
Accountable authentication with privacy protection:
The Larch system for universal login

OSDI 2023

Emma Dauterman
UC Berkeley

Danny Lin
Woodinville High School

Henry Corrigan-Gibbs
MIT CSAIL

David Mazières
Stanford

1

Challenging to determine extent of compromise

2

Challenging to determine extent of compromise

2

3

Single sign-on enforces credential logging

7/9 1:12 Gmail
7/9 2:07 Overleaf

Single sign-on server Client Relying party (RP)

password1234

4

Single sign-on enforces credential logging
Single sign-on server Client Relying party (RP)

password12347/9 1:12 Gmail
7/9 2:07 Overleaf
7/9 4:45 GitHub

4

Single sign-on enforces credential logging
Single sign-on server Client Relying party (RP)

password12347/9 1:12 Gmail
7/9 2:07 Overleaf
7/9 4:45 GitHub

✓Enforced credential log: User can see all authentications

5

Single sign-on: single point of security failure

7/9 1:12 Gmail
7/9 2:07 Overleaf
7/9 4:45 GitHub

Single sign-on server Relying party (RP)

password1234

Client

5

Single sign-on: single point of security failure

7/9 1:12 Gmail
7/9 2:07 Overleaf
7/9 4:45 GitHub

Single sign-on server Relying party (RP)

password1234

Client

✓Enforced credential log: User can see all authentications
X Security: Attacker can access user’s accounts

5

Single sign-on: single point of security failure

7/9 1:12 Gmail
7/9 2:07 Overleaf
7/9 4:45 GitHub

Single sign-on server Relying party (RP)

password1234

Client

✓Enforced credential log: User can see all authentications
X Security: Attacker can access user’s accounts
X Privacy: Attacker (and legitimate server) can read credential log

5

Single sign-on: single point of security failure

7/9 1:12 Gmail
7/9 2:07 Overleaf
7/9 4:45 GitHub

Single sign-on server Relying party (RP)

password1234

Client

✓Enforced credential log: User can see all authentications
X Security: Attacker can access user’s accounts
X Privacy: Attacker (and legitimate server) can read credential log
X Universal support: Not supported by all RPs

Larch: Split secret key between client and log

6

Client Relying party (RP)Log server

Larch: Split secret key between client and log

6

Client Relying party (RP)Log server

Larch: Split secret key between client and log

6

Client Relying party (RP)Log server

✓Enforced credential log
✓Security
✓Privacy
✓Universal support

Client

7

Larch: Enforced credential log with strong security

Enforced, encrypted credential log
Client authentications result in valid,
encrypted log records. GitHub7/9 1:12

Log server Relying party (RP)

Client

7

Larch: Enforced credential log with strong security

Enforced, encrypted credential log
Client authentications result in valid,
encrypted log records. GitHub7/9 1:12

Log server Relying party (RP)

Protect against malicious client 𝖷Client cannot authenticate without log.

Client

7

Larch: Enforced credential log with strong security

Enforced, encrypted credential log
Client authentications result in valid,
encrypted log records. GitHub7/9 1:12

Log server Relying party (RP)

Protect against malicious client 𝖷Client cannot authenticate without log.

Protect against malicious log 𝖷Log cannot authenticate without client.

Client

7

Larch: Enforced credential log with strong security

Enforced, encrypted credential log
Client authentications result in valid,
encrypted log records. GitHub7/9 1:12

Log server Relying party (RP)Backwards
compatible with:
- FIDO2
- TOTP
- Passwords

Protect against malicious client 𝖷Client cannot authenticate without log.

Protect against malicious log 𝖷Log cannot authenticate without client.

If client authenticates, log gets encrypted log record

GitHub GitHub

GitHub

Two-party
computation [Yao86]

GitHub7/9 1:12

8

If client authenticates, log gets encrypted log record

GitHub GitHub

GitHub

Two-party
computation [Yao86]

GitHub7/9 1:12

Client and log only
learn computation

outputs

8

Misbehaving client cannot authenticate

Two-party
computation [Yao86]

𝖷 𝖷

Netflix

9

GitHub

GitHub GitHub

GitHub

Two-party
computation [Yao86]

GitHub7/9 1:12

Relying party is unaware client is running larch

10

Larch is compatible with relying parties running:

11

67bZ!9g92&

TOTP
(see paper)

Passwords
(see paper)

FIDO2
(this talk)

Larch for FIDO2

GitHub

GitHub7/9 1:12

ECDSA signingECDSA signing

12

Larch for FIDO2

GitHub

GitHub7/9 1:12

ECDSA signingECDSA signing

ECDSA threshold signing

- Extensive prior work with high costs [GGN16, Lindell17, DKLS18, GG18, CGG+20,
DJN+20, GS21, ANO+22, …]

- Idea: take advantage of fact that client is honest at enrollment for
precomputation

13

Larch for FIDO2

GitHub

GitHub7/9 1:12

ECDSA signingECDSA signing

ECDSA threshold signing

- Extensive prior work with high costs [GGN16, Lindell17, DKLS18, GG18, CGG+20,
DJN+20, GS21, ANO+22, …]

- Idea: take advantage of fact that client is honest at enrollment for
precomputation

To sign a message with signing nonce ,
compute

m r
f1(r) ⋅ (m + f2(r) ⋅ 𝗌𝗄)

13

Larch for FIDO2

GitHub

GitHub7/9 1:12

ECDSA signingECDSA signing

ECDSA threshold signing

- Extensive prior work with high costs [GGN16, Lindell17, DKLS18, GG18, CGG+20,
DJN+20, GS21, ANO+22, …]

- Idea: take advantage of fact that client is honest at enrollment for
precomputation

Precompute at enrollment

To sign a message with signing nonce ,
compute

m r
f1(r) ⋅ (m + f2(r) ⋅ 𝗌𝗄)

13

Evaluation

14

Code available at: https://github.com/edauterman/larch

Experiment setup:
- Log server on c5.4xlarge (8 cores, 32 GiB memory)
- Client on c5.2xlarge (4 cores, 16 GiB memory)
- 20ms RTT
- Bandwidth 100Mbps
- TOTP with 20 accounts; passwords with 128 accounts
- Do not include network latency between client and RP in measurements

Evaluation

15

FIDO2 TOTP Password

Online auth time 150 ms 91 ms 74 ms
Total auth time 150 ms 1.32 s 74 ms

Online auth comm. 1.73 MiB 201 KiB 3.25 KiB
Total auth comm. 1.73 MiB 65 MiB 3.25 KiB

Log auths/core/s 6.18 0.73 47.62

Table 6: Costs for larch with FIDO2, TOTP (20 relying parties), and
passwords (128 relying parties). We take the cost of one core on a
c5 instance to be $0.0425-$0.085/hour (depending on instance size)
and data transfer out of AWS to cost $0.05-$0.09/GB (depending
on amount of data transferred) [1]. For comparison, the Argon2
password hash function should take 0.5s using 2 cores.

third-party services that a company could contract with.
FIDO improvements. Larch can benefit from enhancements
we hope to see considered for future versions of the FIDO
specification. One simple improvement would be to support
BLS signatures, which are easier to threshold and so eliminate
larch’s need for presignatures [14].

Future versions of FIDO could also directly support secure
client-side logging by allowing the relying party to compute
the encrypted log record itself. The relying party could then
ensure that the log service receives the correct encrypted log
record by checking for the log record in the signing payload.
Specifically, the signature payload could have the form:

Hash(log-record-ciphertext,Hash(remaining-FIDO-data)) .

The log server can then take the outer hash preimage as input
without needing to verify anything else about the log record.

We want to allow the relying party to generate the encrypted
log record without making it possible to link users across
relying parties. Instead of giving the relying party the user’s
public key directly at registration, which would link a user’s
identity across relying parties, we instead give the relying
party a key-private, re-randomizable encryption of the relying
party’s identifier (we can achieve this using ElGamal encryp-
tion). At authentication, the relying party can re-randomize
the ciphertext to generate the encrypted log record.

We also hope that future FIDO revisions standardize and
promote authentication metadata as part of the challenge and
hypothetical log record field. For users with multiple accounts
at one relying party, it would be useful to include account
names as well as relying party names in signed payloads. It
would furthermore improve security to allow distinct types
of authentication log records for different security-sensitive
operations such as authorizing payments and changing or
removing 2FA on an account. An app monitoring a user’s
log can then immediately notify the user of such operations.
Multiple devices. Clients need to authenticate to their
accounts across multiple devices, which requires synchro-
nizing a small amount of dynamic, secret state across

devices. Cross-device state could be stored encrypted at
the log, or could be disseminated through existing profile
synchronization mechanisms in browsers. There is a danger of
the synchronization mechanism maliciously convincing two
devices to use the same presignature. Therefore, presignatures
should be partitioned between devices in advance, and devices
should employ techniques such as fork consistency [65] to
detect and deter any rollback attacks. Existing tools can help
a user recover if she loses all of her devices [25, 55, 81, 62].
Enforcing client-specific policies. We can extend larch
in a straightforward way to allow the log to enforce more
complex policies on authentications. The client could submit
a policy at enrollment time, and the log service could then
enforce this policy for subsequent authentications. If the
policy decision is based on public information, the log service
can apply the policy directly (e.g., rate-limiting, sending
push notifications to a client’s mobile device). Other policies
could be based on private information. For example, if we
used larch for cryptocurrency wallets, the log could enforce
a policy such as “deny transactions sending more than $10K
to addresses that are not on the allowlist.” For policies
based on private information, the client could send the log
service a commitment to the policy at enrollment, and the log
service could then enforce the policy by running a two-party
computation or checking a zero-knowledge proof.
Revocation and migration. If a client loses herdevice orwants
to migrate her authentication secrets from an old device to a
new device, she needs a way to easily and remotely invalidate
the secrets on the old device. Larch allows her to do this easily.
To migrate credentials to a new device, the client and log
simply re-share the authentication secrets. To invalidate the
secrets on the old device, the client asks the log to delete the
old secret shares (client must authenticate with the log first).
Account recovery. In the event that a client loses all of her
devices, she needs some way to recover her larch account.
To ensure that she can later recover her account, the client
can encrypt her larch client state under a key derived from
her password and store the ciphertext with the larch service.
The security of the backup is only as good as the security of
the client’s password. Alternatively, the client could choose
a random key to encrypt her client state and then back up
this key using her password and secure hardware in order to
defend against password-guessing attacks [25].
Limitations. If an attacker compromises the client’s account
with the log, the attacker can access the client’s entire authen-
tication history. To mitigate this damage, the log could delete
old authentication records (e.g., records older than one week)
or re-encrypt them under a key that the user keeps offline.

10 Related work

Privacy-preserving single sign-on. Like larch, existing
privacy-preserving single sign-on systems hide the relying

13

Evaluation

15

General-purpose
two-party

computation

FIDO2 TOTP Password

Online auth time 150 ms 91 ms 74 ms
Total auth time 150 ms 1.32 s 74 ms

Online auth comm. 1.73 MiB 201 KiB 3.25 KiB
Total auth comm. 1.73 MiB 65 MiB 3.25 KiB

Log auths/core/s 6.18 0.73 47.62

Table 6: Costs for larch with FIDO2, TOTP (20 relying parties), and
passwords (128 relying parties). We take the cost of one core on a
c5 instance to be $0.0425-$0.085/hour (depending on instance size)
and data transfer out of AWS to cost $0.05-$0.09/GB (depending
on amount of data transferred) [1]. For comparison, the Argon2
password hash function should take 0.5s using 2 cores.

third-party services that a company could contract with.
FIDO improvements. Larch can benefit from enhancements
we hope to see considered for future versions of the FIDO
specification. One simple improvement would be to support
BLS signatures, which are easier to threshold and so eliminate
larch’s need for presignatures [14].

Future versions of FIDO could also directly support secure
client-side logging by allowing the relying party to compute
the encrypted log record itself. The relying party could then
ensure that the log service receives the correct encrypted log
record by checking for the log record in the signing payload.
Specifically, the signature payload could have the form:

Hash(log-record-ciphertext,Hash(remaining-FIDO-data)) .

The log server can then take the outer hash preimage as input
without needing to verify anything else about the log record.

We want to allow the relying party to generate the encrypted
log record without making it possible to link users across
relying parties. Instead of giving the relying party the user’s
public key directly at registration, which would link a user’s
identity across relying parties, we instead give the relying
party a key-private, re-randomizable encryption of the relying
party’s identifier (we can achieve this using ElGamal encryp-
tion). At authentication, the relying party can re-randomize
the ciphertext to generate the encrypted log record.

We also hope that future FIDO revisions standardize and
promote authentication metadata as part of the challenge and
hypothetical log record field. For users with multiple accounts
at one relying party, it would be useful to include account
names as well as relying party names in signed payloads. It
would furthermore improve security to allow distinct types
of authentication log records for different security-sensitive
operations such as authorizing payments and changing or
removing 2FA on an account. An app monitoring a user’s
log can then immediately notify the user of such operations.
Multiple devices. Clients need to authenticate to their
accounts across multiple devices, which requires synchro-
nizing a small amount of dynamic, secret state across

devices. Cross-device state could be stored encrypted at
the log, or could be disseminated through existing profile
synchronization mechanisms in browsers. There is a danger of
the synchronization mechanism maliciously convincing two
devices to use the same presignature. Therefore, presignatures
should be partitioned between devices in advance, and devices
should employ techniques such as fork consistency [65] to
detect and deter any rollback attacks. Existing tools can help
a user recover if she loses all of her devices [25, 55, 81, 62].
Enforcing client-specific policies. We can extend larch
in a straightforward way to allow the log to enforce more
complex policies on authentications. The client could submit
a policy at enrollment time, and the log service could then
enforce this policy for subsequent authentications. If the
policy decision is based on public information, the log service
can apply the policy directly (e.g., rate-limiting, sending
push notifications to a client’s mobile device). Other policies
could be based on private information. For example, if we
used larch for cryptocurrency wallets, the log could enforce
a policy such as “deny transactions sending more than $10K
to addresses that are not on the allowlist.” For policies
based on private information, the client could send the log
service a commitment to the policy at enrollment, and the log
service could then enforce the policy by running a two-party
computation or checking a zero-knowledge proof.
Revocation and migration. If a client loses herdevice orwants
to migrate her authentication secrets from an old device to a
new device, she needs a way to easily and remotely invalidate
the secrets on the old device. Larch allows her to do this easily.
To migrate credentials to a new device, the client and log
simply re-share the authentication secrets. To invalidate the
secrets on the old device, the client asks the log to delete the
old secret shares (client must authenticate with the log first).
Account recovery. In the event that a client loses all of her
devices, she needs some way to recover her larch account.
To ensure that she can later recover her account, the client
can encrypt her larch client state under a key derived from
her password and store the ciphertext with the larch service.
The security of the backup is only as good as the security of
the client’s password. Alternatively, the client could choose
a random key to encrypt her client state and then back up
this key using her password and secure hardware in order to
defend against password-guessing attacks [25].
Limitations. If an attacker compromises the client’s account
with the log, the attacker can access the client’s entire authen-
tication history. To mitigate this damage, the log could delete
old authentication records (e.g., records older than one week)
or re-encrypt them under a key that the user keeps offline.

10 Related work

Privacy-preserving single sign-on. Like larch, existing
privacy-preserving single sign-on systems hide the relying

13

Evaluation

16

FIDO2 TOTP Password

Online auth time 150 ms 91 ms 74 ms
Total auth time 150 ms 1.32 s 74 ms

Online auth comm. 1.73 MiB 201 KiB 3.25 KiB
Total auth comm. 1.73 MiB 65 MiB 3.25 KiB

Log auths/core/s 6.18 0.73 47.62

Table 6: Costs for larch with FIDO2, TOTP (20 relying parties), and
passwords (128 relying parties). We take the cost of one core on a
c5 instance to be $0.0425-$0.085/hour (depending on instance size)
and data transfer out of AWS to cost $0.05-$0.09/GB (depending
on amount of data transferred) [1]. For comparison, the Argon2
password hash function should take 0.5s using 2 cores.

third-party services that a company could contract with.
FIDO improvements. Larch can benefit from enhancements
we hope to see considered for future versions of the FIDO
specification. One simple improvement would be to support
BLS signatures, which are easier to threshold and so eliminate
larch’s need for presignatures [14].

Future versions of FIDO could also directly support secure
client-side logging by allowing the relying party to compute
the encrypted log record itself. The relying party could then
ensure that the log service receives the correct encrypted log
record by checking for the log record in the signing payload.
Specifically, the signature payload could have the form:

Hash(log-record-ciphertext,Hash(remaining-FIDO-data)) .

The log server can then take the outer hash preimage as input
without needing to verify anything else about the log record.

We want to allow the relying party to generate the encrypted
log record without making it possible to link users across
relying parties. Instead of giving the relying party the user’s
public key directly at registration, which would link a user’s
identity across relying parties, we instead give the relying
party a key-private, re-randomizable encryption of the relying
party’s identifier (we can achieve this using ElGamal encryp-
tion). At authentication, the relying party can re-randomize
the ciphertext to generate the encrypted log record.

We also hope that future FIDO revisions standardize and
promote authentication metadata as part of the challenge and
hypothetical log record field. For users with multiple accounts
at one relying party, it would be useful to include account
names as well as relying party names in signed payloads. It
would furthermore improve security to allow distinct types
of authentication log records for different security-sensitive
operations such as authorizing payments and changing or
removing 2FA on an account. An app monitoring a user’s
log can then immediately notify the user of such operations.
Multiple devices. Clients need to authenticate to their
accounts across multiple devices, which requires synchro-
nizing a small amount of dynamic, secret state across

devices. Cross-device state could be stored encrypted at
the log, or could be disseminated through existing profile
synchronization mechanisms in browsers. There is a danger of
the synchronization mechanism maliciously convincing two
devices to use the same presignature. Therefore, presignatures
should be partitioned between devices in advance, and devices
should employ techniques such as fork consistency [65] to
detect and deter any rollback attacks. Existing tools can help
a user recover if she loses all of her devices [25, 55, 81, 62].
Enforcing client-specific policies. We can extend larch
in a straightforward way to allow the log to enforce more
complex policies on authentications. The client could submit
a policy at enrollment time, and the log service could then
enforce this policy for subsequent authentications. If the
policy decision is based on public information, the log service
can apply the policy directly (e.g., rate-limiting, sending
push notifications to a client’s mobile device). Other policies
could be based on private information. For example, if we
used larch for cryptocurrency wallets, the log could enforce
a policy such as “deny transactions sending more than $10K
to addresses that are not on the allowlist.” For policies
based on private information, the client could send the log
service a commitment to the policy at enrollment, and the log
service could then enforce the policy by running a two-party
computation or checking a zero-knowledge proof.
Revocation and migration. If a client loses herdevice orwants
to migrate her authentication secrets from an old device to a
new device, she needs a way to easily and remotely invalidate
the secrets on the old device. Larch allows her to do this easily.
To migrate credentials to a new device, the client and log
simply re-share the authentication secrets. To invalidate the
secrets on the old device, the client asks the log to delete the
old secret shares (client must authenticate with the log first).
Account recovery. In the event that a client loses all of her
devices, she needs some way to recover her larch account.
To ensure that she can later recover her account, the client
can encrypt her larch client state under a key derived from
her password and store the ciphertext with the larch service.
The security of the backup is only as good as the security of
the client’s password. Alternatively, the client could choose
a random key to encrypt her client state and then back up
this key using her password and secure hardware in order to
defend against password-guessing attacks [25].
Limitations. If an attacker compromises the client’s account
with the log, the attacker can access the client’s entire authen-
tication history. To mitigate this damage, the log could delete
old authentication records (e.g., records older than one week)
or re-encrypt them under a key that the user keeps offline.

10 Related work

Privacy-preserving single sign-on. Like larch, existing
privacy-preserving single sign-on systems hide the relying

13

Special-purpose
protocols

Credential compromise will happen

17

Key idea: splitting authentication secret between client and log
Moving forward: need tools to make it easier to recover from compromise

Emma Dauterman
edauterman@berkeley.edu

https://arxiv.org/pdf/2305.19241.pdf
https://github.com/edauterman/larch

✓Enforced credential log: easy to determine extent of account compromise
✓Security: log cannot access user’s accounts
✓Privacy: log records are encrypted
✓Universal support: compatible with unmodified relying parties

