$$
\begin{aligned}
& \text { Epipolar } \\
& \text { Geometry }
\end{aligned}
$$

EECS 442 - David Fouhey
Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Multi-view geometry

Multi-view geometry problems

Multi-view geometry problems

Multi-view geometry problems

Motion:

Figure out R, t for a set of cameras given correspondences

$?^{\text {? }} \begin{gathered}\text { Camera } 3 \\ \mathbf{R}_{3}, \mathbf{t}_{\mathbf{3}}\end{gathered}$
Slide credit: Noah Snavely

Two-view geometry

Image Credit: Hartley \& Zisserman

Camera Geometry Reminder

$\mathrm{K}^{-1} \mathrm{p}$ (Ray)
 3 h. coordinates

X (3D point)
4 h. coordinates
p (2D point)
3 h. coordinates Actual location
p (2D point) 3 h. coordinates Pretending image plane is in front

Have camera with pinhole at origin 0

Epipolar Geometry

Suppose we have two cameras at origins o, o' Baseline is the line connecting the origins

Epipolar Geometry

Now add a point X , which projects to p and p '

Epipolar Geometry

The plane formed by X, o, and o ' is called the epipolar plane
There is a family of planes per o, o'

Epipolar Geometry

- Epipoles e, e' are where the baseline intersects the image planes
- Projection of other camera in the image plane

The Epipole

Photo by Frank Dellaert

Epipolar Geometry

- Epipolar lines go between the epipoles and the projections of the points.
- Intersection of epipolar plane with image plane

Example: Converging Cameras

Epipoles finite, maybe in image; epipolar lines converge

Example: Converging Cameras

Epipolar lines come in pairs: given a point p, we can construct the epipolar line for p^{\prime}.

Example 1: Converging Cameras

Example: Parallel to Image Plane

Suppose the cameras are both facing outwards. Where are the epipoles (proj. of other camera)?

Example: Parallel to Image Plane

e'

Epipoles infinitely far away, epipolar lines parallel

Example: Parallel to Image Plane

Example: Forward Motion

Example: Forward Motion

Example: Forward Motion

Epipole is focus of expansion / principal point of the camera.

Epipolar lines go out from principal point

Motion perpendicular to image plane

So?

Epipolar Geometry

- Suppose we don't know X and just have p
- Can construct the epipolar line in the other image

Epipolar Geometry

- Suppose we don't know X and just have p
- Corresponding p' is on corresponding epipolar line

Epipolar Geometry

- Suppose we don't know X and just have p^{\prime}
- Corresponding p is on corresponding epipolar line

Epipolar Geometry

- If I want to do stereo, I want to find a corresponding pixel for each pixel in the image:
- Naïve search:
- For each pixel, search every other pixel
- With epipolar geometry:
- For each pixel, search along each line (1D search)

Epipolar constraint example

Epipolar Constraint: One Note

- If you look around for other reading, you'll find derivations with p, p^{\prime} flipped and constraints derived in a flipped way
- It all works the same

Epipolar Constraint: Calibrated Case

- If we know intrinsic and extrinsic parameters, set coordinate system to first camera
- Projection matrices: $P_{1}=K[I, 0]$ and $P_{2}=K^{\prime}[R, t]$
- What are:

$$
P_{1} X \quad P_{2} X \quad K^{-1} p \quad K^{\prime-1} p^{\prime}
$$

Epipolar Constraint: Calibrated Case

- Given calibration, $\widehat{\boldsymbol{p}}=K^{-1} p$ and $\widehat{\boldsymbol{p}^{\prime}}=K^{\prime-1} \boldsymbol{p}^{\prime}$ are "normalized coordinates"
- Note that $\widehat{p^{\prime}}$ is actually translated and rotated

Epipolar Constraint: Calibrated Case

- The following are all co-planar: $\widehat{\boldsymbol{p}}, t, \boldsymbol{R} \widehat{\boldsymbol{p}^{\prime}}$ (can ignore translation for co-planarity here)
- One way to check co-planarity (triple product): $\widehat{\boldsymbol{p}}^{T}(t \times \boldsymbol{R} \widehat{\boldsymbol{p}})=0$

Epipolar Constraint: Calibrated Case

Want something like $\mathbf{x}^{\top} \mathbf{M} \mathbf{y}=0$. What's \mathbf{M} ?

Epipolar Constraint: Calibrated Case

Essential matrix (Longuet-Higgins, 1981): $\boldsymbol{E}=\left[t_{x}\right] \boldsymbol{R}$ If you have a normalized point \hat{p}, its correspondence \widehat{p}^{\prime} must satisfy $\widehat{\boldsymbol{p}^{T}} \boldsymbol{E} \widehat{\boldsymbol{p}^{\prime}}=0$

Essential Essential Matrix Facts

- Suppose we know \mathbf{E} and $\widehat{\boldsymbol{p}}^{T} \boldsymbol{E} \widehat{\boldsymbol{p}^{\prime}}=0$. What is the set $\left\{x: x^{T} \boldsymbol{E} \widehat{p^{\prime}}=0\right\} ?$
- $\boldsymbol{E} \widehat{p}$ gives equation of the epipolar line (in ax+by+c=0 form) in image for o.
- What's $\boldsymbol{E}^{\boldsymbol{T}} \widehat{\boldsymbol{p}}$?

Essential Essential Matrix Facts

- $\boldsymbol{E} \widehat{\boldsymbol{e}^{\prime}}=0$ and $\boldsymbol{E}^{\boldsymbol{T}} \widehat{\boldsymbol{e}}=0$ (epipoles are the nullspace of E - note all epipolar lines pass through epipoles)
- Degrees of freedom (Recall $E=\left[t_{x}\right] R$)?
- $5-3(\mathrm{R})+3(\mathrm{t})-1$ due to scale ambiguity
- E is singular (rank 2); it has two non-zero and identical singular values

Essential Essential Matrix Facts

- One nice thing: if I estimate E from two images (more on this later), it's unique up to easy symmetries

What if we don't know K ?

Have: $\widehat{\boldsymbol{p}}=\boldsymbol{K}^{-1} \boldsymbol{p}, \widehat{\boldsymbol{p}}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{p}^{\prime}, \widehat{\boldsymbol{p}}^{T} \boldsymbol{E} \widehat{\boldsymbol{p}}^{\prime}=0$
$\left(\boldsymbol{K}^{-1} \boldsymbol{p}\right)^{T} \boldsymbol{E}\left(\boldsymbol{K}^{\prime-1} \boldsymbol{p}^{\prime}\right)=0 \rightarrow \boldsymbol{p}^{T} \boldsymbol{K}^{-T} \boldsymbol{E} K^{\prime-1} \boldsymbol{p}^{\prime}=0$
Set: $\underbrace{\boldsymbol{F}=\boldsymbol{K}^{-\boldsymbol{T}} \boldsymbol{E} \boldsymbol{K}^{\prime-1}} \quad$ Then: $\boldsymbol{p}^{\boldsymbol{T}} \boldsymbol{F} \boldsymbol{p}^{\prime}=0$
Fundamental Matrix (Faugeras and Luong, 1992)

Fundamental Matrix Fundamentals

- $\boldsymbol{F} \boldsymbol{p}^{\prime}, \boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{p}$ are epipolar lines for $\mathrm{p}^{\prime}, \mathrm{p}$
- $\boldsymbol{F} \boldsymbol{e}^{\prime}=0, \boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{e}=0$
- F is singular (rank 2)
- F has seven degrees of freedom
- F definitely not unique

Estimating the fundamental matrix

Slide Credit: S. Lazebnik

Estimating the fundamental matrix

- F has 7 degrees of freedom so it's in principle possible to fit F with seven correspondences, but it's a slightly more complex and typically not taught in regular vision classes

Estimating the fundamental matrix

Given correspondences $\boldsymbol{p}=[u, v, 1]$ and $\boldsymbol{p}^{\prime}=$ $\left[u^{\prime}, v^{\prime}, 1\right]$ (e.g., via SIFT) we know: $\boldsymbol{p}^{\boldsymbol{T}} \boldsymbol{F} \boldsymbol{p}^{\prime}=0$

$$
\begin{gathered}
{[u, v, 1]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=0} \\
{\left[u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right] \cdot} \\
{\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right]=0}
\end{gathered}
$$

How do we solve for f ?
How many correspondences do we need?
Leads to the eight point algorithm

Eight Point Algorithm

Each point gives an equation:

$$
\begin{gathered}
{\left[u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right]} \\
{\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right]}
\end{gathered}
$$

Stack equations to yield \mathbf{U} :
$\boldsymbol{U}=\left[\begin{array}{lllllllll}u_{i} u_{i}^{\prime} & u_{i} v_{i}^{\prime} & u_{i} & v_{i} u_{i}^{\prime} & v_{i} v_{i}^{\prime} & v_{i} & u_{i}^{\prime} & v_{i}^{\prime} & 1\end{array}\right]$
Usual eigenvalue stuff to find $\mathbf{f}(\mathbf{F}$ unrolled):
$\arg \min _{\|f\|=1}\|\boldsymbol{U} \boldsymbol{f}\|_{2}^{2}$
Eigenvector of $\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{U}$ with
smallest eigenvalue

Eight Point Algorithm - Difficulty 1

If we estimate F, we get some 3×3 matrix F. We know F needs to be singular/rank 2. How do we force F to be singular?

$$
\begin{aligned}
& U \Sigma V^{T}=F_{\text {init }} \\
& \qquad \begin{array}{l}
\downarrow=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 &
\end{array}\right] \rightarrow \Sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array} .
\end{aligned}
$$

Open it up with
SVD, mess
with singular values, put it back together.

See Eckart-Young-Mirsky theorem if you're interested

Eight Point Algorithm - Difficulty 1

Estimated F (Wrong)

Estimated+SVD'd F
(Correct)

[^0]
Eight Point Algorithm - Difficulty 2 [uu', $\left.u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right]$. $\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right]^{T}=0$

Recall: u, u^{\prime} are in pixels. Suppose image is 1 Kx 1 K How big might uu' be? How big might u be? Each row looks like:
$\boldsymbol{U}=\left[\begin{array}{llll}10^{6} & 10^{6} & 10^{3} & 10^{6} \\ & & & \\ \vdots & 10^{6} & 10^{3} & 10^{3} \\ & 10^{3} & 1\end{array}\right]$
Then: $\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{U}_{\mathbf{1 , 1}}$ is $\sim 10^{12}, \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{U}_{\mathbf{2}, \mathbf{9}}$ is $\sim 10^{3}$

Eight Point Algorithm - Difficulty 2

Numbers of varying magnitude \rightarrow instability
Remember: a floating point number (float/double) isn't a "real" number: for sign, coefficient, exponent integers $(-1)^{\text {sign * }}$ coefficient * 2 exponent

Exercise to see how this screws up: add up Gaussian noise (mean=100, std=10), divide by number you added up

Remember Numerical Instability?

Code:

$$
x+=N(100,10) \quad 100
$$

$$
i+=1
$$

$$
\text { mean }=x / I
$$

$$
\text { Only change is the } 70
$$ \# of bits in

accumulator x

Solution: Normalized 8-point

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if \boldsymbol{T} and \boldsymbol{T}^{\prime} are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $\boldsymbol{T}^{\top} \boldsymbol{F} \boldsymbol{T}$

Last Trick

Minimizing via $U^{\top} U$ minimizes sum of squared algebraic distances between points \boldsymbol{p}_{i} and epipolar lines $\boldsymbol{F} \boldsymbol{p}_{i}^{\prime}$ (or points $\boldsymbol{p}_{i}^{\prime}$ and epipolar lines $\boldsymbol{F}^{\top} \boldsymbol{p}_{i}$):

$$
\sum_{i}\left(p_{i}^{T} F p_{i}^{\prime}\right)^{2}
$$

May want to minimize geometric distance:

$$
\sum_{i} d\left(p_{i}, F p_{i}^{\prime}\right)^{2}+
$$

Comparison

The Fundamental Matrix Song

From Epipolar Geometry to Calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E=K^{\top} T F$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters
- Alternatively, if the calibration matrices are known, the five-point algorithm can be used to estimate relative camera pose

[^0]: Slide Credit: S. Lazebnik

