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End-to-end encryption provides confidentiality

Attacker can’t see data contents
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Access patterns reveal private data

[IKK12], [CGPR15], [KKNO16], [GLMP19], [KPT19]

ACCeSS patterns: how user accesses data.
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Oblivious storage (ORAM) protects access patterns
[GO96], SSS ORAM, PathORAM, RingORAM, Oblix, Shroud, TaoStore, Obladi, PrivateFsS, ...
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System setup

Oblix, ZeroTrace, Obliviate

Untrusted cloud

HW enclave setup supports
Multiple users and reduces
network interaction

@
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Clients trust each other for
simplicity (see paper)
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Attacker can view
-network communication patterns
-memory access patterns inside enclave
but not enclave contents



Existing systems have scalability bottlenecks

Scalability bottleneck:
- Coordination required for every request
- Cannot securely distribute
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Existing systems have scalability bottlenecks

Scalability bottleneck:

- Coordination required for every request
- Cannot securely distribute

Most systems are tree-based and
hide locations of objects in the tree.

Common bottlenecks:
-Location metadata
- Tree root




Existing systems have scalability bottlenecks

Scalability bottleneck: v\!‘ e
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Goal of this talk:

How can we bulld an oblivious object store that
handles high throughput by scaling like a
plaintext object store”



This talk: Scalable nodes for oblivious object
repository



This talk: Snoopyc’e



This talk: Snoopyc’e

Snoopy IS an oblivious object store that scales like
plaintext storage.

/\ /\
0.7k ops/sec
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{j = HW enclave
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Outline

1. Design idea
2. Load balancer
A. Batch structure
B. Oblivious algorithms

3. SUbORAM
4. Evaluation
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¢ Building Snoopy

Classic techniques
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¢ Building Snoopy

SUbORAMS

Classic techniques
Partitioning
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¢ Building Snoopy
Load balancers SubORAMSs
Classic techniques
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¢ Building Snoopy

Classic techniques
Partitioning
Batching

Naively insecure
Batches sent to subORAMS reveals — —
request distribution

L oad balancers SubORAMSs
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¢ Building Snoopy
Classic techniques
Partitioning

Batching

L oad balancers SubORAMSs

%

@ Naively insecU Goal #1 (Security): Hide access patterns

Satches sent to s . " .
request distributio -Batch size only depends on public information

Goal #2 (Scalability): Add load balancers or
subORAMSs to increase throughput
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¢ Building Snoopy

Classic techniques
Partitioning
Batching

L oad balancers SubORAMSs

Naively insecure

Batches sent to subORAMS reveals
request distribution

, Our contributions / \
Techniques that enable batching +
partitioning with security + scalability Asthma
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Outline

2. Load balancer
A. Batch structure @
B. Oblivious algorithms

3. SUbORAM
4. Evaluation

L oad balancers SubORAM
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"¢ Handling skewed workloads

L oad balancers SubORAMSs

If every client requests the same
object, then batch size = total requests

COVID COVID
— not scalable!
. Deduplication COVID
Now we only need to handle distinct
requests.

COV/ \

Flu
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c.# Securely setting batch size B

Requirements b= 17117 —!b

-Computable with public information
-Negligible overtlow probability

High-throughput — many concurrent requests.

After deduplication, requests are spread
across subORAMSs (x) evenly.

. Don't need to add many dummy
reguests to have secure batch size.

m 000000000
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c.# Securely setting batch size B

Requirements

-Computable with public information
-Negligible overtlow probability

Can model as a balls-into-bins problem.

. We contribute a bound that mee

'S both

requirements and provides scalabilr

.
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c.# Securely setting batch size B

# SUbORAMs: 2 10 =20 A: =0 (no security) =80 =128
= 200 >
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Real requests SubORAMs
Requests 1, dummy overhead | SubORAMs T, request capacity 1

(and dummy overhead 1)
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"¢ Attacker cannot cause overflow it high robability)

Attacker’s goal: Overflow request batch

SNoopy’s defenses:

- Deduplication (identical requests %
overflow)

- Hidden mapping of requests to
subORAMSs (keyed hash)

- Qblivious reguest routing

By balls-into-bins analysis, attacker cannot Asthma

overflow with high probability.
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Outline

2. Load balancer

B. Oblivious algorithms @
3. SUbORAM
4. Evaluation
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Designing oblivious algorithms

oﬁ

Attacker can view

-network communication patterns
-memory access patterns inside enclave
but not enclave contents

Memory access patterns should not leak information about requests.
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Oblivious building blocks

Perform compare-and-swaps In fixed, predefined order

- -

Oblivious sort Oblivious compaction
O(nlog” n) O(nlogn)

[Batcher68] [Goodrich11]
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Constructing batches obliviously

Obj 34
Obj 22
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Matching subORAM responses to client requests

Same key ideas from constructing batches (see paper for details)

Need to:
- Filter out dummies

- Propagate subORAM responses to potentially multiple client requests
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Outline

A /@

3. SubORAM @
4. Evaluation
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Designing the SubORAM

ORAMs traditionally prioritize latency/communication for ﬁ §
individual requests In the client-server model. O

- [rees or hierarchical structures support logarithmic access times.
- Making client algorithms oblivious adds overhead [Oblix, CircuitORAM]
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Designing the SubORAM

ORAMs traditionally prioritize latency/communication for ﬁ i
individual requests in the client-server model. O

- [rees or hierarchical structures support logarithmic access times.
- Making client algorithms oblivious adds overhead [Oblix, CircuitORAM]

We instead prioritize throughput for batches of distinct requests Iin the
hardware-enclave setting.
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Signal’s private contact discovery

For each user, look up In
oblivious hash table

Lookup time: O(1)

User’s n contacts

Oblivious

hash table

_——

, All Signal contacts
Creation time: O(n-)

Maps to our setting: contacts = requests, only possible with distinct requests

- Performance: oblivious hash table construction slow for many requests

- Security: Do not size buckets to prevent overflow
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Choosing an oblivious hash table

Attempt #1: Fix overtlow problem by dynamically sizing hash buckets.
Insecure: Object more likely to be requested if hashed to big bucket.

’r

—

Obj 45
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Choosing an oblivious hash table

Attempt #1: Fix overtlow problem by dynamically sizing hash buckets.
@ Insecure: Object more likely to be requested if hashed to big bucket.

We need a bucket size such that the overflow probabillity is negligible.
... wait, didn’t we already do this?

v

—

Obj 45
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Choosing an oblivious hash table

Attempt #2: Set hash bucket size using our bound for the load balancer.

—lp

Obj 45
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Choosing an oblivious hash table

Attempt #2: Set hash bucket size using our bound for the load balancer.

- Inefficient: Load balancer bound optimized for large batch sizes.
- We want small bucket sizes (an access requires scanning entire bucket).

Obj 45
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Choosing an oblivious hash table

., Solution: Oblivious two-tier hash table [CGLS17]

- Overflow requests placed into second hash table — smaller buckets!

Obj 45



Our subORAM design

For stored object, look up In
oblivious hash table
- Write: update stored object

n distinct requests - Read: update hash table entry

Lookup time: O(1)

Two-tier

oblivious
hash table -

All stored objects

Creation time: O(n lc)g2 n)
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="# Contributions

Oblivious algorithms

SUbORAM design and

42

see paper

Performance
requirements

System
configuration

see paper



Outline
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"¢ Evaluation

-18 Azure DCsv2 machines
4-core Intel Xeon CPUs with Intel SGX
-2M objects, 1608 object size

Compare to:
-Obladi: ORAM with trusted proxy, optimized for throughput (batch size 500)
-Oblix: ORAM for hardware enclaves
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"¢ Evaluation
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="# Evaluation
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="# Evaluation
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="# Evaluation
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="# Evaluation

Snoopy 1000ms
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"¢ Conclusion

SNoopy 1S an oblivious object store that scales like plaintext
storage.

" @ Thanks!

Emma Dauterman
edauterman@berkeley.edu

https://eprint.1acr.org/2021/1280.pdf
https://github.com/ucbrise/snoopy
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