Snoopy: Surpassing the Scalability
Bottleneck of Oblivious Storage

Emma Dauterman®, Vivian Fang™,
loannis DemertzisT, Natacha Crooks, and Raluca Ada Popa
UC Berkeley, " UC Santa Cruz

-
@ SOSP 2021

* denotes equal contribution

End-to-end encryption provides confidentiality

Attacker can’t see data contents

!(@
' L

COVID * Flu Asthma

>
)

Doctor Medical disease store

=
—

Access patterns reveal private data

[IKK12], [CGPR15], [KKNO16], [GLMP19], [KPT19]

ACCeSS patterns: how user accesses data.

Public Knowledge Charlie has
COVID Flu Asthma CQ\/|D|
‘ 70% 20% = 10%

Patient Charlie n

Doctor Medlca\ disease store

Watch accesses over time
700X 200x 100x

72 e

COVID * Flu Asthma

Get obj 1

Oblivious storage (ORAM) protects access patterns
[GO96], SSS ORAM, PathORAM, RingORAM, Oblix, Shroud, TaoStore, Obladi, PrivateFsS, ...

!(@

Lookup
“COVID”

Doctor Oblivious disease store

System setup

Oblix, ZeroTrace, Obliviate

Untrusted cloud

HW enclave setup supports
Multiple users and reduces
network interaction

@

‘6

Clients trust each other for
simplicity (see paper)

[£

Attacker can view
-network communication patterns
-memory access patterns inside enclave
but not enclave contents

Existing systems have scalability bottlenecks

Scalability bottleneck:
- Coordination required for every request
- Cannot securely distribute

g
o

Existing systems have scalability bottlenecks

Scalability bottleneck:

- Coordination required for every request
- Cannot securely distribute

Most systems are tree-based and
hide locations of objects in the tree.

Common bottlenecks:
-Location metadata
- Tree root

Existing systems have scalability bottlenecks

Scalability bottleneck: v\!‘ e

- Coordination required for every request O
- Gannot securely distribute ‘6 +—Asthma—s —
Most systems are tree-based and /"

hide locations of objects inthe tree. Oblivious @

COmmOﬂ bOt':‘eneCkSZ ..

-Location metadata Plaintext 4_,§ @

-Tree root COVID

Goal of this talk:

How can we bulld an oblivious object store that
handles high throughput by scaling like a
plaintext object store”

This talk: Scalable nodes for oblivious object
repository

This talk: Snoopyc’e

This talk: Snoopyc’e

Snoopy IS an oblivious object store that scales like
plaintext storage.

/\ /\
0.7k ops/sec
CHH M HH oo
Oblix i::}
130k ops/sec 1.1k ops/sec

{j = HW enclave

12

Outline

1. Design idea
2. Load balancer
A. Batch structure
B. Oblivious algorithms

3. SUbORAM
4. Evaluation

13

Outline

1. Design idea @
2. Load balancer

A. Batch structure

B. Oblivious algorithms
3. SUbORAM

4. Evaluation

14

¢ Building Snoopy

Classic techniques

15

¢ Building Snoopy

SUbORAMS

Classic techniques
Partitioning

16

¢ Building Snoopy
Load balancers SubORAMSs
Classic techniques
Partitioning # @
COVID

Batching

Flu

* Asthma

17

¢ Building Snoopy

Classic techniques
Partitioning
Batching

Naively insecure
Batches sent to subORAMS reveals — —
request distribution

L oad balancers SubORAMSs

Sk

Flu

Asthma

18

¢ Building Snoopy
Classic techniques
Partitioning

Batching

L oad balancers SubORAMSs

%

@ Naively insecU Goal #1 (Security): Hide access patterns

Satches sent to s . " .
request distributio -Batch size only depends on public information

Goal #2 (Scalability): Add load balancers or
subORAMSs to increase throughput

19

¢ Building Snoopy

Classic techniques
Partitioning
Batching

L oad balancers SubORAMSs

Naively insecure

Batches sent to subORAMS reveals
request distribution

, Our contributions / \
Techniques that enable batching +
partitioning with security + scalability Asthma

20

Outline

2. Load balancer
A. Batch structure @
B. Oblivious algorithms

3. SUbORAM
4. Evaluation

L oad balancers SubORAM

21

"¢ Handling skewed workloads

L oad balancers SubORAMSs

If every client requests the same
object, then batch size = total requests

COVID COVID
— not scalable!
. Deduplication COVID
Now we only need to handle distinct
requests.

COV/ \

Flu

22

c.# Securely setting batch size B

Requirements b= 17117 —!b

-Computable with public information
-Negligible overtlow probability

High-throughput — many concurrent requests.

After deduplication, requests are spread
across subORAMSs (x) evenly.

. Don't need to add many dummy
reguests to have secure batch size.

m 000000000

23

c.# Securely setting batch size B

Requirements

-Computable with public information
-Negligible overtlow probability

Can model as a balls-into-bins problem.

. We contribute a bound that mee

'S both

requirements and provides scalabilr

.

24

m 000000000

c.# Securely setting batch size B

SUbORAMs: 2 10 =20 A: =0 (no security) =80 =128
= 200 >
N 5 20K
150 2.
= 100 2 10K
© =
= =2
Y 50 = 5K
: f
NN 0 oY
0 5K 10K 0 10 20
Real requests SubORAMs
Requests 1, dummy overhead | SubORAMs T, request capacity 1

(and dummy overhead 1)

25

"¢ Attacker cannot cause overflow it high robability)

Attacker’s goal: Overflow request batch

SNoopy’s defenses:

- Deduplication (identical requests %
overflow)

- Hidden mapping of requests to
subORAMSs (keyed hash)

- Qblivious reguest routing

By balls-into-bins analysis, attacker cannot Asthma

overflow with high probability.

20

Outline

2. Load balancer

B. Oblivious algorithms @
3. SUbORAM
4. Evaluation

({

Asthma

L oad balancers SubORAM

27

Designing oblivious algorithms

oﬁ

Attacker can view

-network communication patterns
-memory access patterns inside enclave
but not enclave contents

Memory access patterns should not leak information about requests.

28

Oblivious building blocks

Perform compare-and-swaps In fixed, predefined order

- -

Oblivious sort Oblivious compaction
O(nlog” n) O(nlogn)

[Batcher68] [Goodrich11]

29

Constructing batches obliviously

Obj 34
Obj 22

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

Obj 75
Obj 51
Obj 34

For S subORAMSs
and batch size B,
add SB dummies

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

Dumm

N

Dumm

O
=
3
3
<

30

Obj 34
Obj 34
Obj 51
Obj 75
Dumm
Dumm
Dumm
0] o] 2
Dumm

Dumm

Dumm

Obj 34
Obj 51
Obj 75

Dumm

JNNNEAEARNAR

Matching subORAM responses to client requests

Same key ideas from constructing batches (see paper for details)

Need to:
- Filter out dummies

- Propagate subORAM responses to potentially multiple client requests

31

Outline

A /@

3. SubORAM @
4. Evaluation

({

Asthma

L oad balancers SubORAM

32

Designing the SubORAM

ORAMs traditionally prioritize latency/communication for ﬁ §
individual requests In the client-server model. O

- [rees or hierarchical structures support logarithmic access times.
- Making client algorithms oblivious adds overhead [Oblix, CircuitORAM]

33

Designing the SubORAM

ORAMs traditionally prioritize latency/communication for ﬁ i
individual requests in the client-server model. O

- [rees or hierarchical structures support logarithmic access times.
- Making client algorithms oblivious adds overhead [Oblix, CircuitORAM]

We instead prioritize throughput for batches of distinct requests Iin the
hardware-enclave setting.

34

Signal’s private contact discovery

For each user, look up In
oblivious hash table

Lookup time: O(1)

User’s n contacts

Oblivious

hash table

_——

, All Signal contacts
Creation time: O(n-)

Maps to our setting: contacts = requests, only possible with distinct requests

- Performance: oblivious hash table construction slow for many requests

- Security: Do not size buckets to prevent overflow

35

Choosing an oblivious hash table

Attempt #1: Fix overtlow problem by dynamically sizing hash buckets.
Insecure: Object more likely to be requested if hashed to big bucket.

’r

—

Obj 45

36

Choosing an oblivious hash table

Attempt #1: Fix overtlow problem by dynamically sizing hash buckets.
@ Insecure: Object more likely to be requested if hashed to big bucket.

We need a bucket size such that the overflow probabillity is negligible.
... wait, didn’t we already do this?

v

—

Obj 45

37

Choosing an oblivious hash table

Attempt #2: Set hash bucket size using our bound for the load balancer.

—lp

Obj 45

38

Choosing an oblivious hash table

Attempt #2: Set hash bucket size using our bound for the load balancer.

- Inefficient: Load balancer bound optimized for large batch sizes.
- We want small bucket sizes (an access requires scanning entire bucket).

Obj 45

39

Choosing an oblivious hash table

., Solution: Oblivious two-tier hash table [CGLS17]

- Overflow requests placed into second hash table — smaller buckets!

Obj 45

Our subORAM design

For stored object, look up In
oblivious hash table
- Write: update stored object

n distinct requests - Read: update hash table entry

Lookup time: O(1)

Two-tier

oblivious
hash table -

All stored objects

Creation time: O(n lc)g2 n)

41

="# Contributions

Oblivious algorithms

SUbORAM design and

42

see paper

Performance
requirements

System
configuration

see paper

Outline

43

"¢ Evaluation

-18 Azure DCsv2 machines
4-core Intel Xeon CPUs with Intel SGX
-2M objects, 1608 object size

Compare to:
-Obladi: ORAM with trusted proxy, optimized for throughput (batch size 500)
-Oblix: ORAM for hardware enclaves

44

"¢ Evaluation

125K

—h
-
o
A\

79K

50K

Throughput (reqs/sec)

25K

4 6 8 10 12 14 16 18
Machines

45

="# Evaluation

125K
)
D
£ 100K
(/5]
O
()
E 75K
5
£
S 50K
-
o
£ 25K

__ 6 7K == Qbladi (2 machines) 79ms
4 6 8 10 12 14 16 181.2K ==+ Oblix (1 machine) 1.1ms
Machines

46

="# Evaluation

195K 130K Snoopy 1000ms
O
Q
& 100K
B
o
O
— 75K
5
£
o 90K
3
o
S 25K
-
__ 6. 7K —= Obladi (2 machines) 79ms

4 6 8 10 12 14 16 181.2K ==+ Oblix (1 machine) 1.1ms
Machines

47

="# Evaluation

195K 130K Snoopy 1000ms
O
Q
& 100K
B
o
O
— 75K
5
£
o 90K
3
o
S 25K
-
__ 6. 7K —= Obladi (2 machines) 79ms

4 6 8 10 12 14 16 181.2K ==+ Oblix (1 machine) 1.1ms
Machines

48

="# Evaluation

195K 130K Snoopy 1000ms
©
O
£ 100K S 500
A 02K noopy ms
O
= K 03K =@ Snoopy 300ms
g e
5 20K ///—’—0'4—
=
°
< 25K ad
__ 67K =" Obladi (2 machines) 79ms

4 6 8 10 12 14 16 181.2K ==+ Oblix (1 machine) 1.1ms
Machines

49

="# Evaluation

Snoopy 1000ms

Snoopy 500ms == Qbladi (2 machines) 79ms Snoopy-Oblix: [1000ms =*=500ms =*=300ms]|

=®- Snoopy 300ms ... QOplix (1 machine) 1.1ms -==: Baseline Oblix (1 machine)
0 g 20K
o 100K o
L)
= 2 10K
& 50K)
ol =
= o
O —
= =
-

J 10 15 J 10 15

Machines Machines

50

"¢ Conclusion

SNoopy 1S an oblivious object store that scales like plaintext
storage.

" @ Thanks!

Emma Dauterman
edauterman@berkeley.edu

https://eprint.1acr.org/2021/1280.pdf
https://github.com/ucbrise/snoopy

51

https://github.com/ucbrise/snoopy

~

¢ References

AKSL 18] Adil Ahnmad, Kyungtae Kim, Muhammad |hsanulhaq Sarfaraz, and Byoungyoung Lee. OBLIVIATE: A data oblivious filesystem for Intel SGX. In NDSS, 2018.
CGLS17] T-H Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing revisited, and applications to asymptotically efficient ORAM and OPRAM. In ASIACRYPT. Springer, IACR, 2017.

(CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against searchable encryption. In CCS. ACM,
2015.

CBCH+18]Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi: Oblivious serializable transactions in the cloud. In OSDI. USENIX, 2018.
(GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the ACM (JACM), 1996

GLMP19] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Learning to reconstruct: Statistical learning theory and encrypted database attacks. In Security & Privacy. IEEE,
2019.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on searchable encryption: ramification,
attack and mitigation. In NDSS. Citeseer, 2012.

IKKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. Generic attacks on secure outsourced databases. In CCS. ACM, 2016.

[IKPT19] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. Data recovery on encrypted databases with
k-nearest neighbor query leakage. In Security & Privacy). IEEE, 2019.

|LPMR+13] Jacob R Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua Schiffman. Shroud: Ensuring private access to large-scale data in the data center. In FAST, 2013.

MPCC+18] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada Popa. Oblix: An efficient oblivious search index. In Security & Privacy. IEEE, 2018.

RFKS+15] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten Van Dijk, and Srinivas Devadas. Constants count: Practical improvements to oblivious RAM. In USENIX
Security Symposium, 2015.

SZAL+16] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. TaoStore: Overcoming asynchronicity in oblivious data storage. In Security & Privacy. IEEE, 2016.
SGF18] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. ZeroTrace: Oblivious memory primitives from Intel SGX. In NDSS, 2018.

SS13] Emil Stefanov and Elaine Shi. ObliviStore: High performance oblivious cloud storage. In Security & Privacy. IEEE, 2013.

SSS12] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. In NDSS, 2012.

SVSF+13] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In CCS. ACM,
2013.

IWST12] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In CCS. ACM, 2012.

52

