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Multi-view geometry

Image Credit: S. Lazebnik



Multi-view geometry problems

Recovering structure:
Given cameras and
correspondences,
find 3D.
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Multi-view geometry problems
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Stereo/Epipolar
Geomery:

Given 2 cameras and
find where a point
could be
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Multi-view geometry problems

Motion:

70‘ Figure out R, t for a

- set of cameras given

correspondences
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Two-view geometry

Image Credit: Hartley & Zisserman



Camera Geometry Reminder

K'p (Ray)
3 h. coordinates

X (3D point)
4 h. coordinates

p (2D point)
3 h. coordinates
Actual location

0 p (2D point)

3 h. coordinates
Pretending image
plane is in front

Have camera with pinhole
at origin 0




Epipolar Geometry
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Suppose we have two cameras at origins o, 0’
Baseline is the line connecting the origins



Epipolar Geometry
X
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Now add a point X, which projects to p and p’



Epipolar Geometry
X
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The plane formed by X, o, and o’ is called the
epipolar plane
There is a family of planes per o, 0’




Epipolar Geometry
X
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Epipoles e, €’ are where the baseline intersects

the image planes
Projection of other camera in the image plane



The Epipole

Photo by Frank Dellaert



Epipolar Geometry
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Epipolar lines go between the epipoles and the
projections of the points.

Intersection of epipolar plane with image plane




Example: Converging Cameras
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Epipoles finite, maybe in image; epipolar lines converge



Example: Converging Cameras
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Epipolar lines come in pairs: given a point p, we can
construct the epipolar line for p'.



Example 1: Converging Cameras

Image Credit: Hartley & Zisserman



Example: Parallel to Image Plane

Suppose the cameras are both facing outwards.
Where are the epipoles (proj. of other camera)?



Example: Parallel to Image Plane

Epipoles infinitely far away, epipolar lines parallel



Example: Parallel to Image Plane

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Epipole is focus

of expansion / P
principal point of o @
the camera.
|
@
Y .

Epipolar lines go
out from
principal point




Motion perpendicular to image plane

http://vimeo.com/48425421



http://vimeo.com/48425421
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Epipolar Geometry
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« Suppose we don’t know X and just have p

« Can construct the epipolar line in the other image

/




Epipolar Geometry

— A
A—/ —

e

« Suppose we don’'t know X and just have p
« Corresponding p’ is on corresponding epipolar line




Epipolar Geometry
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« Suppose we don’t know X and just have p’
« Corresponding p is on corresponding epipolar line




Epipolar Geometry

* |If | want to do stereo, | want to find a
corresponding pixel for each pixel in the image:

* Nalve search:
* For each pixel, search every other pixel
» With epipolar geometry:
» For each pixel, search along each line (1D search)



Epipolar constraint example

Slide Credit: S. Lazebnik



Epipolar Constraint: One Note

* |If you look around for other reading, you'll find
derivations with p, p’ flipped and constraints
derived in a flipped way

e |t all works the same



Epipolar Constraint: Calibrated Case

If we know intrinsic and extrinsic parameters, set
coordinate system to first camera

Projection matrices: P, = K|I,0] and P, = K'|R, t]
What are:

P, X P,X K1 K™ p



Epipolar Constraint: Calibrated Case

g —1.7
p:K_lp p =K p

 Given calibration, p = K" 'pand p’ = K'"'p’ are
“normalized coordinates”
« Note that p’ is actually translated and rotated



Epipolar Constraint: Calibrated Case

* The following are all co-planar: p, t, Rﬁ’ (can ignore
translation for co-planarity here)

* One way to check co-planarity (triple product):
p'(tXRp) =0



Epipolar Constraint: Calibrated Case

pI(txRp) =0 =% p'[t; 0 —t;|Rp' =0
_tz tl O ]

Want something like xTMy=0. What’s M?




Epipolar Constraint: Calibrated Case

Essential matrix (Longuet-Higgins, 1981): E = |t |R
If you have a normalized point p , its correspondence p’
must satisfy p"Ep’ = 0



Essential Essential Matrix Facts

Suppose we know E and foTEﬁ’ = (0. What is the set
{x:xTEp’ = 0}?

Ep gives equation of the epipolar line (in ax+by+c=0
form) in image for o.

What's ETp ?



Essential Essential Matrix Facts

Ee’ = 0 and ETe = 0 (epipoles are the nullspace of
E — note all epipolar lines pass through epipoles)
Degrees of freedom (Recall E = |t,|R)?

5 -3 (R)+ 3 (t) — 1 due to scale ambiguity

E is singular (rank 2); it has two non-zero and
identical singular values



Essential Essential Matrix Facts

* One nice thing: if | estimate E from two images
(more on this later), it's unique up to easy
symmetries



What if we don’'t know K?

0 =
Have: p = K 'p, p' = K'"1p’', pTED’' =0
(1{—1p)TE(K’—1 =0 = pTK-TEK'-1p' = 0
Set: F=K TEK'"! Then: p'Fp' =0

—

Fundamental Matrix (Faugeras and Luong, 1992)



Fundamental Matrix Fundamentals
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Fp', F'p are epipolar lines for p’, p
Fe' =0,Fle=0

- is singular (rank 2)

- has seven degrees of freedom

- definitely not unique




Estimating the fundamental matrix

Slide Credit: S. Lazebnik



Estimating the fundamental matrix

* F has 7 degrees of freedom so it’s in principle
possible to fit F with seven correspondences,
but it's a slightly more complex and typically
not taught in regular vision classes



Estimating the fundamental matrix

Given correspondences p = [u,v,1] and p’ =
[u',v’, 1] (e.g., via SIFT) we know: pTFp' = 0

lu, v, 1]

luu’, uv’, u,vu’,vv',v,u’,v’, 1] -

f11
f21

f31

f12
f22
f32

f13_ i

f23

f3z

,_

u

!

(%
1.

=0

=0

[fll' f12' f13' f21' f22' f23' f31' f32' f33]

How do we solve for ?
How many correspondences do we need?
Leads to the eight point algorithm



Eight Point Algorithm

Each point gives an equation:
luu’, uv’, u,vu’,vv',v,u’,v’, 1] -
[fll» f12' f13'f21'f221 f23' f31r f32' f33]
Stack equations to yield U:

=0

U=|wu, wv, u wvu wvv; v; u v; 1

Usual eigenvalue stuff to find f (F unrolled):

arg min ||Uf|} —ap EigeNvector of UTU with
IFllI=1 smallest eigenvalue




Eight Point Algorithm — Difficulty 1

If we estimate F, we get some 3x3 matrix F.
We know F needs to be singular/rank 2. How do we

force F to be singular?

Usv?! =F;... | |
l Open it up with
o, 0 0 o 0 01 SVD, mess
= g, 0|=> 3= lo 0, o] with singular

0

0 ‘W 0 0 0l values, putit
back together.

F=Uuxv?

See Eckart—Young—Mirsky theorem if you're interested



Eight Point Algorithm — Difficulty 1

Estimated F Estimated+SVD'd F
(Wrong) o (Correct)
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Slide Credit: S. Lazebnik



Eight Point Algorithm — Difficulty 2
uv’,El vu',vv',v,u’,v', 1] - — 0
[f11, fi2, fi3 f21, fo20 f230 310 f32, f33]

Recall: u,u’ are in pixels. Suppose image is TKx1K
How big might uu’ be? How big might u be?
Each row looks like:

U=110° 10° 10° 10° 10° 10° 10° 10° 1

Then: UTU1’1 1S ~1O12, UTUZ’g is ~103




Eight Point Algorithm — Difficulty 2

Numbers of varying magnitude — instability

Remember: a floating point number (float/double) isn’t
a “real” number: for sign, coefficient, exponent integers
(-1)s19n * coefficient * 2exponent

Exercise to see how this screws up: add up Gaussian
noise (mean=100, std=10), divide by number you
added up



Remember Numerical Instability?
Code:

110 —— Floatb4
Float32
x += N(100,10) 100
1 += 1 90
mean = x/1T

80

Mean

Only change isthe 70
# of bits in
accumulator x

60

50

Note: 50M is 50 40
i 0] 10 20 30 40 50
TKx1K IMmages # numbers (millions)



Solution: Normalized 8-point

« Center the image data at the origin, and scale it so the
mean squared distance between the origin and the
data points is 2 pixels

» Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint (for example, take SVD
of F and throw out the smallest singular value)

« Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the
two images, than the fundamental matrix in original
coordinatesis T"F T

Slide Credit: R. Hartley
S. Lazebnik In defense of the eight-point algorithm TPAMI 1997



Last Trick

Minimizing via UTU minimizes sum of squared
algebraic distances between points p;and epipolar
lines Fp’; (or points p’; and epipolar lines F'p)):

> (7 Fp))’
l

May want to minimize geometric distance:

d(p;, Fp'))* +
—~ d(p;, F'p;)*

Slide Credit: S. Lazebnik




Comparison

et —

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

Slide Credit: S. Lazebnik




The Fundamental Matrix Son

http://danielwedge.com/fmatrix/


http://danielwedge.com/fmatrix/

From Epipolar Geometry to Calibration

» Estimating the fundamental matrix is known as
“weak calibration”

 If we know the calibration matrices of the two
cameras, we can estimate the essential matrix:
E=K'FK

* The essential matrix gives us the relative
rotation and translation between the cameras,
or their extrinsic parameters

* Alternatively, if the calibration matrices are
known, the five-point algorithm can be used to
estimate relative camera pose

Slide Credit: S. Lazebnik


https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

