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What is a Boundary?
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How do humans do this?

Low-level cues!?

— Brightness?! Color? Texture!
Mid-level cues!?

— Continuity? Closure! Symmetry?
High-level cues?

— Context? Object recognition?

This paper: what is the optimal way to use
LOCAL information?




—— Non-Boundaries — Boundaries
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* Psychophysics of localization:
— Multi-Attribute Boundaries [Rivest/Cavanagh 1996]

* |luminance, color, motion, texture

* Information pooled prior to localization
— Texture Boundaries [Landy/Kojima 2001]
* frequency, orientation, contrast
* Their approach: Supervised learning to optimally
combine boundary cues.
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Brightness and Color Features

1976 CIE L*a™b* color space
* Brightness Gradient BG(x,y,r,0)
— %2 difference in L* distribution

 Color Gradient CG(x,y,,0)

— 2 difference in a* and b*
distributions
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» Texture Gradient TG(x,y,r,0)
— %2 difference of texton histograms

— Textons are vector-quantized filter outputs
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Cue Combination Models

* Classification Trees
— Top-down splits to maximize entropy, error bounded
* Density Estimation

— Adaptive bins using k-means

* Logistic Regression, 3 variants
— Linear and quadratic terms
— Confidence-rated generalization of AdaBoost (Schapire&Singer)

* Hierarchical Mixtures of Experts (Jordan&Jacobs)
— Up to 8 experts, initialized top-down, fit with EM

* SupportVector Machines (1ibsvm, Chang&Lin)

— Gaussian kernel, v-parameterization

»> Range over bias, complexity, parametric/non-parametric
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Classifier
Comparison
0.75
C
8 ;
] f
0 |
al f
— Eiassifi cati:::n Tree F=IiZI .68
nogk| = Density Estimate F=0.67 | ... .. .. . J]
' Logistic Regressicn F=0.67
— Boosted Logistic F=0.67
w— Cuadratic Logistic F=0.67
=== Hier. Mix. of Experts F=0.67
Support Vector Machine F=0.67
0 : : :
0 0.25 0. 0.75 1

Recall



.1

Various Cue
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Two Decades
of Local
Boundary
Detection
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Human vs machine on local patches
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Conclusion

A simple linear model is sufficient for cue combination
— All cues weighted approximately equally in logistic
— Linear model supported by psychophysics

Texture gradients are a powerful and necessary cue

Significant improvement over state-of-the-art in local
boundary detection

—  P,(x,y,0) good for higher-level processing

Human performance on patches??
— ECVP03



The End



