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End-to-end encryption provides confidentiality
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Attacker can’t see data contents 

Medical disease store Doctor 
COVID Flu Asthma

?



Access patterns reveal private data  
[IKK12], [CGPR15], [KKNO16], [GLMP19], [KPT19]
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Access patterns: how user accesses data.  

Charlie has 
COVID! 

Get obj 1

Medical disease store 

COVID Flu Asthma
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Doctor 

Watch accesses over time
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Oblivious storage (ORAM) protects access patterns 
[GO96], SSS ORAM, PathORAM, RingORAM, Oblix, Shroud, TaoStore, Obladi, PrivateFS, …
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Lookup 
“COVID”

Oblivious disease store Doctor 

?



System setup  
Oblix, ZeroTrace, Obliviate

HW enclave Storage 

Untrusted cloud

Clients trust each other for 
simplicity (see paper) Attacker can view 

-network communication patterns 
-memory access patterns inside enclave 
but not enclave contents
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HW enclave setup supports 
multiple users and reduces 
network interaction



Existing systems have scalability bottlenecks
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Scalability bottleneck: 
- Coordination required for every request 
- Cannot securely distribute 



Existing systems have scalability bottlenecks
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Asthma

COVID
Most systems are tree-based and 
hide locations of objects in the tree.

Common bottlenecks: 
-Location metadata 
-Tree root

Scalability bottleneck: 
- Coordination required for every request 
- Cannot securely distribute 



Existing systems have scalability bottlenecks
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Most systems are tree-based and 
hide locations of objects in the tree.

Common bottlenecks: 
-Location metadata 
-Tree root COVID

Flu

Asthma

Oblivious 

Plaintext 

Scalability bottleneck: 
- Coordination required for every request 
- Cannot securely distribute 

Flu
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Goal of this talk: 

How can we build an oblivious object store that 
handles high throughput by scaling like a 
plaintext object store? 
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This talk: 
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Scalable nodes for oblivious object 
repository



This talk: Snoopy
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This talk: Snoopy
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Snoopy is an oblivious object store that scales like 
plaintext storage.

72k ops/sec

130k ops/sec

26k ops/sec

1.1k ops/sec
Oblix

Obladi
6.7k ops/sec

= HW enclave
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Building Snoopy
Classic techniques 
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Building Snoopy
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Building Snoopy

17

Load balancers
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Batching



Building Snoopy
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Batches sent to subORAMs reveals 
request distribution 



! Naively insecure 
Batches sent to subORAMs reveals 
request distribution 

Building Snoopy
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COVID

Flu

Asthma

Load balancers SubORAMs

Goal #1 (Security): Hide access patterns 
-Batch size only depends on public information 

Goal #2 (Scalability): Add load balancers or 
subORAMs to increase throughput

Classic techniques 
Partitioning 
Batching



Building Snoopy
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"Our contributions 
Techniques that enable batching + 
partitioning with security + scalability 

! Naively insecure 
Batches sent to subORAMs reveals 
request distribution 

Classic techniques 
Partitioning 
Batching COVID

Flu

Asthma

Load balancers SubORAMs
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Handling skewed workloads
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If every client requests the same 
object, then batch size = total requests 

 not scalable!→ COVID

Flu

Asthma

"Deduplication 
Now we only need to handle distinct 
requests.

COVID

COVID

COVID

COVID

Load balancers SubORAMs
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High-throughput  many concurrent requests.→
After deduplication, requests are spread 
across subORAMs ( ) evenly.≈

Securely setting batch size B
BRequirements 

-Computable with public information 
-Negligible overflow probability

"Don’t need to add many dummy 
requests to have secure batch size.
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Can model as a balls-into-bins problem.

"We contribute a bound that meets both 
requirements and provides scalability.

B

Securely setting batch size B
Requirements 
-Computable with public information 
-Negligible overflow probability
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Securely setting batch size B
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Figure 3. Dummy request over-
head. A 50% overhead means for
every two real requests there is
one dummy request.
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Figure 4. The total real request
capacity of our system for an
epoch, assuming 1K requests
per subORAM per epoch.

would be to set 5 (',() ='; this ensures that even if all the
requests are for the same object, no request was potentially
dropped. However, this approach is not scalable because ev-
ery subORAM would need to process a request for every
client request. We re�ne this approach in two steps.
Deduplication to address skew. When assembling a batch
of requests, the load balancer can ensure that all requests in a
batch are for distinct objects by aggregating reads and writes
for the same object (for writes, we use a “last write wins” pol-
icy) [26]. Deduplication allows us to combat workload skew.
If the load balancer receives many requests for object A and
a single request for object B, the load balancer only needs
to send one request for object A and one request for object
B. Deduplication simpli�es the problem statement; we now
need to distribute a batch of at most ' unique requests across
subORAMs. This reframing allows us to achieve security
with high probability for 5 (',()<' if we distribute objects
randomly across subORAMs, as we now do not have to worry
about the case where all requests are for the same object.
Choosing a batch size. Given ' requests and ( subORAMs,
we need to �nd the batch size ⌫ such that the probability that
any subORAM receives more than ⌫ requests is negligible
in our security parameter _. Like many systems that shard
data, we use a hash function to distribute objects across
subORAMs, allowing us to recast the problem of choosing ⌫
as a balls-into-bins problem [76]: we have ' balls (requests)
that we randomly toss into ( bins (subORAMs), and we must
�nd a bin size ⌫ (batch size) such that the probability that a
bin over�ows is negligible. We add balls (dummy requests) to
each of the ( bins such that each bin contains exactly ⌫ balls.
Using the balls-into-bins model, we can start to understand
how we expect ' and ( to a�ect ⌫. As we add more balls to
the system (' "), it becomes more likely for the balls to be
distributed evenly over every bin, and the ratio of dummy
balls to original balls decreases. Conversely, as we add more
bins to the system (( "), we need to proportionally add more
dummy balls. We validate this intuition in Figure 3 and Fig-
ure 4. Figure 3 shows that as the total number of requests
' increases, the percent overhead due to dummy requests

decreases. Thus larger batch sizes are preferable, as they
minimize the overhead introduced by dummy requests. Fig-
ure 4 illustrates how adding more subORAMs increases the
total request capacity of Snoopy, but at a slower rate than
a plaintext system. Adding subORAMs helps Snoopy scale
by breaking data into partitions, but adding subORAMs is
not free, as it increases the dummy overhead.
We prove that the following 5 for setting batch size ⌫ guar-
antees negligible over�ow probability in §A:
Theorem 3. For any set of ' requests that are distinct and
randomly distributed, number of subORAMs ( , and security
parameter _, let ` = '/( , W = �log(1/(( · 2_)), and,0 (·) be
branch 0 of the Lambert, function [23]. Then for the follow-
ing function 5 (',() that outputs a batch size, the probability
that a request is dropped is negligible in _:

5 (',()=min(', ` ·exp
⇥
,0

�
4�1 (W/`�1)

�
+1

⇤
) .

Proof intuition. For a single subORAM B , let-1,...,-' 2 {0,1}
be independent random variables where -8 represents re-
quest 8 mapping to B . Then, Pr[-8 = 1] = 1/( . Next, let the
random variable - =

Õ'
8=1-8 represent the total number of

requests that hashed to B . We use a Cherno� bound to upper-
bound the probability that there are more than : requests
to a single subORAM, Pr[- � :]. In order to upper-bound
the probability of over�ow for all subORAMs, we use the
union bound and solve for the smallest : that results in an
upper bound on the probability of over�ow negligible in _.
In order to solve for : , we coerce the inequality into a form
that can be solved with the Lambert, function, which is
the inverse relation of 5 (F) =F4F , i.e.,, (F4F) =F [23].
When 5 (',() = ', the over�ow probability is zero, and so
we can safely upper-bound 5 (',() by '. We target the high-
throughput case where ' is large, in which case our bound
is less than '.

We now explain how Theorem 3 applies to Snoopy. For
security, it is important that an attacker cannot (except with
negligible probability) choose a set of requests that causes a
batch to over�ow. Thus Snoopy needs to ensure that requests
chosen by the attacker are transformed to a set of requests
that are distinct and randomly distributed across subORAMs.
Snoopy ensures that requests are distinct through dedupli-
cation and that requests are randomly distributed by using
a keyed hash function where the attacker does not know
the key. Because the keyed hash function remains the same
across epochs, Snoopy must prevent the attacker from learn-
ing which request is assigned to which subORAM during
execution (otherwise, the attacker could use this informa-
tion to construct requests that will over�ow a batch). Snoopy
does this by ensuring that each subORAM receives the same
number of requests and by obliviously assigning requests to
the correct subORAM batch (§4.2.2). Theorem 3 allows us to
choose a batch size that is less than ' in the high-throughput
setting (for scalability) while ensuring that the probability
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would be to set 5 (',() ='; this ensures that even if all the
requests are for the same object, no request was potentially
dropped. However, this approach is not scalable because ev-
ery subORAM would need to process a request for every
client request. We re�ne this approach in two steps.
Deduplication to address skew. When assembling a batch
of requests, the load balancer can ensure that all requests in a
batch are for distinct objects by aggregating reads and writes
for the same object (for writes, we use a “last write wins” pol-
icy) [26]. Deduplication allows us to combat workload skew.
If the load balancer receives many requests for object A and
a single request for object B, the load balancer only needs
to send one request for object A and one request for object
B. Deduplication simpli�es the problem statement; we now
need to distribute a batch of at most ' unique requests across
subORAMs. This reframing allows us to achieve security
with high probability for 5 (',()<' if we distribute objects
randomly across subORAMs, as we now do not have to worry
about the case where all requests are for the same object.
Choosing a batch size. Given ' requests and ( subORAMs,
we need to �nd the batch size ⌫ such that the probability that
any subORAM receives more than ⌫ requests is negligible
in our security parameter _. Like many systems that shard
data, we use a hash function to distribute objects across
subORAMs, allowing us to recast the problem of choosing ⌫
as a balls-into-bins problem [76]: we have ' balls (requests)
that we randomly toss into ( bins (subORAMs), and we must
�nd a bin size ⌫ (batch size) such that the probability that a
bin over�ows is negligible. We add balls (dummy requests) to
each of the ( bins such that each bin contains exactly ⌫ balls.
Using the balls-into-bins model, we can start to understand
how we expect ' and ( to a�ect ⌫. As we add more balls to
the system (' "), it becomes more likely for the balls to be
distributed evenly over every bin, and the ratio of dummy
balls to original balls decreases. Conversely, as we add more
bins to the system (( "), we need to proportionally add more
dummy balls. We validate this intuition in Figure 3 and Fig-
ure 4. Figure 3 shows that as the total number of requests
' increases, the percent overhead due to dummy requests

decreases. Thus larger batch sizes are preferable, as they
minimize the overhead introduced by dummy requests. Fig-
ure 4 illustrates how adding more subORAMs increases the
total request capacity of Snoopy, but at a slower rate than
a plaintext system. Adding subORAMs helps Snoopy scale
by breaking data into partitions, but adding subORAMs is
not free, as it increases the dummy overhead.
We prove that the following 5 for setting batch size ⌫ guar-
antees negligible over�ow probability in §A:
Theorem 3. For any set of ' requests that are distinct and
randomly distributed, number of subORAMs ( , and security
parameter _, let ` = '/( , W = �log(1/(( · 2_)), and,0 (·) be
branch 0 of the Lambert, function [23]. Then for the follow-
ing function 5 (',() that outputs a batch size, the probability
that a request is dropped is negligible in _:

5 (',()=min(', ` ·exp
⇥
,0

�
4�1 (W/`�1)

�
+1

⇤
) .

Proof intuition. For a single subORAM B , let-1,...,-' 2 {0,1}
be independent random variables where -8 represents re-
quest 8 mapping to B . Then, Pr[-8 = 1] = 1/( . Next, let the
random variable - =

Õ'
8=1-8 represent the total number of

requests that hashed to B . We use a Cherno� bound to upper-
bound the probability that there are more than : requests
to a single subORAM, Pr[- � :]. In order to upper-bound
the probability of over�ow for all subORAMs, we use the
union bound and solve for the smallest : that results in an
upper bound on the probability of over�ow negligible in _.
In order to solve for : , we coerce the inequality into a form
that can be solved with the Lambert, function, which is
the inverse relation of 5 (F) =F4F , i.e.,, (F4F) =F [23].
When 5 (',() = ', the over�ow probability is zero, and so
we can safely upper-bound 5 (',() by '. We target the high-
throughput case where ' is large, in which case our bound
is less than '.

We now explain how Theorem 3 applies to Snoopy. For
security, it is important that an attacker cannot (except with
negligible probability) choose a set of requests that causes a
batch to over�ow. Thus Snoopy needs to ensure that requests
chosen by the attacker are transformed to a set of requests
that are distinct and randomly distributed across subORAMs.
Snoopy ensures that requests are distinct through dedupli-
cation and that requests are randomly distributed by using
a keyed hash function where the attacker does not know
the key. Because the keyed hash function remains the same
across epochs, Snoopy must prevent the attacker from learn-
ing which request is assigned to which subORAM during
execution (otherwise, the attacker could use this informa-
tion to construct requests that will over�ow a batch). Snoopy
does this by ensuring that each subORAM receives the same
number of requests and by obliviously assigning requests to
the correct subORAM batch (§4.2.2). Theorem 3 allows us to
choose a batch size that is less than ' in the high-throughput
setting (for scalability) while ensuring that the probability
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SubORAMs , request capacity  
(and dummy overhead )
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Snoopy’s defenses: 

- Deduplication (identical requests  
overflow) 

- Hidden mapping of requests to 
subORAMs (keyed hash) 

- Oblivious request routing 
By balls-into-bins analysis, attacker cannot 
overflow with high probability. 

⇏

Attacker cannot cause overflow (with high probability)

COVID

Flu

Asthma

Attacker’s goal: Overflow request batch
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Designing oblivious algorithms

Memory access patterns should not leak information about requests. 

HW enclave Storage 

Attacker can view 
-network communication patterns 
-memory access patterns inside enclave 
but not enclave contents

28
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Oblivious building blocks
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3
4
1
5
2

Perform compare-and-swaps in fixed, predefined order

3
4
1
5
2

✓

✓

×

✓
×

Oblivious sort 
 

[Batcher68]

O(n log2 n)
Oblivious compaction 

 
[Goodrich11]

O(n log n)

✓

✓

×

✓
×



Constructing batches obliviously

30

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

1. Assign requests 
to subORAMs

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

1
2
1
1
1

For  subORAMs 
and batch size , 
add  dummies

S
B

SB

2. Add dummy 
requests

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

1
2
1
1
1

Dummy
Dummy
Dummy

1
1
1

Dummy 2
Dummy
Dummy

2

2

3. OSort to construct batches 
with extra dummies

Obj 34 1 ✓

Obj 51 1 ✓
Obj 75 1 ✓

Obj 22 2 ✓
Dummy 2 ✓
Dummy 2 ✓
Dummy 2 ×

Dummy 1 ×
Dummy 1 ×
Dummy 1 ×

Obj 34 1 ×

4. OCompact out extra 
dummies. 

Obj 34
Obj 51
Obj 75

1
1
1

Obj 22
Dummy
Dummy

2
2
2

✓
✓
✓
✓
✓
✓

Obj 34 1
Obj 22 2
Obj 75 1
Obj 51 1
Obj 34 1

Dummy 1
Dummy 1
Dummy 1
Dummy 2
Dummy 2
Dummy 2

Obj 34 1 ✓

Obj 51 1 ✓
Obj 75 1 ✓

Obj 22 2 ✓
Dummy 2 ✓
Dummy 2 ✓



Matching subORAM responses to client requests
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Same key ideas from constructing batches (see paper for details) 

Need to: 
- Filter out dummies 
- Propagate subORAM responses to potentially multiple client requests 
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1. Design idea 
2. Load balancer 

A. Batch structure 
B. Oblivious algorithms 

3. SubORAM

4. Evaluation 

SubORAMLoad balancers
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Designing the SubORAM

33

ORAMs traditionally prioritize latency/communication for 
individual requests in the client-server model. 
- Trees or hierarchical structures support logarithmic access times. 
- Making client algorithms oblivious adds overhead [Oblix, CircuitORAM] 



Designing the SubORAM

34

ORAMs traditionally prioritize latency/communication for 
individual requests in the client-server model. 
- Trees or hierarchical structures support logarithmic access times. 
- Making client algorithms oblivious adds overhead [Oblix, CircuitORAM] 

We instead prioritize throughput for batches of distinct requests in the 
hardware-enclave setting. 



Signal’s private contact discovery
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Oblivious 
hash table

User’s  contactsn

All Signal contacts

For each user, look up in 
oblivious hash table

Creation time: O(n2)

Lookup time: O(1)

Maps to our setting: contacts = requests, only possible with distinct requests 
- Performance: oblivious hash table construction slow for many requests 

- Security: Do not size buckets to prevent overflow 



Choosing an oblivious hash table
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Attempt #1: Fix overflow problem by dynamically sizing hash buckets. 

Obj 34
Obj 22
Obj 75
Obj 51
Obj 45

Obj 34
Obj 22
Obj 75

Obj 51 Obj 45

! Insecure: Object more likely to be requested if hashed to big bucket.



Choosing an oblivious hash table
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Obj 34
Obj 22
Obj 75
Obj 51
Obj 45

Obj 34
Obj 22
Obj 75

Obj 51 Obj 45
Dummy
Dummy

Dummy
Dummy

Attempt #1: Fix overflow problem by dynamically sizing hash buckets. 
! Insecure: Object more likely to be requested if hashed to big bucket.

We need a bucket size such that the overflow probability is negligible. 
… wait, didn’t we already do this?



Choosing an oblivious hash table
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Attempt #2: Set hash bucket size using our bound for the load balancer.

Obj 34
Obj 22
Obj 75
Obj 51
Obj 45

Obj 34
Obj 22
Obj 75

Obj 51 Obj 45
Dummy
Dummy

Dummy
Dummy



Choosing an oblivious hash table
Attempt #2: Set hash bucket size using our bound for the load balancer.

Obj 34
Obj 22
Obj 75
Obj 51
Obj 45

Obj 34
Obj 22
Obj 75

Obj 51 Obj 45
Dummy
Dummy

Dummy
Dummy

Dummy Dummy Dummy
Dummy Dummy Dummy

- Inefficient: Load balancer bound optimized for large batch sizes. 
- We want small bucket sizes (an access requires scanning entire bucket).

Dummy Dummy Dummy
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Choosing an oblivious hash table
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"Solution: Oblivious two-tier hash table [CGLS17]  

- Overflow requests placed into second hash table  smaller buckets!→

Obj 34
Obj 22
Obj 75
Obj 51
Obj 45

Obj 34
Obj 22

Obj 51 Obj 45
Dummy Dummy

Obj 75 Dummy Dummy
DummyDummy Dummy



Our subORAM design
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Two-tier 
oblivious 

hash table

 distinct requestsn

All stored objects

For stored object, look up in 
oblivious hash table 
- Write: update stored object 
- Read: update hash table entry

Creation time: O(n log2 n)

Lookup time: O(1)



Contributions
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Performance 
requirements

System 
configuration

Planner

SubORAM design and 
oblivious algorithms

Oblivious algorithms 
for load balancer

COVID

Flu

Asthma

Balls-into-bins 
analysis

see paper

Planner design
see paper

Security and 
linearizability proofs

see paper
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Evaluation
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-18 Azure DCsv2 machines 
4-core Intel Xeon CPUs with Intel SGX 

-2M objects, 160B object size

Compare to: 
-Obladi: ORAM with trusted proxy, optimized for throughput (batch size 500) 
-Oblix: ORAM for hardware enclaves



Evaluation
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6.7K
1.2K
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130K

6.7K
1.2K
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130K
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130K

6.7K
1.2K

68K
92K
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Snoopy: [ 1000ms 500ms 300ms] Obladi (2 machines) Oblix (1 machine)
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(a) 2M objects, 160B block size.
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(b) Key Transparency with 5M users (10M
objects, 32B block size).

Figure 9. Snoopy achieves higher throughput with more machines. Boxed points denote
when a load balancer is added instead of a subORAM. Oblix and Obladi cannot securely
scale past 1 and 2 machines, respectively.
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Snoopy-Oblix: [ 1000ms 500ms 300ms]
Baseline Oblix (1 machine)

Figure 10. Throughput of Snoopy using
Oblix [65] as a subORAM (2M objects,
160B block size). We measure throughput with
di�erent maximum average latencies.
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(a) SubORAMs vs. data size
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(b) SubORAMs vs. latency

Figure 11. (a) Adding more subORAMs allows for increasing the
data size while keeping the average response time under 160ms
(RTT from US to Europe). (b) Adding more subORAMs reduces
latency. Snoopy is running 1 load balancer and storing 2M objects.

the load remains constant. We show how scaling can be used
to both reduce latency and tolerate larger data sizes under
constant load in Figure 11. Figure 11a illustrates how adding
more subORAMs enables us to increase the number of ob-
jects Snoopy can store while keeping average response time
under 160ms (the round-trip time from the US to Europe).
The number of subORAMs required scales linearly with the
data size because of the linear scan every epoch. Adding a
subORAM allows us to store on average 191K more objects,
and with 15 subORAMs, we can store 2.8M objects.

Figure 11b shows how adding subORAMs reduces latency
when data size and load are �xed: for 2M objects, the mean
latency is 847ms with 1 subORAM and 112ms with 15 subO-
RAMs. Adding subORAMs parallelizes the linear scan across
more machines, but has diminishing returns on latency be-
cause the dummy request overhead also increases when we
add subORAMs (Figure 3). As expected, Oblix achieves a sub-
stantially lower latency (1.1ms) because it uses a tree-based
ORAM and processes requests sequentially. Obladi achieves
a latency of 79ms with batch size 500.

Load balancer
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(c) 220 objects

Figure 12. Breakdown of time to process one batch for di�erent
data sizes (one load balancer and one subORAM).

8.4 Microbenchmarks
Breakdown of batch processing time. Figure 12 illustrates
how time is spent processing a batch of requests as batch
size increases. As batch size increases, the load balancer time
also increases, as the load balancer must obliviously generate
batches. The subORAM time is largely dependent on the data
size, as the processing time is dominated by the linear scan
over the data. The subORAM batch processing time jumps
between 215 and 220 objects due to the cost of enclave paging.
Sorting parallelism. In Figure 13a, we show how paralleliz-
ing bitonic sort across threads reduces latency, especially for
larger data sizes. For smaller data sizes, the coordination over-
head actually makes it cheaper to use a single thread, and so
we adaptively switch between a single-threaded and multi-
threaded sort depending on data size. Parallelizing bitonic
sort improves load balancer and subORAM performance.
SubORAM Parallelism. Similarly, in Figure 13b, we show
how additional cores can be used to reduce subORAM batch
processing time. We rely on a host thread to bu�er in the
encrypted data in the linear scan over the all objects in the
subORAM (§7), and we can use the remaining cores to par-
allelize both the hash table construction and linear scan.

8.5 Planner
In Figure 14, we use our planner to �nd the optimal resource
allocation for di�erent performance requirements. Figure 14a
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Figure 9. Snoopy achieves higher throughput with more machines. Boxed points denote
when a load balancer is added instead of a subORAM. Oblix and Obladi cannot securely
scale past 1 and 2 machines, respectively.
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Figure 10. Throughput of Snoopy using
Oblix [65] as a subORAM (2M objects,
160B block size). We measure throughput with
di�erent maximum average latencies.
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Figure 11. (a) Adding more subORAMs allows for increasing the
data size while keeping the average response time under 160ms
(RTT from US to Europe). (b) Adding more subORAMs reduces
latency. Snoopy is running 1 load balancer and storing 2M objects.

the load remains constant. We show how scaling can be used
to both reduce latency and tolerate larger data sizes under
constant load in Figure 11. Figure 11a illustrates how adding
more subORAMs enables us to increase the number of ob-
jects Snoopy can store while keeping average response time
under 160ms (the round-trip time from the US to Europe).
The number of subORAMs required scales linearly with the
data size because of the linear scan every epoch. Adding a
subORAM allows us to store on average 191K more objects,
and with 15 subORAMs, we can store 2.8M objects.

Figure 11b shows how adding subORAMs reduces latency
when data size and load are �xed: for 2M objects, the mean
latency is 847ms with 1 subORAM and 112ms with 15 subO-
RAMs. Adding subORAMs parallelizes the linear scan across
more machines, but has diminishing returns on latency be-
cause the dummy request overhead also increases when we
add subORAMs (Figure 3). As expected, Oblix achieves a sub-
stantially lower latency (1.1ms) because it uses a tree-based
ORAM and processes requests sequentially. Obladi achieves
a latency of 79ms with batch size 500.
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Figure 12. Breakdown of time to process one batch for di�erent
data sizes (one load balancer and one subORAM).

8.4 Microbenchmarks
Breakdown of batch processing time. Figure 12 illustrates
how time is spent processing a batch of requests as batch
size increases. As batch size increases, the load balancer time
also increases, as the load balancer must obliviously generate
batches. The subORAM time is largely dependent on the data
size, as the processing time is dominated by the linear scan
over the data. The subORAM batch processing time jumps
between 215 and 220 objects due to the cost of enclave paging.
Sorting parallelism. In Figure 13a, we show how paralleliz-
ing bitonic sort across threads reduces latency, especially for
larger data sizes. For smaller data sizes, the coordination over-
head actually makes it cheaper to use a single thread, and so
we adaptively switch between a single-threaded and multi-
threaded sort depending on data size. Parallelizing bitonic
sort improves load balancer and subORAM performance.
SubORAM Parallelism. Similarly, in Figure 13b, we show
how additional cores can be used to reduce subORAM batch
processing time. We rely on a host thread to bu�er in the
encrypted data in the linear scan over the all objects in the
subORAM (§7), and we can use the remaining cores to par-
allelize both the hash table construction and linear scan.

8.5 Planner
In Figure 14, we use our planner to �nd the optimal resource
allocation for di�erent performance requirements. Figure 14a
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Snoopy is an oblivious object store that scales like plaintext 
storage. 

Emma Dauterman 
edauterman@berkeley.edu

https://eprint.iacr.org/2021/1280.pdf
https://github.com/ucbrise/snoopy

Thanks!
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