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U2F defends against phishing and browser compromise
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… but what about vulnerabilities in the token itself?
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1. Implementation bugs

2. Supply-chain tampering

Relying PartyHost
Token 

(authenticator)



U2F Shortcoming #1: Implementation bugs
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U2F Shortcoming #1: Implementation bugs
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U2F Shortcoming #2: Supply-chain tampering
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Our proposed enhancement of U2F

Goals: 

- Augment U2F to protect against faulty tokens

- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens
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Design principles:

- Both host and token contribute randomness to the protocol.

- Host can verify all deterministic token operations.

 



U2F protocol steps

 1.  Registration (associating a token with an account)

 2.  Authentication (logging into an account)
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Principle:  Both host and token contribute randomness to the protocol.
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Step #0: Initialization

collaborative 
key generation
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Step #0: Initialization
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Initialization properties

[CMBF13]

msk
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The token cannot 
bias mpk.



17

The token cannot 
bias mpk.

The host learns 
nothing about msk.

Initialization properties

msk
mpk

[CMBF13]



18

Initialization protocol using collaborative key generation
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Proposed protocol steps
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Principle: All deterministic token operations can be verified by the host.
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U2F Registration

github.comgithub.com

pkgithub.com pkgithub.com

github.comGenerate (skgithub.com, pkgithub.com)
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Implementation bug at registration

github.comgithub.com

pkgithub.com pkgithub.com

github.comGenerate (skgithub.com, pkgithub.com) 
using weak randomness
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Supply-chain tampering at registration

evil.comevil.com

pkevil.com pkevil.com

evil.compkevil.com ← f(skgithub.com)

skgithub.com← f -1(pkevil.com)
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Proposed Registration

msk
mpk

Derive per-account keypairs in a 
deterministic and verifiable 
way from the master keypair.
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Registration properties



1. Unique: The token can produce the unique keypair for github.com.
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Registration construction

github.com

msk
mpk
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Registration construction

github.com

    Unique: The token can produce 
the unique keypair for github.com.
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Registration construction

github.com

    Verifiable: The token can prove to the host that 
pkgithub.com is really the unique public key for github.com. 
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Registration construction

github.com

    Unlinkability: github.com cannot distinguish 
pkgithub.com from a random ECDSA public key. 



39

Registration construction

github.com

    Unforgeable: The host cannot 
forge a signature under pkgithub.com.



Proposed protocol steps

 0.  Initialization (after purchasing a token)
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 2.  Authentication (logging into an account)
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Principle: Both host and token contribute randomness to the protocol.
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U2F Authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com
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U2F Authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com

ECDSA signatures are randomized:
1. Signing nonce
2. Malleability (2 valid signatures)
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Implementation bug at authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com
Choose signing nonce with 
weak randomness
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Supply-chain tampering at authentication

github.com,
challenge

signature signature

github.com,
challenge

evil.com
Hide skgithub.com in signature

Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS04]
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Authentication properties
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Authentication properties

Exfiltration resistance: 
Token cannot exfiltrate 
any bits of information in 
signature.

[AMV15], [MS15], [DMS16]
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Authentication properties

Zero knowledge: Host 
“learns nothing” except 
a valid signature.

Exfiltration resistance: 
Token cannot exfiltrate 
any bits of information in 
signature.

[AMV15], [MS15], [DMS16]



Authentication construction idea
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github.com

challenge, 
github.com

σ ← ECDSA.Sign(sk, challenge)

σ σ

challenge, 
github.com



Authentication construction idea
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github.com
σ ← ECDSA.Sign(sk, challenge; r)

Use gr to verify that r is used in σ.

r
gr

challenge, 
github.com

σ σ

challenge, 
github.com
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github.com

collaborative 
keygen
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Use gr to verify that r is used in σ.

σr gr
σ

challenge, 
github.com

Authentication construction idea
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Use gr to verify that r is used in σ.
Randomly choose σ’ from two 
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github.com

collaborative 
keygen
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“Out-of-protocol” covert channels

Our protocol defends against “in-protocol” covert channels.

What about “out-of-protocol” covert channels?

1. Timing: can be prevented by host

2. Failure: discard bad tokens

3. Malware

4. Other

56
[Hu92], [CBS04]



Other contributions (see paper)

- Flash-optimized data structure for storing U2F authentication counters
- Provides stronger unlinkability than many existing U2F tokens
- “Tear-resistant” and respects constraints of token flash

- Cryptographic optimizations tailored to token hardware
- Offload hash-to-point to the host
- Cache Verifiable Random Function outputs at the host
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Implementation
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Google production USB 
token with same hardware 

specs.

Google development board 
running our protocol.

ARM SC-300 processor 
clocked at 24 MHz



Minimal authentication overhead
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Collaborative Keygen
Deterministic Verifiable Keygen
ECDSA Sign

Browser

To
ke

n

Our proposal 
only ~2.5x slower 
than U2F



Comparatively small end-to-end slowdown
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Our protocol only 
12-16% slower 
than U2F



Deployment considerations
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Deployment considerations
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How does the browser UI change? 

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure
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How to support multiple browsers?

- Token gives mpk and counter to browser (protect against bugs)
- Sync mpk and counter across browser instances



CTAP2
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- Cryptographic constructions carry over to CTAP2 (ECDSA P256).

- Core ideas remain, but still need full analysis.



Withstand untrustworthy hardware

Emma Dauterman
edauterman@cs.stanford.edu

https://arxiv.org/abs/1810.04660
Paper to appear at IEEE S&P 2019
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Our proposal
- Augments U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

Practical to deploy: performant on commodity hardware tokens

What is the next step?



References
[ACMT05] G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik. Sanitizable signatures. In ESORICS, 2005.
[BPR14] M.Bellare, K.G.Paterson,and P.Rogaway. Security of symmetric encryption against mass surveillance. In 

CRYPTO, 2014.
[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of cryptology, 17(4), 

2004.
[CBS04] S .Cabuk, C.E. Brodley, and C. Shields. IP covert timing channels: design and detection. In CCS, 2004.
[Des88] Y. Desmedt. Subliminal-free authentication and signature. In EUROCRYPT, 1988.
[DMS16] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with reverse firewalls—secure 

communication on corrupted machines. In CRYPTO, 2016.
[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, 2005.
[GRPV18] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Vcelak. Verifiable random functions (VRFs). IETF CFRG 

Internet-Draft (Standards Track), Mar. 2018. https://tools.ietf.org/html/ draft-irtf-cfrg-vrf-01.
[Hu92] W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer security, 1(3-4):233–254, 1992.
[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS, 1999.
[MS15] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In EUROCRYPT, 2015.
[Sim84] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In CRYPTO, 1984.

66



67


