Stereo

EECS 442 -David Fouhey
 Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Two-View Stereo

Stereo

Slide credit: S. Lazebnik

How Two Photographers Unknowingly Shot the Same Millisecond in Time

https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

How Two Photographers Unknowingly Shot the Same Millisecond in Time

PetaPixel
https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

How Two Photographers Unknowingly Shot the Same Millisecond in Time

MAR 07, 2018
8 RON RISMAN
PetaPixel

https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

Stereograms

Humans can fuse pairs of images to get a sensation of depth

Stereograms: Invented by Sir Charles Wheatstone, 1838

Stereograms

Slide credit: S. Lazebnik

Stereograms

What about this?

Stereograms

Bela Julesz: Random Dot Stereogram Shows that stereo can operate without recognition

Stereograms

Humans can fuse pairs of images to get a sensation of depth

Autostereograms: www.magiceye.com

Stereograms

Humans can fuse pairs of images to get a sensation of depth

Autostereograms: www.magiceye.com

Problem formulation

Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1

Dense depth map

Basic stereo matching algorithm

- For each pixel in the first image
- Find corresponding epipolar line in the right image
- Examine all pixels on the epipolar line and pick the best match
- Triangulate the matches to get depth information
- Simplest case: epipolar lines = corresponding scanlines
- When does this happen?

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths the same
- Then epipolar lines fall along the horizontal scan lines of the images

Essential matrix for parallel images

$$
\boldsymbol{p E} \boldsymbol{p}^{\prime}=0 \quad \boldsymbol{E}=\left[\boldsymbol{t}_{\boldsymbol{x}}\right] \boldsymbol{R}
$$

$$
\text { What's R? What's } t \text { ? }
$$

$$
\boldsymbol{R}=\boldsymbol{I} \quad t=[T, 0,0]
$$

$$
\boldsymbol{E}=\left[\boldsymbol{t}_{\boldsymbol{x}}\right] \boldsymbol{R}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
u & v & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left[\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=0 \quad \underset{\rightarrow}{\left[\begin{array}{lll}
& v & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
-T \\
T v^{\prime}
\end{array}\right]=0} \begin{gathered}
\overrightarrow{-T v}+T v^{\prime}=0 \\
T v^{\prime}=T v
\end{gathered}
$$

The y-coordinates of corresponding points are the same!

Slide credit: S. Lazebnik

Stereo image rectification

Stereo image rectification

Reproject image planes onto a common plane parallel to the line between optical centers

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999

Rectification example

Another rectification example

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel in the first image
- Find corresponding epipolar line in the right image
- Examine all pixels on the epipolar line and pick the best match

Correspondence Search

Slide window along the right scanline, compare contents of that window with reference window on left
Matching cost: SSD or normalized correlation

Correspondence Search

Correspondence Search

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Triangulate the matches to get depth information

Triangulation: Older History

- From Wikipedia: Gemma Frisius's 1533 diagram introducing the idea of triangulation into the science of surveying. Having established a baseline, e.g. the cities of Brussels and Antwerp, the location of other cities, e.g. Middelburg, Ghent etc., can be found by taking a compass direction from each end of the baseline, and plotting where the two directions cross. This was only a theoretical presentation of the concept - due to topographical restrictions, it is impossible to see Middelburg from either Brussels or Antwerp. Nevertheless, the figure soon became well known all across Europe.

Triangulation: Modern History

Depth from disparity

By similar triangles

$$
\frac{-x^{\prime}}{f}=\frac{B_{2}}{z}
$$

Similarly by similar triangles

Depth from disparity

Depth from disparity

$$
\frac{x}{f}=\frac{B_{1}}{z} \quad \frac{x^{\prime}}{f}=\frac{B_{2}}{z}
$$

Subtract them

$$
\frac{x-x^{\prime}}{f}=\frac{B_{1}-B_{2}}{z}
$$

$$
x-x^{\prime}=\frac{f B}{z}
$$

Diagram adapted from S. Lazebnik

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set $\operatorname{depth}(x)=B^{\star} f /\left(x-x^{\prime}\right)$

Failures of Correspondence Search

Textureless regions. Why?

Failures of Correspondence Search

Repeated Patterns. Why?

Image credit: S. Lazebnik

Failures of Correspondence Search

Specular Surfaces. Why?

Effect of window size

$\mathrm{W}=3$

$\mathrm{W}=20$

- Smaller window
+ More detail
- More noise
- Larger window
+ Smoother disparity maps
- Less detail

Results with window search

Data

Window-based matching

Ground truth

Better methods exist...

Graph cuts

Ground truth
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/

Improving Window-based Matching

- Similarity is local (each window independent)
- Need non-local correspondence constraints / cues.

Uniqueness

- Each point in one image should match at most one point in other image.
- When might this not be true?

Ordering

- Corresponding points should be in same order

Ordering

- Not always true!

Smoothness

- We expect disparity values to change slowly (for the most part)
- When is this not true?

Scanline Stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are optimized (by dynamic programming) independently

"Shortest paths" for scan-line stereo

Can be implemented with dynamic programming Ohta \& Kanade '85, Cox et al. ‘96

Coherent Stereo on 2D Grid

- Scanline stereo generates streaking artifacts

- Can't use dynamic programming to find spatially coherent disparities on a 2D grid

Stereo Matching as Optimization

$$
E(D)=\underbrace{\sum_{i}\left(W_{1}(i)-W_{2}(i+D(i))\right)^{2}}_{\text {Data term }}+\underbrace{\lambda \sum_{\text {neighbors } i, j} \rho(D(i)-D(j))}_{\text {Smoothness term }}
$$

Solvable by graph cuts for certain smoothnesses ρ
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization

Is This Doable by Deep Network?

$$
E(D)=\underbrace{\sum_{i}\left(W_{1}(i)-W_{2}(i+D(i))\right)^{2}}+\lambda \sum_{\text {neighbors } i, j} \rho(D(i)-D(j))
$$

Smoothness term

Easy solution: replace the data term with a network

Deep Learning For Stereo

- Feed in two images to identical networks, concatenate outputs, learn multilayer perception
- Slow: why?

$\square \cdots \mathrm{P}$ (match)

Deep Learning For Stereo

- Normalize outputs; treat dot product as prediction of match/no match
- Fast: why?

svm/hinge loss

Stereo datasets

- Middlebury stereo datasets
- KITTI
- Synthetic data?

Active stereo with structured light

- Project "structured" light patterns onto the object
- Simplifies the correspondence problem
- Allows us to use only one camera camera

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured

Kinect: Structured infrared light

XBOX360

Apple TrueDepth

Proximity sensor
Flood Illuminator

Microphone
7MP camera
https://www.cnet.com/new s/apple-face-id-truedepth-how-it-works/

Laser scanning

Digital Michelangelo Project
Levoy et al.
http://graphics.stanford.edu/projects/mich/

- Optical triangulation
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Laser scanned models

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

1.0 mm resolution (56 million triangles)

The Digital Michelangelo Project, Levoy et al.

Aligning range images

- One range scan not enough for complex surfaces
- Need techniques to register multiple range images

B. Curless and M. Levoy, A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 1996

