consistency”- Koli et al.

meanshifts

textonboost ground truthsuper pixel based higher order terms



Operate on Super-pixels + Pixels

• higher order potentials defined on super pixels to enforce regional 
consistency

• soft label constraints using super-pixel consistency potentials

• Super pixel term also models consistency within super pixel

unary pairwise super-pixel



Model definition

E (x) =
�

i

ψu(xi )� �� �
unary term

+
�

i

�

j>i

ψp(xi , xj)� �� �
pairwise term

Gaussian edge potentials

ψp(xi , xj) = µ(xi , xj)
K�

m=1

w (m)k(m)(fi , fj)

Label compatibility function µ

Linear combination of Gaussian kernels

k(m)(fi , fj) = exp(−1

2
(fi − fj)Σ

(m)(fi − fj))

Arbitrary feature space fi
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P. Krähenbühl (Stanford) Efficient Inference in Fully Connected CRFs December 2011 10 / 29



Model definition

E (x) =
�

i

ψu(xi )� �� �
unary term

+
�

i

�

j>i

ψp(xi , xj)� �� �
pairwise term

Gaussian edge potentials

ψp(xi , xj) = µ(xi , xj)
K�

m=1

w (m)k(m)(fi , fj)

Label compatibility function µ

Linear combination of Gaussian kernels

k(m)(fi , fj) = exp(−1

2
(fi − fj)Σ

(m)(fi − fj))

Arbitrary feature space fi
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P. Krähenbühl (Stanford) Efficient Inference in Fully Connected CRFs December 2011 10 / 29



Model definition

E (x) =
�

i

ψu(xi )� �� �
unary term

+
�

i

�

j>i

ψp(xi , xj)� �� �
pairwise term

Gaussian edge potentials

ψp(xi , xj) = µ(xi , xj)
K�

m=1

w (m)k(m)( fi , fj )

Label compatibility function µ

Linear combination of Gaussian kernels

k(m)(fi , fj) = exp(−1

2
(fi − fj)Σ

(m)(fi − fj))

Arbitrary feature space fi
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Convolution is key to 
efficiency



Detailed model definition

ψp(xi , xj) = µ(xi , xj)

�
w (1) exp(−

|pi − pj |
2θ2α

−
|Ii − Ij |
2θ2β

) +

w (2) exp(−
|pi − pj |

2θ2γ
)

�

Label compatibility
� Potts model: µ(xi , xj) = 1[xi �=xj ]
� Semi-metric model: µ(xi , xj) learned from data

Appearance kernel
� Color-sensitive model

Local smoothness
� Discourages pixel level noise
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Message Passing

• Uses Mean Field Approximation to minimize KL-divergence

• Efficiency through signal theory low pass filtering 

• Separable low-pass Gaussian filters propagate information over 
permutohedral lattice 



Message Passing by high dimensional filtering

• Initialize graph with Unary potentials

• While not converged

•  Pass messages from each node to all other nodes

• Messages consist of the pairwise blur weighting

• Update node using compatibility transform



High Dimensional Filtering
High-dimensional filtering [Paris & Durand 09]

Downsample input signal Qj(l)

Blur the sampled signal

Upsample to reconstruct the filtered
signal Q j(l)
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Permutohedral Lattice



Message Passing



Learned Parameters

• Unary Potentials learned using Joint Boost

• Allows classes to share boundaries  and improves generalization

• Weights for pairwise filtering found via L-BGFS using expectation 
maximization

• Kernel Bandwidths hard to learn;

• Grid search used to pick best value 







Really Cool

•Fine feature segmentation in 0.2 seconds



Reported Failures



Replicating Results

ground truth unary crf



Replicating Results : overlay



Replicating Results

gt

crfunary


