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Multi-view geometry

Image Credit: S. Lazebnik



Multi-view geometry problems

Camera 3

R3,t3 Slide credit: 

Noah Snavely

?

Camera 1
Camera 2

R1,t1 R2,t2

Recovering structure:

Given cameras and 

correspondences, 

find 3D.



Multi-view geometry problems

Camera 3

R3,t3

Camera 1
Camera 2

R1,t1 R2,t2
Slide credit: 

Noah Snavely

Stereo/Epipolar

Geomery:

Given 2 cameras and 

find where a point 

could be



Multi-view geometry problems

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

? ? ? Slide credit: 

Noah Snavely

Motion:

Figure out R, t for a 

set of cameras given 

correspondences



Two-view geometry

Image Credit: Hartley & Zisserman



Camera Geometry Reminder

p (2D point)

3 h. coordinates

Pretending image 

plane is in front
p (2D point)

3 h. coordinates

Actual location

0

X (3D point)

4 h. coordinates
K-1p (Ray)

3 h. coordinates

Have camera with pinhole 

at origin 0



Epipolar Geometry

o o'

Suppose we have two cameras at origins o, o’

Baseline is the line connecting the origins 



X

Epipolar Geometry

o o'

Now add a point X, which projects to p and p’

p p'



X

Epipolar Geometry

o o'

p p'

The plane formed by X, o, and o’ is called the 

epipolar plane

There is a family of planes per o, o’



X

Epipolar Geometry

o o'

p p'

e e'
• Epipoles e, e’ are where the baseline intersects 

the image planes

• Projection of other camera in the image plane



The Epipole

Photo by Frank Dellaert



X

Epipolar Geometry

o o'

p p'

e e'
• Epipolar lines go between the epipoles and the 

projections of the points.

• Intersection of epipolar plane with image plane



Example: Converging Cameras

o o'e e'

p p'

Epipoles finite, maybe in image; epipolar lines converge



Example: Converging Cameras

o o'e e'

p p'

Epipolar lines come in pairs: given a point p, we can 

construct the epipolar line for p’.



Example 1: Converging Cameras

Image Credit: Hartley & Zisserman



Example: Parallel to Image Plane

Suppose the cameras are both facing outwards. 

Where are the epipoles (proj. of other camera)?



Example: Parallel to Image Plane

p p'
e e'

Epipoles infinitely far away, epipolar lines parallel



Example: Parallel to Image Plane

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Epipole is focus 

of expansion / 

principal point of 

the camera.

Epipolar lines go 

out from 

principal point



Motion perpendicular to image plane

http://vimeo.com/48425421

http://vimeo.com/48425421


So?



Epipolar Geometry

o o'

p

e e'

• Suppose we don’t know X and just have p

• Can construct the epipolar line in the other image



Epipolar Geometry

o o'

p

e e'

• Suppose we don’t know X and just have p

• Corresponding p’ is on corresponding epipolar line



Epipolar Geometry

o e

• Suppose we don’t know X and just have p’

• Corresponding p is on corresponding epipolar line

o'e'

p'



Epipolar Geometry

• If I want to do stereo, I want to find a 
corresponding pixel for each pixel in the image:

• Naïve search: 
• For each pixel, search every other pixel

• With epipolar geometry:
• For each pixel, search along each line (1D search)



Epipolar constraint example

Slide Credit: S. Lazebnik



Epipolar Constraint: One Note

• If you look around for other reading, you’ll find 
derivations with p, p’ flipped and constraints 
derived in a flipped way

• It all works the same



Epipolar Constraint: Calibrated Case

• If we know intrinsic and extrinsic parameters, set  

coordinate system to first camera

• Projection matrices: 𝐏1 = 𝑲 𝑰, 𝟎 and 𝑷𝟐 = 𝑲′ 𝑹, 𝒕
• What are:

X

o o'

p p'

𝑷𝟏𝑿 𝑷𝟐𝑿 𝑲−𝟏𝒑 𝑲′−𝟏𝒑′

𝑹, 𝒕



Epipolar Constraint: Calibrated Case
X

o o'

p p'

ෝ𝒑 = 𝑲−𝟏𝒑
𝒑′ = 𝑲′−𝟏𝒑′

• Given calibration, ෝ𝒑 = 𝑲−𝟏𝒑 and 𝒑′ = 𝑲′−𝟏𝒑′ are 

“normalized coordinates”

• Note that 𝑝′ is actually translated and rotated

𝑹, 𝒕



Epipolar Constraint: Calibrated Case
X

o o'

p p'

ෝ𝒑 = 𝑲−𝟏𝒑
𝒑′ = 𝑲′−𝟏𝒑′

• The following are all co-planar: ෝ𝒑, 𝒕, 𝑹𝒑′ (can ignore 

translation for co-planarity here)

• One way to check co-planarity (triple product): 

ෝ𝒑𝑻 𝒕 × 𝑹ෝ𝒑 = 0

𝑹, 𝒕



Epipolar Constraint: Calibrated Case
X

o o'

p p'

ෝ𝒑 = 𝑲−𝟏𝒑
𝒑′ = 𝑲′−𝟏𝒑′

ෝ𝒑𝑻 𝒕 × 𝑹ෝ𝒑′ = 0 ෝ𝒑𝑻
0 −𝑡3 𝑡2
𝑡3 0 −𝑡1
−𝑡2 𝑡1 0

𝑹𝒑′ = 0

[𝑡𝑥]
𝑹, 𝒕

Want something like xTMy=0. What’s M?



Epipolar Constraint: Calibrated Case
X

o o'

p p'

ෝ𝒑 = 𝑲−𝟏𝒑
𝒑′ = 𝑲′−𝟏𝒑′

Essential matrix (Longuet-Higgins, 1981): 𝑬 = 𝒕𝒙 𝑹

If you have a normalized point ෝ𝒑 , its correspondence ෝ𝒑′

must satisfy ෝ𝒑𝑻𝑬𝒑′ = 0

𝑹, 𝒕



Essential Essential Matrix Facts
X

o o'

p p'

• Suppose we know E and ෝ𝒑𝑻𝑬𝒑′ = 0. What is the set 

{𝒙: 𝒙𝑻𝑬 𝒑′ = 𝟎}?
• 𝑬ෝ𝒑 gives equation of the epipolar line (in ax+by+c=0 

form) in image for o.

ෝ𝒑 = 𝑲−𝟏𝒑 𝒑′ = 𝑲′−𝟏𝒑′

• What’s 𝑬𝑻ෝ𝒑 ?



Essential Essential Matrix Facts
X

o o'

p p'

• 𝑬𝒆′ = 0 and 𝑬𝑻ො𝒆 = 0 (epipoles are the nullspace of 

E – note all epipolar lines pass through epipoles)

• Degrees of freedom (Recall 𝑬 = 𝒕𝒙 𝑹)?

• 5 – 3 (R)+ 3 (t) – 1 due to scale ambiguity

• E is singular (rank 2); it has two non-zero and 

identical singular values

e e'

ෝ𝒑 = 𝑲−𝟏𝒑 𝒑′ = 𝑲′−𝟏𝒑′



Essential Essential Matrix Facts
X

o o'

p p'

• One nice thing: if I estimate E from two images 

(more on this later), it’s unique up to easy 

symmetries 

e e'

ෝ𝒑 = 𝑲−𝟏𝒑 𝒑′ = 𝑲′−𝟏𝒑′



What if we don’t know K? 
X

o o'

p p'

ෝ𝒑 = 𝑲−𝟏𝒑, 𝒑′ = 𝑲′−𝟏𝒑′,Have: ෝ𝒑𝑻𝑬ෝ𝒑′ = 0

𝑲−𝟏𝒑
𝑻
𝑬(𝑲′−𝟏𝒑′) = 𝟎 𝒑𝑻𝑲−𝑻𝑬𝑲′−𝟏𝒑′ = 0

Then: 𝒑𝑻𝑭𝒑′ = 0

ෝ𝒑 = 𝑲−𝟏𝒑 𝒑′ = 𝑲′−𝟏𝒑′

𝑭 = 𝑲−𝑻𝑬𝑲′−𝟏Set:

Fundamental Matrix (Faugeras and Luong, 1992)



Fundamental Matrix Fundamentals
X

o o'

p p'

• 𝑭𝒑′, 𝑭𝑻𝒑 are epipolar lines for p’, p

• 𝑭𝒆′ = 0, 𝑭𝑻𝒆 = 0
• F is singular (rank 2)

• F has seven degrees of freedom

• F definitely not unique

e e'



Estimating the fundamental matrix

Slide Credit: S. Lazebnik



Estimating the fundamental matrix

• F has 7 degrees of freedom so it’s in principle 
possible to fit F with seven correspondences, 
but it’s a slightly more complex and typically 
not taught in regular vision classes



Estimating the fundamental matrix

Given correspondences 𝒑 = 𝑢, 𝑣, 1 and 𝒑′ =
𝑢′, 𝑣′, 1 (e.g., via SIFT) we know: 𝒑𝑻𝑭𝒑′ = 0

[𝑢, 𝑣, 1]

𝑓11 𝑓12 𝑓13
𝑓21 𝑓22 𝑓23
𝑓31 𝑓32 𝑓33

𝑢′
𝑣′
1

= 0

𝑢𝑢′, 𝑢𝑣′, 𝑢, 𝑣𝑢′, 𝑣𝑣′, 𝑣, 𝑢′, 𝑣′, 1 ⋅
𝑓11, 𝑓12, 𝑓13, 𝑓21, 𝑓22, 𝑓23, 𝑓31, 𝑓32, 𝑓33

= 0

How do we solve for f? 

How many correspondences do we need?

Leads to the eight point algorithm



Eight Point Algorithm

𝑢𝑢′, 𝑢𝑣′, 𝑢, 𝑣𝑢′, 𝑣𝑣′, 𝑣, 𝑢′, 𝑣′, 1 ⋅
𝑓11, 𝑓12, 𝑓13, 𝑓21, 𝑓22, 𝑓23, 𝑓31, 𝑓32, 𝑓33

= 0

Each point gives an equation:

𝑼 =
⋮

𝑢𝑖𝑢𝑖
′ 𝑢𝑖𝑣𝑖

′ 𝑢𝑖 𝑣𝑖𝑢𝑖
′ 𝑣𝑖𝑣𝑖

′ 𝑣𝑖 𝑢𝑖
′ 𝑣𝑖

′ 1
⋮

Stack equations to yield U:

Usual eigenvalue stuff to find f (F unrolled):

arg min
𝒇 =1

𝑼𝒇 2
2 Eigenvector of 𝑼𝑻𝑼 with 

smallest eigenvalue



Eight Point Algorithm – Difficulty 1

If we estimate F,  we get some 3x3 matrix F.

We know F needs to be singular/rank 2. How do we 

force F to be singular?

𝑈Σ𝑉𝑇 = 𝐹𝑖𝑛𝑖𝑡

Σ =
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

𝐹 = 𝑈Σ′𝑉𝑇

Open it up with 

SVD, mess 

with singular 

values, put it 

back together.

Σ′ =
𝜎1 0 0
0 𝜎2 0
0 0 0

See Eckart–Young–Mirsky theorem if you’re interested



Eight Point Algorithm – Difficulty 1

Estimated F

(Wrong)

Estimated+SVD’d F

(Correct) 

Slide Credit: S. Lazebnik



Eight Point Algorithm – Difficulty 2
𝑢𝑢′, 𝑢𝑣′, 𝑢, 𝑣𝑢′, 𝑣𝑣′, 𝑣, 𝑢′, 𝑣′, 1 ⋅

𝑓11, 𝑓12, 𝑓13, 𝑓21, 𝑓22, 𝑓23, 𝑓31, 𝑓32, 𝑓33
𝑇 = 0

Recall: u,u’ are in pixels. Suppose image is 1Kx1K

How big might uu’ be? How big might u be?

Each row looks like:

𝑼 =
⋮

106 106 103 106 106 103 103 103 1
⋮

Then: 𝑼𝑻𝑼𝟏,𝟏 is ~1012, 𝑼𝑻𝑼𝟐,𝟗 is ~103



Eight Point Algorithm – Difficulty 2

Numbers of varying magnitude → instability

Remember: a floating point number (float/double) isn’t 

a “real” number: for sign, coefficient, exponent integers

(-1)sign * coefficient * 2exponent

Exercise to see how this screws up: add up Gaussian 

noise (mean=100, std=10), divide by number you 

added up



Remember Numerical Instability?

Code:

x += N(100,10)

i += 1

mean = x/I

Only change is the 

# of bits in 

accumulator x

Note: 50M is 50 

1Kx1K images



Solution: Normalized 8-point

• Center the image data at the origin, and scale it so the 
mean squared distance between the origin and the 
data points is 2 pixels

• Use the eight-point algorithm to compute F from the 
normalized points

• Enforce the rank-2 constraint (for example, take SVD 
of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: if 
T and T’ are the normalizing transformations in the 
two images, than the fundamental matrix in original 
coordinates is T’T F T

R. Hartley

In defense of the eight-point algorithm TPAMI 1997
Slide Credit: 

S. Lazebnik



Last Trick

Minimizing via UTU minimizes sum of squared 

algebraic distances between points pi and epipolar

lines Fp’i (or points p’i and epipolar lines FTpi):  


𝑖
𝑝𝑖
𝑇𝐹𝑝𝑖

′ 2

May want to minimize geometric distance: 



𝑖

𝑑 𝑝𝑖 , 𝐹𝑝′𝑖
2 +

𝑑 𝑝𝑖
′, 𝐹𝑇𝑝𝑖

2

𝒑𝑖

𝑭𝒑𝒊
′ = 0

Slide Credit: S. Lazebnik



Comparison

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

Slide Credit: S. Lazebnik



The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/


• Estimating the fundamental matrix is known as 
“weak calibration”

• If we know the calibration matrices of the two 
cameras, we can estimate the essential matrix: 
E = K’TFK

• The essential matrix gives us the relative 
rotation and translation between the cameras, 
or their extrinsic parameters

• Alternatively, if the calibration matrices are 
known, the five-point algorithm can be used to 
estimate relative camera pose

Slide Credit: S. Lazebnik

From Epipolar Geometry to Calibration

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

