
Lightweb: Private web browsing
without all the baggage

Emma Dauterman
UC Berkeley

Henry Corrigan-Gibbs
MIT

Abstract. This paper proposes lightweb, a new system for
private browsing. A lightweb client can browse a web of text-
based pages without revealing to anyone—not the network,
not the servers hosting the pages—which pages it is reading.
Unlike Tor and other anonymizing web proxies, which are
inherently vulnerable to traffic-analysis attacks, lightweb’s de-
sign protects against traffic-analysis attacks by design. While
lightweb is expensive in relative terms (hundreds of core-
seconds of server computation per page load), we show with
microbenchmarks that the total system cost can be inexpensive
in absolute terms (comparable to the cost of a Netflix mem-
bership). This paper does not present a polished system, but
instead aims to spark discussion on radical approaches to a
privacy-first web.

1 Introduction
Each time we fetch a piece of information over the web, we
leave an indelible digital trace of our activity: the search en-
gine logs our queries, the DNS resolver logs our requests, the
ISP logs our TCP flows, the CDN logs our HTTP headers,
the routers along the way log our packets, and so on. These
logs are ripe for abuse by corporations, governments, and
attackers [1–4].

The dominant strategy for bringing privacy to web browsing
is to route a client’s traffic through an anonymizing proxy, such
as Tor [23]. The tremendous benefit of these systems is that
they are backwards compatible with the web: a client can
essentially browse any existing website via Tor.

At the same time, anonymizing proxies have two major
limitations. The first is that they are vulnerable to correla-
tion attacks that let an attacker (e.g., at an Internet-exchange
point) determine which user is visiting which website [40].
Second, even if an attacker cannot identify the precise destina-
tion of a particular user’s flow, the attacker can use low-cost
traffic-analysis attacks to determine what a user is watching or
reading [49]: without extreme amounts of cover traffic, a visit
to the media-rich New York Times homepage—even over an
encrypted link—exhibits a very different traffic signature than
a visit to an article page [31].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628207

We propose a more radical approach to private web brows-
ing that addresses both shortcomings of anonymizing proxies.
Our idea is to sacrifice backwards compatibility with today’s
web, for the sake of gaining strong (i.e., rigorous, crypto-
graphic) protection against deanonymization attacks [43, 44]
and most traffic-analysis attacks.

We center our design around a single “private-GET” opera-
tion, which lets a client fetch a short, fixed-size named blob of
data from a server. The key security property that the private-
GET operation provides is that no one—not the network, not
the server—learns which data blob the client received. We
envision this private-GET operation as being implemented in a
new application-layer protocol, the zero-leakage transfer pro-
tocol (ZLTP), and we show that it is possible to implement this
protocol using either private-information-retrieval protocols
(providing cryptographic security guarantees, optionally with
the assumption that two servers do not collude) or hardware
enclaves (which rely on hardware protections for security).

The key challenge here is making private-GET operations
cheap, even when a single ZLTP server is serving a dataset
of hundreds of millions of data blobs. One barrier is that
cryptographic private-information-retrieval protocols require
per-request computation that scales linearly with the dataset
size [10]. While a per-request linear scan over a gigantic
dataset seems absurd on its face, we run microbenchmarks
to estimate that supporting datasets of 305 GiB or more (the
compressed size of the cleaned C4 version of the Common
Crawl data set [45, 46]) is possible at the cost of less than
one cent per request, or 204 core-seconds of parallelizable
computation.

Given ZLTP as a communications substrate, we demon-
strate how to build “lightweb,” an interactive web-like system
for fully private browsing. A user can browse a deployment,
consisting of hundreds of millions of lightweb pages or more,
without revealing to anyone—not the network, not the lightweb
servers—which pages the user is visiting. Unlike today’s web,
lightweb pages are of fixed size and are extremely sparse: they
contain no graphics, no videos, and minimal style.

Lightweb, like today’s web, consists of pages authored by
a potentially unlimited number of publishers. Unlike today’s
web, a lightweb deployment is administratively centralized: a
single content-distribution network (CDN) is responsible for
running an entire lightweb “universe.” The CDN maintains a
logical ZLTP server, running on many thousands of machines
potentially, that collectively serve every page in a lightweb
universe. Publishers push updates to their lightweb pages to
one or more lightweb universes, and the CDNs serve this
content up to users.

https://doi.org/10.1145/3626111.3628207

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emma Dauterman and Henry Corrigan-Gibbs

Limitations. While lightweb provides strong privacy guar-
antees, it still has limited functionality in comparison to the
traditional web: lightweb is not a drop-in replacement for the
web. Lightweb content is read-only and pages must be rela-
tively small—on the order of kilobytes. Even though we show
that retrieving a data blob costs less than a cent in server com-
putation, server-side computation costs are still vastly higher
in lightweb than in the traditional web. Furthermore, lightweb
is still susceptible to restricted timing attacks; an attacker that
controls the network can see when a client fetches a webpage
and how many pages the client fetches, even if the attacker
cannot see which pages the client is fetching. Despite these
limitations, lightweb offers a path forward for providing strong
privacy guarantees that anonymizing proxies cannot achieve.

2 The zero-leakage transfer protocol (ZLTP)
In this section, we introduce ZLTP, a new client-server appli-
cation-layer protocol that underlies lightweb. A ZLTP server
holds a list of key-value pairs where each key is an arbitrary
string, and each value is a fixed-length binary blob. The ZLTP
API exposes a single “private-GET” operation to the client,
which has the type signature GET(key)->value.

A ZLTP session begins with a client connecting to a ZLTP
server. The server indicates to the client the size of the fixed-
length blobs it is serving, and the client and server then ne-
gotiate which cryptographic mode of operation they will use.
For each GET request the client makes, the client and server
exchange some mode-of-operation-specific protocol messages.
At the end of each exchange, the client holds the value (data
blob) corresponding to its query key.

2.1 Security goal
What makes ZLTP non-trivial is that even an attacker who
controls the ZLTP server should should learn no information
whatsoever about which key-value pair the client fetched. In
particular, the ZLTP server must never have access to the
client’s request key in plaintext.

Depending on which mode of operation is in use, this secu-
rity property holds under one or more of these assumptions:
• Cryptographic: Some computational problem (e.g., fac-

toring) is intractable.
• Non-collusion: An attacker controls at most 𝑘 of 𝑛 servers.
• Hardware: A hardware enclave correctly protects secrets.

Non-goals. ZLTP does not hide the number or timing of client
requests. Similarly, ZLTP does not guarantee availability or
provide integrity against malicious servers, or availability
against network faults.

2.2 Modes of operation
We envision two main modes of operation, requiring different
assumptions and computational resources:

Private information retrieval. The highest security mode of
operation for ZLTP uses cryptographic protocols for private
information retrieval [15]. These schemes allow a client to
fetch a key-value pair [14] from a server while hiding all

information from the server about which pair the client fetched.
Typical schemes for private information retrieval require that,
for each query, the servers perform a linear scan over all of the
key-value pairs [10]. (Otherwise, an adversary controlling the
server can learn which key-value the user is not retrieving.)
To minimize the cost of this linear scan, a ZLTP server using
private information retrieval as its mode of operation would
typically use a very small blob size.

Our prototype uses one of the fastest known private-in-
formation-retrieval schemes [12]. This scheme has very low
communication cost: for a single key-value lookup, the upload
is logarithmic in the size of the key space, and the download
is linear in the size of retrieved value. The downside is that
this scheme requires the client to communicate with two non-
colluding servers to fetch a blob. When using this mode of
operation therefore, the ZLTP client must establish sessions
with two ZLTP servers; security holds as long as the attacker
can compromise at most one of them. (Schemes whose security
rests only on cryptographic assumptions also exist, but these
have higher communication and computation costs [7, 35].)
Hardware enclaves + oblivious RAM. While private infor-
mation retrieval provides strong privacy guarantees, the server-
side linear scan over all stored data limits performance. A
faster mode of operation allows the client to make private
key-value lookups by communicating with a server-side hard-
ware enclave (e.g. Intel SGX), which uses an oblivious-RAM
scheme to privately access a large local store in untrustwor-
thy memory [19, 38, 48]. The hardware enclave must use an
oblivious-RAM protocol to access its local storage to ensure
that the memory-access patterns do not leak which key-value
pairs a client is requesting. By using an oblivious RAM scheme
tailored to hardware enclaves, the enclave can hide its memory-
access patterns while supporting many clients. This approach
has best-possible communication costs and appealingly low
server-side computational costs: both polylogarithmic in the
number of key-value pairs. At the same time, a slew of attacks
on the security of hardware enclaves makes relying on them
for data protection somewhat risky [13, 47, 50, 53, 54, 56].
2.3 Beyond the web
Private web browsing is only one potential application of
ZLTP. Developers could use ZLTP to build other privacy-
preserving desktop or mobile applications without needing to
implement the cryptographic building blocks or potentially
even host their own servers. The development of ZLTP servers
could enable developers to focus on the application layer of
privacy-preserving applications without having to worry about
the implementation of the core cryptographic primitives.

3 The lightweb architecture
We now describe how to use ZLTP to build lightweb, a web-
like environment that completely hides, from the network and
from the lightweb servers, which pages a user has visited.
3.1 System overview
A lightweb deployment is centered around a content universe,
a collection of millions or billions of lightweb pages hosted

Lightweb: Private web browsing without all the baggage HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

PublishersUsers

CDN

Lightweb universe

nytimes.com
Code

Data
nytimes.com/
europe/
headlines.json

NYTimes

CNN

Washington
Post

⋮

⋮
Enc(nytimes.com)

Enc()

Enc(nytimes.com/africa/
headlines.json)

nytimes.com/
africa/
headlines.json

Enc()

2.

3.

4.

5.

0.

Query: nytimes.com/africa1.

Figure 1: Lightweb system architecture. First, publishers upload
content (a root code blob and many data blobs). Then, to query
for a path, the client first queries for the code blob (if not already
cached), and then queries for data blobs (above the client only
queries for a single data blob, but in reality, the client would
query for a small, fixed number of data blobs).

on a single content distribution network (e.g., Akamai), man-
aged within a single administrative domain. Multiple lightweb
universes can co-exist and can “peer” with each other to share
content; we defer that discussion to Section 3.5 and for now,
assume that all lightweb content lives within a single universe.

The content-distribution network (CDN) hosting a lightweb
universe maintains a single logical ZLTP server serving all of
the lightweb pages within its universe. In practice, a CDN’s
logical ZLTP server would be comprised of thousands of phys-
ical machines configured for fault-tolerance, as a large-scale
web service is today. Each CDN chooses which ZLTP modes
of operation to support, based on the cost tolerance and privacy
demands of its users.

Lightweb publishers (cnn.com, wikipedia.org, etc.) pro-
duce content as:
• a single root “code” blob that contains a blob of JavaScript

code and style information and
• a large number of “data” blobs that contain relatively

small JSON data objects.
(We discuss page structure and dynamic content further in
Sections 3.2 and 3.3.) Since clients download these blobs via
ZLTP, all code blobs in the universe must have a single fixed
size (e.g., 1 MiB) and all data blobs in the universe must have a
single fixed size as well (e.g., 4 KiB). To expose content to the
lightweb users, the publisher pushes its code and data blobs to
one or more of the CDNs managing lightweb universes.

Every data blob within a CDN’s lightweb universe has a
unique path, such as nytimes.com/world/africa/2023/06/

headlines.json. The only constraint on the path format is
that it must have a valid domain as the top-level path compo-
nent; otherwise, the path may have any format.

The separation of page content into code blobs and data
blobs is primarily a performance optimization: by breaking

pages into individual blobs, publishers can eliminate redun-
dancy across pages in their site and reduce the amount of
data stored at the CDN. This in turn reduces the CDN’s com-
putational cost, especially when the CDN serves content via
ZLTP’s high-security private-information-retrieval mode of
operation.

By convention, a single publisher controls all of the content
beneath a particular top-level path component. For example,
the New York Times might control all paths beginning with
nytimes.com/*. The CDN is responsible for managing own-
ership of path prefixes within a universe.

3.2 Anatomy of a lightweb browsing session

To browse lightweb, a user first downloads the lightweb client,
which is essentially a minimal web browser that speaks the
ZLTP protocol.

1. Connect to a CDN. The first step to browsing lightweb
is for a user to connect to the CDN for a particular universe.
The client opens two ZLTP sessions with the CDN: one for
fetching the large code blobs and one for fetching the small
data blobs.

2. Fetch code blob. When the user requests a page at a particu-
lar lightweb path, such as nytimes.com/2023/06/25/uganda,
the browser extracts the domain (nytimes.com) and makes a
private-GET request for the code blob for this domain via its
code-only ZLTP session with the CDN. Since the code blobs
are large and expensive to fetch, we only allow each domain
to host a single code blob, and the client aggressively caches
the code blobs. We would expect code blobs to change very
rarely—once every few days at most.

3. Fetch data blobs. Once the client has the code blob for its
desired domain, the client executes a main JavaScript routine
contained in the code blob, passing in the path /2023/06/25

/uganda as an argument. A domain’s code blob can then make
a small, fixed number of private-GET requests over the client’s
data-only ZLTP session with the CDN.

Within a universe, the number of data blobs fetched per
page view must be fixed. Otherwise, the client could leak
information about which pages it is visiting via the number of
private-GET requests made in a given time period. The number
of data GET requests per page must be small enough to give
tolerable performance.

4. Render content. Once the client receives the responses to
all of these private-GET requests, the browser may render the
page. To do so, the browser passes the fetched data blobs to
the running JavaScript code, which renders the page content.
The data blobs may contain arbitrary JSON objects, so the
publisher can choose whether the data blobs include textual
content, style information, additional code, or other data. The
only hard restriction is on the number and size of the blobs.

Many of the client-side JavaScript features that today’s web
provides are available in lightweb: client-side interaction, local
storage, and so on. (As today, the lightweb browser enforces
domain separation on local storage and other client-side state.)

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emma Dauterman and Henry Corrigan-Gibbs

Differences with standard web environment. The primary
difference between the lightweb JavaScript environment and
a conventional web one is that once the browser has fetched
one code page and a fixed number of data blobs (e.g., five),
the browser permits no other network interaction until the user
browses to a new page. The browser loads no images, media,
or style content, apart from what can fit into the data-blob
fetches.

In this way, a network attacker only learns:
• which universe a user is connected to (leaked via IP head-

ers),
• when the user has visited a new domain (leaked via a

code-page fetch), and
• when the user visits a new page or follows a hyperlink

(leaked via data-page fetches).
It is possible in principle to infer some limited information
about the user’s browsing behavior by the number and timing
of their page visits [34]. For example, a user fetching a page
every five minutes in the morning might be most likely to be
reading the news. But even this leakage is modest.

Domain-specific code should be small in order to cache it at
the client and to make ZLTP requests performant. We envision
publishers using regular expressions to parse paths in order to
avoid enumerating all possible paths in the client-side code.
CDNs can host domain-specific code in a separate “universe”
from the other key-value pairs. This separation can improve
ZLTP performance and only reveals when a user is visiting a
path with a domain where the code is not cached locally.

3.3 Dynamic content

One severe limitation of lightweb is that it fundamentally
cannot support dynamic page content requiring large amounts
of server-side content. That said, limited but useful forms
of dynamic content are possible with lightweb. In particular,
because the domain’s code determines which data blobs to
fetch as a function of the page requested and local user data,
publishers can support customized and personalized content as
long as it does not require too much server state. For example,
the weather.com lightweb page could prompt the user for their
postal code and cache it in local storage. Later on, when the
user visits weather.com, the page could could use the user’s
cached postal code to automatically fetch a per-postal-code
data blob containing up-to-date weather information for their
location.

Lightweb can also support access control by allowing web
publishers to control the set of users who can view content. We
would like to only allow some users to access web content, but
we don’t want the CDN to know each user’s permissions with
each domain. To solve this problem, the CDN can simply store
an encryption of the data. When the client makes an account
with the publisher outside of lightweb, it obtains cryptographic
key(s) that it can use to decrypt data for that publisher that
correspond to its permissions. The publisher can periodically
rotate keys in order to revoke users’ access as necessary, and
clients can query the publisher periodically for updated keys.

The publisher could also use broadcast encryption to allow
clients to update their keys based on membership changes [25,
41] While an attacker that has compromised the network or
the publisher’s server can determine that a user has an account
with a given publisher, it learns no information about the
individual pages that the user is visiting.

For applications, such as online banking, for which it is
acceptable (or even necessary) for the server to know the
client’s identity, a lightweb page can link out to a standard
web page. A user that clicks this link will no longer have the
privacy guarantees provided by lightweb, but will be able to
perform their desired task (e.g. transferring funds).
3.4 Monetizing lightweb pages
Paywalls. Publishers place content behind paywalls in order to
incentivize users to pay to view content. Lightweb can support
paywalls via the access-control mechanisms described above.
Advertising. Lightweb is compatible with online ads. The
simplest way to achieve this is to have a publisher embed
subject-relevant ads directly into their site’s static content. Ad
targeting is also possible in principle: the site’s code could
fetch different ads from the CDN based on the user’s local
state (browsing history, postal code, inferred interests, etc.).
3.5 Multiple universes and peering
Up to now, we have described lightweb in terms of a single
universe within a single administrative domain. Having multi-
ple universes, one on each of the major CDNs, would improve
both fault tolerance and economic competition. Each universe
could decide which lightweb content to make available to its
users—much as different cable TV providers offer different
packages to users. The more content a universe contains, the
more computationally expensive it is to respond to each ZLTP
request, so a single CDN could even offer multiple universes
to its users, with varying cost-coverage trade-offs.

For example, a single CDN could group its pages into
“small”, “medium”, and “large” universes where each uni-
verse has a different fixed page size. These different universes
would allow a CDN to accommodate large pages without
adding overhead for fetching small pages, although the CDN
(and an attacker observing the network) would learn whether
the user is fetching a page from the small, medium, or large
universe.

To allow lightweb content to be available across multiple
universes managed by multiple CDNs, the CDNs managing
these universes could peer with each other. If a publisher
uploads content to one CDN, the CDN would push the content
to all of its peers. To make this possible, CDNs would have to
agree on the assignment of lightweb domain names to owners
(e.g., using today’s domain-name registration system) so that
each domain has the same owner in each universe.

4 Discussion: Who pays?
Private-GET requests are the core primitive that makes lightweb
possible. And the nature of private-GET requests makes the
economics around the lightweb look very different from those
of the standard web.

Lightweb: Private web browsing without all the baggage HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

• First, as we show in Section 5, private-GET requests are
costly. Servicing a single ZLTP private-GET request re-
quires tens or hundreds of CPU core-seconds of computa-
tion, at least when using the cryptographic mode of ZLTP
operation. (We we argue in Section 5 that the absolute
cost is still reasonable.)

• Second, the cost of a private-GET request for a lightweb
page scales linearly with the total number of pages in
the lightweb. So if a publisher decides to post more news
articles on their site, the cost of every user’s private-GET
requests increases.

• Third, the cost of adding a page to a lightweb universe is
independent of the popularity of a page: adding a page
to cnn.com is as costly to the system as adding a page
to poodleclubofamerica.org, even if one site receives
1000× more traffic than the other.

For users who make on average 50 daily page requests
where each page request results in 5 GET requests for data
blobs, we estimate that the monthly per-user cost for a universe
of 360M data blobs with blob size at most 0.9 KiB each to be
roughly $15 (comparable to the cost of a Netflix membership).

We would expect CDNs to charge both users and publishers
for access to a universe via a variety of billing models, much
as Internet service providers and large-scale CDNs bill today.

Some CDNs could choose to charge publishers proportion-
ally to the number of queries received for their domain. In
order to privately collect data on the number of queries re-
ceived for each domain, the CDN could use a system for the
private collection of aggregate statistics [5, 11, 16, 22, 39].

5 Evaluation
In the evaluation, we aim to answer the following questions:
• What are the costs of ZLTP in two-server private-information-

retrieval mode for a small data shard? (Section 5.1)
• How do these costs scale up to a larger dataset? (Sec-

tion 5.2)

Implementation and experiment setup. We implement a
small-scale prototype of ZLTP with two-server private in-
formation retrieval in C++. Two-server private information
retrieval provides security in the event that an attacker can
compromise at most one of the two (logical) servers. We use
Google’s distributed point function library for two-server pri-
vate information retrieval [28]. We also use vector AVX in-
structions to accelerate the data scan. We run experiments on
Amazon AWS EC2 instances. We use a c5.large instance with
2 vCPUs and 4 GiB of memory.

Dataset. We use the C4 dataset [45, 46], a cleaned version of
the common crawl, to approximate the contents of lightweb.
While the C4 dataset does not include the entire contents of
the web, it provides a reasonable approximation of the subset
of web content that developers might push to lightweb. The C4
dataset is roughly 305 GiB compressed, contains 360M pages,
and the average compressed page size is roughly 0.9 KiB.

We derive parameters that allow us to approximate a small
shard of the C4 dataset, which we can then use to estimate
ZLTP performance at a larger scale. We set the maximum
data blob size to 4 KiB based on the fact that the average
compressed page size is 0.9 KiB; any values longer than this
can be broken up and retrieved separately (i.e. the user can
click a “next” link if she wants to read more). We run our
microbenchmarks on dummy values of the maximum blob size,
as the server cost is primarily determined by DPF evaluation
and the cost of scanning over all stored values. We note that in
a real deployment with heterogeneous-sized values, we would
lose some space by packing values.

5.1 Microbenchmarks

Server computation. We run microbenchmarks on a small
data shard in order to estimate the costs of ZLTP on a large
dataset. With 1 GiB of memory and an output domain of size
222, each request takes approximately 167ms of computation.
Of those 167ms, roughly 64ms are spent in DPF evaluation
and the other 103ms are spent scanning over the data. By
setting the output domain to size 222, we guarantee that if
there are roughly 220 key-value pairs (roughly the number
we’d expect with 1 GiB of storage and an average value size
of 0.9 KiB), the probability of collision is at most 1/4 when
the ZLTP server is almost at capacity (if this happens, then
the publisher can simply select another key name). We could
decrease this probability by increasing the DPF output domain
or by using cuckoo hashing and probing several locations per
request.
Batching requests to increase throughput. Because the ma-
jority of the overhead is due to the cost of scanning over
the data, we batch together requests, which increases latency
(page-load time) but improves throughput. By batching 16
requests together, we spend on average 167ms of computation
per request for a total latency of 2.6s and a throughput of 6
requests/s. (Because we are in the two-server setting, each
request must be processed at two different servers, and so the
effective per-query computation time of the entire system is
actually 334ms.) In contrast, by only processing one request
at a time, we achieve a latency of 0.51s and a throughput of 2
requests/s.
Communication. The communication overhead depends on
the size of the DPF key and the bucket size returned to the
client. The DPF key size is roughly (_ + 2)𝑑 where _ is the
security parameter (_ = 128) and 2𝑑 is the size of the output
domain (𝑑 = 22). Our implementation sets the output bucket
size to 4 KiB. Together, the total communication per request
is 13.6 KiB (including the 2× overhead for two-server private
information retrieval).

5.2 Estimated costs for scaling up ZLTP
We use the measured costs for a small data shard to estimate
the costs for the C4 dataset with 305GiB and 360M webpages
(for approximating costs, we assume that no space is lost due
to packing different-sized webpages). To scale up from 1 GiB
with a single c5.large data server, we consider a deployment of

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emma Dauterman and Henry Corrigan-Gibbs

Dataset Total size # pages Avg. page size vCPU sec Request cost Communication

C4 305 GiB 360M 0.9 KiB 204 $0.002 15.9 KiB
Wikipedia 21 GiB 60M 0.4 KiB 10 $0.0001 14.9 KiB

Table 2: Summary of estimated costs of running ZLTP on the C4 dataset and Wikipedia. The dataset size and page size include
compression. We base request cost on the cost of an AWS c5.large instance.

305 c5.large data servers, each managing 1 GiB of the dataset.
Such a deployment would also need several front-end servers
to intercept incoming client requests, route them to the data
servers, and combine the results before routing to the servers.
Distributing DPF evaluation. In this setting, the cost of the
data scan is still the same at each individual machine as in
our microbenchmarks. By having the front-end server process
the client’s DPF key before sending the DPF key to the data
servers, the DPF evaluation can also be the same. DPF eval-
uation is done by building a tree, and so the front-end server
can build the top part of the tree and then, for each sub-tree,
send the sub-tree root to the corresponding server. The cost
for the data server of completing the DPF evaluation from that
point is the same as the cost of evaluating the DPF key for the
smaller domain.
Server computation and AWS cost. In Table 2, we sum-
marize the estimated costs for the C4 dataset as well as the
smaller Wikipedia dataset. For this architecture on the C4
dataset, we shard each request across 305 c5.large instances,
each of which must perform 167ms of computation per re-
quest, has 2 vCPUs, and costs $0.085 per hour. Therefore,
each request requires 1.7 vCPU minutes of computation at
the data servers, resulting in a per-request cost of $0.001 Due
to the overhead of the two-server setting, the system-wide
computation cost is 3.4 vCPU minutes and $0.002 per request.
We do not consider the cost of the front-end coordinators or
egress communication, which will also add to the system cost.
The request latency (page-load time) is lower-bounded by 2.6s,
the latency of an individual data server, but would likely be
higher due to network latency, front-end server latency, and
data-server stragglers.

For comparison, Google Fi charges $10/GiB [27], and so
the cost to load the 22.4 MiB New York Times homepage
is $0.218, suggesting that users are willing to pay $0.218 to
load a page. Loading data via ZLTP is roughly two orders of
magnitude more expensive than the traditional web: loading
4 KiB (our ZLTP value size) costs $0.002 with ZLTP and
$0.000038 with Google Fi.
Communication. In the setting where each of the 305 ma-
chines maintains a shard with data from its own output domain
of size 222, the client-to-server communication is 7.9 KiB,
and the server-to-client communication is 8 KiB for a total of
15.9 KiB.
Looking forward. Although ZLTP is substantially more ex-
pensive than non-private web requests, as the cost of com-
putation continues dropping, ZLTP will become cheaper. In
2003, $1 bought 8 CPU hours, and in 2008, $1 bought 128

CPU hours (adjusted for inflation), a 16× increase [26]. This
change suggests that in 5 years, we could potentially see the
dollar cost of a ZLTP request drop by an order of magnitude.

6 Related work
The predominant technique for privately browsing the web
today is to use an anonymizing proxy such as Tor [23]. The
iCloud private relay system is another anonymizing proxy ser-
vice that uses non-colluding servers to ensure that no single
party can learn both a user’s IP address and the webpage that
a user is requesting [8]. These proxies are vulnerable to a
wide array of traffic-analysis attacks [9, 32, 33, 40, 42, 51]. A
number of private messaging systems defend against traffic-
analysis attacks [7, 17, 18, 24, 36, 36, 37, 52, 55]. However,
these systems are generally high-latency, and they focus on
private messaging or posting rather than private browsing. An-
other way to eliminate these traffic-analysis attacks would be
for the user to connect to a CDN distributing fixed-size web-
pages (similar to lightweb) via an anonymizing proxy. A seri-
ous drawback of this approach is that the CDN knows all web-
page requests for many users and so can run a deanonymiza-
tion attack to map users to requests [43, 44]. The ZLTP proto-
col defends against both traffic-analysis and deanonymization
attacks. Kesdogan [34] discuss using private information for
web browsing at a theoretical level; we give a concrete archi-
tecture (showing how to ensure pages have equal length, etc.)
and preliminary implementation results.

Another line of work uses private information retrieval as a
building block for privacy-preserving systems. Examples of
these include systems for private media delivery [29], private
search [6, 20, 30], private aggregation queries [21, 57], and
private messaging [7]. Tiptoe [30] privately searches over
webpages; users could then access their search results using
lightweb.

7 Conclusion
We introduce lightweb, a system for web-like fully private web
browsing. Crucially, no one, not the network and not the CDN,
learn what page the user is requesting. Lightweb is built on
ZLTP, which supports a private-GET operation. While lightweb
is not a drop-in replacement for today’s web, lightweb has
the potential to afford users privacy guarantees that are not
possible to achieve using traditional techniques (i.e. Tor) for
privately browsing the web.

Lightweb: Private web browsing without all the baggage HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

Acknowledgements. We thank the anonymous HotNets re-
viewers for their thoughtful feedback. Alexandra Henzinger
and Eric Rescorla gave suggestions that improved the pre-
sentation. We would also like to thank Raluca Ada Popa for
her generous support. This work was funded in part by gifts
from Capital One, Facebook, Google, Mozilla, NASDAQ, and
MIT’s FinTech@CSAIL Initiative. We also received support
under NSF Award CNS-2054869 and from the Sky lab at UC
Berkeley. Emma Dauterman was supported by a NSF Graduate
Research Fellowship and a Microsoft Ada Lovelace Research
Fellowship.

References
[1] NSA infiltrates links to Yahoo, Google data centers worldwide, Snowden

documents say, October 2013.
[2] Government push for Yahoo’s user data set stage for broad surveillance,

September 2014.
[3] In NSA-intercepted data, those not targeted far outnumber the foreigners

who are, July 2014.
[4] Google Might Owe You Money. Here’s How to Get It., June 2023.
[5] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni

Polychroniadou. Prio+: Privacy preserving aggregate statistics via
boolean shares. In Security and Cryptography for Networks: 13th Inter-
national Conference, SCN 2022, Amalfi (SA), Italy, September 12–14,
2022, Proceedings, pages 516–539. Springer, 2022.

[6] Ishtiyaque Ahmad, Laboni Sarker, Divyakant Agrawal, Amr El Abbadi,
and Trinabh Gupta. Coeus: A system for oblivious document ranking
and retrieval. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 672–690, 2021.

[7] Sebastian Angel and Srinath TV Setty. Unobservable communication
over fully untrusted infrastructure. In OSDI, volume 16, pages 551–569,
2016.

[8] Apple. About iCloud Private Relay, August 2023. https://support.apple.
com/en-us/102602.

[9] Lamiaa Basyoni, Noora Fetais, Aiman Erbad, Amr Mohamed, and
Mohsen Guizani. Traffic analysis attacks on tor: A survey. In 2020 IEEE
International Conference on Informatics, IoT, and Enabling Technolo-
gies (ICIoT), pages 183–188. IEEE, 2020.

[10] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers com-
putation in private information retrieval: Pir with preprocessing. In
Advances in Cryptology—CRYPTO 2000: 20th Annual International
Cryptology Conference Santa Barbara, California, USA, August 20–24,
2000 Proceedings 20, pages 55–73. Springer, 2000.

[11] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Lightweight techniques for private heavy hitters. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 762–776. IEEE, 2021.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1292–
1303, 2016.

[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. SGXPECTRE: Stealing intel secrets from SGX
enclaves via speculative execution. In EuroS&P. IEEE, 2019.

[14] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval
by keywords. 1997.

[15] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
Private information retrieval. Journal of the ACM (JACM), 45(6):965–
981, 1998.

[16] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In NSDI, pages 259–282, 2017.

[17] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An
anonymous messaging system handling millions of users. In 2015 IEEE
Symposium on Security and Privacy, pages 321–338. IEEE, 2015.

[18] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anony-
mous group messaging. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 340–350, 2010.

[19] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks,
and Raluca Ada Popa. Snoopy: Surpassing the scalability bottleneck of
oblivious storage. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pages 655–671, 2021.

[20] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion
Stoica. Dory: An encrypted search system with distributed trust. In
Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, pages 1101–1119, 2020.

[21] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica.
Waldo: A private time-series database from function secret sharing. In
2022 IEEE Symposium on Security and Privacy (SP), pages 2450–2468.
IEEE, 2022.

[22] Alex Davidson, Peter Snyder, EB Quirk, Joseph Genereux, Benjamin
Livshits, and Hamed Haddadi. Star: Secret sharing for private thresh-
old aggregation reporting. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 697–710,
2022.

[23] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. Technical report, Naval Research Lab
Washington DC, 2004.

[24] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, Dan Boneh,
et al. Express: Lowering the cost of metadata-hiding communication
with cryptographic privacy. In USENIX Security Symposium, pages
1775–1792, 2021.

[25] Amos Fiat and Moni Naor. Broadcast encryption. In Advances in Cryp-
tology—CRYPTO’93: 13th Annual International Cryptology Conference
Santa Barbara, California, USA August 22–26, 1993 Proceedings 13,
pages 480–491. Springer, 1994.

[26] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al.
Above the clouds: A berkeley view of cloud computing. Dept. Electrical
Eng. and Comput. Sciences, University of California, Berkeley, Rep.
UCB/EECS, 28(13):2009, 2009.

[27] Google. About google fi plans. https://support.google.com/fi/answer/
9462098?hl=en.

[28] Google. An implementation of incremental distributed point functions
in c++. https://github.com/google/distributed_point_functions.

[29] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty,
Lorenzo Alvisi, and Michael Walfish. Scalable and private media con-
sumption with popcorn. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 91–107, 2016.

[30] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, , and
Nickolai Zeldovich. Private web search with Tiptoe. In 29th ACM
Symposium on Operating Systems Principles (SOSP), Koblenz, Germany,
October 2023.

[31] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with
the multinomial naïve-bayes classifier. In Proceedings of the 2009 ACM
workshop on Cloud computing security, pages 31–42, 2009.

[32] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syver-
son. Users get routed: Traffic correlation on tor by realistic adversaries.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 337–348, 2013.

[33] Ishan Karunanayake, Nadeem Ahmed, Robert Malaney, Rafiqul Islam,
and Sanjay K Jha. De-anonymisation attacks on tor: A survey. IEEE
Communications Surveys & Tutorials, 23(4):2324–2350, 2021.

[34] Dogan Kesdogan, Mark Borning, and Michael Schmeink. Unobservable
surfing on the world wide web: is private information retrieval an alter-
native to the MIX based approach? In Privacy Enhancing Technologies,
2003.

[35] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In Proceedings

https://support.apple.com/en-us/102602
https://support.apple.com/en-us/102602
https://support.google.com/fi/answer/9462098?hl=en
https://support.google.com/fi/answer/9462098?hl=en
https://github.com/google/distributed_point_functions

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emma Dauterman and Henry Corrigan-Gibbs

38th annual symposium on foundations of computer science, pages 364–
373. IEEE, 1997.

[36] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford.
Atom: Horizontally scaling strong anonymity. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 406–422, 2017.

[37] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed
private messaging immune to passive traffic analysis. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 711–725, 2018.

[38] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. Oblix: An efficient oblivious search index. In 2018
IEEE Symposium on Security and Privacy (SP), pages 279–296. IEEE,
2018.

[39] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos.
Plasma: Private, lightweight aggregated statistics against malicious ad-
versaries with full security. Cryptology ePrint Archive, 2023.

[40] Steven J Murdoch and George Danezis. Low-cost traffic analysis of
tor. In 2005 IEEE Symposium on Security and Privacy (S&P’05), pages
183–195. IEEE, 2005.

[41] Dalit Naor, Moni Naor, and Jeff Lotspiech. Revocation and tracing
schemes for stateless receivers. In Advances in Cryptology—CRYPTO
2001: 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19–23, 2001 Proceedings 21, pages 41–62.
Springer, 2001.

[42] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr:
Strong flow correlation attacks on tor using deep learning. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1962–1976, 2018.

[43] Sai Teja Peddinti and Nitesh Saxena. Web search query privacy: Evaluat-
ing query obfuscation and anonymizing networks. Journal of Computer
Security, 22(1):155–199, 2014.

[44] Albin Petit, Thomas Cerqueus, Antoine Boutet, Sonia Ben Mokhtar,
David Coquil, Lionel Brunie, and Harald Kosch. SimAttack: private
web search under fire. Journal of Internet Services and Applications,
7(1):1–17, 2016.

[45] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. C4
model. https://huggingface.co/datasets/c4.

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Explor-
ing the limits of transfer learning with a unified text-to-text transformer,
2019. https://arxiv.org/abs/1910.10683.

[47] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Crosstalk: Speculative data leaks across cores are real. In
Security & Privacy. IEEE, 2021.

[48] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. Zerotrace:
Oblivious memory primitives from intel sgx. Cryptology ePrint Archive,
2017.

[49] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the burst:
Remote identification of encrypted video streams. In USENIX Security
Symposium, pages 1357–1374, 2017.

[50] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS. ACM, 2019.

[51] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rex-
ford, Mung Chiang, and Prateek Mittal. RAPTOR: Routing attacks on
privacy in tor. In 24th USENIX Security Symposium (USENIX Security
15), pages 271–286, 2015.

[52] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai
Zeldovich. Stadium: A distributed metadata-private messaging system.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[53] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel
sgx kingdom with transient out-of-order execution. In Proceedings fo

the 27th USENIX Security Symposium. USENIX Association, 2018.
[54] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Ma-

rina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss,
and Frank Piessens. LVI: Hijacking Transient Execution through Mi-
croarchitectural Load Value Injection. In Security & Privacy. IEEE,
2020.

[55] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zel-
dovich. Vuvuzela: Scalable private messaging resistant to traffic analysis.
In Proceedings of the 25th Symposium on Operating Systems Principles,
pages 137–152, 2015.

[56] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In Security & Privacy. IEEE, 2019.

[57] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan,
and Matei Zaharia. Splinter: Practical private queries on public data. In
NSDI, pages 299–313, 2017.

https://huggingface.co/datasets/c4
https://arxiv.org/abs/1910.10683

	1 Introduction
	2 The zero-leakage transfer protocol (ZLTP)
	2.1 Security goal
	2.2 Modes of operation
	2.3 Beyond the web

	3 The lightweb architecture
	3.1 System overview
	3.2 Anatomy of a lightweb browsing session
	3.3 Dynamic content
	3.4 Monetizing lightweb pages
	3.5 Multiple universes and peering

	4 Discussion: Who pays?
	5 Evaluation
	5.1 Microbenchmarks
	5.2 Estimated costs for scaling up ZLTP

	6 Related work
	7 Conclusion
	References

