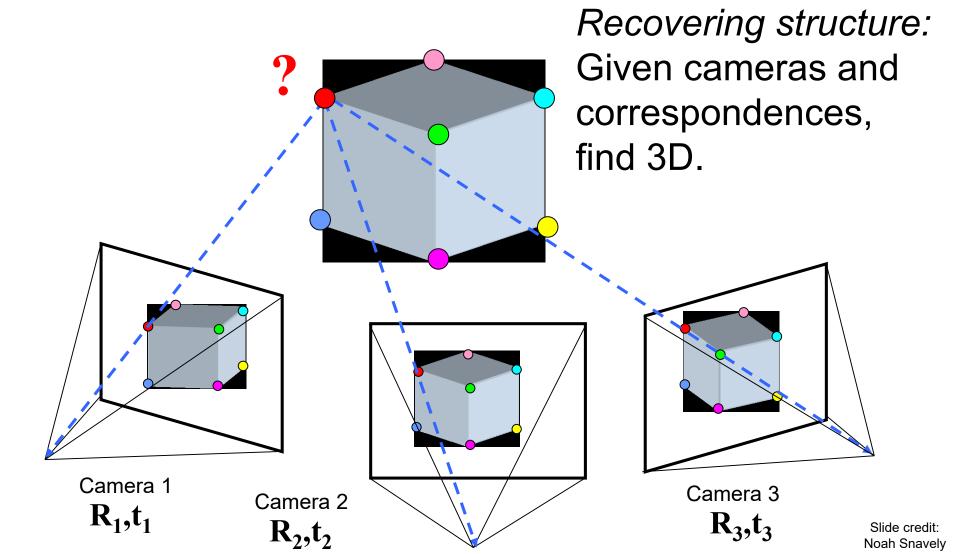
Epipolar Geometry

EECS 442 – David Fouhey Fall 2019, University of Michigan

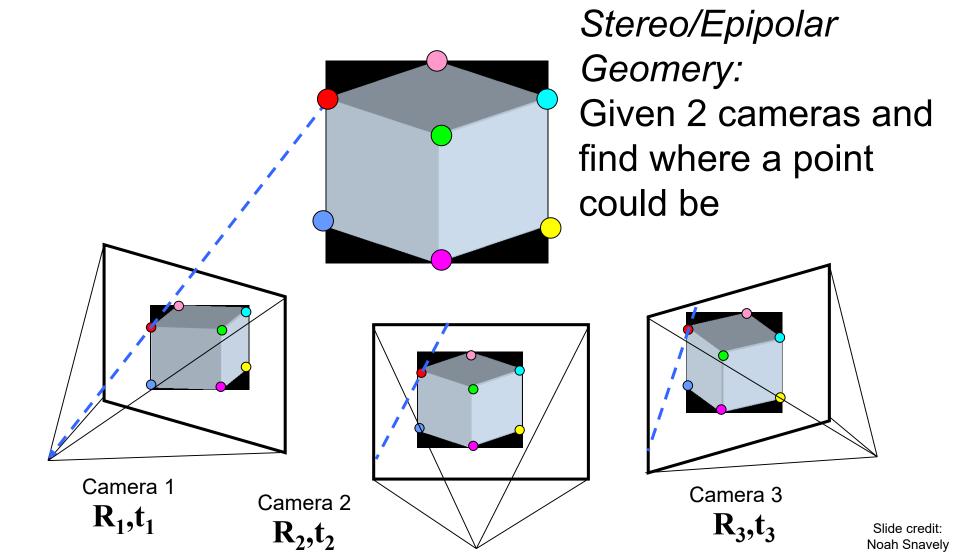
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Multi-view geometry

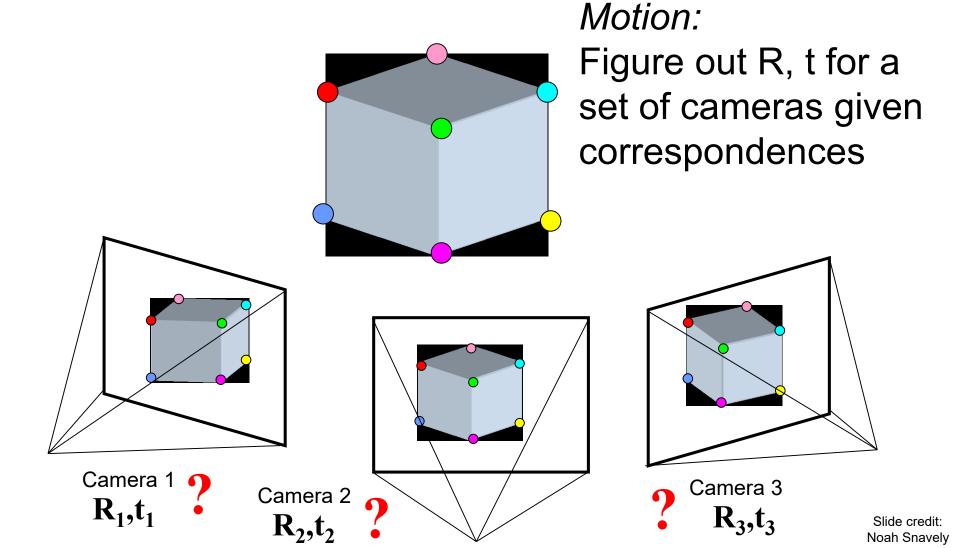
Multi-view geometry problems



Multi-view geometry problems



Multi-view geometry problems



Two-view geometry

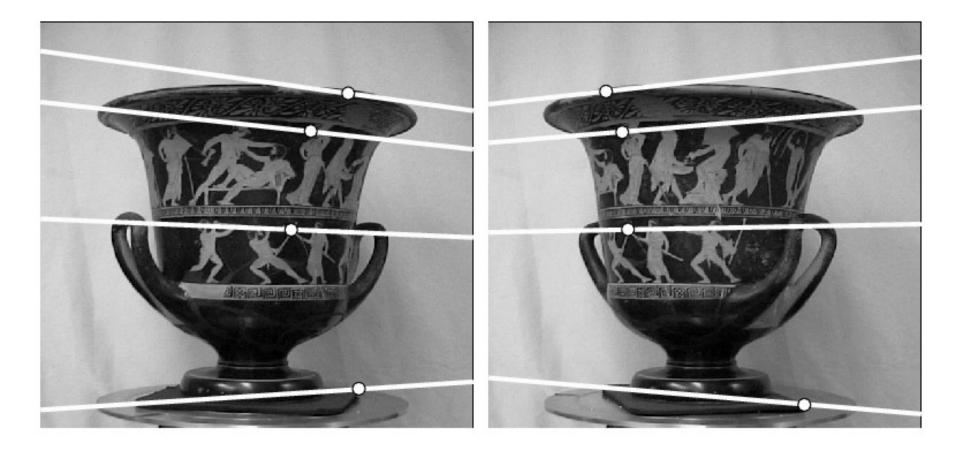
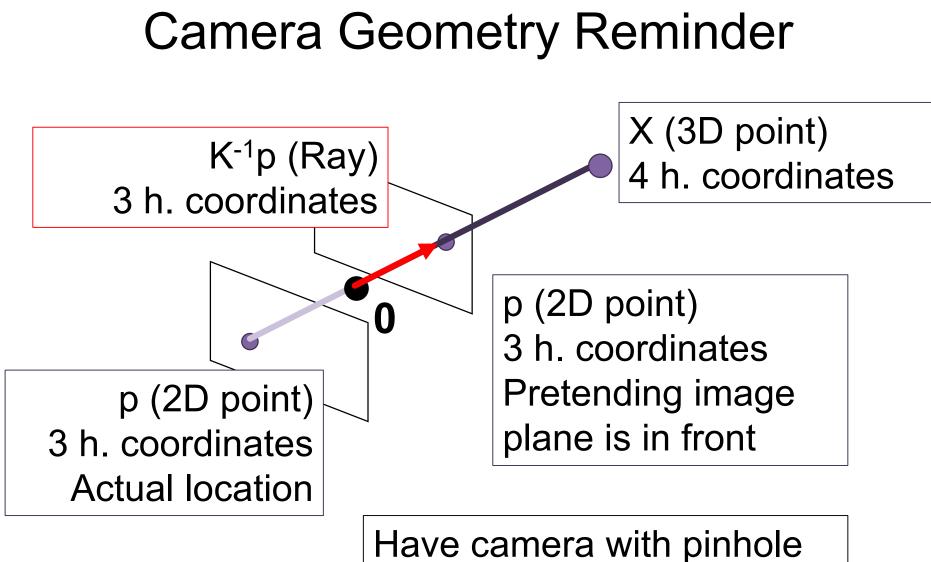
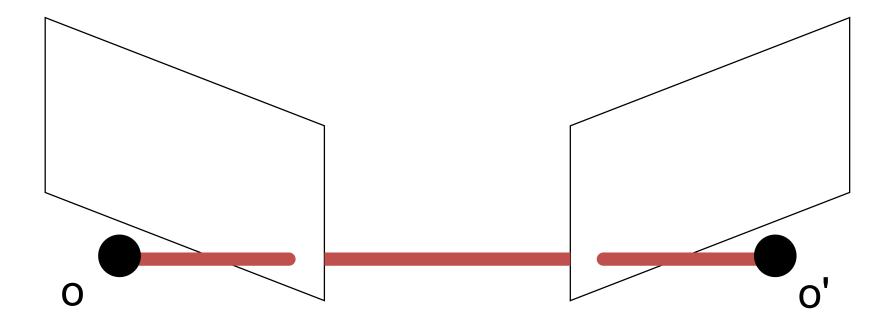


Image Credit: Hartley & Zisserman

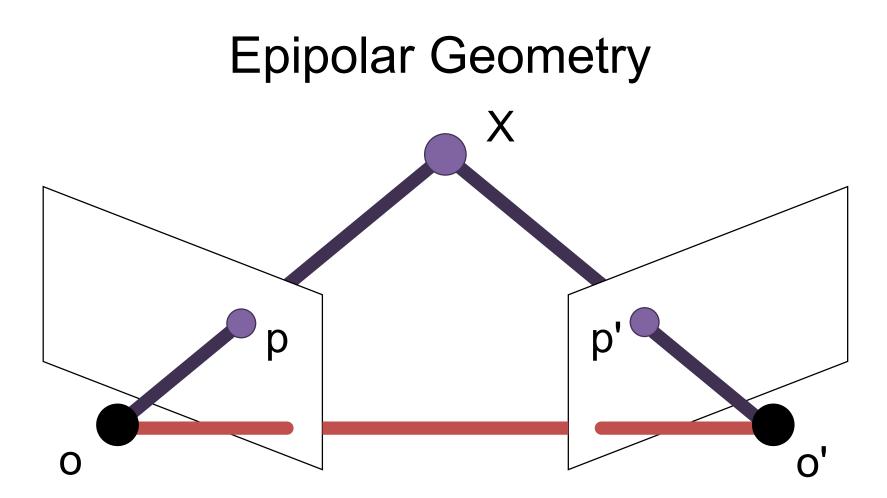


at origin **0**

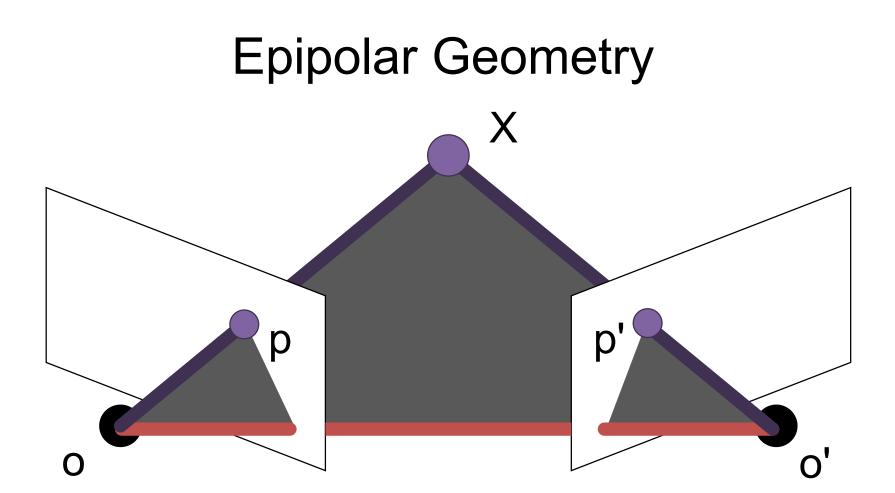
Epipolar Geometry



Suppose we have two cameras at origins o, o' **Baseline** is the line connecting the origins

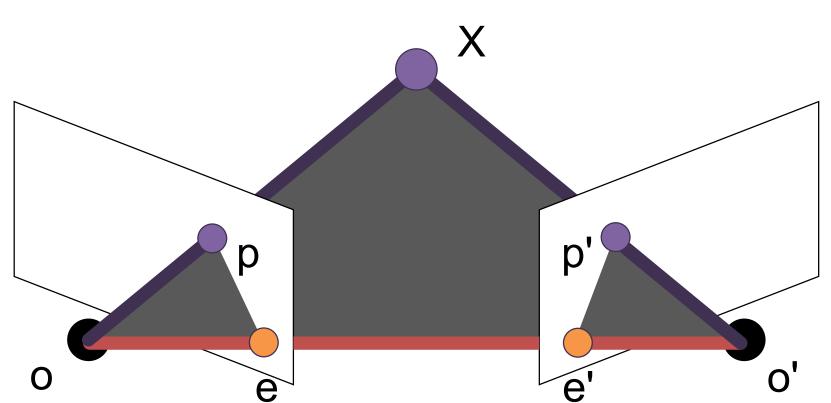


Now add a **point X**, which projects to p and p'



The plane formed by X, o, and o' is called the epipolar plane There is a family of planes per o, o'

Epipolar Geometry

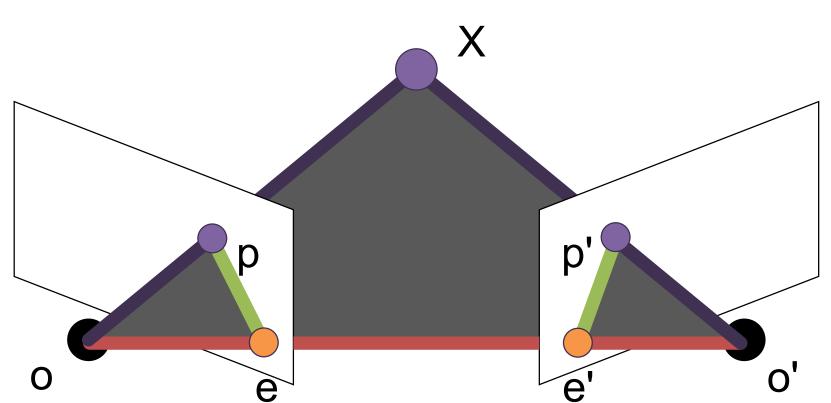


- Epipoles e, e' are where the baseline intersects the image planes
- Projection of other camera in the image plane

The Epipole

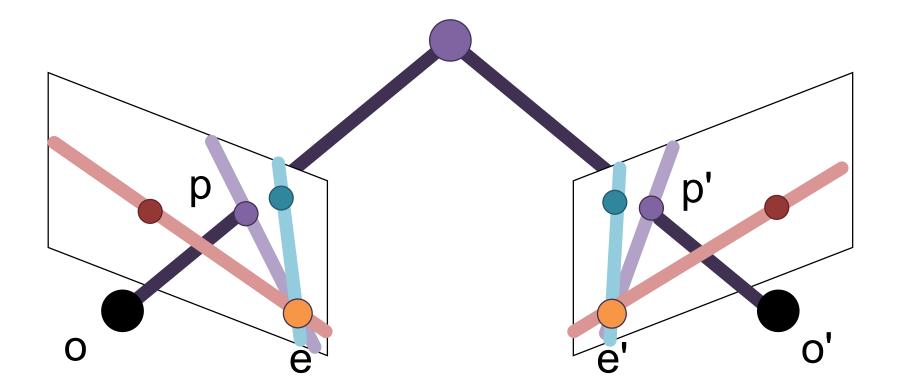
Photo by Frank Dellaert

Epipolar Geometry



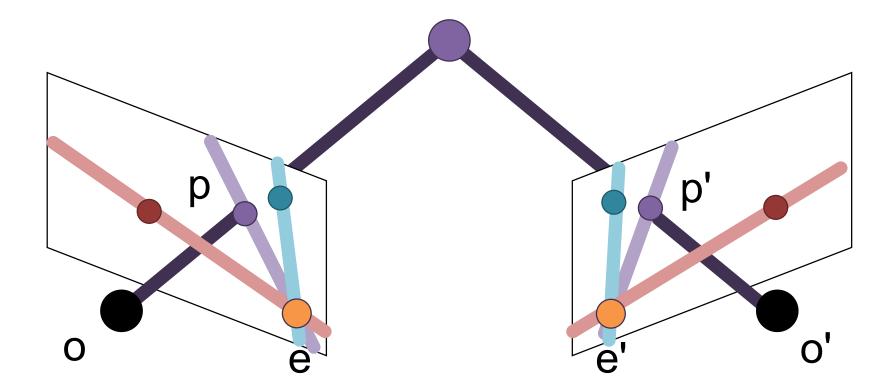
- Epipolar lines go between the epipoles and the projections of the points.
- Intersection of epipolar plane with image plane

Example: Converging Cameras



Epipoles finite, maybe in image; epipolar lines converge

Example: Converging Cameras



Epipolar lines come in pairs: given a point p, we can construct the epipolar line for p'.

Example 1: Converging Cameras

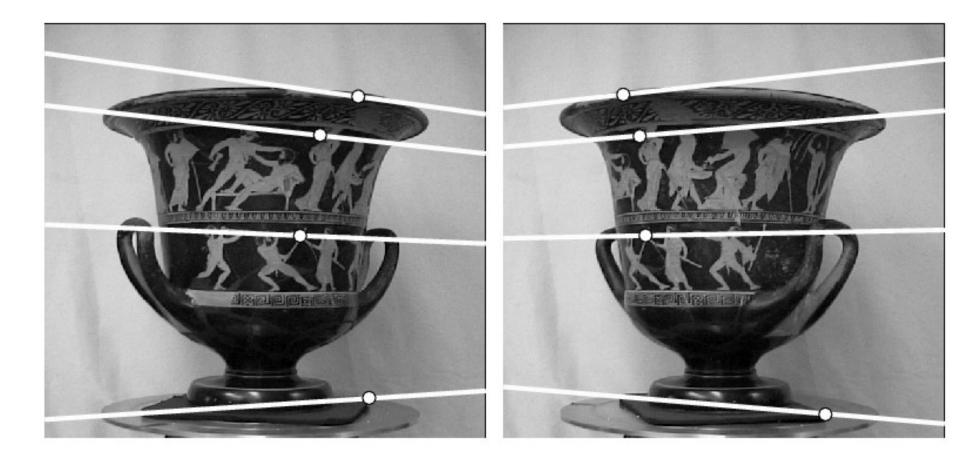
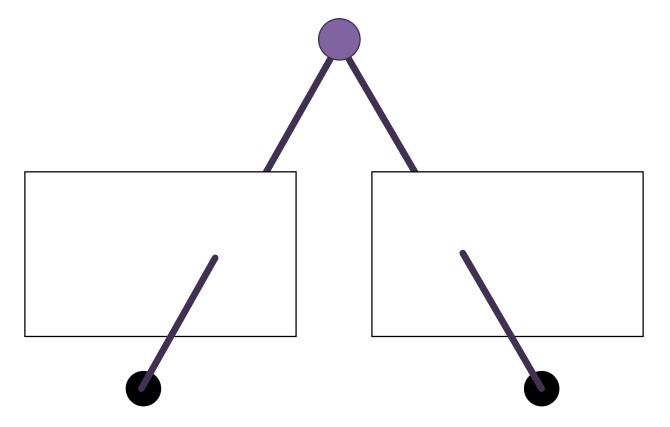


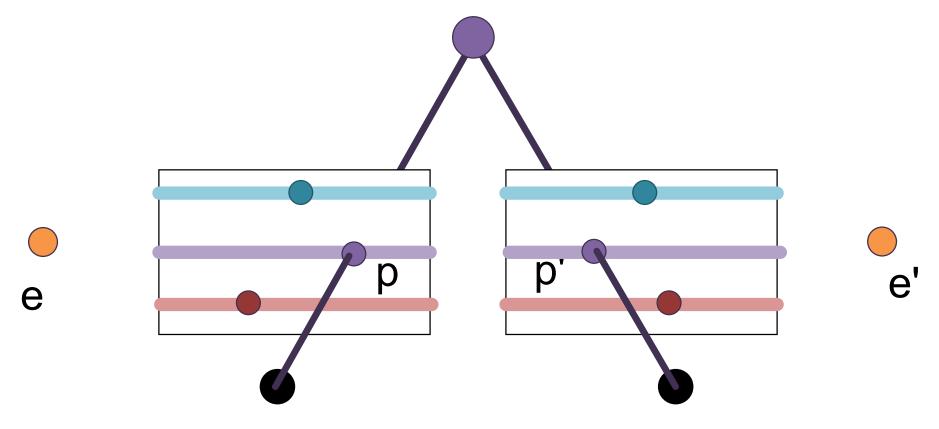
Image Credit: Hartley & Zisserman

Example: Parallel to Image Plane



Suppose the cameras are both facing outwards. Where are the epipoles (proj. of other camera)?

Example: Parallel to Image Plane



Epipoles infinitely far away, epipolar lines parallel

Example: Parallel to Image Plane

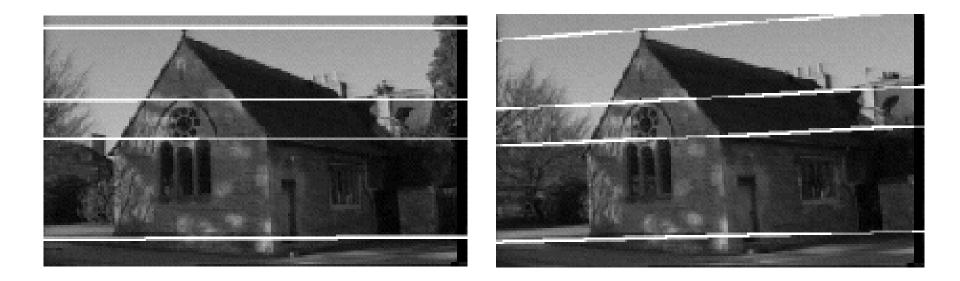


Image Credit: Hartley & Zisserman

Example: Forward Motion

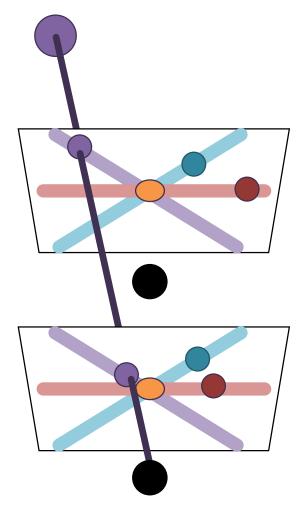
Image Credit: Hartley & Zisserman

Example: Forward Motion

Example: Forward Motion

Epipole is focus of expansion / principal point of the camera.

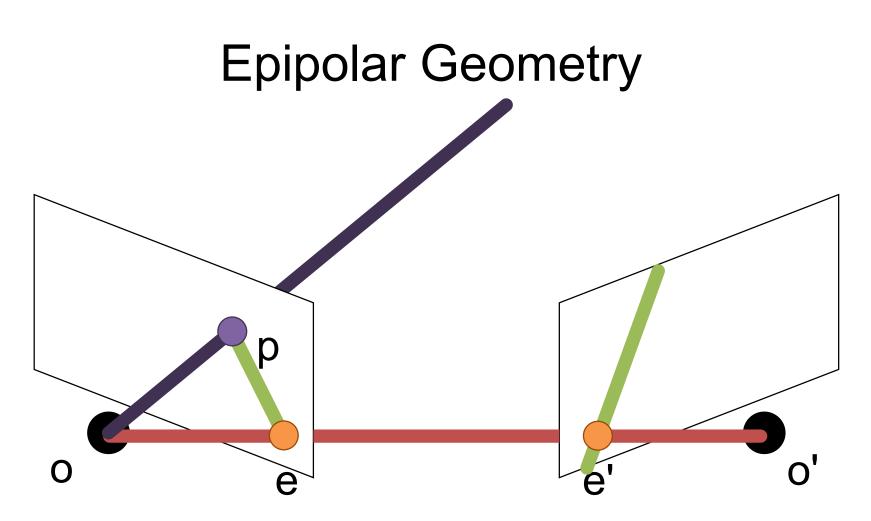
Epipolar lines go out from principal point



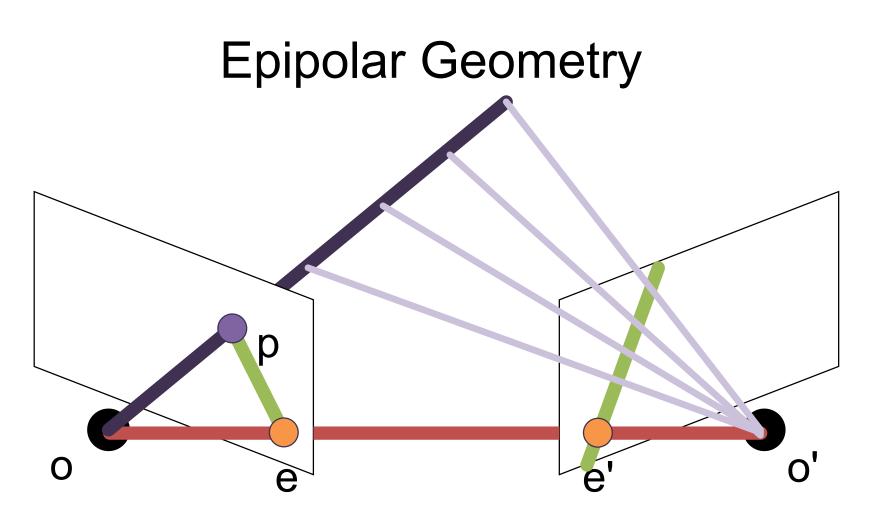
Motion perpendicular to image plane

http://vimeo.com/48425421

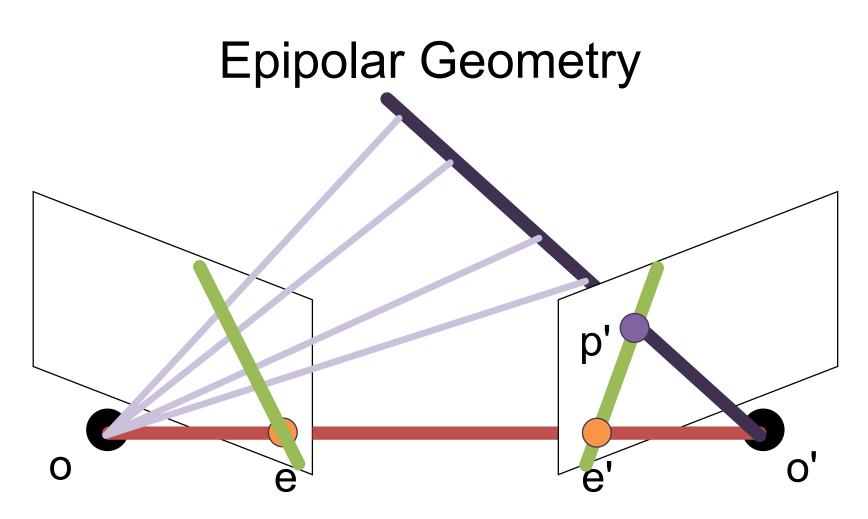
So?



- Suppose we don't know X and just have p
- Can construct the epipolar line in the other image



- Suppose we don't know X and just have p
- Corresponding p' is on corresponding epipolar line

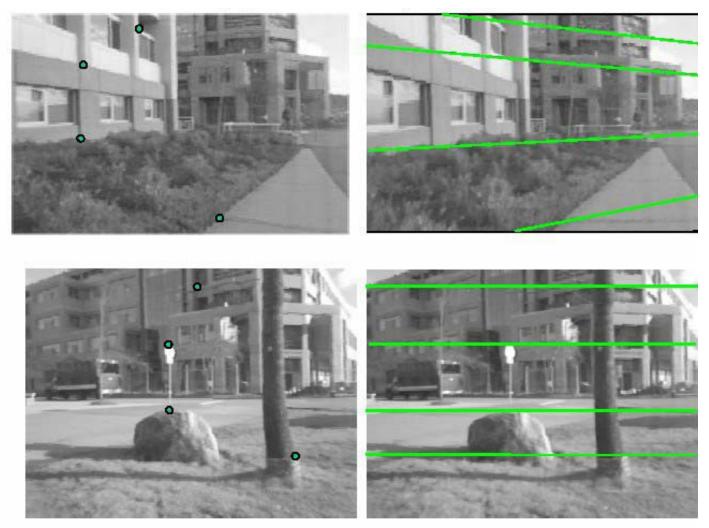


- Suppose we don't know X and just have p'
- Corresponding p is on corresponding epipolar line

Epipolar Geometry

- If I want to do stereo, I want to find a corresponding pixel for each pixel in the image:
- Naïve search:
 - For each pixel, search every other pixel
- With epipolar geometry:
 - For each pixel, search along each line (1D search)

Epipolar constraint example

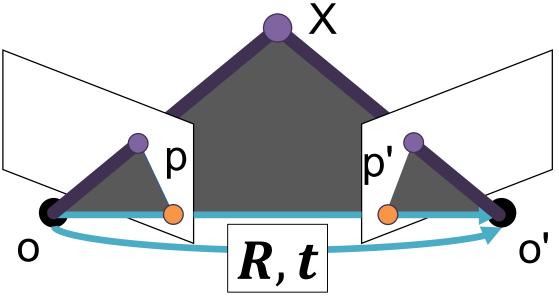


Slide Credit: S. Lazebnik

Epipolar Constraint: One Note

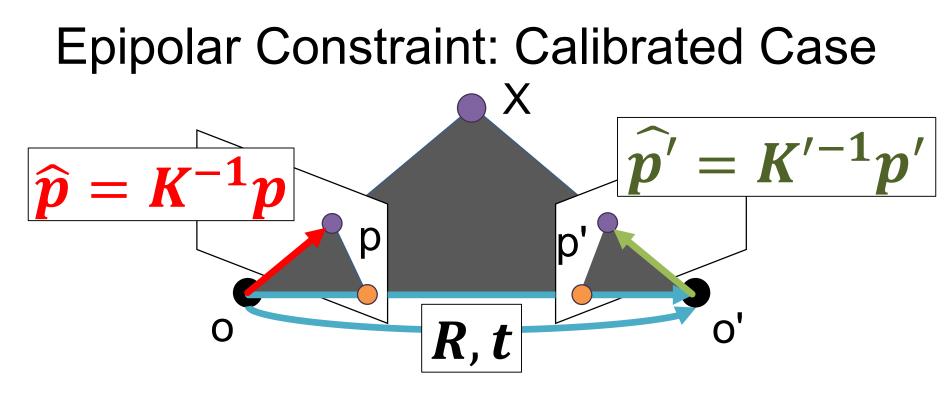
- If you look around for other reading, you'll find derivations with p, p' flipped and constraints derived in a flipped way
- It all works the same

Epipolar Constraint: Calibrated Case

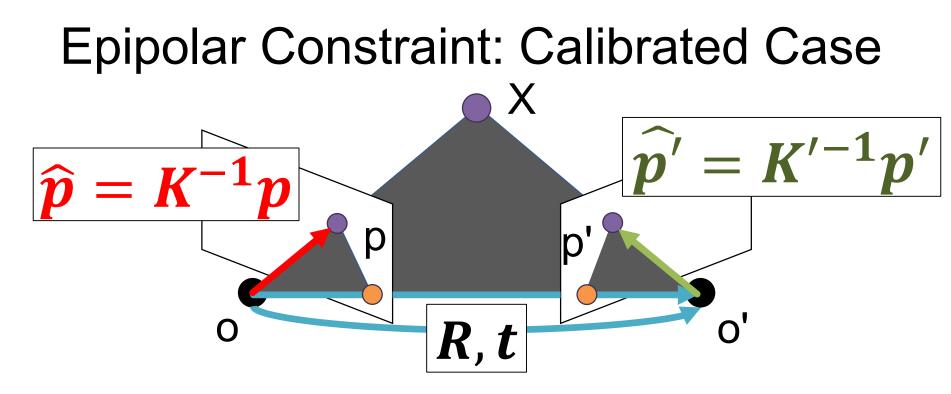


- If we know intrinsic and extrinsic parameters, set coordinate system to first camera
- Projection matrices: $P_1 = K[I, 0]$ and $P_2 = K'[R, t]$
- What are:

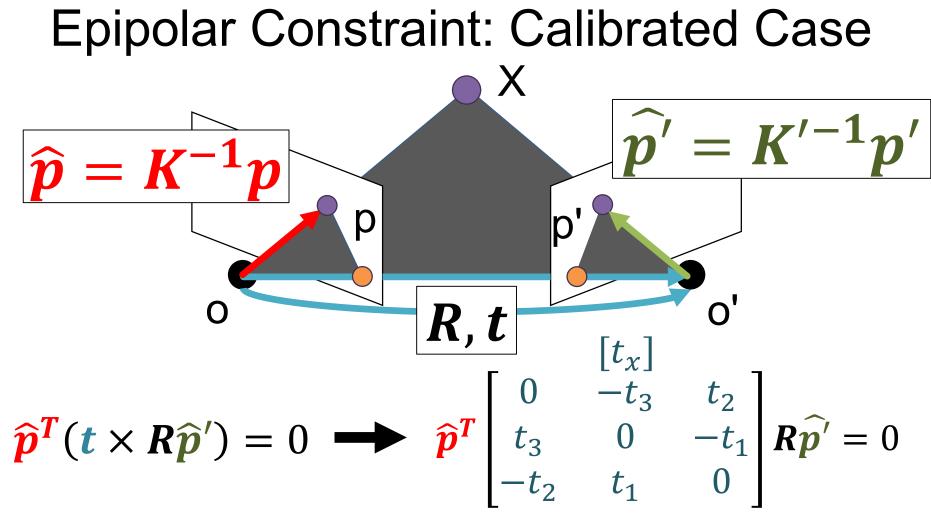
$$P_1X \qquad P_2X \qquad K^{-1}p \qquad K'^{-1}p'$$



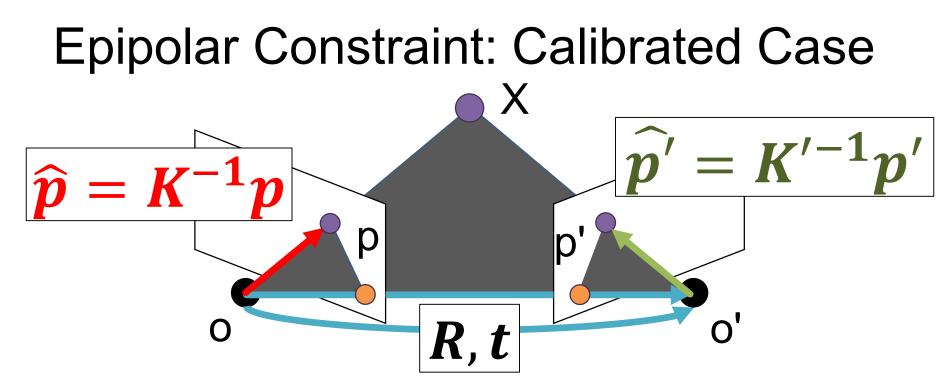
- Given calibration, $\hat{p} = K^{-1}p$ and $\hat{p'} = K'^{-1}p'$ are "normalized coordinates"
- Note that $\widehat{p'}$ is actually translated and rotated



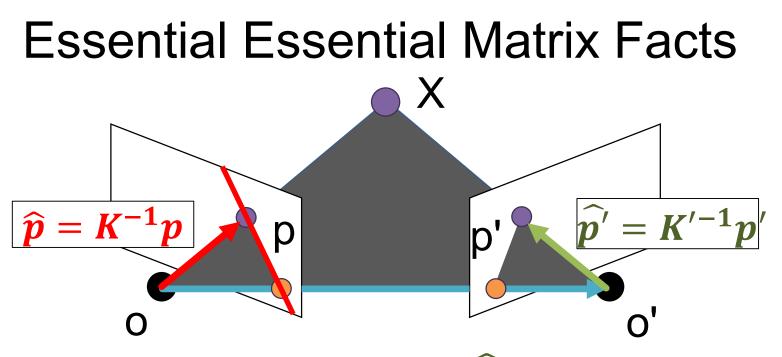
- The following are all co-planar: \hat{p} , t, $R\hat{p'}$ (can ignore translation for co-planarity here)
- One way to check co-planarity (triple product): $\hat{p}^{T}(t \times R\hat{p}) = 0$



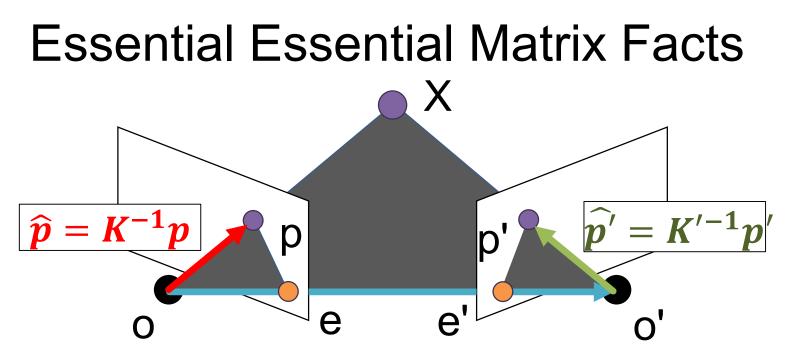
Want something like **x^TMy**=0. What's M?



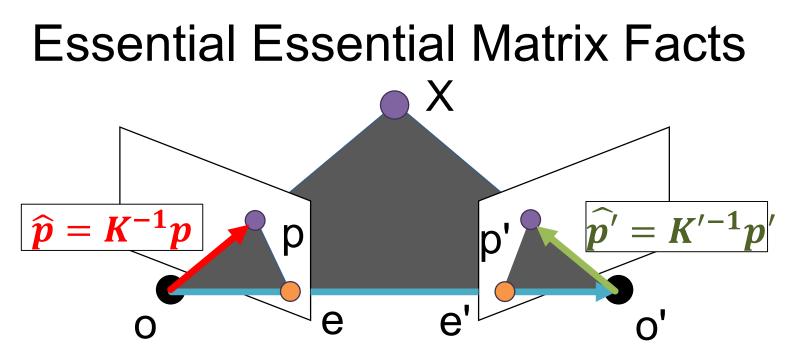
Essential matrix (Longuet-Higgins, 1981): $E = [t_x]R$ If you have a normalized point \hat{p} , its correspondence \hat{p}' **must** satisfy $\hat{p}^T E \hat{p}' = 0$



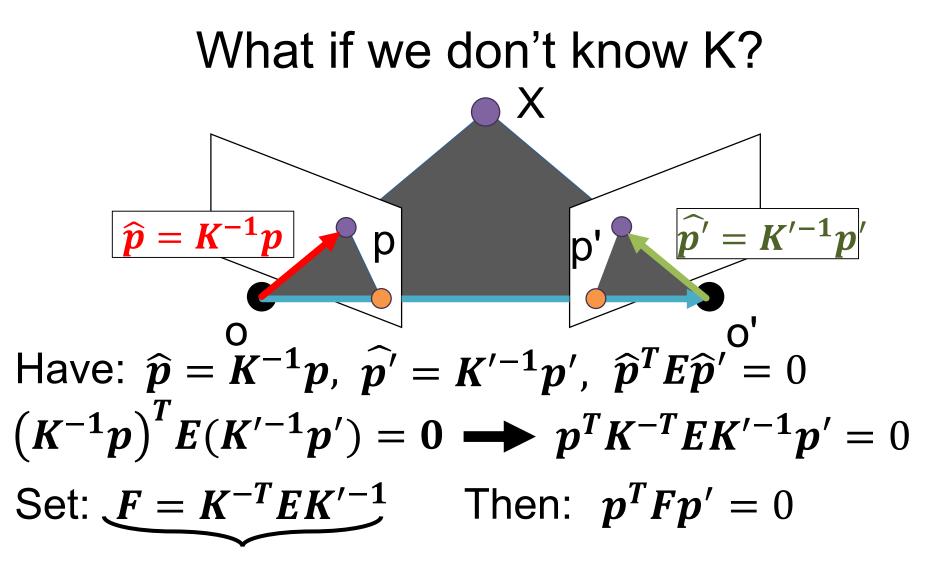
- Suppose we know **E** and $\hat{p}^T E \hat{p}' = 0$. What is the set $\{x: x^T E \hat{p}' = 0\}$?
- *Ep̂* gives equation of the epipolar line (in ax+by+c=0 form) in image for o.
- What's $E^T \hat{p}$?



- $E\hat{e'} = 0$ and $E^T\hat{e} = 0$ (epipoles are the nullspace of E note all epipolar lines pass through epipoles)
- Degrees of freedom (Recall $E = [t_x]R$)?
- 5 3 (R)+ 3 (t) 1 due to scale ambiguity
- E is singular (rank 2); it has two non-zero and *identical* singular values

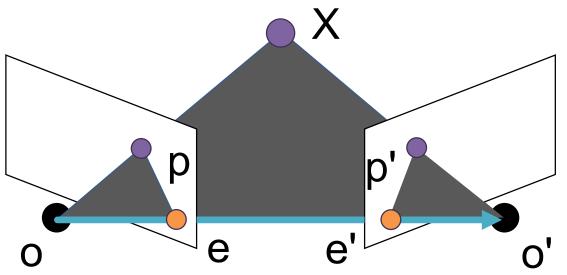


 One nice thing: if I estimate E from two images (more on this later), it's unique up to easy symmetries



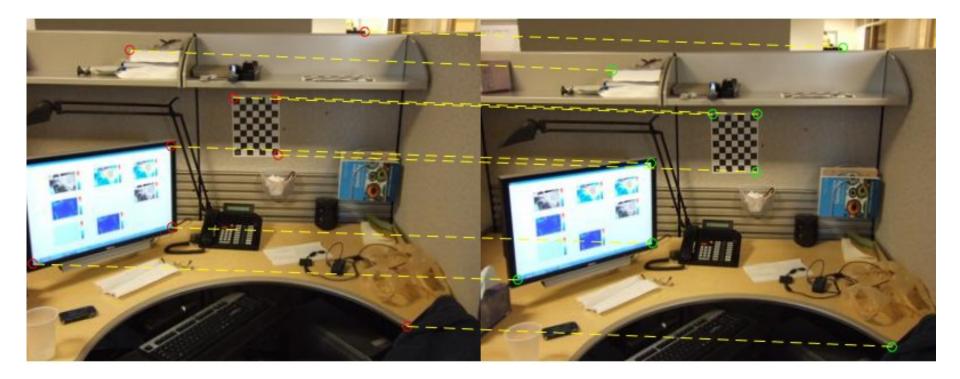
Fundamental Matrix (Faugeras and Luong, 1992)

Fundamental Matrix Fundamentals



- Fp', F^Tp are epipolar lines for p', p
- $Fe' = 0, F^Te = 0$
- F is singular (rank 2)
- F has seven degrees of freedom
- F definitely not unique

Estimating the fundamental matrix



Estimating the fundamental matrix

 F has 7 degrees of freedom so it's in principle possible to fit F with seven correspondences, but it's a slightly more complex and typically not taught in regular vision classes

Estimating the fundamental matrix

Given correspondences p = [u, v, 1] and p' = [u', v', 1] (e.g., via SIFT) we know: $p^T F p' = 0$

$$\begin{bmatrix} u, v, 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = 0$$

 $\begin{bmatrix} uu', uv', u, vu', vv', v, u', v', 1 \end{bmatrix} \cdot \\ [f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}] = 0$

How do we solve for f? How many correspondences do we need? Leads to the eight point algorithm

Eight Point Algorithm

Each point gives an equation:

 $[uu', uv', u, vu', vv', v, u', v', 1] \cdot = 0$ [f₁₁, f₁₂, f₁₃, f₂₁, f₂₂, f₂₃, f₃₁, f₃₂, f₃₃] = 0 Stack equations to yield **U**:

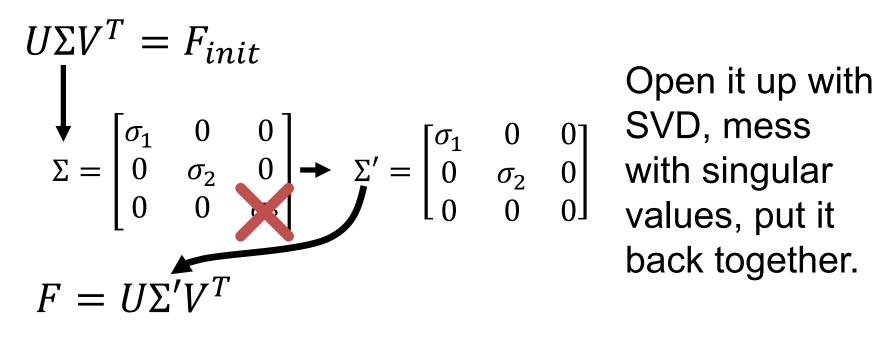
$$\boldsymbol{U} = \begin{bmatrix} u_{i}u_{i}' & u_{i}v_{i}' & u_{i} & v_{i}u_{i}' & v_{i}v_{i}' & v_{i} & u_{i}' & v_{i}' & 1 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Usual eigenvalue stuff to find **f** (**F** unrolled):

arg min
$$||Uf||_2^2 \longrightarrow$$
 Eigenvector of $U^T U$ with smallest eigenvalue

Eight Point Algorithm – Difficulty 1

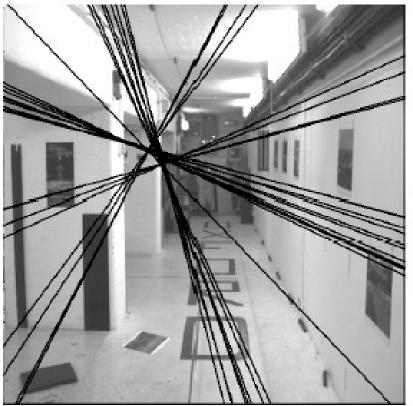
If we estimate F, we get some 3x3 matrix F. We know F needs to be singular/rank 2. How do we force F to be singular?



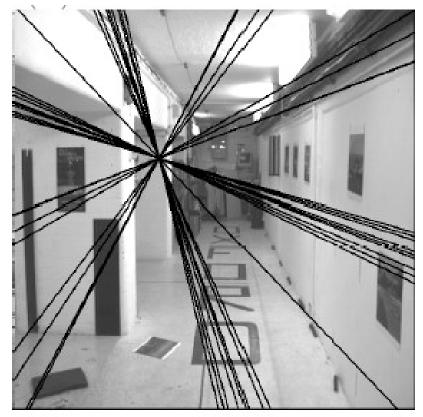
See Eckart–Young–Mirsky theorem if you're interested

Eight Point Algorithm – Difficulty 1

Estimated F (Wrong)



Estimated+SVD'd F (Correct)



Slide Credit: S. Lazebnik

Eight Point Algorithm – Difficulty 2 $[uu', uv', u] vu', vv', v, u', v', 1] \cdot$ $[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}]^T = 0$

Recall: u,u' are in pixels. Suppose image is 1Kx1K How big might uu' be? How big might u be? Each row looks like:

$$\boldsymbol{U} = \begin{bmatrix} 10^6 & 10^6 & 10^3 & 10^6 & 10^6 & 10^3$$

Then: $U^T U_{1,1}$ is ~10¹², $U^T U_{2,9}$ is ~10³

Г

Eight Point Algorithm – Difficulty 2

Numbers of varying magnitude \rightarrow instability

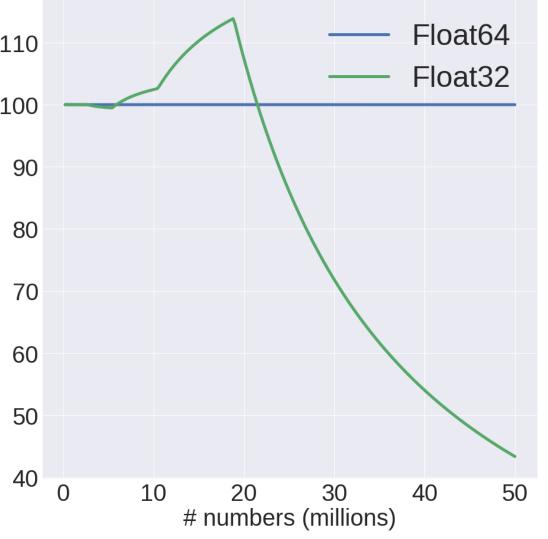
Remember: a floating point number (float/double) isn't a "real" number: for sign, coefficient, exponent integers (-1)^{sign} * coefficient * 2^{exponent}

Exercise to see how this screws up: add up Gaussian noise (mean=100, std=10), divide by number you added up

Remember Numerical Instability?

Code:	1
x += N(100, 10)	1
i += 1 mean = x/I	
Only change is the # of bits in accumulator x	Mean
Note: 50M is 50	

1Kx1K images



Solution: Normalized 8-point

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute *F* from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if *T* and *T*' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is *T*'^T*FT*

R. Hartley

Slide Credit: S. Lazebnik

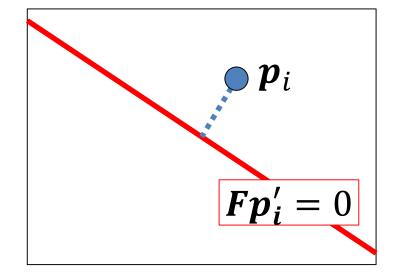
In defense of the eight-point algorithm TPAMI 1997

Last Trick

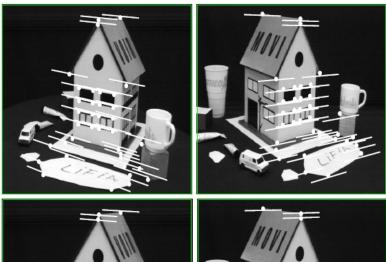
Minimizing via U^TU minimizes sum of squared algebraic distances between points p_i and epipolar lines Fp'_i (or points p'_i and epipolar lines F^Tp_i):

 $\sum (p_i^T F p_i')^2$

$$\sum_{i} \frac{d(p_i, Fp'_i)^2}{d(p'_i, F^Tp_i)^2}$$



Comparison



	8-point	Normalized 8-point	Nonlinear least squares	
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel	
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel	

0.01

Slide Credit: S. Lazebnik

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

From Epipolar Geometry to Calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix:
 E = *K*^{'7}*FK*
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters
- Alternatively, if the calibration matrices are known, the <u>five-point algorithm</u> can be used to estimate relative camera pose