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U2F defends against phishing and browser compromise

Token
(authenticator)

r/\
-

Relying Party




... but what about vulnerabilities in the token itself?
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1. Implementation bugs

2. Supply-chain tampering




U2F Shortcoming #1: Implementation bugs
Susca

Millions of high-security crypto keys
crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their
data.
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DAN GOODIN - 10/16/2017, 4:00 AM



U2F Shortcoming #1: Implementation bugs
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U2F Shortcoming #1: Implementation bugs
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There is a bug in certain Infineon TPM firmware
versions which results in RSA keys generated
by the TPM being vulnerable to an aitack that
allows to recover the private half of the RSA key
from just the public key. The researchers who
found the vulnerability have published high-level
information here:



U2F Shortcoming #2: Supply-chain tampering

Photos of an NSA “upgrade” factory show
Cisco router getting implant

Servers, routers get “beacons” implanted at secret locations by NSA's TAO team.

SEAN GALLAGHER - 5/14/2014, 12:30 PM

(TS//SV/NF) Left: Intercepted packages are opened carefully; Right: A “load station”
implants a beacon

MOTHERBOARD

CHINA By Joseph Cox Aug 312018, 5:05am

Experts Call for
Transparency Around
Google’s Chinese-
Made Security Keys

Google's Titan Security Keys, used to lock
down accounts, are produced in China.
Several experts want more answers on that
supply chain process, for fears of tampering or
security issues.



Our proposed enhancement of U2F

Goals:

- Augment U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens



Our proposed enhancement of U2F

Goals:

- Augment U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

- Practical on commodity hardware tokens

Design principles:

- Both host and token contribute randomness to the protocol.

- Host can verify all deterministic token operations.
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U2F protocol steps

1. Registration (associating a token with an account)

2. Authentication (logging into an account)
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Proposed protocol steps

0. Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)
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Proposed protocol steps

0. Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

Principle: Both host and token contribute randomness to the protocol.
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Step #0: Initialization
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Step #0: Initialization
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[CMBF13]

Initialization properties

The token cannot
bias mpk.

msk
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[CMBF13]

Initialization properties

The token cannot
bias mpk.

msk

The host learns

nothing about msk.

17



Initialization protocol using collaborative key generation

G = (g) is a group of prime order gq.
ECDSA keypairs have the form (x, g*) € Z,; X G.

c<+ H(v,r)

V'« g”,

—
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Initialization protocol using collaborative key generation

G = (g) is a group of prime order gq.
ECDSA keypairs have the form (x, g*) € Z,; X G.
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Initialization protocol using collaborative key generation

G = (g) is a group of prime order gq.
ECDSA keypairs have the form (x, g*) € Z,; X G.

c<+ H(v,r)
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msk «—|v + v’ ‘/The host learns
nothing about msk.
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Proposed protocol steps

\A). Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)
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Proposed protocol steps

\A). Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

Principle: All deterministic token operations can be verified by the host.
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Implementation bug at registration
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Supply-chain tampering at registration
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msk

Proposed Registration

Derive per-account keypairs in a
deterministic and verifiable
way from the master keypair.

o
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Registration properties
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1.

Registration properties

Unique: The token can produce the unique keypairfor github . com.
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Registration properties

1. Unique: The token can produce the unique keypair for github. com.

2. \Verifiable: The token can prove to the host that pk(jithub.Com IS really
the unique public key for github. com.
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Registration properties

Unique: The token can produce the unique keypairfor github . com.

Verifiable: The token can prove to the host that pkqi chun . eon 1S TEQIlY
the unique public key for github. com.

Unlinkability: github.com cannot distinguish pkqithub.Com from a
random ECDSA public key.
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Registration properties

Unique: The token can produce the unique keypairfor github . com.

Verifiable: The token can prove to the host that pkqi chun . eon 1S TEQIlY
the unique public key for github. com.

Unlinkability: github.com cannot distinguish pkqithub.Com from a
random ECDSA public key.

Unforgeable: The host cannot forge a signature under pkg

ithub.com’
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Registration construction

G = (g) is a group of prime order q.
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Registration construction

G = (g) is a group of prime order q.
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Registration construction
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Registration construction
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Registration construction
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Registration construction
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Registration construction
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Registration construction
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Proposed protocol steps

\A). Initialization (after purchasing a token)
\A . Registration (associating a token with an account)

2. Authentication (logging into an account)
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Proposed protocol steps

\A). Initialization (after purchasing a token)
\A . Registration (associating a token with an account)

2. Authentication (logging into an account)

Principle: Both host and token contribute randomness to the protocol.
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U2F Authentication
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U2F Authentication
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Implementation bug at authentication
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Supply-chain tampering at authentication
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Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS04] 45



Authentication properties

el
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Authentication properties

¢

Exfiltration resistance:
Token cannot exfiltrate
any bits of information in
signature.

[AMV15], [MS15], [DMS16]

el
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Authentication properties

¢

Exfiltration resistance:
Token cannot exfiltrate
any bits of information in
signature.

Zero knowledge: Host
“learns nothing” except
a valid signature.

[AMV15], [MS15], [DMS16]
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Authentication construction idea
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Authentication construction idea
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Authentication construction idea
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Authentication construction idea
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Authentication construction idea
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Authentication construction idea
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Proposed protocol steps

\A). Initialization (after purchasing a token)
\A . Registration (associating a token with an account)

\/2. Authentication (logging into an account)
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“Out-of-protocol” covert channels

Our protocol defends against “in-protocol” covert channels.
What about “out-of-protocol” covert channels?

1. Timing: can be prevented by host

Failure: discard bad tokens

Malware

Other

B~ W D

[Hu92], [CBS04]
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Other contributions (see paper)

Flash-optimized data structure for storing U2F authentication counters
- Provides stronger unlinkability than many existing U2F tokens
- “Tear-resistant” and respects constraints of token flash

Cryptographic optimizations tailored to token hardware
- Offload hash-to-point to the host
- Cache Verifiable Random Function outputs at the host
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Implementation

Google development board
running our protocol.

Google production USB
token with same hardware
specs.

ARM SC-300 processor
clocked at 24 MHz
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Minimal authentication overhead

B Collaborative Keygen I Browser
B Deterministic Verifiable Keygen
B ECDSA Sign

Token

No optimizations 446

Fast keygen only

1
1

Hash-to-point assist only

VRF caching only Our proposal

Our proposal (all) i only ~2.5x slower
U2F | than U2F
0 100 200 300 400

Time (ms)
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Comparatively small end-to-end slowdown

B Protocol B Browser Overhead

— Registration —
Our proposal

234
U2F :

— Authentication — i Our protocol only
Our proposal 171 | 12-16% slower
U2F i than U2F
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Deployment considerations
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Deployment considerations

How does the browser Ul change?

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure
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Deployment considerations

How does the browser Ul change?

- Initialization: prompt user to initialize unknown token
- Errors: warn user on token failure

How to support multiple browsers?

- Token gives mpk and counter to browser (protect against bugs)
- Sync mpk and counter across browser instances
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CTAP2

Cryptographic constructions carry over to CTAP2 (ECDSA P256).

Core ideas remain, but still need full analysis.
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Withstand untrustworthy hardware

Our proposal
- Augments U2F to protect against faulty tokens
- Backwards-compatible with U2F relying parties

Practical to deploy: performant on commodity hardware tokens

What is the next step?

Emma Dauterman
edauterman@cs.stanford.edu
https://arxiv.org/abs/1810.04660
Paper to appear at IEEE S&P 2019
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Table 7: Cost of various operations on the
token, averaged over 100 runs, and the ex- S0

SRS
pected number of each operation required gg q;& §
per authentication attempt. “HW?”” indi- & & QO <
cates use of the token’s crypto accelerator. K &F & F &

o & AT &

< % % %

Operation HW? Time (us) Ops. per auth.
SHA256 (128 bytes) Y 19 5 5 3 5 3
X+y € Zg N 36 17 16 2 15 1
Xy € ZLyg N 409 9 8 2 11 1
¢t e Y 17,400 7 5 3 7 1
ECDSA.Sign Y 18,600 I 1 1 1 1
g-heG N 25,636 1 0 1 1 0
Vx € Zg N 105,488 2 2 0 00

SO R OO o



