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Problem

* Traditional ways of inferring depth
— Binocular disparity
— Structure from motion
— Defocus

* Given a single monocular image, how to infer
absolute depth?

— Learn the relationship between image features
and absolute depth
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Paper #1

* A.Torralba, A. Oliva., “Depth estimation from
image structure,” PAMI, 24(9): 1-13, 2002

* Goal: estimate absolute mean depth of a
scene based on scene structure

* This paper inspired the invention of GIST
feature



Intuition

Scenes at different depths have
different spatial structures

— Panoramic views:
Uniform texture zones along
horizontal layers

— Mid-range urban environments:
Dominant long horizontal and
vertical contours and square patterns

— Close-up views of objects:
Large flat surfaces with no dominant
orientation




Image Structure Representation

* Global spectral signature

— Defined as the amplitude spectrum of the entire
Image
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— Man-made and natural scenes have disparate
global spectral signatures



Specific examples:

On average:

Man-made Natural



Image Structure Representation

* Local spectral signature

— Defined as the magnitude of the output of Gabor
wavelet filters

I(x,k) = Y i(¥) he(x = X) A(x k) = |I(x, k)|

T’

— Not only differs between man-made and natural
scenes, but is spatially non-stationary as well
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Spectral Signature vs. Mean Depth

* How do the global and local spectral
signatures change with the mean depth of
images?

— The answer to this question determines if it is

feasible to estimate mean depth using those
spectral signatures
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Spectral Signature vs. Mean Depth

* Typical behavior of spectral signatures

— An increase of global roughness w.r.t. depth for
man-made structures

— A decrease of global roughness w.r.t. depth for
natural structures

— Local spectral signature becomes increasingly non-
stationary as depth gets large

— More biased towards horizontal and vertical
orientations as depth increases



Low-Dimensional Representation of
Spectral Signature

* Global spectral signature

— Amplitude spectrum is defined on a continuous 2-D
frequency space

— Discretize it by sampling at specific frequency
magnitudes and orientations

— Approximated by summing the energy of wavelet
coefficients over the entire image at specific scales

and orientations ) N
A=) (k)

— Termed as global energy, which encodes dominant
orientations and scales in the image



Low-Dimensional Representation of
Spectral Signature

* Global spectral signature (another variant)

— Wavelet coefficients at different scales and
orientations are correlated

— Define the magnitude correlation

A? = I(x, )] I(x, 4)

— Magnitude correlations encode degree of clutter
of edges and shapes




Low-Dimensional Representation of
Spectral Signature

* Local spectral signature

— The original local spectral signature has the same
spatial resolution as the image

— Downsample it to contain on

A5 (x, k) = {|I[K! k)

vy M? pixels
”lﬂf}

— Termed as local energy, which encodes local scales

and orientations



Low-Dimensional Representation of
Spectral Signature

* Dimension of global energy: K
* Dimension of magnitude correlations: k2

* Dimension of local energy: M2K

e Perform PCA to reduce the feature dimension
to L



Learning to Estimate Mean Depth
from Feature Vector

* Regress the mean depth D on feature vectorv
* Need to approximate the regression function

ED|vI = [ Dy (D]v)dD

* Take a generative approach:

— Given a feature vector v, use Gaussian Bayes
classifier to determine if the image belongs to
man-made scene group or natural scene group



Learning to Estimate Mean Depth
from Feature Vector

— Given each scene group, model the joint distribution
of D and v as a two-level hierarchical mixture of
Gaussians

N,

f(D,v|art) = Z g(D|v,ci) g(v|e)ple:)
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Learning to Estimate Mean Depth
from Feature Vector

* Note that the mean of D given v and cluster is
a linear function of v, suggesting that the ML
estimation of a; and & is equivalent to LS
linear regression



Learning to Estimate Mean Depth
from Feature Vector

 Use EM algorithm to learn the mixture model
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Learning to Estimate Mean Depth
from Feature Vector

 Having learned the model,

— The estimate of D is given by a mixture of linear
regressions

SN (@i +v7h) g(v| ) ple:)

D= ,H,_
> i19(v|ei) ple;)

— The confidence of the estimate is given by

N, 9 | |
o5, = E[(D — D)’|v] = >_i-19; 9(v|c)ple)
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Experimental Results

* Ground truth generation

— Divide the entire training data set into man-made
scene group and natural scene group

— Sort the images in each group according to their
mean depths

— Humans estimate the mean depths of a portion of
the images in each group

— Use a polynomial to fit the estimated mean depth
as a function of the sorted rank



Using global energy features
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Using local energy features
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Application

* Scene category recognition
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Application

e Scale selection
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Paper #2

* V. Nedovic, A. W.M. Smeulders, A. Redert and
J.M. Geusebroek, “Depth Information by Stage
Classification,” ICCV, 2007

* Goal: Estimate the geometric type of the
global scene in an image



Intuition

* |nstead of directly regressing absolute depth,
it may be helpful to classify the image into
relatively few 3D scene geometries (stages)
first

— This type of scene information narrows down
possible locations, scale, and identities of
individual objects
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Intuition

* I[mage gradient has different distributions as
depth increases

— Makes it possible to use image gradient features
to perform stage classification



Classification

input image
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Experimental Results

e Dataset

— Keyframes of the 2006 TRECVID video benchmark
dataset

— Annotate 1241 TRECVID keyframes into one of the
15 stage categories

— For each category, half for training and half for
testing



Experimental Results

* Evaluation
true positives + true negatives

total number of images

— Correct rate =

— For a class that occupies p% of the dataset, the
correct rate of random guess is

p/K + (1-p)(K-1)/K,

where K is the total number of classes
— When p is small, this measure is overly optimistic



Experimental Results

TP + TN

TP+ TN+ FP +FN

is pretty large!




Experimental Results

* Lower level of hierarchy — 12 classes

class name % 1n dataset % correct
1 sky+bkg+gnd 6.3% 16.7%
2 gnd+bkg 7.1% 8.2%
3 sky+gnd 8.7% 60.7%
4 end 7.4% 44.7%
5 egnd+diagBkg 10.75% 26.9%
6 diagBkg 6.4% 14.3%
7 box 5.5% 8.1%
8 1 side-wall 9% 13.6%
9 corner 10.75% 34.3%
10 tab+pers+bkg 7.4% 48%
11 pers+bkg 13.1% 42 5%
12 no depth 7.4% 22.4%

AVG: 28.4%

chance
86.42%
85.75%

84.42%
85.50%
82.71%
86.33%

87.08%
84.17%
82.71%
85.50%

80.75%
85.50%
84.74%



Experimental Results

* My experiments
— Stanford Range Image Dataset
— Classify 271 images into 8 stage categories

— For each stage, 2/3 used for training and 1/3 for
testing






Experimental Results

#all TP
Overall accuracy =

* Confusion matrix #all images

Overall accuracy: 24.71% Recall

28.57%

40.00%
33.33%
18.18%

0.00%
26.32%

12.50%
0.00%

Chance: 12.50%



Experimental Results

* Some misclassified examples

- should be
classified as
- @8 | should be

classified as




Experimental Results

e What if we use multi-scale features?

* For each image, | extracted features from 6
levels of the corresponding pyramid, and
performed PCA to keep the feature dimension
the same as in the paper (64)

e Result: the overall accuracy increases to
31.76%



Experimental Results

What if we use Gist features?

The Gist features also undergo PCA to keep its
dimension to be 64

Still using multi-class SVM

Result: the overall accuracy further increases
to 40.00%



Experimental Results

e Confusion matrix

Overall accuracy: 40.00% Recall

28.57%

56.00%
66.67%
18.18%

22.22%
47.37%

37.50%
0.00%

Chance: 12.50%



Experimental Results

 What is we use replace multi-class SVM with
simple k-NN?

 The accuracy turns out to be better! (42.35%)

* Fancy stuffs are not necessarily good



Paper #3

* A.Saxena, S. H. Chung, A. Y. Ng, “Learning
Depth from Single Monocular Images,” NIPS,
2005

* Goal: recover absolute depth value for each
small patch of a single monocular image



Intuition

e Texture intensity, edge directions and haze
look different at different depths

— They can be extracted as cues to infer depth

* |Inferring depth from the cues of an individual
patch is not reliable

— Incorporate the cues of nearby patches
— Use MRF to enforce constraints



Extracting Features for Absolute Depth

* For each patch

— Apply a filter bank on the intensity channel to
extract texture energy

— Apply a low-pass filter - on the two color
channels to capture haze.

— Apply another filter bank on the intensity channel
to extract edge directions




Extracting Features for Absolute Depth

 The absolute and squared filter outputs are
summed over all the pixels within the patch

— Each filter yields two values
— 17 filters in total
— Initial feature vector of dimension 34

Ei{ﬂ'] — Z[I,y]Epatch[i} |"'TI:‘T" y) * Fﬂ(T* y”k‘ k= {1"2}



Extracting Features for Absolute Depth

* To Incorporate A
. . Column nz- c2

contextual information reares [ [c3
— Cues from the four = A5

A1

immediate neighboring | [s[se[x]
patches are included

B2 Absolute
Feature
Vector

for Patch CO

n\

Scale 9x

— The process is repeated
at three scales

— Cues from the column
the patch lies in

— Final feature vector:
19*34=646 dimensional



Extracting Features for Relative Depth

e These features are used to

. . Relative
estimate how different the Footuran
depths of two adjacent patches
can be .

e Measure the difference of the B
statistics of the two patches 7
— Uses the difference of the e

stograms

concatenated histograms of the
17 filter outputs

— 10 bins for each histogram,
vielding a dimension of 170



Gaussian MIRF Model

* The model

' 2
P(d|X:9=J)=%c~}:p( Z(d(lj_x ) Y‘Y‘ y‘ d(S) d(S]'))

B 1 s=11i=1 jeN,(

— Unary potential
 (di(1) — 2T6,)?

- *
.}Ug

i=1 “=1r

* Linear predictor

* Uncertainty reflected by o, which depends on the
absolute depth feature x; of the patch

» Different rows have different model parameters
(camera is mounted horizontally)



Gaussian MIRF Model

* The model

— Pairwise potential

* Encourage smooth depth map

e Strength of smoothness constraint controlled by o3, _ ,
which is determined by the appearance difference of
neighboring patches (captured by relative depth feature)

» Different rows have different model parameters



Gaussian MIRF Model

* The model

— Pairwise potential

Ty > oo ner

s=1i=1 jeN,|( ETS

e Multi-scale model
— At the smaller scale

Appearance very different
Allows for large discontinuity in depth
— At the larger scale

Appearance similar
Strong constraint on depth continuity




Gaussian MIRF Model

Learning parameters
— Unary parameters Z (d; (1) — x76,.)?
* #,.:linear least square problem —1 201,

« 0 = vlz;, choose v, tofit the expected value of

(di(r) — 0T z:)? , st v, > 0

3

_y*y* y* ff'[S) d(SUE

— Pairwise parameters s=1 i=1 jEN,(

e 05 = ul |yus| choose u,.; to fit the expected value

of (d;(s) —d;(s))?, s.t. ups = 0




Laplacian MRF Model

* The model

P{dix:w——exp( LU 3 S o E s “')

s=1 i=1 FEN (i)

— Replace square with absolute value
— Replace variance parameters with spread parameters

* Learning parameters
— Choose 4, to minimizeg di(1) — z] 6|
— Fit M- to the expected value of |di(1) — 26,
— Fit A2s to the expected value of |di(s) — d;(s)|



Depth Inference in Test Image

e Gaussian model

— The log-likelihood is quadratic in d , the MAP
estimate is found in closed form

* Laplacian model
— Use linear programming to find MAP estimate



Experimental Results

Ground truth depth maps collected using a 3D
laser scanner

425 image+depthmap pairs
75% for training, 25% for testing

Transform all the depths to a log scale before
training



Experimental Results

Table 1: Effect of multiscale and column features on accuracy. The average absolute errors
(RMS errors gave similar results) are on a log scale (base 10). H; and Hs represent sum-
mary statistics for £ = 1, 2. 5. 55 and S5 represent the 3 scales. C represents the column
features. Baseline 1s trained with only the bias term (no features).

FEATURE A1l FOREST CAMPUS INDOOR
BASELINE 295 283 343 228
GAUSSIAN (51.52.53. H1.Hs.no neighbors) 162 159 166 165
GAUSSIAN (S,. Hy.H2) 171 164 189 173
GAUSSIAN (51.52, Hy.H3) 155 151 164 157
GAUSSIAN (5. 52.53. Hy.H3) 144 144 143 144
GAUSSIAN (51.52.53. C. Hy) 139 140 141 122
GAUSSIAN (51.52.55. C. H1.H>) 133 135 132 124
LAPLACIAN 132 133 142 084

— Multiscale and column features help a lot
— Pairwise terms further improves performance



Experimental Results

Table 1: Effect of multiscale and column features on accuracy. The average absolute errors
(RMS errors gave similar results) are on a log scale (base 10). H; and Hs represent sum-
mary statistics for £ = 1, 2. 5. 55 and S5 represent the 3 scales. C represents the column
features. Baseline 1s trained with only the bias term (no features).

FEATURE ALL FOREST (CAMPUS INDOOR
BASELINE 295 283 343 228
(GAUSSIAN (51.52.53. Hi.Hs.no neighbors) .162 159 166 165
(GAUSSIAN (5. H1.H2) 171 164 189 173
(GAUSSIAN (5,.5:. H,.H3) 155 151 164 157
GAUSSIAN (5. 52.53. H{.H3) 144 144 143 144
GAUSSIAN (51.5:.55. C. Hy) 139 140 141 122
GAUSSIAN (51.52.55. C. H1.H>) 133 135 132 124
LAPLACIAN 132 133 142 084

— Laplacian model outperforms Gaussian model
» (d; —d;) empirically appears Laplacian
* Heavier tail more robust to outliers and errors
* Laplacian tends to model sharp transitions better



MMM( mediced by Gauszian modeal (columm 3),

prodcted deptizmap by L ..qlaan;)aodel(cohm-i) =t viewed in color)



Further Extension...

* Not only do we want to estimate the depth
map, but we want to infer the orientations of

surfaces as well

* Follow-up paper:
A. Saxena, M. Sun, A. Y. Ng, “Make3D:
Learning 3-D Scene Structure from a Single
Still Image,” PAMI, 2008



Further Extension...

 How to relate surface orientation with depth?

plane with

Camera parameter (¥

center e

— Plane equation: o’ g =1, where o represents both
the 3D location and orientation of the surface

— R;:unit vector from the camera center to a point
lying on the plane. This vector is known.

— The coordinate of the point is R; 4;
— Therefore, d; = 1/R! a



Further Extension...

 Modification of the model
— Replace image patches with superpixels

— For each superpixel, extract the features mentioned in
the previous paper, plus shape and location features

— In unary potential, relative error is used

&1'..5; _di-si — 1
di.sf-, di.s;

_Z Z”Ls I r,s ﬂi -riTs HT}_]-I

i si=1

(dis;) —1 =R}, ai(x] 0r) —

— 144, iS the confidence of the linear predictor, which is
learned as another linear function of the superpixel
features



Further Extension...

e Modification of the model

— In pairwise potential, a pair of surfaces is penalized for
deviating from

. T Tr g
 Being connected  —¥ij|(Hi s, — By 05)d]
* Being co-planar —yi'jl(R;je&i — RL;_; a)dge
° . . T T &
Being co-linear —yi;|(Rj,s; 0 — Rj o, )|
— Strength of penalty is different under different
conditions

* When there is evidence that two superpixels are separated
by an occlusion boundary, the first two penalties are
alleviated accordingly

 When there is evidence that two superpixels lie on a
common straight long line, the third penalty is imposed
accordingly



Further Extension...

* Quantitative comparison

RESULTS: QUANTITATIVE COMPARISON OF VARIOUS METHODS.

METHOD CORRECT | % PLANES | log,, REL
(%) CORRECT
SCN NA NA 0.198 0.530
HEH 33.1% 50.3% 0.320 1.423
BASELINE-1 0% NA 0.300 0.698
NO PRIORS 0% NA 0.170 0.447
POINT-WISE MRF 23% NA 0.149 0.45%8
BASELINE-2 0% 0% 0.334 0.516
NO PRIORS 0% 0% 0.205 0.392
CO-PLANAR 45.7% 57.1% 0.191 0.373
PP-MRF 64.9% 71.2% 0.187 0.370

— Spatial support is important

— Geometric constraints help, especially qualitatively




Further Extension...

e Qualitative comparison

(© (@ (e)

Fig. 11. (@) Orginal Image, (b) Ground truth depthmap, (c) Depth from image features only, (d) Point-wise MRF. (e) Plane parameter MRF. (Best viewed
in color.)



Further Extension...

* More impressive results

Fig. 13. Typical results from our algorithm. (Top row) Original images, (Bottom row) depthmaps (shown in log scale. yellow is closest. followed by red
and then blue) generated from the images using our plane parameter MRF. (Best viewed in color:)



Thank you!



