Making U2F Resistant to
Implementation Bugs and
Supply-Chain Tampering

Emma Dauterman, Henry Corrigan-Gibbs, David Maziéres,
Dan Boneh, Dominic Rizzo

Stanford and Google

To appear at IEEE Security & Privacy 2019



U2F defends against phishing and browser compromise

Token
(authenticator)

r/\
-

Relying Party




... but what about vulnerabilities in the token itself?

r/\
-

Relying Party

Token
(authenticator)




... but what about vulnerabilities in the token itself?

¢

—
-
Token a——— Q

(authenticator)
Host Relying Party

1. Implementation bugs

2. Supply-chain tampering




U2F Shortcoming #1: Implementation bugs
Susca

Millions of high-security crypto keys
crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their
data.

ars) TECHNICA

DAN GOODIN - 10/16/2017, 4:00 AM



U2F Shortcoming #1: Implementation bugs

Milli _ S _ o
crip; Estonia Invalidates Digital

raoriz CEItificates Over Crypto Crack

data.
oancoopr Unpatched Infineon Chip Peril as Researchers Speed Up Encryption Key Attack

Wier



U2F Shortcoming #1: Implementation bugs

Milli =
crip] EST g8 The Chromium Projects

4
gaitorlz Ce ' Chromium OS >
dala. .
unpatc Trusted Platform Module firmware
vulnerability: technical documentation

Vulnerability description

|
<

DAN GOODI

'y Attack

There is a bug in certain Infineon TPM firmware
versions which results in RSA keys generated
by the TPM being vulnerable to an aitack that
allows to recover the private half of the RSA key
from just the public key. The researchers who
found the vulnerability have published high-level
information here:



U2F Shortcoming #2: Supply-chain tampering

Photos of an NSA “upgrade” factory show
Cisco router getting implant

Servers, routers get “beacons” implanted at secret locations by NSA's TAO team.

SEAN GALLAGHER - 5/14/2014, 12:30 PM

(TS//SV/NF) Left: Intercepted packages are opened carefully; Right: A “load station”
implants a beacon

MOTHERBOARD

CHINA By Joseph Cox Aug 312018, 5:05am

Experts Call for
Transparency Around
Google’s Chinese-
Made Security Keys

Google's Titan Security Keys, used to lock
down accounts, are produced in China.
Several experts want more answers on that
supply chain process, for fears of tampering or
security issues.



Our proposed enhancement of U2F

Goals:

- Augment U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens



Our proposed enhancement of U2F

Goals:

- Augment U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens

Design principles:

- Both host and token contribute randomness to the protocol.

- Host can verify all deterministic token operations.

10



U2F protocol steps

1. Registration (associating a token with an account)

2. Authentication (logging into an account)

11



Proposed protocol steps

0. Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

12



Proposed protocol steps

0. Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

Principle: Both host and token contribute randomness to the protocol.

13



Step #0: Initialization

collaborative

key generation
-0 iy 0

14



Step #0: Initialization

collaborative
key generation

< —>>

msk

15



[CMBF13]

Initialization properties

The token cannot
bias mpk.

msk

16



[CMBF13]

Initialization properties

The token cannot
bias mpk.

msk

The host learns

nothing about msk.

17



Initialization protocol using collaborative key generation

G = (g) is a group of prime order gq.
ECDSA keypairs have the form (x, g*) € Z,; X G.

c<+ H(v,r)

V'« g”,

—

18



Initialization protocol using collaborative key generation

G = (g) is a group of prime order gq.
ECDSA keypairs have the form (x, g*) € Z,; X G.

c<+ H(v,r)

V'« g”,

—

msk <l + 0’ /The token
cannot bias mpk.

19




Initialization protocol using collaborative key generation

G = (g) is a group of prime order gq.
ECDSA keypairs have the form (x, g*) € Z,; X G.

c<+ H(v,r)

V'« g”,

—

msk «—|v + v’ ‘/The host learns
nothing about msk.

20




Proposed protocol steps

\A). Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

21



Proposed protocol steps

\A). Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

Principle: All deterministic token operations can be verified by the host.

22



Generate (sk

UZ2F Registration

github.com

-+

pkgithub .com
—>

github.com’ P github. com)

'3

github.com
-

pkgithub .com

r/\
&

github.com

23



Implementation bug at registration

github.com

-

p github.com
—>

Ge,nerate (Skgithub.com’ pkgithub.com)
using weak randomness

¢

github.com
-

pkgithub .com

/\
&

glithub.com

24



Supply-chain tampering at registration

evil.com VT
-
o

<

pkevil .com

— f(sk

evil.com

pk

evil.com github.com)

-1
Skgithub.com(_ f (pkevil.com)

25



msk

Proposed Registration

Derive per-account keypairs in a
deterministic and verifiable
way from the master keypair.

o

26



Registration properties

27



1.

Registration properties

Unique: The token can produce the unique keypairfor github . com.

28



Registration properties

1. Unique: The token can produce the unique keypair for github. com.

2. \Verifiable: The token can prove to the host that pk(jithub.Com IS really
the unique public key for github. com.

29



Registration properties

Unique: The token can produce the unique keypairfor github . com.

Verifiable: The token can prove to the host that pkqi chun . eon 1S TEQIlY
the unique public key for github. com.

Unlinkability: github.com cannot distinguish pkqithub.Com from a
random ECDSA public key.

30



Registration properties

Unique: The token can produce the unique keypairfor github . com.

Verifiable: The token can prove to the host that pkqi chun . eon 1S TEQIlY
the unique public key for github. com.

Unlinkability: github.com cannot distinguish pkqithub.Com from a
random ECDSA public key.

Unforgeable: The host cannot forge a signature under pkg

ithub.com’

31



Registration construction

G = (g) is a group of prime order q.

msk

k/
github.com

32



Registration construction

G = (g) is a group of prime order q.

X=9g"€G

T € Ly

¢

_—
= =

github.com

33



Registration construction

G = (g) is a group of prime order q. X=¢"cG

T € 2y k=H(X)
k=H(X)

¢

_—
= =

github.com

34



Registration construction

G = (g) is a group of prime order q.

X=9g"€G

T € Ly
k=H(X)

github.com

k= H(X)

github.com

- -
pk <

a < HMAC (github. conm)
(sk, pk) < (ax, g*%)

pk

a < HMAC(github. com)
Check if pk = X

k/
github.com

35



Registration construction

G = (g) is a group of prime order q.

T € Ly
k= H(X) .
github.com

-
- o e
a < HMAC (github. conm)
(sk, pk) < (ax, g*%)

X=9g"€G
k= H(X)
github.com
-
G pk
>

a < HMAC(github. com)
Check if pk = X

.\/Unique: The token can produce
the unique keypairfor github . com.

k/
github.com

36



Registration construction

G = (g) is a group of prime order q.

T € Ly
k= H(X) .
github.com

-
- o e
a < HMAC (github. conm)
(sk, pk) < (ax, g*%)

X=9g"€G
k= H(X)
github.com
-
G pk
>

a < HMAC(github. com)
Check if pk = X

_—
=

github.com

pkgithub. com

/ Verifiable: The token can prove to the host that
is really the unique public key for github. com.

37




Registration construction

G = (g) is a group of prime order q. X=¢"cG
k= H(X) | -
github.com github.com

- <
pk @ pk
> >

a < HMAC (github. conm) P
(sk, pk) < (ax, g™") a + HMACg(github. com)

Check if pk = X

_—
=

github.com

/Unlinkability: github.com cannot distinguish
from a random ECDSA public key.

pkgithub. com

38




Registration construction

G = (g) is a group of prime order q.

T € Ly
k= H(X) .
github.com

-«
pk
a < HMAC (github. conm)
(sk, pk) < (ax, g*%)

X=9g"€G
k= H(X)
github.com
-
G pk
>

a < HMAC(github. com)
Check if pk = X

forge a

‘/ Unforgeable: The host cannot

signature under pk@J

ithub.com’

k/
github.com

39



Proposed protocol steps

\A). Initialization (after purchasing a token)
\A . Registration (associating a token with an account)

2. Authentication (logging into an account)

40



Proposed protocol steps

\A). Initialization (after purchasing a token)
\A . Registration (associating a token with an account)

2. Authentication (logging into an account)

Principle: Both host and token contribute randomness to the protocol.

41



U2F Authentication

github.com,

challenge challenge

c |

m )
signature

—P

signature

github.com, r///f\\j
~

—>>

github.com

42



U2F Authentication

¢

github.com,
challenge

m )
signature

—P

ECDSA signatures are randomized:
1. Signing nonce
2. Malleability (2 valid signatures)

-

challenge

github.com, (///f\\j
-

signature

—>>

github.com

43



Implementation bug at authentication

github.com,
challenge

github.com,

- challenge
‘0

-

signature signature

—> -

Choose signing nonce with
weak randomness

/\

github.com

44



Supply-chain tampering at authentication

github.com, github. com,g/r
challenge challenge
-— -
‘0
signature signature N
—> >
N

Hide sk ... . ... insignature evil.com

Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS04] 45



Authentication properties

el

46



Authentication properties

¢

Exfiltration resistance:
Token cannot exfiltrate
any bits of information in
signature.

[AMV15], [MS15], [DMS16]

el

47



Authentication properties

¢

Exfiltration resistance:
Token cannot exfiltrate
any bits of information in
signature.

Zero knowledge: Host
“learns nothing” except
a valid signature.

[AMV15], [MS15], [DMS16]

el

48



Authentication construction idea

challenge,
github.com

o [e]
0] O

-

|~
o — ECDSA.Sign(sk, challenge) k/

github.com

challenge,
github.com

49



Authentication construction idea

challenge,

github.com

gr

m 4
0)

¢

-

o «— ECDSA.Sign(sk, chall

enge; r)

challenge,
github.com

«

0)

Use g to verify that r is used in ©.

k\:i;_,///)
github.com

50



Authentication construction idea

challenge, challenge,
github.com github.com

«

collaborative
keygen

< >

0)

> >

o «— ECDSA.Sign(sk, challenge; r)
Use g to verify that r is used in ©.

k\:i;_,///)
github.com

51



Authentication construction idea

challenge, challenge,
github.com github.com

«

collaborative
keygen

< >

0)

o «— ECDSA.Sign(sk, challenge; r)

Use g to verify that r is used in ©.
Randomly choose ¢’ from two
valid signatures.

> >

k\:i;_,///)
github.com

52



Authentication construction idea

challenge,
glithub.com

-

challenge,
github.com
S <

-—

collabc ‘/ Exfiltration resistance:
keyq Token cannot exfiltrate any bits
of information in signature.

>

o «— ECDSA.Sign(sk, challenge; r)

Use g' to verify that r is used in ©.
Randomly choose ¢’ from two
valid signatures.

k:j\_///)
github.com

53



Authentication construction idea

challeng

glithub.com

<

e,

collaborat
keygen

<

challenge,
github.com
S <

0)

\/ Zero knowledge:
| Host “learns nothing”
except a valid signature.

>

o «— ECDSA.Sign(sk, challenge; r)

Use g' to verify that r is used in ©.
Randomly choose ¢’ from two
valid signatures.

L:j\_///)
github.com

54



Proposed protocol steps

\A). Initialization (after purchasing a token)
\A . Registration (associating a token with an account)

\/2. Authentication (logging into an account)

55



“Out-of-protocol” covert channels

Our protocol defends against “in-protocol” covert channels.
What about “out-of-protocol” covert channels?

1. Timing: can be prevented by host

Failure: discard bad tokens

Malware

Other

B~ W D

[Hu92], [CBS04]

56



Other contributions (see paper)

Flash-optimized data structure for storing U2F authentication counters
- Provides stronger unlinkability than many existing U2F tokens
- “Tear-resistant” and respects constraints of token flash

Cryptographic optimizations tailored to token hardware
- Offload hash-to-point to the host
- Cache Verifiable Random Function outputs at the host

57



Implementation

Google development board
running our protocol.

Google production USB
token with same hardware
specs.

ARM SC-300 processor
clocked at 24 MHz

58



Minimal authentication overhead

B Collaborative Keygen I Browser
B Deterministic Verifiable Keygen
B ECDSA Sign

Token

No optimizations 446

Fast keygen only

1
1

Hash-to-point assist only

VRF caching only Our proposal

Our proposal (all) i only ~2.5x slower
U2F | than U2F
0 100 200 300 400

Time (ms)
59



Comparatively small end-to-end slowdown

B Protocol B Browser Overhead

— Registration —
Our proposal

234
U2F :

— Authentication — i Our protocol only
Our proposal 171 | 12-16% slower
U2F i than U2F
0 50 100 150 200 250

Time (ms)

60



Deployment considerations

61



Deployment considerations

How does the browser Ul change?

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure

62



Deployment considerations

How does the browser Ul change?

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure

How to support multiple browsers?

- Token gives mpk and counter to browser (protect against bugs)
- Sync mpk and counter across browser instances

63



CTAP2

Cryptographic constructions carry over to CTAP2 (ECDSA P256).

Core ideas remain, but still need full analysis.

64



Withstand untrustworthy hardware

Our proposal
- Augments U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

Practical to deploy: performant on commodity hardware tokens

What is the next step?

Emma Dauterman
edauterman@cs.stanford.edu
https://arxiv.org/abs/1810.04660
Paper to appear at IEEE S&P 2019




References

[ACMTO5]
[BPR14]

[BLS04]

[CBS04]
[Des88]
[DMS16]

[DYO05]
[GRPV18]

[Hu92]
[MRV99]
[MS15]
[Sim84]

G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik. Sanitizable signatures. In ESORICS, 2005.

M.Bellare, K.G.Paterson,and P.Rogaway. Security of symmetric encryption against mass surveillance. In
CRYPTO, 2014.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of cryptology, 17(4),
2004.

S .Cabuk, C.E. Brodley, and C. Shields. IP covert timing channels: design and detection. In CCS, 2004.

Y. Desmedt. Subliminal-free authentication and signature. In EUROCRYPT, 1988.

Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with reverse firewalls—secure
communication on corrupted machines. In CRYPTO, 2016.

Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, 2005.

S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Vcelak. Verifiable random functions (VRFs). IETF CFRG
Internet-Draft (Standards Track), Mar. 2018. https://tools.ietf.org/html/ draft-irtf-cfrg-vrf-01.

W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer security, 1(3-4):233-254, 1992.

S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS, 1999.

I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In EUROCRYPT, 2015.

G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In CRYPTO, 1984.

66



Table 7: Cost of various operations on the
token, averaged over 100 runs, and the ex- S0

SRS
pected number of each operation required gg q;& §
per authentication attempt. “HW?”” indi- & & QO <
cates use of the token’s crypto accelerator. K &F & F &

o & AT &

< % % %

Operation HW? Time (us) Ops. per auth.
SHA256 (128 bytes) Y 19 5 5 3 5 3
X+y € Zg N 36 17 16 2 15 1
Xy € ZLyg N 409 9 8 2 11 1
¢t e Y 17,400 7 5 3 7 1
ECDSA.Sign Y 18,600 I 1 1 1 1
g-heG N 25,636 1 0 1 1 0
Vx € Zg N 105,488 2 2 0 00

SO R OO o



