Structure From Motion

EECS 442 - David Fouhey
Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Structure-from-Motion Revisited

Johannes L. Schönberger, Jan-Michael Frahm

CVPR 2016

Code available at:
https://github.com/colmap/colmap

Structure from motion

Have: 2D points $p_{i j}$ seen in m images
Assume: points generated from n fixed 3D points \mathbf{X}_{j} and cameras M_{i} or $\boldsymbol{p}_{i j} \equiv M_{i} X_{j}$
Want: Cameras M_{i}, points X_{j}
(Remember)

$$
\begin{aligned}
M_{i} & \equiv K_{i}\left[R_{i}, t_{i}\right] \\
\lambda p_{i j} & =M_{i} X_{j}, \lambda \neq 0
\end{aligned}
$$

Known

Unknown

Is SFM always uniquely solvable?

- Necker cube

Structure from motion ambiguities

 Let's first find one easy ambiguity$$
\begin{array}{r}
\boldsymbol{p}_{i j} \equiv M_{i} X_{j} \\
3 \times 1
\end{array}
$$

Structure from motion ambiguities

Let's first find one easy ambiguity

$$
p_{i j} \equiv M_{i} X_{j}
$$

Can pick any arbitrary scaling factor k and adjust the cameras and points

$$
p_{i j} \equiv M_{i} k^{-1} k X_{j}
$$

(Can usually be fixed in practice: just need a number, obtainable from heights of known objects or an IMU)

Structure from motion ambiguity

Does this diagram change meaning if I use this coordinate system?
${ }_{0}^{\mathrm{L}}{ }^{\mathrm{L}} \mathrm{Z}_{\mathrm{z}}^{\mathrm{y}}$
Versus this coordinate system?

Coordinate system irrelevant! So global R,t also ambiguous

Structure from motion ambiguities

 Not just limited to scale. Given:$$
p_{i j} \equiv M_{i} X_{j}
$$

Can insert any global transform \mathbf{H}

$$
p_{i j} \equiv M_{i} X_{j}=M_{i} H^{-1} H X_{j}
$$

\mathbf{H} is a 3D homography / perspective transform / projective transform

Similarity/Affine/Perspective

Given:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \quad\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]
$$

Similarity

$\left[\begin{array}{cc}s \boldsymbol{R} & \boldsymbol{t} \\ 0 & 1\end{array}\right]$

3D: same idea, different dimensions

Projective ambiguity

With no constraints on cameras matrices and scene, can only reconstruct up to a perspective ambiguity

Projective ambiguity

Slide credit: S. Lazebnik

Affine ambiguity

If we have constraints in the form of what lines are parallel, can reduce ambiguity to affine ambiguity.

Affine ambiguity

Similarity ambiguity

If we have orthogonality constraints, get up to similarity transform. Really the best we can do. We get this if we have calibrated cameras.

Similarity ambiguity

Affine structure from motion

We'll do the math with affine / weak perspective cameras (math is much easier)

Perspective

Weak Perspective

Recall: orthographic projection

Orthographic camera: things infinitely far away but you have an amazing camera

Field of view and focal length

wide-angle

standard

telephoto

Affine Camera

$$
\begin{aligned}
& \boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{A}_{2 D} & \boldsymbol{t}_{2 D} \\
0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{A}_{3 D} & \boldsymbol{t}_{3 D} \\
0 & 1
\end{array}\right] \\
& \text { 3x3 Matrix } 3 \times 4 \text { Ortho. 4x4 Matrix } \\
& \text { Affine 2D Proj Affine 3D }
\end{aligned}
$$

Tedious math...

$$
\boldsymbol{M}=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Affine Camera

So what? Who cares?
Examine the projection

$$
\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \equiv\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Projection becomes linear mapping + translation and doesn't involve homogeneous coordinates!

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right] \equiv\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

b is projection of origin. Can anyone see why?

Affine structure from motion

General structure from motion:

Assume M is affine camera:

$$
\underset{2 x}{\boldsymbol{p}_{i j}}=\underset{2 x \times 3 \times 1}{\boldsymbol{A}_{\boldsymbol{i}} \boldsymbol{X}_{j 3}}+\underset{2 \times 1}{\boldsymbol{b}_{\boldsymbol{i}}}
$$

mn 2D points, m cameras, n 3D points up to arbitrary 3D affine (12 DOF)

$$
\begin{gathered}
\text { Need: } \\
2 m n \geq 8 m+3 n-12 \\
(m=2): n \geq 4 \\
\text { (for all } m!)
\end{gathered}
$$

One simplifying trick

$$
\begin{gathered}
\boldsymbol{p}_{i j}=\boldsymbol{A}_{i} \boldsymbol{X}_{\boldsymbol{j}}+\boldsymbol{b}_{\boldsymbol{i}} \\
\widehat{\boldsymbol{p}_{i j}}=\boldsymbol{p}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{p}_{i k}=\boldsymbol{A}_{i} \boldsymbol{X}_{j}+\boldsymbol{b}_{i}-\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{A}_{i} \boldsymbol{X}_{k}+\boldsymbol{b}_{i}
\end{gathered}
$$

Gather terms involving A_{i}, push out b_{i}

$$
\widehat{\boldsymbol{p}_{i j}}=\boldsymbol{A}_{\boldsymbol{i}}(\boldsymbol{X}_{\boldsymbol{j}}-\underbrace{\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{X}_{k}})+\underbrace{0}_{\boldsymbol{b}_{\boldsymbol{i}}-\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{b}_{i}}
$$

Set origin to mean of 3D points
$\widehat{p_{i j}}=A_{i} X_{j}$
Can do this entirely in terms of \mathbf{A} !

Affine structure from motion

First, make data measurement matrix consisting of all the points stacked together

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Affine structure from motion

Then, write all the equations in one in terms of product of cameras and points.

$$
\begin{gathered}
D=\left[\begin{array}{ccc}
\widehat{p_{11}} & \cdots & \widehat{p_{1 n}} \\
\vdots & \ddots & \vdots \\
\widehat{p_{m 1}} & \cdots & \widehat{p_{m n}}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{m}
\end{array}\right]\left[\begin{array}{lll}
X_{1} & \cdots & X_{n}
\end{array}\right] \\
2 m \times n \\
2 m \times 3
\end{gathered} \quad 3 \times n \quad \begin{array}{cc}
\mathbf{D} & \mathbf{S} \\
\text { What's the rank of } \mathbf{D} ? \\
3!
\end{array}
$$

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Making Matrices Rank Deficient

Repeat of epipolar geometry class, but important enough to see twice. Given matrix M:

Affine structure from motion

We'd like to take the measurements and convert them into \mathbf{M}, \mathbf{S}

Affine structure from motion

Do SVD (typically you don't make full U, Σ, V)

Truncate to top 3 singular values

Affine structure from motion

Nearly there apart from this annoying $\boldsymbol{\Sigma}_{3}$.

Eliminating the affine ambiguity

Rows $\mathbf{a}_{\mathbf{i}}$ of $\mathbf{A}_{\mathbf{i}}$ give axes of camera. Can multiply each projection A_{i} with \mathbf{C} to make $\mathbf{A}_{\mathbf{i}} \mathbf{C}$ that satisfies:

Gives 3 equations per camera, can set $\mathbf{A}_{\mathbf{i}} \mathbf{C}$ to new camera, and $\mathrm{C}^{-1} \mathrm{~S}$ to new points.
In general, a recipe for eliminating ambiguities

Reconstruction results

1

120

60

150

C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: A factorization method, IJCV 1992

Dealing with missing data

So far, assume we can see all points in all views In reality, measurement matrix typically looks like this:

Possible solution: find dense blocks, solve in block, fuse. In general, finding these dense blocks is NP-complete

But cameras aren't affine!

Want: m cameras $M_{i}, n 3 D$ points X_{j}
Given: mn 2D points p_{ij}

$$
p_{i j} \equiv M_{i} X_{j}=M_{i} H^{-1} H X_{j}
$$

When is this Possible?

Want: m cameras M_{i}, n 3D points X_{j} Given: mn 2D points p_{ij}
$p_{i j} \equiv M_{i} X_{j}=M_{i} H_{\boldsymbol{i}}^{-1} H X_{j}$

2D point (2)
3×4 camera matrix (11) why?
4×4 homography (15) why?

Need $2 m n \geq 11 m+3 n-15$

$$
(m=2): n \geq 7
$$

($\mathrm{m}=3$): $\mathrm{n} \geq 6$ (doesn't get better after)

$$
(m=1): n \leq 4
$$

Two Camera Case

For two cameras, we need 7 points. Hmm. What else (in theory) requires 7 points?

Remember: this is up to a projective ambiguity!

Incremental SFM

Key idea: incrementally add cameras, points

Incremental SFM

Key idea: incrementally add cameras, points

1. Initialize motion M_{i}
$=\left[R_{i}, t_{j}\right]$ with
fundamental matrix

Incremental SFM

Key idea: incrementally add cameras, points

1. Initialize motion M_{i}
$=\left[R_{i}, t_{j}\right]$ with fundamental matrix
2. Initialize structure
X_{j} with triangulation
How could we add another camera?

Incremental SFM

Key idea: incrementally add cameras, points

1. Solve for camera matrix using visible, known points using calibration

Incremental SFM

Key idea: incrementally add cameras, points

1. Solve for camera matrix using visible, known points using calibration

Now we can see the fourth point in two cameras.

Incremental SFM

Key idea: incrementally add cameras, points

1. Solve for camera matrix using visible, known points using calibration
2. Solve for 3 D coordinates of newly visible points using triangulation

Incremental SFM

Key idea: incrementally add cameras, points
Big problem: don't ever jointly consider all the 3D points and camera.

Leads to final step, called bundle adjustment.

Bundle Adjustment

Do non-linear minimization over cameras M_{i}, points X_{j} to minimize distance between observed points $p_{i j}$ and projections $M_{i} X_{j}$ when they're visible.

Devil is in the details

High-level idea: $\quad \arg \min _{M_{i}, X_{j}} w_{i j} d\left(M_{i} X_{j}, p_{i j}\right)^{2}$
In practice:

- Have to initialize reasonably well
- Should minimize over K,R,t directly
- Problem is very sparse: w_{ij} almost always zero
- Need to integrate uncertainty information
- Probably want to use a system written by experts

Representative SFM pipeline

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006. http://phototour.cs.washington.edu/

Feature detection

Detect SIFT features

Feature detection

Detect SIFT features

Feature matching

Match features between each pair of images

Feature matching

Use RANSAC to estimate fundamental matrix between each pair

Feature matching

Use RANSAC to estimate fundamental matrix between each pair

Feature matching

Use RANSAC to estimate fundamental matrix between each pair

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

In practice

- Pick a pair of images with lots of inliers (and preferably, good EXIF data)
- Initialize intrinsic parameters (focal length, principal point) from EXIF
- Estimate extrinsic parameters (\mathbf{R} and $\mathbf{t})$ Use triangulation to initialize model points
- While remaining images exist
- Find an image with many feature matches with images in the model
- Run RANSAC on feature matches to register new image to model
- Triangulate new points
- Perform bundle adjustment to re-optimize everything

The devil is in the details

- Degenerate configurations (homographies)
- Eliminating outliers
- Repetition and symmetry

The devil is in the details

- Degenerate configurations (homographies)
- Eliminating outliers
- Repetition and symmetry
- Multiple connected components

