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• Traditional ways of inferring depth

– Binocular disparity

– Structure from motion

– Defocus

• Given a single monocular image, how to infer 
absolute depth?

– Learn the relationship between image features 
and absolute depth
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Mean depth
(Paper #1)

Geometric stage
(Paper #2)

Dense depth map
(Paper #3)



• A. Torralba, A. Oliva., “Depth estimation from 
image structure,” PAMI, 24(9): 1-13, 2002

• Goal: estimate absolute mean depth of a 
scene based on scene structure

• This paper inspired the invention of GIST 
feature 



• Scenes at different depths have 
different spatial structures

– Panoramic views: 
Uniform texture zones along 
horizontal layers

– Mid-range urban environments:
Dominant long horizontal and 
vertical contours and square patterns

– Close-up views of objects:
Large flat surfaces with no dominant 
orientation



• Global spectral signature

– Defined as the amplitude spectrum of the entire 
image

– Man-made and natural scenes have disparate 
global spectral signatures



Man-made Natural

Specific examples:

On average:



• Local spectral signature

– Defined as the magnitude of the output of Gabor 
wavelet filters

– Not only differs between man-made and natural 
scenes, but is spatially non-stationary as well





• How do the global and local spectral 
signatures change with the mean depth of 
images?

– The answer to this question determines if it is 
feasible to estimate mean depth using those 
spectral signatures



Man-made



Natural



• Typical behavior of spectral signatures

– An increase of global roughness w.r.t. depth for 
man-made structures

– A decrease of global roughness w.r.t. depth for 
natural structures

– Local spectral signature becomes increasingly non-
stationary as depth gets large

– More biased towards horizontal and vertical 
orientations as depth increases



• Global spectral signature

– Amplitude spectrum is defined on a continuous 2-D 
frequency space

– Discretize it by sampling at specific frequency 
magnitudes and orientations

– Approximated by summing the energy of wavelet 
coefficients over the entire image at specific scales 
and orientations

– Termed as global energy, which encodes dominant 
orientations and scales in the image



• Global spectral signature (another variant)

– Wavelet coefficients at different scales and 
orientations are correlated

– Define the magnitude correlation

– Magnitude correlations encode degree of clutter 
of edges and shapes



• Local spectral signature

– The original local spectral signature has the same 
spatial resolution as the image

– Downsample it to contain only        pixels 

– Termed as local energy, which encodes local scales 
and orientations



• Dimension of global energy:

• Dimension of magnitude correlations:

• Dimension of local energy:

• Perform PCA to reduce the feature dimension 
to   



• Regress the mean depth     on feature vector

• Need to approximate the regression function

• Take a generative approach:

– Given a feature vector    , use Gaussian Bayes 
classifier to determine if the image belongs to 
man-made scene group or natural scene group



– Given each scene group, model the joint distribution 
of      and    as a two-level hierarchical mixture of 
Gaussians

where



• Note that the mean of     given     and cluster is 
a linear function of    , suggesting that the ML 
estimation of     and     is equivalent to LS 
linear regression



• Use EM algorithm to learn the mixture model

– E-step

– M-step



• Having learned the model,

– The estimate of      is given by a mixture of linear 
regressions 

– The confidence of the estimate is given by



• Ground truth generation

– Divide the entire training data set into man-made 
scene group and natural scene group

– Sort the images in each group according to their 
mean depths

– Humans estimate the mean depths of a portion of 
the images in each group

– Use a polynomial to fit the estimated mean depth 
as a function of the sorted rank



Using global energy features



Using local energy features



Comparison



• Scene category recognition



• Scale selection



• V. Nedovic, A. W.M. Smeulders, A. Redert and 
J.M. Geusebroek, “Depth Information by Stage 
Classification,” ICCV, 2007

• Goal: Estimate the geometric type of the 
global scene in an image



• Instead of directly regressing absolute depth, 
it may be helpful to classify the image into 
relatively few 3D scene geometries (stages) 
first

– This type of scene information narrows down 
possible locations, scale, and identities of 
individual objects





• Image gradient has different distributions as 
depth increases

– Makes it possible to use image gradient features 
to perform stage classification 





• Dataset

– Keyframes of the 2006 TRECVID video benchmark 
dataset

– Annotate 1241 TRECVID keyframes into one of the 
15 stage categories

– For each category, half for training and half for 
testing



• Evaluation

– Correct rate = 

– For a class that occupies p% of the dataset, the 
correct rate of random guess is 

p/K + (1-p)(K-1)/K, 

where K is the total number of classes

– When p is small, this measure is overly optimistic

true positives + true negatives
total number of images



TP

TN

FP

FN

TP + TN

TP + TN + FP + FN

is pretty large!



• Lower level of hierarchy – 12 classes
chance

86.42%

85.75%

84.42%

85.50%

82.71%

86.33%

87.08%

84.17%

82.71%

85.50%

80.75%

85.50%

84.74%



• My experiments

– Stanford Range Image Dataset

– Classify 271 images into 8 stage categories

– For each stage, 2/3 used for training and 1/3 for 
testing





• Confusion matrix
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• Some misclassified examples

should be

classified as

should be

classified as



• What if we use multi-scale features?

• For each image, I extracted features from 6 
levels of the corresponding pyramid, and 
performed PCA to keep the feature dimension 
the same as in the paper (64)

• Result: the overall accuracy increases to 
31.76%



• What if we use Gist features?

• The Gist features also undergo PCA to keep its 
dimension to be 64

• Still using multi-class SVM

• Result: the overall accuracy further increases 
to 40.00%



• Confusion matrix

Overall accuracy: 40.00%

Chance: 12.50%

28.57%

56.00%

66.67%

18.18%

22.22%

47.37%

Recall

0.00%

37.50%

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8



• What is we use replace multi-class SVM with 
simple k-NN?

• The accuracy turns out to be better! (42.35%)

• Fancy stuffs are not necessarily good



• A. Saxena, S. H. Chung, A. Y. Ng, “Learning 
Depth from Single Monocular Images,” NIPS, 
2005

• Goal: recover absolute depth value for each 
small patch of a single monocular image



• Texture intensity, edge directions and haze 
look different at different depths

– They can be extracted as cues to infer depth

• Inferring depth from the cues of an individual 
patch is not reliable

– Incorporate the cues of nearby patches

– Use MRF to enforce constraints



• For each patch

– Apply a filter bank on the intensity channel to 
extract texture energy

– Apply a low-pass filter         on the two color 
channels to capture haze.  

– Apply another filter bank on the intensity channel 
to extract edge directions



• The absolute and squared filter outputs are 
summed over all the pixels within the patch

– Each filter yields two values

– 17 filters in total

– Initial feature vector of dimension 34



• To incorporate 
contextual information

– Cues from the four 
immediate neighboring 
patches are included

– The process is repeated 
at three scales

– Cues from the column 
the patch lies in

– Final feature vector: 
19*34=646 dimensional



• These features are used to 
estimate how different the 
depths of two adjacent patches 
can be

• Measure the difference of the 
statistics of the two patches

– Uses the difference of the 
concatenated histograms of the 
17 filter outputs

– 10 bins for each histogram, 
yielding a dimension of 170



• The model

– Unary potential

• Linear predictor

• Uncertainty  reflected by         , which depends on the 
absolute depth feature       of the patch

• Different rows have different model parameters 
(camera is mounted horizontally)  



• The model

– Pairwise potential

• Encourage smooth depth map

• Strength of smoothness constraint controlled by          ,
which is determined by the appearance difference of 
neighboring patches (captured by relative depth feature)

• Different rows have different model parameters 



• The model

– Pairwise potential

• Multi-scale model
– At the smaller scale

– At the larger scale

Allows for large discontinuity in depth

Appearance very different

Appearance similar

Strong constraint on depth continuity



• Learning parameters

– Unary parameters

• : linear least square problem

• , choose       to fit the expected value of                                
, s.t.

– Pairwise parameters

• , choose          to fit the expected value 
of                          , s.t.        



• The model

– Replace square with absolute value

– Replace variance parameters with spread parameters

• Learning parameters

– Choose      to minimize 

– Fit       to the expected value of  

– Fit         to the expected value of 



• Gaussian model

– The log-likelihood is quadratic in    , the MAP 
estimate is found in closed form

• Laplacian model

– Use linear programming to find MAP estimate 



• Ground truth depth maps collected using a 3D 
laser scanner

• 425 image+depthmap pairs

• 75% for training, 25% for testing

• Transform all the depths to a log scale before 
training



– Multiscale and column features help a lot

– Pairwise terms further improves performance



– Laplacian model outperforms Gaussian model

• empirically appears Laplacian

• Heavier tail more robust to outliers and errors

• Laplacian tends to model sharp transitions better





• Not only do we want to estimate the depth 
map, but we want to infer the orientations of 
surfaces as well

• Follow-up paper:
A. Saxena, M. Sun, A. Y. Ng, “Make3D: 
Learning 3-D Scene Structure from a Single 
Still Image,” PAMI, 2008



• How to relate surface orientation with depth?

– Plane equation:                 , where      represents both 
the 3D location and orientation of the surface

– : unit vector from the camera center to a point 
lying on the plane. This vector is known.

– The coordinate of the point is 

– Therefore, 



• Modification of the model
– Replace image patches with superpixels

– For each superpixel, extract the features mentioned in 
the previous paper, plus shape and location features

– In unary potential, relative error is used

– is the confidence of the linear predictor, which is 
learned as another linear function of the superpixel
features



• Modification of the model
– In pairwise potential, a pair of surfaces is penalized for 

deviating from
• Being connected

• Being co-planar

• Being co-linear

– Strength of penalty is different under different 
conditions
• When there is evidence that two superpixels are separated 

by an occlusion boundary, the first two penalties are 
alleviated accordingly

• When there is evidence that two superpixels lie on a 
common straight long line, the third penalty is imposed 
accordingly  



• Quantitative comparison

– Spatial support is important

– Geometric constraints help, especially qualitatively



• Qualitative comparison



• More impressive results




