Intro to 3D + Camera Calibration

 EECS 442 - David Fouhey Fall 2019, University of Michigan http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/
Our goal: Recovery of 3D structure

J. Vermeer, Music Lesson, 1662
A. Criminisi, M. Kemp, and A. Zisserman, Bringing Pictorial Space to Life: computer techniques for the analysis of paintings, Proc. Computers and the History of Art, 2002

Next few classes

- First: some intuitions and examples from biological vision about 3D perception
- But first, a brief review

Let's Take a Picture!

Projection Matrix

Projection ($\mathrm{fx} / \mathrm{z}, \mathrm{fy} / \mathrm{z}$) is matrix multiplication

Single-view Ambiguity

- Given a calibrated camera and an image, we only know the ray corresponding to each pixel.
- Nowhere near enough constraints for X

Single-view Ambiguity

http://en.wikipedia.org/wiki/Ames room

Single-view Ambiguity

Diagram credit: J. Hays

Single-view Ambiguity

Rashad Alakbarov shadow sculptures

Resolving Single-view Ambiguity

- Shoot light (lasers etc.) out of your eyes!
- Con: not so biologically plausible, dangerous?

Resolving Single-view Ambiguity

- Shoot light (lasers etc.) out of your eyes!
- Con: not so biologically plausible, dangerous?

Resolving Single-view Ambiguity

- Stereo: given 2 calibrated cameras in different views and correspondences, can solve for X

Human stereopsis: disparity

FIGURE 7.1

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Human eyes fixate on point in space - rotate so that corresponding images form in centers of fovea.

Human stereopsis: disparity

Disparity occurs when eyes fixate on one object; others appear at different visual angles

From Bruce and Green, Visual Perception,
Physiology, Psychology and Ecology

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image from fisher-price.com

http://www.johnsonshawmuseum.org
Slide credit: J. Hays

http://www.well.com/~jimg/stereo/stereo_list.html

http://www.well.com/~jimg/stereo/stereo_list.html

Autostereograms

Exploit disparity as depth cue using single image.
(Single image random dot stereogram, Single image stereogram)

Autostereograms

Yeah, yeah, but...

Not all animals see stereo:
Prey animals (large field of view to spot predators) Stereoblind people

Resolving Single-view Ambiguity

- One option: move, find correspondence.
- If you know how you moved and have a calibrated camera, can solve for X

Knowing R,t

- How do you know how far you moved?
- Can solve via vision
- Can solve via ears
- Why does your inner ear have 3 ducts?
- Can solve via signals sent to muscles

Yeah, yeah, but...

You haven't been here before, yet you probably have a fairly good understanding of this scene.

Pictorial Cues - Shading

a)

b)

c)
[Figure from Prados \& Faugeras 2006]

Pictorial Cues - Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]

Pictorial Cues - Perspective effects

Pictorial Cues - Familiar Objects

Reality of 3D Perception

-3D perception is absurdly complex and involves integration of many cues:

- Learned cues for 3D
- Stereo between eyes
- Stereo via motion
- Integration of known motion signals to muscles (efferent copy), acceleration sensed via ears
- Past experience of touching objects
- All connect: learned cues from 3D probably come from stereo/motion cues in large part

How are Cues Combined?

Ames illusion persists (in a weaker form) even if you have stereo vision-gussing the texture is rectilinear is usually incredibly reliable

More Formally

Multi-view geometry problems

Calibration:
 We need camera intrinsics / K in order to figure out where the rays are

Multi-view geometry problems

Multi-view geometry problems

Multi-view geometry problems

Motion:

Figure out R, t for a set of cameras given correspondences

$?^{\text {? }} \begin{gathered}\text { Camera } 3 \\ \mathbf{R}_{3}, \mathbf{t}_{\mathbf{3}}\end{gathered}$
Slide credit: Noah Snavely

Outline

- (Today) Calibration:
- Getting intrinsic matrix/K
- Single view geometry:
- measurements with 1 image
- Stereo/Epipolar geometry:
- 2 pictures \rightarrow depthmap
- Structure from motion (SfM):
- 2+ pictures \rightarrow cameras, pointcloud

Typical Perspective Model

 principal point (image coords focal length
Camera Calibration

If I can get pairs of $[X, Y, Z]$ and $[u, v]$
\rightarrow equations to constrain \mathbf{M} How do I get [X,Y,Z], [u,v]

Camera Calibration

A funny object with multiple planes.

Camera Calibration Targets

Using a tape measure

Camera Calibration Targets

A set of views of a plane (not covered today)

Camera Calibration Targets

A single, huge plane. What's this for?

Camera calibration

- Given n points with known 3D coordinates \boldsymbol{X}_{i} and known image projections \mathbf{p}_{i}, estimate the camera parameters

Camera Calibration: Linear Method

$$
p_{i} \equiv M X_{i}
$$

Remember (from geometry): this implies $\mathbf{M X} \mathbf{X}_{\mathbf{i}} \mathbf{p}_{\mathbf{i}}$ are scaled copies of each other

$$
\boldsymbol{p}_{\boldsymbol{i}}=\lambda \boldsymbol{M} \boldsymbol{X}_{i}, \lambda \neq 0
$$

Remember (from homography fitting): this implies their cross product is $\mathbf{0}$

$$
\boldsymbol{p}_{i} \times M X_{i}=\mathbf{0}
$$

Camera Calibration: Linear Method

$$
\begin{gathered}
\boldsymbol{p}_{\boldsymbol{i}} \times \boldsymbol{M} \boldsymbol{X}_{\boldsymbol{i}}=\mathbf{0} \\
{\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \times\left[\begin{array}{l}
\boldsymbol{M}_{\mathbf{1}} \boldsymbol{X}_{\boldsymbol{i}} \\
\boldsymbol{M}_{\mathbf{2}} \boldsymbol{X}_{\boldsymbol{i}} \\
\boldsymbol{M}_{\mathbf{3}} \boldsymbol{X}_{\boldsymbol{i}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

...Some tedious math occurs...
(see Homography deriviation)

$$
\left[\begin{array}{ccc}
\mathbf{0}^{T} & -\boldsymbol{X}_{i}^{T} & \boldsymbol{v}_{i} \boldsymbol{X}_{i}^{T} \\
\boldsymbol{X}_{i}^{T} & \mathbf{0}^{T} & -\boldsymbol{u}_{i} \boldsymbol{X}_{i}^{T} \\
-\boldsymbol{v}_{i} X_{i}^{T} & \boldsymbol{u}_{i} \boldsymbol{X}_{i}^{T} & \mathbf{0}^{T}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{M}_{1}^{T} \\
\boldsymbol{M}_{2}^{T} \\
\boldsymbol{M}_{3}^{T}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Camera Calibration: Linear Method

$$
\left[\begin{array}{ccc}
\mathbf{0}^{T} & -\boldsymbol{X}_{\boldsymbol{i}}^{T} & v_{i} \boldsymbol{X}_{\boldsymbol{i}}^{T} \\
\boldsymbol{X}_{\boldsymbol{i}}^{T} & \mathbf{0}^{T} & -u_{i} \boldsymbol{X}_{i}^{T} \\
-v_{i} \boldsymbol{X}_{\boldsymbol{i}}^{T} & u_{i} \boldsymbol{X}_{\boldsymbol{i}}^{T} & \mathbf{0}^{T}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{M}_{1}^{T} \\
\boldsymbol{M}_{2}^{T} \\
\boldsymbol{M}_{3}^{T}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]
$$

How many linearly independent equations?

$$
2
$$

How many equations per $[u, v]+[X, Y, Z]$ pair? 2
If M is 3×4, how many degrees of freedom? 11

Camera Calibration: Linear Method

$$
\left[\begin{array}{ccc}
\mathbf{0}^{T} & \boldsymbol{X}_{i}^{T} & -v_{1} \boldsymbol{X}_{i}^{T} \\
\boldsymbol{X}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{X}_{i}^{T} \\
\cdots & \cdots & \cdots \\
\mathbf{0}^{T} & \boldsymbol{X}_{n}^{T} & -v_{1} \boldsymbol{X}_{n}^{T} \\
\boldsymbol{X}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{X}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{M}_{1}^{T} \\
\boldsymbol{M}_{2}^{T} \\
\boldsymbol{M}_{3}^{T}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

How do we solve problems of the form $\arg \min \|\boldsymbol{A n}\|_{2}^{2},\|\boldsymbol{n}\|_{2}^{2}=1$?
Eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue

In Practice

Degenerate configurations (e.g., all points on one plane) an issue. Usually need multiplane targets.

In Practice

I pulled a fast one.
We want:

$$
\begin{gathered}
\boldsymbol{p} \equiv \boldsymbol{K}_{3 \times 3}\left[\boldsymbol{R}_{3 \times 3}, \boldsymbol{t}_{3 \times 1}\right] \quad \boldsymbol{X}_{4 \times 1} \\
\boldsymbol{p} \equiv \boldsymbol{M}_{3 \times 4} \boldsymbol{X}_{4 \times 1}
\end{gathered}
$$

What's the difference between $K[R, t]$ and M ?

Solution: QR-decomposition on left-most 3×3 matrix \rightarrow finite options of a upper triangular matrix * rotation

In Practice

If $\boldsymbol{p}_{\boldsymbol{i}}=\mathbf{M} \mathbf{x}_{\boldsymbol{i}}$ is overconstrained, the objective function isn't actually the one you care about.

Instead:

1) initialize parameters with linear model
2) Apply off-the-shelf non-linear optimizer to:

$$
\sum\left\|\operatorname{proj}\left(\boldsymbol{M} \boldsymbol{X}_{\boldsymbol{i}}\right)-\left[u_{i}, v_{i}\right]^{T}\right\|_{2}^{2}
$$

Advantage: can also add radial distortion, not optimize over known variables, add constraints

What Does This Get You?

Given projection $\mathbf{p}_{\mathbf{i}}$ of unknown 3D point \mathbf{X} in two or more images (with known cameras \mathbf{M}_{i}), find \mathbf{X}

Triangulation

Given projection $\mathbf{p}_{\mathbf{i}}$ of unknown 3D point \mathbf{X} in two or more images (with known cameras $\mathbf{M}_{\mathbf{i}}$), find \mathbf{X} Why is the calibration here important?

Triangulation

Rays in principle should intersect, but in practice usually don't exactly due to noise, numerical errors.

Triangulation - Geometry

Find shortest segment between viewing rays, set \mathbf{X} to be the midpoint of the segment.

Triangulation - Non-linear Optim.

Find X minimizing $d\left(\boldsymbol{p}_{1}, \boldsymbol{M}_{1} \boldsymbol{X}\right)^{2}+d\left(\boldsymbol{p}_{2}, \boldsymbol{M}_{2} \boldsymbol{X}\right)^{2}$

Triangulation - Linear Optimization

$$
\begin{aligned}
& p_{1} \equiv M_{1} X \\
& p_{2} \equiv M_{2} X
\end{aligned} \Rightarrow \begin{aligned}
& p_{1} \times M_{1} X=0 \\
& p_{2} \times M_{2} X=0
\end{aligned} \Rightarrow \begin{aligned}
& {\left[p_{1 x}\right] M_{1} X=0} \\
& {\left[p_{2 x}\right] M_{2} X=0}
\end{aligned}
$$

Cross Prod. as matrix

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\boldsymbol{a}_{x}\right] \boldsymbol{b}
$$

$$
\begin{aligned}
& {\left[p_{1 x}\right] M_{1} X=0} \\
& {\left[p_{2 x}\right] M_{2} X=0}
\end{aligned} \Rightarrow \begin{aligned}
& \left(\left[p_{1 x}\right] M_{1}\right) X=0 \\
& \left(\left[p_{2 x}\right] M_{2}\right) X=0
\end{aligned}
$$

Two eqns per camera for 3 unkn. in X

