
Making U2F Resistant to
Implementation Bugs and
Supply-Chain Tampering

Emma Dauterman, Henry Corrigan-Gibbs, David Mazières,
Dan Boneh, Dominic Rizzo

Stanford and Google

To appear at IEEE Security & Privacy 2019

2

U2F defends against phishing and browser compromise

Relying PartyHost
Token

(authenticator)

… but what about vulnerabilities in the token itself?

3

Relying PartyHost
Token

(authenticator)

… but what about vulnerabilities in the token itself?

4

1. Implementation bugs

2. Supply-chain tampering

Relying PartyHost
Token

(authenticator)

U2F Shortcoming #1: Implementation bugs

5

U2F Shortcoming #1: Implementation bugs

6

U2F Shortcoming #1: Implementation bugs

7

U2F Shortcoming #2: Supply-chain tampering

8

Our proposed enhancement of U2F

Goals:

- Augment U2F to protect against faulty tokens

- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens

9

Our proposed enhancement of U2F

Goals:

- Augment U2F to protect against faulty tokens

- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens

10

Design principles:

- Both host and token contribute randomness to the protocol.

- Host can verify all deterministic token operations.

U2F protocol steps

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

11

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

12

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

13

Principle: Both host and token contribute randomness to the protocol.

14

Step #0: Initialization

collaborative
key generation

15

Step #0: Initialization

msk
mpk

collaborative
key generation

16

Initialization properties

[CMBF13]

msk
mpk

The token cannot
bias mpk.

17

The token cannot
bias mpk.

The host learns
nothing about msk.

Initialization properties

msk
mpk

[CMBF13]

18

Initialization protocol using collaborative key generation

19

 The token
cannot bias mpk.

Initialization protocol using collaborative key generation

20

 The host learns
nothing about msk.

Initialization protocol using collaborative key generation

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

21

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

22

Principle: All deterministic token operations can be verified by the host.

23

U2F Registration

github.comgithub.com

pkgithub.com pkgithub.com

github.comGenerate (skgithub.com, pkgithub.com)

24

Implementation bug at registration

github.comgithub.com

pkgithub.com pkgithub.com

github.comGenerate (skgithub.com, pkgithub.com)
using weak randomness

25

Supply-chain tampering at registration

evil.comevil.com

pkevil.com pkevil.com

evil.compkevil.com ← f(skgithub.com)

skgithub.com← f -1(pkevil.com)

26

Proposed Registration

msk
mpk

Derive per-account keypairs in a
deterministic and verifiable
way from the master keypair.

27

Registration properties

1. Unique: The token can produce the unique keypair for github.com.

28

Registration properties

1. Unique: The token can produce the unique keypair for github.com.

2. Verifiable: The token can prove to the host that pkgithub.com is really
the unique public key for github.com.

29

Registration properties

Registration properties

1. Unique: The token can produce the unique keypair for github.com.

2. Verifiable: The token can prove to the host that pkgithub.com is really
the unique public key for github.com.

3. Unlinkability: github.com cannot distinguish pkgithub.com from a
random ECDSA public key.

30

Registration properties

1. Unique: The token can produce the unique keypair for github.com.

2. Verifiable: The token can prove to the host that pkgithub.com is really
the unique public key for github.com.

3. Unlinkability: github.com cannot distinguish pkgithub.com from a
random ECDSA public key.

4. Unforgeable: The host cannot forge a signature under pkgithub.com.

31

32

Registration construction

github.com

msk
mpk

33

Registration construction

github.com

34

Registration construction

github.com

35

Registration construction

github.com

36

Registration construction

github.com

 Unique: The token can produce
the unique keypair for github.com.

37

Registration construction

github.com

 Verifiable: The token can prove to the host that
pkgithub.com is really the unique public key for github.com.

38

Registration construction

github.com

 Unlinkability: github.com cannot distinguish
pkgithub.com from a random ECDSA public key.

39

Registration construction

github.com

 Unforgeable: The host cannot
forge a signature under pkgithub.com.

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

40

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

41

Principle: Both host and token contribute randomness to the protocol.

42

U2F Authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com

43

U2F Authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com

ECDSA signatures are randomized:
1. Signing nonce
2. Malleability (2 valid signatures)

44

Implementation bug at authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com
Choose signing nonce with
weak randomness

45

Supply-chain tampering at authentication

github.com,
challenge

signature signature

github.com,
challenge

evil.com
Hide skgithub.com in signature

Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS04]

46

Authentication properties

47

Authentication properties

Exfiltration resistance:
Token cannot exfiltrate
any bits of information in
signature.

[AMV15], [MS15], [DMS16]

48

Authentication properties

Zero knowledge: Host
“learns nothing” except
a valid signature.

Exfiltration resistance:
Token cannot exfiltrate
any bits of information in
signature.

[AMV15], [MS15], [DMS16]

Authentication construction idea

49

github.com

challenge,
github.com

σ ← ECDSA.Sign(sk, challenge)

σ σ

challenge,
github.com

Authentication construction idea

50

github.com
σ ← ECDSA.Sign(sk, challenge; r)

Use gr to verify that r is used in σ.

r
gr

challenge,
github.com

σ σ

challenge,
github.com

51

github.com

collaborative
keygen

challenge,
github.com

σ ← ECDSA.Sign(sk, challenge; r)
Use gr to verify that r is used in σ.

σr gr
σ

challenge,
github.com

Authentication construction idea

52

github.com

collaborative
keygen

challenge,
github.com

σ ← ECDSA.Sign(sk, challenge; r)
Use gr to verify that r is used in σ.
Randomly choose σ’ from two
valid signatures.

σr gr
σ’

challenge,
github.com

Authentication construction idea

Authentication construction idea

53

github.com

collaborative
keygen

challenge,
github.com

σ ← ECDSA.Sign(sk, challenge; r)
Use gr to verify that r is used in σ.
Randomly choose σ’ from two
valid signatures.

σr gr
σ’

challenge,
github.com

 Exfiltration resistance:
Token cannot exfiltrate any bits
of information in signature.

Authentication construction idea

54

github.com

collaborative
keygen

challenge,
github.com

σ ← ECDSA.Sign(sk, challenge; r)
Use gr to verify that r is used in σ.
Randomly choose σ’ from two
valid signatures.

σr gr
σ’

challenge,
github.com

 Zero knowledge:
Host “learns nothing”
except a valid signature.

Proposed protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

55

“Out-of-protocol” covert channels

Our protocol defends against “in-protocol” covert channels.

What about “out-of-protocol” covert channels?

1. Timing: can be prevented by host

2. Failure: discard bad tokens

3. Malware

4. Other

56
[Hu92], [CBS04]

Other contributions (see paper)

- Flash-optimized data structure for storing U2F authentication counters
- Provides stronger unlinkability than many existing U2F tokens
- “Tear-resistant” and respects constraints of token flash

- Cryptographic optimizations tailored to token hardware
- Offload hash-to-point to the host
- Cache Verifiable Random Function outputs at the host

57

Implementation

58

Google production USB
token with same hardware

specs.

Google development board
running our protocol.

ARM SC-300 processor
clocked at 24 MHz

Minimal authentication overhead

59

Collaborative Keygen
Deterministic Verifiable Keygen
ECDSA Sign

Browser

To
ke

n

Our proposal
only ~2.5x slower
than U2F

Comparatively small end-to-end slowdown

60

Our protocol only
12-16% slower
than U2F

Deployment considerations

61

Deployment considerations

62

How does the browser UI change?

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure

Deployment considerations

How does the browser UI change?

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure

63

How to support multiple browsers?

- Token gives mpk and counter to browser (protect against bugs)
- Sync mpk and counter across browser instances

CTAP2

64

- Cryptographic constructions carry over to CTAP2 (ECDSA P256).

- Core ideas remain, but still need full analysis.

Withstand untrustworthy hardware

Emma Dauterman
edauterman@cs.stanford.edu

https://arxiv.org/abs/1810.04660
Paper to appear at IEEE S&P 2019

65

Our proposal
- Augments U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

Practical to deploy: performant on commodity hardware tokens

What is the next step?

References
[ACMT05] G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik. Sanitizable signatures. In ESORICS, 2005.
[BPR14] M.Bellare, K.G.Paterson,and P.Rogaway. Security of symmetric encryption against mass surveillance. In

CRYPTO, 2014.
[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of cryptology, 17(4),

2004.
[CBS04] S .Cabuk, C.E. Brodley, and C. Shields. IP covert timing channels: design and detection. In CCS, 2004.
[Des88] Y. Desmedt. Subliminal-free authentication and signature. In EUROCRYPT, 1988.
[DMS16] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with reverse firewalls—secure

communication on corrupted machines. In CRYPTO, 2016.
[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, 2005.
[GRPV18] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Vcelak. Verifiable random functions (VRFs). IETF CFRG

Internet-Draft (Standards Track), Mar. 2018. https://tools.ietf.org/html/ draft-irtf-cfrg-vrf-01.
[Hu92] W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer security, 1(3-4):233–254, 1992.
[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS, 1999.
[MS15] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In EUROCRYPT, 2015.
[Sim84] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In CRYPTO, 1984.

66

67

