Policy Gradient as a Proxy for Dynamic Oracles in Constituency Parsing

Berkeley

Daniel Fried and Dan Klein
The cat took a nap.

$$L(\theta) = \log p(y|x; \theta) = \sum_t \log p(y_t|y_{1:t-1}, x; \theta)$$
Non-local Consequences

Loss-Evaluation Mismatch

\[\Delta(y, \hat{y}) : -F1(y, \hat{y}) \]

Exposure Bias

True Parse

\[y \rightarrow (S) \rightarrow (NP) \rightarrow \text{The} \rightarrow \text{cat} \rightarrow \ldots \]

Prediction

\[\hat{y} \rightarrow (S) \rightarrow (NP) \rightarrow (VP) \rightarrow \ldots \]

[Ranzato et al. 2016; Wiseman and Rush 2016]
Dynamic Oracle Training

Explore at training time. Supervise each state with an expert policy.

True Parse y: $y = (S \rightarrow (NP \rightarrow \text{The} \rightarrow \text{cat} \rightarrow ...$

Prediction
- (sample, or greedy)

Oracle
- y^*

$L(\theta) = \sum_t \log p(y^*_t | \hat{y}_{1:t-1}, x; \theta)$

choose y^*_t to maximize achievable F1 (typically)

addresses loss mismatch

addresses exposure bias

[Goldberg & Nivre 2012; Ballesteros et al. 2016; inter alia]
Dynamic Oracles Help!

Expert Policies / Dynamic Oracles
- Daume III et al., 2009; Ross et al., 2011;
- Choi and Palmer, 2011; Goldberg and Nivre, 2012;
- Chang et al., 2015; Ballesteros et al., 2016; Stern et al. 2017

PTB Constituency Parsing F1

<table>
<thead>
<tr>
<th>System</th>
<th>Static Oracle</th>
<th>Dynamic Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coavoux and Crabbé, 2016</td>
<td>88.6</td>
<td>89.0</td>
</tr>
<tr>
<td>Cross and Huang, 2016</td>
<td>91.0</td>
<td>91.3</td>
</tr>
<tr>
<td>Fernández-González and Gómez-Rodríguez, 2018</td>
<td>91.5</td>
<td>91.7</td>
</tr>
</tbody>
</table>

mostly dependency parsing
What if we don’t have a dynamic oracle?

Use reinforcement learning
Reinforcement Learning Helps! (in other tasks)

Auli and Gao, 2014; Ranzato et al., 2016; Shen et al., 2016
Xu et al., 2016; Wiseman and Rush, 2016; Edunov et al. 2017

- CCG parsing
- several, including dependency parsing
- machine translation
Policy Gradient Training

Minimize expected sequence-level cost:

\[R(\theta) = \sum_{\hat{y}} p(\hat{y}|x; \theta) \Delta(y, \hat{y}) \]

\[\nabla R(\theta) = \sum_{\hat{y}} p(\hat{y}|x; \theta) \Delta(y, \hat{y}) \nabla \log p(\hat{y}|x; \theta) \]

addresses exposure bias (compute by sampling)
addresses loss (compute F1)
compute in the same way as for the true tree

[Williams, 1992]
Policy Gradient Training

\[\nabla R(\theta) = \sum_{\hat{y}} p(\hat{y}|x; \theta) \Delta(y, \hat{y}) \nabla \log p(\hat{y}|x; \theta) \]

Input, \(x \)

The cat took a nap.

\(k \) candidates, \(\hat{y} \)

\(\Delta(y, \hat{y}) \) (negative F1)

gradient for candidate

\[\nabla \log p(\hat{y}_1|x; \theta) \quad \nabla \log p(\hat{y}_2|x; \theta) \quad \nabla \log p(\hat{y}_3|x; \theta) \quad \nabla \log p(y|x; \theta) \]
Experiments
Setup

Parsers
- Span-Based [Cross & Huang, 2016]
- Top-Down [Stern et al. 2016]
- RNNG [Dyer et al. 2016]
- In-Order [Liu and Zhang, 2017]

Training
- Static oracle
- Dynamic oracle
- Policy gradient

X
Training Efficiency

PTB learning curves for the Top-Down parser

- Development F1 vs Training Epoch
- Static oracle, Dynamic oracle, Policy gradient
Chinese Penn Treebank v5.1 F1

- Static oracle
- Policy gradient
- Dynamic oracle

- Span-Based
- Top-Down
- RNNG-128
- RNNG-256
- In-Order
Conclusions

- Local decisions can have non-local consequences
 - Loss mismatch
 - Exposure bias

- How to deal with the issues caused by local decisions?
 - Dynamic oracles: efficient, model specific
 - Policy gradient: slower to train, but general purpose
Thank you!
For Comparison: A Novel Oracle for RNNG

1. Close current constituent if it’s a true constituent...

(S) (NP) The man) (VP) had ...

... or it could never be a true constituent.

(S) (VP) (NP) The man))

2. Otherwise, open the outermost unopened true constituent at this position.

(S) (NP) The man) (VP)

3. Otherwise, shift the next word.

(S) (NP) The man) (VP) had